1
|
Rajora AK, Ahire ED, Rajora M, Singh S, Bhattacharya J, Zhang H. Emergence and impact of theranostic-nanoformulation of triple therapeutics for combination cancer therapy. SMART MEDICINE 2024; 3:e20230035. [PMID: 39188518 PMCID: PMC11235932 DOI: 10.1002/smmd.20230035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/30/2023] [Indexed: 08/28/2024]
Abstract
Cancer remains a major global health threat necessitating the multipronged approaches for its prevention and management. Traditional approaches in the form of chemotherapy, surgery, and radiotherapy are often encountered with poor patient outcomes evidenced by high mortality and morbidity, compelling the need for precision medicine for cancer patients to enable personalized and targeted cancer treatment. There has been an emergence of smart multimodal theranostic nanoformulation for triple combination cancer therapy in the last few years, which dramatically enhances the overall safety of the nanoformulation for in vivo and potential clinical applications with minimal toxicity. However, it is imperative to gain insight into the limitations of this system in terms of clinical translation, cost-effectiveness, accessibility, and multidisciplinary collaboration. This review paper aims to highlight and compare the impact of the recent theranostic nanoformulations of triple therapeutics in a single nanocarrier for effective management of cancer and provide a new dimension for diagnostic and treatment simultaneously.
Collapse
Affiliation(s)
- Amit Kumar Rajora
- NanoBiotechnology LabSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| | - Eknath D. Ahire
- Department of Pharmaceutics, Mumbai Educational Trust (MET), Institute of PharmacyAffiliated to Savitribai Phule, Pune UniversityNashikMaharashtraIndia
| | - Manju Rajora
- College of NursingAll India Institute of Medical SciencesNew DelhiIndia
| | - Sukhvir Singh
- Radiological Physics and Internal Dosimetry (RAPID) GroupInstitute of Nuclear Medicine and Allied SciencesDefense Research & Development Organization, Ministry of DefenseTimarpurDelhiIndia
| | - Jaydeep Bhattacharya
- NanoBiotechnology LabSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
2
|
Ahmed YB, Ababneh OE, Al-Khalili AA, Serhan A, Hatamleh Z, Ghammaz O, Alkhaldi M, Alomari S. Identification of Hypoxia Prognostic Signature in Glioblastoma Multiforme Based on Bulk and Single-Cell RNA-Seq. Cancers (Basel) 2024; 16:633. [PMID: 38339384 PMCID: PMC10854729 DOI: 10.3390/cancers16030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Glioblastoma (GBM) represents a profoundly aggressive and heterogeneous brain neoplasm linked to a bleak prognosis. Hypoxia, a common feature in GBM, has been linked to tumor progression and therapy resistance. In this study, we aimed to identify hypoxia-related differentially expressed genes (DEGs) and construct a prognostic signature for GBM patients using multi-omics analysis. Patient cohorts were collected from publicly available databases, including the Gene Expression Omnibus (GEO), the Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas-Glioblastoma Multiforme (TCGA-GBM), to facilitate a comprehensive analysis. Hypoxia-related genes (HRGs) were obtained from the Molecular Signatures Database (MSigDB). Differential expression analysis revealed 41 hypoxia-related DEGs in GBM patients. A consensus clustering approach, utilizing these DEGs' expression patterns, identified four distinct clusters, with cluster 1 showing significantly better overall survival. Machine learning techniques, including univariate Cox regression and LASSO regression, delineated a prognostic signature comprising six genes (ANXA1, CALD1, CP, IGFBP2, IGFBP5, and LOX). Multivariate Cox regression analysis substantiated the prognostic significance of a set of three optimal signature genes (CP, IGFBP2, and LOX). Using the hypoxia-related prognostic signature, patients were classified into high- and low-risk categories. Survival analysis demonstrated that the high-risk group exhibited inferior overall survival rates in comparison to the low-risk group. The prognostic signature showed good predictive performance, as indicated by the area under the curve (AUC) values for one-, three-, and five-year overall survival. Furthermore, functional enrichment analysis of the DEGs identified biological processes and pathways associated with hypoxia, providing insights into the underlying mechanisms of GBM. Delving into the tumor immune microenvironment, our analysis revealed correlations relating the hypoxia-related prognostic signature to the infiltration of immune cells in GBM. Overall, our study highlights the potential of a hypoxia-related prognostic signature as a valuable resource for forecasting the survival outcome of GBM patients. The multi-omics approach integrating bulk sequencing, single-cell analysis, and immune microenvironment assessment enhances our understanding of the intricate biology characterizing GBM, thereby potentially informing the tailored design of therapeutic interventions.
Collapse
Affiliation(s)
- Yaman B. Ahmed
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Anas A. Al-Khalili
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Abdullah Serhan
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Zaid Hatamleh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Owais Ghammaz
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Mohammad Alkhaldi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Safwan Alomari
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Ghorbani R, Rasouli M, Sefat F, Heidari Keshel S. Pathogenesis of Common Ocular Diseases: Emerging Trends in Extracellular Matrix Remodeling. Semin Ophthalmol 2024; 39:27-39. [PMID: 37424085 DOI: 10.1080/08820538.2023.2233601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The prevalence of visual impairments in human societies is worrying due to retinopathy complications of several chronic diseases such as diabetes, cardiovascular diseases, and many more that are on the rise worldwide. Since the proper function of this organ plays a pivotal role in people's quality of life, identifying factors affecting the development/exacerbation of ocular diseases is of particular interest among ophthalmology researchers. The extracellular matrix (ECM) is a reticular, three-dimensional (3D) structure that determines the shape and dimensions of tissues in the body. The ECM remodeling/hemostasis is a critical process in both physiological and pathological conditions. It consists of ECM deposition, degradation, and decrease/increase in the ECM components. However, disregulation of this process and an imbalance between the synthesis and degradation of ECM components are associated with many pathological situations, including ocular disorders. Despite the impact of ECM alterations on the development of ocular diseases, there is not much research conducted in this regard. Therefore, a better understanding in this regard, can pave the way toward discovering plausible strategies to either prevent or treat eye disorders. In this review, we will discuss the importance of ECM changes as a sentimental factor in various ocular diseases based on the research done up to now.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Cohen N, Mundhe D, Deasy SK, Adler O, Ershaid N, Shami T, Levi-Galibov O, Wassermann R, Scherz-Shouval R, Erez N. Breast Cancer-Secreted Factors Promote Lung Metastasis by Signaling Systemically to Induce a Fibrotic Premetastatic Niche. Cancer Res 2023; 83:3354-3367. [PMID: 37548552 DOI: 10.1158/0008-5472.can-22-3707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/12/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Metastatic cancer is largely incurable and is the main cause of cancer-related deaths. The metastatic microenvironment facilitates formation of metastases. Cancer-associated fibroblasts (CAF) are crucial players in generating a hospitable metastatic niche by mediating an inflammatory microenvironment. Fibroblasts also play a central role in modifying the architecture and stiffness of the extracellular matrix (ECM). Resolving the early changes in the metastatic niche could help identify approaches to inhibit metastatic progression. Here, we demonstrate in mouse models of spontaneous breast cancer pulmonary metastasis that fibrotic changes and rewiring of lung fibroblasts occurred at premetastatic stages, suggesting systemic influence by the primary tumor. Activin A (ActA), a TGFβ superfamily member, was secreted from breast tumors and its levels in the blood were highly elevated in tumor-bearing mice. ActA upregulated the expression of profibrotic factors in lung fibroblasts, leading to enhanced collagen deposition in the lung premetastatic niche. ActA signaling was functionally important for lung metastasis, as genetic targeting of ActA in breast cancer cells significantly attenuated lung metastasis and improved survival. Moreover, high levels of ActA in human patients with breast cancer were associated with lung metastatic relapse and poor survival. This study uncovers a novel mechanism by which breast cancer cells systemically rewire the stromal microenvironment in the metastatic niche to facilitate pulmonary metastasis. SIGNIFICANCE ActA mediates cross-talk between breast cancer cells and cancer-associated fibroblasts in the lung metastatic niche that enhances fibrosis and metastasis, implicating ActA as a potential therapeutic target to inhibit metastatic relapse.
Collapse
Affiliation(s)
- Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dhanashree Mundhe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah K Deasy
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Adler
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shami
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oshrat Levi-Galibov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Tel Aviv, Israel
| | - Rina Wassermann
- Department of Biomolecular Sciences, Weizmann Institute of Science, Tel Aviv, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Nagao T, Nemoto M, Sugo N, Harada N, Masuda H, Nagao T, Shibuya K, Kondo K. Relationship Between Quantitative Tumor Consistency and Pathological Factors in Intracranial Meningioma. Acta Neurochir (Wien) 2023; 165:2895-2902. [PMID: 37432556 DOI: 10.1007/s00701-023-05712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND The consistency of intracranial meningiomas is an important clinical factor because it affects the success of surgical resection. This study aimed at identifying and quantitatively measuring pathological factors that contribute to the consistency of meningiomas. Furthermore, we investigated the relationship between these factors and preoperative neuroradiological imaging. METHODS We analyzed 42 intracranial meningioma specimens, which had been removed at our institution between October 2012 and March 2018. Consistency was measured quantitatively after resection using an industrial stiffness meter. For pathological evaluation, we quantitatively measured the collagen-fiber content through binarization of images of Azan-Mallory-stained section. We assessed calcification and necrosis semi-quantitatively using images acquired of Hematoxylin and Eosin stained samples. The relationship between collagen-fiber content rate and imaging findings was examined. RESULTS The content of collagen fibers significantly positively correlated with meningioma consistency (p < 0.0001). Collagen-fiber content was significantly higher in low- and iso-intensity regions compared with high-intensity regions on the magnetic resonance T2-weighted images (p = 0.0148 and p = 0.0394, respectively). Calcification and necrosis showed no correlation with tumor consistency. CONCLUSIONS The quantitative hardness of intracranial meningiomas positively correlated with collagen-fiber content; thus, the amount of collagen fibers may be a factor that determines the hardness of intracranial meningiomas. Our results demonstrate that T2-weighted images reflect the collagen-fiber content and are useful for estimating tumor consistency preoperatively and non-invasively.
Collapse
Affiliation(s)
- Takaaki Nagao
- Department of Neurosurgery (Sakura), School of Medicine, Faculty of Medicine, Toho University, Sakura-shi, Chiba, Japan.
- Department of Neurosurgery (Omori), School of Medicine, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan.
| | - Masaaki Nemoto
- Department of Neurosurgery (Sakura), School of Medicine, Faculty of Medicine, Toho University, Sakura-shi, Chiba, Japan
| | - Nobuo Sugo
- Department of Neurosurgery (Omori), School of Medicine, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - Naoyuki Harada
- Department of Neurosurgery (Omori), School of Medicine, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - Hiroyuki Masuda
- Department of Neurosurgery (Sakura), School of Medicine, Faculty of Medicine, Toho University, Sakura-shi, Chiba, Japan
| | - Takeki Nagao
- Department of Neurosurgery (Sakura), School of Medicine, Faculty of Medicine, Toho University, Sakura-shi, Chiba, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University Omori Medical Center, Ota-ku, Tokyo, Japan
| | - Kosuke Kondo
- Department of Neurosurgery (Omori), School of Medicine, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| |
Collapse
|
6
|
Arango-Restrepo A, Rubi JM. Predicting cancer stages from tissue energy dissipation. Sci Rep 2023; 13:15894. [PMID: 37741864 PMCID: PMC10517974 DOI: 10.1038/s41598-023-42780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Understanding cancer staging in order to predict its progression is vital to determine its severity and to plan the most appropriate therapies. This task has attracted interest from different fields of science and engineering. We propose a computational model that predicts the evolution of cancer in terms of the intimate structure of the tissue, considering that this is a self-organised structure that undergoes transformations governed by non-equilibrium thermodynamics laws. Based on experimental data on the dependence of tissue configurations on their elasticity and porosity, we relate the cancerous tissue stages with the energy dissipated, showing quantitatively that tissues in more advanced stages dissipate more energy. The knowledge of this energy allows us to know the probability of observing the tissue in its different stages and the probability of transition from one stage to another. We validate our results with experimental data and statistics from the World Health Organisation. Our quantitative approach provides insights into the evolution of cancer through its different stages, important as a starting point for new and integrative research to defeat cancer.
Collapse
Affiliation(s)
- A Arango-Restrepo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, Barcelona, 08028, Spain.
| | - J M Rubi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, Barcelona, 08028, Spain
- Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Carrer Marti i Franques, Barcelona, 08028, Spain
| |
Collapse
|
7
|
Li Y, Zhang SW, Xie MY, Zhang T. PhenoDriver: interpretable framework for studying personalized phenotype-associated driver genes in breast cancer. Brief Bioinform 2023; 24:bbad291. [PMID: 37738403 DOI: 10.1093/bib/bbad291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 09/24/2023] Open
Abstract
Identifying personalized cancer driver genes and further revealing their oncogenic mechanisms is critical for understanding the mechanisms of cell transformation and aiding clinical diagnosis. Almost all existing methods primarily focus on identifying driver genes at the cohort or individual level but fail to further uncover their underlying oncogenic mechanisms. To fill this gap, we present an interpretable framework, PhenoDriver, to identify personalized cancer driver genes, elucidate their roles in cancer development and uncover the association between driver genes and clinical phenotypic alterations. By analyzing 988 breast cancer patients, we demonstrate the outstanding performance of PhenoDriver in identifying breast cancer driver genes at the cohort level compared to other state-of-the-art methods. Otherwise, our PhenoDriver can also effectively identify driver genes with both recurrent and rare mutations in individual patients. We further explore and reveal the oncogenic mechanisms of some known and unknown breast cancer driver genes (e.g. TP53, MAP3K1, HTT, etc.) identified by PhenoDriver, and construct their subnetworks for regulating clinical abnormal phenotypes. Notably, most of our findings are consistent with existing biological knowledge. Based on the personalized driver profiles, we discover two existing and one unreported breast cancer subtypes and uncover their molecular mechanisms. These results intensify our understanding for breast cancer mechanisms, guide therapeutic decisions and assist in the development of targeted anticancer therapies.
Collapse
Affiliation(s)
- Yan Li
- School of Automation from Northwestern Polytechnical University, China
| | - Shao-Wu Zhang
- School of Automation from Northwestern Polytechnical University, China
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, China
| | - Ming-Yu Xie
- School of Automation from Northwestern Polytechnical University, China
| | - Tong Zhang
- School of Automation from Northwestern Polytechnical University, China
| |
Collapse
|
8
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
10
|
Higgins G, Higgins F, Peres J, Lang DM, Abdalrahman T, Zaman MH, Prince S, Franz T. Intracellular mechanics and TBX3 expression jointly dictate the spreading mode of melanoma cells in 3D environments. Exp Cell Res 2023; 428:113633. [PMID: 37172754 DOI: 10.1016/j.yexcr.2023.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Cell stiffness and T-box transcription factor 3 (TBX3) expression have been identified as biomarkers of melanoma metastasis in 2D environments. This study aimed to determine how mechanical and biochemical properties of melanoma cells change during cluster formation in 3D environments. Vertical growth phase (VGP) and metastatic (MET) melanoma cells were embedded in 3D collagen matrices of 2 and 4 mg/ml collagen concentrations, representing low and high matrix stiffness. Mitochondrial fluctuation, intracellular stiffness, and TBX3 expression were quantified before and during cluster formation. In isolated cells, mitochondrial fluctuation decreased and intracellular stiffness increased with increase in disease stage from VGP to MET and increased matrix stiffness. TBX3 was highly expressed in soft matrices but diminished in stiff matrices for VGP and MET cells. Cluster formation of VGP cells was excessive in soft matrices but limited in stiff matrices, whereas for MET cells it was limited in soft and stiff matrices. In soft matrices, VGP cells did not change the intracellular properties, whereas MET cells exhibited increased mitochondrial fluctuation and decreased TBX3 expression. In stiff matrices, mitochondrial fluctuation and TBX3 expression increased in VGP and MET, and intracellular stiffness increased in VGP but decreased in MET cells. The findings suggest that soft extracellular environments are more favourable for tumour growth, and high TBX3 levels mediate collective cell migration and tumour growth in the earlier VGP disease stage but play a lesser role in the later metastatic stage of melanoma.
Collapse
Affiliation(s)
- Ghodeejah Higgins
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Faatiemah Higgins
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Dirk M Lang
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa; Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
11
|
Deng S, Zhu Q, Chen H, Xiao T, Zhu Y, Gao J, Li Q, Gao Y. Screening of prognosis-related Immune cells and prognostic predictors in Colorectal Cancer Patients. BMC Cancer 2023; 23:195. [PMID: 36859111 PMCID: PMC9976376 DOI: 10.1186/s12885-023-10667-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE To accurately screen potential immune cells that can predict the survival of colorectal cancer (CRC) patients and identify related prognostic predictors. METHODS The sample data of CRC patients were downloaded from the GEO database as a training set to establish a prognosis-scoring model and screen prognosis-related immune cells. The sample data of CRC patients from the TCGA database were used as the validation set. Simultaneously, cancer tissue samples from 116 patients with CRC diagnosed pathologically in Shanghai Dongfang Hospital were collected to analyze the relationship of prognosis-related immune cells with patients' survival, and clinical and pathological parameters, and to screen prognostic predictors. RESULTS Prognosis-related immune cells screened from GEO and TCGA databases mainly included Follicular Helper T cells (Tfh), Monocytes and M2 Macrophages. In the training set, the 2,000- and 4,000-day survival rates were 48.3% and 10.7% in the low-risk group (N = 234), and 42.1% and 7.5% in the high-risk group (N = 214), respectively. In the validation set, the 2,000- and 4,000-day survival rates were 34.8% and 8.6% in the low-risk group (N = 187), and 28.9% and 6.1% in the high-risk group (N = 246), respectively. The prognosis of patients in the high-risk group was worse than that in the low-risk group (P < 0.05). Furthermore, the screened primary prognostic predictors were CD163 and CD4 + CXCR5. CD163 protein expression was distributed in Monocytes and M2 Macrophages. The 1,000- and 2,000-day survival rates were 56.1% and 7.0% in the CD163 low-expression group, and 40.7% and 1.7% in the high-expression group (N = 214), respectively, showing a worse prognosis in the high-expression group than that in the low-expression group. Meanwhile, the immune marker CD4 + CXCR5 could identify Tfh. The 1,000- and 2,000-day survival rates were 63.9% and 5.6% in the CD4 + CXCR5 high-expression group, and 33.3% and 2.8% in the low-expression group (N = 214), respectively, with a better prognosis in the high-expression group than that in the low-expression group. CONCLUSION Prognostic-related immune cells of CRC mainly include Tfh cells, Monocytes and M2 Macrophages. Monocytes and M2 Macrophages correlate negatively, while Tfh cells correlate positively with the prognosis of CRC patients. Immune markers CD163 and CD4 + CXCR5 can be considered as the prognostic predictors of CRC with clinical value of the application.
Collapse
Affiliation(s)
- Shuangshuang Deng
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qiping Zhu
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongyan Chen
- Department of Neurology, Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Tianyu Xiao
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yinshen Zhu
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinli Gao
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qing Li
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Martinez-Vidal L, Chighizola M, Berardi M, Alchera E, Locatelli I, Pederzoli F, Venegoni C, Lucianò R, Milani P, Bielawski K, Salonia A, Podestà A, Alfano M. Micro-mechanical fingerprints of the rat bladder change in actinic cystitis and tumor presence. Commun Biol 2023; 6:217. [PMID: 36823431 PMCID: PMC9950451 DOI: 10.1038/s42003-023-04572-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Tissue mechanics determines tissue homeostasis, disease development and progression. Bladder strongly relies on its mechanical properties to perform its physiological function, but these are poorly unveiled under normal and pathological conditions. Here we characterize the mechanical fingerprints at the micro-scale level of the three tissue layers which compose the healthy bladder wall, and identify modifications associated with the onset and progression of pathological conditions (i.e., actinic cystitis and bladder cancer). We use two indentation-based instruments (an Atomic Force Microscope and a nanoindenter) and compare the micromechanical maps with a comprehensive histological analysis. We find that the healthy bladder wall is a mechanically inhomogeneous tissue, with a gradient of increasing stiffness from the urothelium to the lamina propria, which gradually decreases when reaching the muscle outer layer. Stiffening in fibrotic tissues correlate with increased deposition of dense extracellular matrix in the lamina propria. An increase in tissue compliance is observed before the onset and invasion of the tumor. By providing high resolution micromechanical investigation of each tissue layer of the bladder, we depict the intrinsic mechanical heterogeneity of the layers of a healthy bladder as compared with the mechanical properties alterations associated with either actinic cystitis or bladder tumor.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - M Chighizola
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy
| | - M Berardi
- Optics11, Amsterdam, The Netherlands
- LaserLab, Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - E Alchera
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - I Locatelli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - F Pederzoli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - C Venegoni
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - R Lucianò
- Pathology Unit, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - P Milani
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy
| | | | - A Salonia
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - A Podestà
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy.
| | - M Alfano
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
13
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Zhu P, Lu H, Wang M, Chen K, Chen Z, Yang L. Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0491. [PMID: 36647779 PMCID: PMC9843446 DOI: 10.20892/j.issn.2095-3941.2022.0491] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mechanical forces in the tumor microenvironment (TME) are associated with tumor growth, proliferation, and drug resistance. Strong mechanical forces in tumors alter the metabolism and behavior of cancer cells, thus promoting tumor progression and metastasis. Mechanical signals are transformed into biochemical signals, which activate tumorigenic signaling pathways through mechanical transduction. Cancer immunotherapy has recently made exciting progress, ushering in a new era of "chemo-free" treatments. However, immunotherapy has not achieved satisfactory results in a variety of tumors, because of the complex tumor microenvironment. Herein, we discuss the effects of mechanical forces on the tumor immune microenvironment and highlight emerging therapeutic strategies for targeting mechanical forces in immunotherapy.
Collapse
Affiliation(s)
- Pengfei Zhu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
| | - Hongrui Lu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
| | - Mingxing Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
| | - Ke Chen
- Department of Gastroenterology & Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Zheling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Correspondence to: Zheling Chen and Liu Yang, E-mail: and
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
- Correspondence to: Zheling Chen and Liu Yang, E-mail: and
| |
Collapse
|
15
|
Tutty MA, Prina-Mello A. Three-Dimensional Spheroids for Cancer Research. Methods Mol Biol 2023; 2645:65-103. [PMID: 37202612 DOI: 10.1007/978-1-0716-3056-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro cell culture is one of the most widely used tools used today for increasing our understanding of various things such as protein production, mechanisms of drug action, tissue engineering, and overall cellular biology. For the past decades, however, cancer researchers have relied heavily on conventional two-dimensional (2D) monolayer culture techniques to test a variety of aspects of cancer research ranging from the cytotoxic effects of antitumor drugs to the toxicity of diagnostic dyes and contact tracers. However, many promising cancer therapies have either weak or no efficacy in real-life conditions, therefore delaying or stopping altogether their translating to the clinic. This is, in part, due to the reductionist 2D cultures used to test these materials, which lack appropriate cell-cell contacts, have altered signaling, do not represent the natural tumor microenvironment, and have different drug responses, due to their reduced malignant phenotype when compared to real in vivo tumors. With the most recent advances, cancer research has moved into 3D biological investigation. Three-dimensional (3D) cultures of cancer cells not only recapitulate the in vivo environment better than their 2D counterparts, but they have, in recent years, emerged as a relatively low-cost and scientifically accurate methodology for studying cancer. In this chapter, we highlight the importance of 3D culture, specifically 3D spheroid culture, reviewing some key methodologies for forming 3D spheroids, discussing the experimental tools that can be used in conjunction with 3D spheroids and finally their applications in cancer research.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Orbach SM, Brooks MD, Zhang Y, Campit SE, Bushnell GG, Decker JT, Rebernick RJ, Chandrasekaran S, Wicha MS, Jeruss JS, Shea LD. Single-cell RNA-sequencing identifies anti-cancer immune phenotypes in the early lung metastatic niche during breast cancer. Clin Exp Metastasis 2022; 39:865-881. [PMID: 36002598 PMCID: PMC9643644 DOI: 10.1007/s10585-022-10185-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Microenvironmental changes in the early metastatic niche may be exploited to identify therapeutic targets to inhibit secondary tumor formation and improve disease outcomes. We dissected the developing lung metastatic niche in a model of metastatic, triple-negative breast cancer using single-cell RNA-sequencing. Lungs were extracted from mice at 7-, 14-, or 21 days after tumor inoculation corresponding to the pre-metastatic, micro-metastatic, and metastatic niche, respectively. The progression of the metastatic niche was marked by an increase in neutrophil infiltration (5% of cells at day 0 to 81% of cells at day 21) and signaling pathways corresponding to the hallmarks of cancer. Importantly, the pre-metastatic and early metastatic niche were composed of immune cells with an anti-cancer phenotype not traditionally associated with metastatic disease. As expected, the metastatic niche exhibited pro-cancer phenotypes. The transition from anti-cancer to pro-cancer phenotypes was directly associated with neutrophil and monocyte behaviors at these time points. Predicted metabolic, transcription factor, and receptor-ligand signaling suggested that changes in the neutrophils likely induced the transitions in the other immune cells. Conditioned medium generated by cells extracted from the pre-metastatic niche successfully inhibited tumor cell proliferation and migration in vitro and the in vivo depletion of pre-metastatic neutrophils and monocytes worsened survival outcomes, thus validating the anti-cancer phenotype of the developing niche. Genes associated with the early anti-cancer response could act as biomarkers that could serve as targets for the treatment of early metastatic disease. Such therapies have the potential to revolutionize clinical outcomes in metastatic breast cancer.
Collapse
Affiliation(s)
- Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Brooks
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Scott E Campit
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Medical Science Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Mi L, Zhang Y, Su A, Tang M, Xing Z, He T, Wu W, Li Z. Halofuginone for cancer treatment: A systematic review of efficacy and molecular mechanisms. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Hamel KM, Liimatta KQ, Belgodere JA, Bunnell BA, Gimble JM, Martin EC. Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells Dev 2022; 31:579-592. [PMID: 35262397 PMCID: PMC9836707 DOI: 10.1089/scd.2021.0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumors were characterized as nonhealing wounds by Virchow in 1858 and Dvorak in 1986. Since then, researchers have analyzed tumors from a new perspective. The parallels between tumorigenesis and physiological wound healing can provide a new framework for developing antitumor therapeutics. One commonality between tumors and wounds is the involvement of the stromal environment, particularly adipose stromal/stem cells (ASCs). ASCs exhibit dual functions, in which they stimulate tumor progression and assist in tissue repair and regeneration. Numerous studies have focused on the role of ASCs in cancer and wound healing, but none to date has linked age, cancer, and wound healing. Furthermore, very few studies have focused on the role of donor-specific characteristics of ASCs, such as age and their role in facilitating ASC behavior in cancer and wound healing. This review article is designed to provide important insights into the impact of donor age on ASC tumor and wound response and their role in facilitating ASC behavior in cancer and wound healing.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
19
|
Sayer S, Zandrini T, Markovic M, Van Hoorick J, Van Vlierberghe S, Baudis S, Holnthoner W, Ovsianikov A. Guiding cell migration in 3D with high-resolution photografting. Sci Rep 2022; 12:8626. [PMID: 35606455 PMCID: PMC9126875 DOI: 10.1038/s41598-022-11612-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Multi-photon lithography (MPL) has proven to be a suitable tool to precisely control the microenvironment of cells in terms of the biochemical and biophysical properties of the hydrogel matrix. In this work, we present a novel method, based on multi-photon photografting of 4,4′-diazido-2,2′-stilbenedisulfonic acid (DSSA), and its capabilities to induce cell alignment, directional cell migration and endothelial sprouting in a gelatin-based hydrogel matrix. DSSA-photografting allows for the fabrication of complex patterns at a high-resolution and is a biocompatible, universally applicable and straightforward process that is comparably fast. We have demonstrated the preferential orientation of human adipose-derived stem cells (hASCs) in response to a photografted pattern. Co-culture spheroids of hASCs and human umbilical vein endothelial cells (HUVECs) have been utilized to study the directional migration of hASCs into the modified regions. Subsequently, we have highlighted the dependence of endothelial sprouting on the presence of hASCs and demonstrated the potential of photografting to control the direction of the sprouts. MPL-induced DSSA-photografting has been established as a promising method to selectively alter the microenvironment of cells.
Collapse
Affiliation(s)
- Simon Sayer
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria.,Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria
| | - Tommaso Zandrini
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria.,Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria
| | - Marica Markovic
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria.,Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria
| | - Jasper Van Hoorick
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Stefan Baudis
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria.,Polymer Chemistry and Technology Group, Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria.,Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria.
| |
Collapse
|
20
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. The Impact of Obesity, Adipose Tissue, and Tumor Microenvironment on Macrophage Polarization and Metastasis. BIOLOGY 2022; 11:339. [PMID: 35205204 PMCID: PMC8869089 DOI: 10.3390/biology11020339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Tumor metastasis is a major cause of death in cancer patients. It involves not only the intrinsic alterations within tumor cells, but also crosstalk between these cells and components of the tumor microenvironment (TME). Tumorigenesis is a complex and dynamic process, involving the following three main stages: initiation, progression, and metastasis. The transition between these stages depends on the changes within the extracellular matrix (ECM), in which tumor and stromal cells reside. This matrix, under the effect of growth factors, cytokines, and adipokines, can be morphologically altered, degraded, or reorganized. Many cancers evolve to form an immunosuppressive TME locally and create a pre-metastatic niche in other tissue sites. TME and pre-metastatic niches include myofibroblasts, immuno-inflammatory cells (macrophages), adipocytes, blood, and lymphatic vascular networks. Several studies have highlighted the adipocyte-macrophage interaction as a key driver of cancer progression and dissemination. The following two main classes of macrophages are distinguished: M1 (pro-inflammatory/anti-tumor) and M2 (anti-inflammatory/pro-tumor). These cells exhibit distinct microenvironment-dependent phenotypes that can promote or inhibit metastasis. On the other hand, obesity in cancer patients has been linked to a poor prognosis. In this regard, tumor-associated adipocytes modulate TME through the secretion of inflammatory mediators, which modulate and recruit tumor-associated macrophages (TAM). Hereby, this review describes the cellular and molecular mechanisms that link inflammation, obesity, and cancer. It provides a comprehensive overview of adipocytes and macrophages in the ECM as they control cancer initiation, progression, and invasion. In addition, it addresses the mechanisms of tumor anchoring and recruitment for M1, M2, and TAM macrophages, specifically highlighting their origin, classification, polarization, and regulatory networks, as well as their roles in the regulation of angiogenesis, invasion, metastasis, and immunosuppression, specifically highlighting the role of adipocytes in this process.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie moléculaire et anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
21
|
Role and Involvement of TENM4 and miR-708 in Breast Cancer Development and Therapy. Cells 2022; 11:cells11010172. [PMID: 35011736 PMCID: PMC8750459 DOI: 10.3390/cells11010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/20/2022] Open
Abstract
Teneurin 4 (TENM4) is a transmembrane protein that is codified by the ODZ4 gene and is involved in nervous system development, neurite outgrowth, and neuronal differentiation. In line with its involvement in the nervous system, TENM4 has also been implicated in several mental disorders such as bipolar disorder, schizophrenia, and autism. TENM4 mutations and rearrangements have recently been identified in a number of tumors. This, combined with impaired expression in tumors, suggests that it may potentially be involved in tumorigenesis. Most of the TENM4 mutations that are observed in tumors occur in breast cancer, in which TENM4 plays a role in cells’ migration and stemness. However, the functional role that TENM4 plays in breast cancer still needs to be better evaluated, and further studies are required to better understand the involvement of TENM4 in breast cancer progression. Herein, we review the currently available data for TENM4′s role in breast cancer and propose its use as both a novel target with which to ameliorate patient prognosis and as a potential biomarker. Moreover, we also report data on the tumorigenic role of miR-708 deregulation and the possible use of this miRNA as a novel therapeutic molecule, as miR-708 is spliced out from TENM4 mRNA.
Collapse
|
22
|
Vasiukov G, Novitskaya T, Senosain MF, Camai A, Menshikh A, Massion P, Zijlstra A, Novitskiy S. Integrated Cells and Collagen Fibers Spatial Image Analysis. FRONTIERS IN BIOINFORMATICS 2021; 1. [PMID: 35813245 PMCID: PMC9268206 DOI: 10.3389/fbinf.2021.758775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modern technologies designed for tissue structure visualization like brightfield microscopy, fluorescent microscopy, mass cytometry imaging (MCI) and mass spectrometry imaging (MSI) provide large amounts of quantitative and spatial information about cells and tissue structures like vessels, bronchioles etc. Many published reports have demonstrated that the structural features of cells and extracellular matrix (ECM) and their interactions strongly predict disease development and progression. Computational image analysis methods in combination with spatial analysis and machine learning can reveal novel structural patterns in normal and diseased tissue. Here, we have developed a Python package designed for integrated analysis of cells and ECM in a spatially dependent manner. The package performs segmentation, labeling and feature analysis of ECM fibers, combines this information with pre-generated single-cell based datasets and realizes cell-cell and cell-fiber spatial analysis. To demonstrate performance and compatibility of our computational tool, we integrated it with a pipeline designed for cell segmentation, classification, and feature analysis in the KNIME analytical platform. For validation, we used a set of mouse mammary gland tumors and human lung adenocarcinoma tissue samples stained for multiple cellular markers and collagen as the main ECM protein. The developed package provides sufficient performance and precision to be used as a novel method to investigate cell-ECM relationships in the tissue, as well as detect structural patterns correlated with specific disease outcomes.
Collapse
Affiliation(s)
- Georgii Vasiukov
- Department of Medicine, Division of Allergy, Pulmonary, Critical Care Medicine, Vanderbilt, University Medical Center, Nashville, TN, United States
- *Correspondence: Georgii Vasiukov,
| | - Tatiana Novitskaya
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Maria-Fernanda Senosain
- Department of Medicine, Division of Allergy, Pulmonary, Critical Care Medicine, Vanderbilt, University Medical Center, Nashville, TN, United States
| | - Alex Camai
- Department of Medicine, Division of Allergy, Pulmonary, Critical Care Medicine, Vanderbilt, University Medical Center, Nashville, TN, United States
| | - Anna Menshikh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Pierre Massion
- Department of Medicine, Division of Allergy, Pulmonary, Critical Care Medicine, Vanderbilt, University Medical Center, Nashville, TN, United States
| | - Andries Zijlstra
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sergey Novitskiy
- Department of Medicine, Division of Allergy, Pulmonary, Critical Care Medicine, Vanderbilt, University Medical Center, Nashville, TN, United States
| |
Collapse
|
23
|
Qu J, Zheng B, Ohuchida K, Feng H, Chong SJF, Zhang X, Liang R, Liu Z, Shirahane K, Mizumoto K, Gong P, Nakamura M. PIK3CB is involved in metastasis through the regulation of cell adhesion to collagen I in pancreatic cancer. J Adv Res 2021; 33:127-140. [PMID: 34603784 PMCID: PMC8463925 DOI: 10.1016/j.jare.2021.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Pancreatic adenocarcinoma (PAAD) is an aggressive malignancy, with a major mortality resulting from the rapid progression of metastasis. Unfortunately, no effective treatment strategy has been developed for PAAD metastasis to date. Thus, unraveling the mechanisms involved in PAAD metastatic phenotype may facilitate the treatment for PAAD patients. Objectives PIK3CB is an oncogene implicated in cancer development and progression but less is known about whether PIK3CB participates in PAAD metastasis. Therefore, the objective of this study is to explore the mechanism(s) of PIK3CB in PAAD metastasis. Methods In our study, we examined the PIK3CB expression pattern using bioinformatic analysis and clinical material derived from patients with PAAD. Subsequently, a series of biochemical experiments were conducted to investigate the role of PIK3CB as potential mechanism(s) underlying PAAD metastasis in vivo using nude mice and in vitro using cell lines. Results We observed that PIK3CB was involved in PAAD progression. Notably, we identified that PIK3CB was involved in PAAD metastasis. Downregulation of PIK3CB significantly reduced PAAD metastatic potential in vivo. Furthermore, a series of bioinformatic analyses showed that PIK3CB was involved in cell adhesion in PAAD. Notably, PIK3CB depletion inhibited invasion potential specifically via suppressing cell adhesion to collagen I in PAAD cells. Conclusion Collectively, our findings indicate that PIK3CB is involved in PAAD metastasis through cell-matrix adhesion. We proposed that PIK3CB is a potential therapeutic target for PAAD therapy.
Collapse
Affiliation(s)
- Jianhua Qu
- Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117593, Singapore
| | - Biao Zheng
- Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China.,Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Haimin Feng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | - Xianbin Zhang
- Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Rui Liang
- Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Zhong Liu
- Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Kengo Shirahane
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhiro Mizumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Cancer Center of Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Peng Gong
- Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China.,Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
24
|
Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021; 13:4754. [PMID: 34638240 PMCID: PMC8507527 DOI: 10.3390/cancers13194754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In cancer, two unique and seemingly contradictory behaviors are evident: on the one hand, tumors are typically stiffer than the tissues in which they grow, and this high stiffness promotes their malignant progression; on the other hand, cancer cells are anchorage-independent-namely, they can survive and grow in soft environments that do not support cell attachment. How can these two features be consolidated? Recent findings on the mechanisms by which cells test the mechanical properties of their environment provide insight into the role of aberrant mechanosensing in cancer progression. In this review article, we focus on the role of high stiffness on cancer progression, with particular emphasis on tumor growth; we discuss the mechanisms of mechanosensing and mechanotransduction, and their dysregulation in cancerous cells; and we propose that a 'yin and yang' type phenomenon exists in the mechanobiology of cancer, whereby a switch in the type of interaction with the extracellular matrix dictates the outcome of the cancer cells.
Collapse
Affiliation(s)
- Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
25
|
Griffon J, Buffello D, Giron A, Bridal SL, Lamuraglia M. Non-Invasive Ultrasonic Description of Tumor Evolution. Cancers (Basel) 2021; 13:cancers13184560. [PMID: 34572788 PMCID: PMC8472198 DOI: 10.3390/cancers13184560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary During tumor evolution, heterogeneous structural and functional changes occur in the tumor microenvironment. These complex changes have pro- or anti-tumorigenesis effects and have an impact on therapy efficiency. Therefore, the tumor microenvironment needs to be non-invasively characterized over time. The aim of this preclinical work is to compare the sensitivity of modifications occurring during tumor evolution of volume, immunohistochemistry and non-invasive quantitative ultrasound parameters (Shear Wave Elastography and dynamic Contrast-Enhanced Ultrasound) and to study the link between them. The complementary evaluation over time of multiple morphological and functional parameters during tumor growth underlines the need to integrate histological, morphological, functional, and, ultimately, genomic information into models that can consider the temporal and spatial variability of features to better understand tumor evolution. Abstract Purpose: There is a clinical need to better non-invasively characterize the tumor microenvironment in order to reveal evidence of early tumor response to therapy and to better understand therapeutic response. The goals of this work are first to compare the sensitivity to modifications occurring during tumor growth for measurements of tumor volume, immunohistochemistry parameters, and emerging ultrasound parameters (Shear Wave Elastography (SWE) and dynamic Contrast-Enhanced Ultrasound (CEUS)), and secondly, to study the link between the different parameters. Methods: Five different groups of 9 to 10 BALB/c female mice with subcutaneous CT26 tumors were imaged using B-mode morphological imaging, SWE, and CEUS at different dates. Whole-slice immunohistological data stained for the nuclei, T lymphocytes, apoptosis, and vascular endothelium from these tumors were analyzed. Results: Tumor volume and three CEUS parameters (Time to Peak, Wash-In Rate, and Wash-Out Rate) significantly changed over time. The immunohistological parameters, CEUS parameters, and SWE parameters showed intracorrelation. Four immunohistological parameters (the number of T lymphocytes per mm2 and its standard deviation, the percentage area of apoptosis, and the colocalization of apoptosis and vascular endothelium) were correlated with the CEUS parameters (Time to Peak, Wash-In Rate, Wash-Out Rate, and Mean Transit Time). The SWE parameters were not correlated with the CEUS parameters nor with the immunohistological parameters. Conclusions: US imaging can provide additional information on tumoral changes. This could help to better explore the effect of therapies on tumor evolution, by studying the evolution of the parameters over time and by studying their correlations.
Collapse
Affiliation(s)
- Jerome Griffon
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Delphine Buffello
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Alain Giron
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - S. Lori Bridal
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
| | - Michele Lamuraglia
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006 Paris, France; (J.G.); (D.B.); (A.G.); (S.L.B.)
- AP-HP, Hôpital Beaujon, Service d’Oncologie Digestive et Medicale, F-92110 Clichy, France
- Correspondence: ; Tel.: +33-144419605; Fax: +33-146335673
| |
Collapse
|
26
|
Modeling Extracellular Matrix-Cell Interactions in Lung Repair and Chronic Disease. Cells 2021; 10:cells10082145. [PMID: 34440917 PMCID: PMC8394761 DOI: 10.3390/cells10082145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023] Open
|
27
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
28
|
Kocher F, Tymoszuk P, Amann A, Sprung S, Salcher S, Daum S, Haybaeck J, Rinnerthaler G, Huemer F, Kauffmann-Guerrero D, Tufman A, Seeber A, Wolf D, Pircher A. Deregulated glutamate to pro-collagen conversion is associated with adverse outcome in lung cancer and may be targeted by renin-angiotensin-aldosterone system (RAS) inhibition. Lung Cancer 2021; 159:84-95. [PMID: 34315093 DOI: 10.1016/j.lungcan.2021.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The tumor-microenvironment (TME) represents an attractive therapeutic target in NSCLC and plays an important role for efficacy of cancer therapeutics. We hypothesized that upregulation of collagen synthesis might be associated with adverse outcome in NSCLC. Literature evidence suggests that renin-angiotensin system inhibitors (RASi) decrease collagen deposition. Therefore, we aimed to explore the prognostic role of RASi intake and their influence on the TME in NSCLC. METHODS Four publicly available datasets were used to evaluate the impact of key enzymes involved in collagen biosynthesis. To investigate the influence of RASi intake on the TME and prognosis we evaluated a cohort of metastatic NSCLC patients and performed histopathological characterization of the TME. A three-dimensional microtissue in vitro model was developed to define the impact of RASi on collagen synthesis. RESULTS Expression of three genes of the collagen synthesis pathway, ALDH18A1, PLOD2 and P4HA1, was upregulated in NSCLC compared to normal lung tissue and linked to shortened overall survival in all investigated cohorts. Together, these genes formed a 'Collagen Signature' which represents an independent unfavourable prognostic factor in two NSCLC cohorts and was linked to alterations of the extracellular matrix deposition and cell cycle pathways. In the cohort of metastatic NSCLC, RASi intake was linked to improved overall response rate and survival. Exploratory in vitro experiments revealed that RASi led to a dose dependent reduction of collagen deposition and degradation of three-dimensional lung cancer cell spheroids. CONCLUSION We demonstrate that collagen synthesis is a key upregulated process in the NSCLC TME and its transcriptional readout, the three gene Collagen Signature is independently associated with poor outcome. Pharmacological targeting of this pathways e.g. by RASi bears potential of improving outcome in NSCLC.
Collapse
Affiliation(s)
- Florian Kocher
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Laboratory for Immunotherapy, Medical University of Innsbruck, Innsbruck, Austria; Data Analytics Service Tirol, daas.tirol, Innsbruck, Austria
| | - Arno Amann
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Sprung
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Salcher
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Sophia Daum
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria; Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gabriel Rinnerthaler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, Salzburg, Austria
| | - Diego Kauffmann-Guerrero
- Division of Respiratory Medicine and Thoracic Oncology, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Amanda Tufman
- Division of Respiratory Medicine and Thoracic Oncology, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Seeber
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V (Haematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
29
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
30
|
The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells 2021; 10:cells10071706. [PMID: 34359876 PMCID: PMC8304879 DOI: 10.3390/cells10071706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
The lung extracellular matrix (ECM) plays a key role in the normal architecture of the lung, from embryonic lung development to mechanical stability and elastic recoil of the breathing adult lung. The lung ECM can modulate the biophysical environment of cells through ECM stiffness, porosity, topography and insolubility. In a reciprocal interaction, lung ECM dynamics result from the synthesis, degradation and organization of ECM components by the surrounding structural and immune cells. Repeated lung injury and repair can trigger a vicious cycle of aberrant ECM protein deposition, accompanied by elevated ECM stiffness, which has a lasting effect on cell and tissue function. The processes governing the resolution of injury repair are regulated by several pathways; however, in chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary disease (IPF) these processes are compromised, resulting in impaired cell function and ECM remodeling. Current estimates show that more than 60% of the human coding transcripts are regulated by miRNAs. miRNAs are small non-coding RNAs that regulate gene expressions and modulate cellular functions. This review is focused on the current knowledge of miRNAs in regulating ECM synthesis, degradation and topography by cells and their dysregulation in asthma, COPD and IPF.
Collapse
|
31
|
Roshanazadeh M, Babaahmadi Rezaei H, Rashidi M. Quercetin synergistically potentiates the anti-metastatic effect of 5-fluorouracil on the MDA-MB-231 breast cancer cell line. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:928-934. [PMID: 34712423 PMCID: PMC8528245 DOI: 10.22038/ijbms.2021.56559.12629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Breast cancer (BC) cells' ability to metastasize to other tissues increases mortality. The Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) facilitate cancer cell migration. 5-fluorouracil is a frequently applied chemotherapeutic agent in cancer treatment with destructive side effects on normal tissues. Hence, researchers have focused on finding a way to reduce the dose of chemotherapeutic drugs. Quercetin, a natural polyphenolic compound, has inhibitory effects on proliferation and migration of tumor cells. This study evaluated the effect of the combination of Quercetin and 5-fluorouracil on migration of the MDA-MB-231 breast cancer cell line. MATERIALS AND METHODS The effect of Quercetin, 5-fluorouracil , and their combination on MDA-MB-231 breast cancer cell proliferation was investigated through MTT assay. Inhibition of tumor cell migration was examined by wound healing assay. Finally, the effect of treatments on gene expression of MMP-2 and MMP-9 was evaluated by quantitative real-time PCR. RESULTS The IC50 values for Quercetin and 5-fluorouracil after 48 hr treatment were 295 μM and 525 μM, respectively. The combination index (CI) for Quercetin and 5-fluorouracil was <1, indicating synergy between them. The combination of Quercetin plus 5-fluorouracil resulted in a significant reduction in migration rate and MMP-2 and MMP-9 gene expressions of MDA-MB-231 cancer cells compared with the individual application of 5-FU. CONCLUSION Quercetin enhances the suppressory effect of 5-fluorouracil on migration of BC cells. The combination of Quercetin and 5-fluorouracil can be an attractive field for future studies.
Collapse
Affiliation(s)
- Mohammadreza Roshanazadeh
- Cellular and Molecular Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Cellular and Molecular Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Walker JT, Flynn LE, Hamilton DW. Lineage tracing of Foxd1-expressing embryonic progenitors to assess the role of divergent embryonic lineages on adult dermal fibroblast function. FASEB Bioadv 2021; 3:541-557. [PMID: 34258523 PMCID: PMC8255845 DOI: 10.1096/fba.2020-00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Recent studies have highlighted the functional diversity of dermal fibroblast populations in health and disease, with part of this diversity linked to fibroblast lineage and embryonic origin. Fibroblasts derived from foxd1-expressing progenitors contribute to the myofibroblast populations present in lung and kidney fibrosis in mice but have not been investigated in the context of dermal wound repair. Using a Cre/Lox system to genetically track populations derived from foxd1-expressing progenitors, lineage-positive fibroblasts were identified as a subset of the dermal fibroblast population. During development, lineage-positive cells were most abundant within the dorsal embryonic tissues, contributing to the developing dermal fibroblast population, and remaining in this niche into adulthood. In adult mice, assessment of fibrosis-related gene expression in lineage-positive and lineage-negative populations isolated from wounded and unwounded dorsal skin was performed, identifying an enrichment of transcripts associated with matrix synthesis and remodeling in the lineage-positive populations. Using a novel excisional wound model, ventral skin healed with a greatly reduced frequency of foxd1 lineage-positive cells. This work supports that the embryonic origin of fibroblasts is an important predictor of fibroblast function, but also highlights that within disparate regions, fibroblasts of different lineages likely undergo convergent differentiation contributing to phenotypic similarities.
Collapse
Affiliation(s)
- John T. Walker
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Lauren E. Flynn
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
- Department of Chemical and Biochemical EngineeringThompson Engineering BuildingThe University of Western OntarioLondonONCanada
| | - Douglas W. Hamilton
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
- Division of Oral BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonONCanada
| |
Collapse
|
33
|
Dinca SC, Greiner D, Weidenfeld K, Bond L, Barkan D, Jorcyk CL. Novel mechanism for OSM-promoted extracellular matrix remodeling in breast cancer: LOXL2 upregulation and subsequent ECM alignment. Breast Cancer Res 2021; 23:56. [PMID: 34011405 PMCID: PMC8132418 DOI: 10.1186/s13058-021-01430-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Invasive ductal carcinoma (IDC) is a serious problem for patients as it metastasizes, decreasing 5-year patient survival from > 95 to ~ 27%. The breast tumor microenvironment (TME) is often saturated with proinflammatory cytokines, such as oncostatin M (OSM), which promote epithelial-to-mesenchymal transitions (EMT) in IDC and increased metastasis. The extracellular matrix (ECM) also plays an important role in promoting invasive and metastatic potential of IDC. Specifically, the reorganization and alignment of collagen fibers in stromal ECM leads to directed tumor cell motility, which promotes metastasis. Lysyl oxidase like-2 (LOXL2) catalyzes ECM remodeling by crosslinking of collagen I in the ECM. We propose a novel mechanism whereby OSM induces LOXL2 expression, mediating stromal ECM remodeling of the breast TME. METHODS Bioinformatics was utilized to determine survival and gene correlation in patients. IDC cell lines were treated with OSM (also IL-6, LIF, and IL-1β) and analyzed for LOXL2 expression by qRT-PCR and immunolabelling techniques. Collagen I contraction assays, 3D invasion assays, and confocal microscopy were performed with and without LOXL2 inhibition to determine the impact of OSM-induced LOXL2 on the ECM. RESULTS Our studies demonstrate that IDC patients with high LOXL2 and OSM co-expression had worse rates of metastasis-free survival than those with high levels of either, individually, and LOXL2 expression is positively correlated to OSM/OSM receptor (OSMR) expression in IDC patients. Furthermore, human IDC cells treated with OSM resulted in a significant increase in LOXL2 mRNA, which led to upregulated protein expression of secreted, glycosylated, and enzymatically active LOXL2. The expression of LOXL2 in IDC cells did not affect OSM-promoted EMT, and LOXL2 was localized to the cytoplasm and/or secreted. OSM-induced LOXL2 promoted an increase in ECM collagen I fiber crosslinking, which led to significant fiber alignment between cells and increased IDC cell invasion. CONCLUSIONS Aligned collagen fibers in the ECM provide pathways for tumor cells to migrate more easily through the stroma to nearby vasculature and tissue. These results provide a new paradigm through which proinflammatory cytokine OSM promotes tumor progression. Understanding the nuances in IDC metastasis will lead to better potential therapeutics to combat against the possibility.
Collapse
Affiliation(s)
- Simion C. Dinca
- Biomolecular Sciences Graduate Program, Boise State University, 1910 University Drive, MS1515, Boise, ID 83725 USA
| | - Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Department of Biological Sciences, Boise State University, 1910 University Drive, MS1515, Boise, ID 83725 USA
| | - Keren Weidenfeld
- Department of Human Biology and Medical Sciences, University of Haifa, Haifa, Israel
| | - Laura Bond
- Biomolecular Research Center, Boise State University, 1910 University Drive, MS1515, Boise, ID 83725 USA
| | - Dalit Barkan
- Department of Human Biology and Medical Sciences, University of Haifa, Haifa, Israel
| | - Cheryl L. Jorcyk
- Biomolecular Sciences Graduate Program, Boise State University, 1910 University Drive, MS1515, Boise, ID 83725 USA
- Department of Biological Sciences, Boise State University, 1910 University Drive, MS1515, Boise, ID 83725 USA
| |
Collapse
|
34
|
Monteiro MV, Gaspar VM, Mendes L, Duarte IF, Mano JF. Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. SMALL METHODS 2021; 5:e2001207. [PMID: 34928079 DOI: 10.1002/smtd.202001207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Indexed: 06/14/2023]
Abstract
Cancer-associated pancreatic stellate cells installed in periacinar/periductal regions are master players in generating the characteristic biophysical shield found in pancreatic ductal adenocarcinoma (PDAC). Recreating this unique PDAC stromal architecture and its desmoplastic microenvironment in vitro is key to discover innovative treatments. However, this still remains highly challenging to realize. Herein, organotypic 3D microtumors that recapitulate PDAC-stroma spatial bioarchitecture, as well as its biomolecular, metabolic, and desmoplastic signatures, are bioengineered. Such newly engineered platforms, termed stratified microenvironment spheroid models - STAMS - mimic the spatial stratification of cancer-stromal cells, exhibit a reproducible morphology and sub-millimeter size. In culture, 3D STAMS secrete the key molecular biomarkers found in human pancreatic cancer, namely TGF-β, FGF-2, IL-1β, and MMP-9, among others. This is accompanied by an extensive desmoplastic reaction where collagen and glycosaminoglycans (GAGs) de novo deposition is observed. These stratified models also recapitulate the resistance to various chemotherapeutics when compared to standard cancer-stroma random 3D models. Therapeutics resistance is further evidenced upon STAMS inclusion in a tumor extracellular matrix (ECM)-mimetic hydrogel matrix, reinforcing the importance of mimicking PDAC-stroma bioarchitectural features in vitro. The 3D STAMS technology represents a next generation of biomimetic testing platforms with improved potential for advancing high-throughput screening and preclinical validation of innovative pancreatic cancer therapies.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Luís Mendes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Iola F Duarte
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
35
|
Maller O, Drain AP, Barrett AS, Borgquist S, Ruffell B, Zakharevich I, Pham TT, Gruosso T, Kuasne H, Lakins JN, Acerbi I, Barnes JM, Nemkov T, Chauhan A, Gruenberg J, Nasir A, Bjarnadottir O, Werb Z, Kabos P, Chen YY, Hwang ES, Park M, Coussens LM, Nelson AC, Hansen KC, Weaver VM. Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. NATURE MATERIALS 2021; 20:548-559. [PMID: 33257795 PMCID: PMC8005404 DOI: 10.1038/s41563-020-00849-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/30/2020] [Indexed: 05/25/2023]
Abstract
Stromal stiffening accompanies malignancy, compromises treatment and promotes tumour aggression. Clarifying the molecular nature and the factors that regulate stromal stiffening in tumours should identify biomarkers to stratify patients for therapy and interventions to improve outcome. We profiled lysyl hydroxylase-mediated and lysyl oxidase-mediated collagen crosslinks and quantified the greatest abundance of total and complex collagen crosslinks in aggressive human breast cancer subtypes with the stiffest stroma. These tissues harbour the highest number of tumour-associated macrophages, whose therapeutic ablation in experimental models reduced metastasis, and decreased collagen crosslinks and stromal stiffening. Epithelial-targeted expression of the crosslinking enzyme, lysyl oxidase, had no impact on collagen crosslinking in PyMT mammary tumours, whereas stromal cell targeting did. Stromal cells in microdissected human tumours expressed the highest level of collagen crosslinking enzymes. Immunohistochemical analysis of biopsies from a cohort of patients with breast cancer revealed that stromal expression of lysyl hydroxylase 2, an enzyme that induces hydroxylysine aldehyde-derived collagen crosslinks and stromal stiffening, correlated significantly with disease specific mortality. The findings link tissue inflammation, stromal cell-mediated collagen crosslinking and stiffening to tumour aggression and identify lysyl hydroxylase 2 as a stromal biomarker.
Collapse
Affiliation(s)
- Ori Maller
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Allison P Drain
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander S Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Signe Borgquist
- Department of Oncology, Aarhus University/Aarhus University Hospital, Aarhus, Denmark
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Brian Ruffell
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Igor Zakharevich
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Thanh T Pham
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Tina Gruosso
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Hellen Kuasne
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Johnathon N Lakins
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Irene Acerbi
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - J Matthew Barnes
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Aastha Chauhan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Gruenberg
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Aqsa Nasir
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Olof Bjarnadottir
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Zena Werb
- Department of Anatomy and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Lisa M Coussens
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Valerie M Weaver
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
MR Elastography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020; 12:pharmaceutics12121186. [PMID: 33291351 PMCID: PMC7762220 DOI: 10.3390/pharmaceutics12121186] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D) cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically accurate and low cost cancer models for preclinical screening and testing of new drug candidates before moving to expensive and time-consuming animal models. Here, we provide a comprehensive overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation tools of targeted therapies, focusing on their applicability in cancer research. Examples of the applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed.
Collapse
|
38
|
Sapudom J, Müller CD, Nguyen KT, Martin S, Anderegg U, Pompe T. Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3D Collagen Matrices. Gels 2020; 6:E33. [PMID: 33008082 PMCID: PMC7709683 DOI: 10.3390/gels6040033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is a key modulator in cancer progression and has become a novel target in cancer therapy. An increase in hyaluronan (HA) accumulation and metabolism can be found in advancing tumor progression and are often associated with aggressive malignancy, drug resistance and poor prognosis. Wound-healing related myofibroblasts or activated cancer-associated fibroblasts (CAF) are assumed to be the major sources of HA. Both cell types are capable to synthesize new matrix components as well as reorganize the extracellular matrix. However, to which extent myofibroblasts and CAF perform these actions are still unclear. In this work, we investigated the matrix remodeling and HA production potential in normal human dermal fibroblasts (NHFB) and CAF in the absence and presence of transforming growth factor beta -1 (TGF-β1), with TGF-β1 being a major factor of regulating fibroblast differentiation. Three-dimensional (3D) collagen matrix was utilized to mimic the extracellular matrix of the tumor microenvironment. We found that CAF appeared to response insensitively towards TGF-β1 in terms of cell proliferation and matrix remodeling when compared to NHFB. In regards of HA production, we found that both cell types were capable to produce matrix bound HA, rather than a soluble counterpart, in response to TGF-β1. However, activated CAF demonstrated higher HA production when compared to myofibroblasts. The average molecular weight of produced HA was found in the range of 480 kDa for both cells. By analyzing gene expression of HA metabolizing enzymes, namely hyaluronan synthase (HAS1-3) and hyaluronidase (HYAL1-3) isoforms, we found expression of specific isoforms in dependence of TGF-β1 present in both cells. In addition, HAS2 and HYAL1 are highly expressed in CAF, which might contribute to a higher production and degradation of HA in CAF matrix. Overall, our results suggested a distinct behavior of NHFB and CAF in 3D collagen matrices in the presence of TGF-β1 in terms of matrix remodeling and HA production pointing to a specific impact on tumor modulation.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Claudia Damaris Müller
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| | - Khiet-Tam Nguyen
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Steve Martin
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| |
Collapse
|
39
|
Rahman N, O'Neill E, Irnaten M, Wallace D, O'Brien C. Corneal Stiffness and Collagen Cross-Linking Proteins in Glaucoma: Potential for Novel Therapeutic Strategy. J Ocul Pharmacol Ther 2020; 36:582-594. [PMID: 32667842 DOI: 10.1089/jop.2019.0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biomechanical properties of the cornea have recently emerged as clinically useful in risk assessment of diagnosing glaucoma and predicting disease progression. Corneal hysteresis (CH) is a dynamic tool, which measures viscoelasticity of the cornea. It represents the overall deformability of the cornea, and reduces significantly with age. Low CH has also been associated with optic nerve damage and progression of visual field loss in glaucoma. The extracellular matrix (ECM) constituents of the cornea, trabecular meshwork (TM), sclera, and lamina cribrosa (LC) are similar, as they are predominantly made of fibrillar collagen. This suggests that biomechanical changes in the cornea may also reflect optic nerve compliance in glaucomatous optic neuropathy, and in the known increase of TM tissue stiffness in glaucoma. Increased collagen cross-linking contributes to tissue stiffening throughout the body, which is observed in normal aging and occurs at an accelerated rate in systemic conditions such as fibrotic and cardiovascular diseases, cancer, and glaucoma. We reviewed 3 ECM cross-linking proteins that may have a potential role in the disease process of increased tissue stiffness in glaucoma, including lysyl oxidase (LOX)/lysyl oxidase-like 1 (LOXL1), tissue transglutaminase (TG2), and advanced glycation end products. We also report elevated messenger RNA (mRNA) levels of LOX and TG2 in glaucoma LC cells to support our proposed theory that increased levels of cross-linking proteins in glaucoma play a role in LC tissue stiffness. We highlight areas of research that are needed to better understand the role of cross-linking in glaucoma pathogenesis, leading potentially to a novel therapeutic strategy.
Collapse
Affiliation(s)
- Najiha Rahman
- UCD Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Evelyn O'Neill
- UCD Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research, Catherine Mcauley Centre, Dublin, Ireland
| | - Deborah Wallace
- UCD Clinical Research, Catherine Mcauley Centre, Dublin, Ireland
| | - Colm O'Brien
- UCD Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,UCD Clinical Research, Catherine Mcauley Centre, Dublin, Ireland
| |
Collapse
|
40
|
Steinhaeuser SS, Morera E, Budkova Z, Schepsky A, Wang Q, Rolfsson O, Riedel A, Krueger A, Hilmarsdottir B, Maelandsmo GM, Valdimarsdottir B, Sigurdardottir AK, Agnarsson BA, Jonasson JG, Ingthorsson S, Traustadottir GA, Oskarsson T, Gudjonsson T. ECM1 secreted by HER2-overexpressing breast cancer cells promotes formation of a vascular niche accelerating cancer cell migration and invasion. J Transl Med 2020; 100:928-944. [PMID: 32203150 DOI: 10.1038/s41374-020-0415-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment is increasingly recognized as key player in cancer progression. Investigating heterotypic interactions between cancer cells and their microenvironment is important for understanding how specific cell types support cancer. Forming the vasculature, endothelial cells (ECs) are a prominent cell type in the microenvironment of both normal and neoplastic breast gland. Here, we sought out to analyze epithelial-endothelial cross talk in the breast using isogenic non-tumorigenic vs. tumorigenic breast epithelial cell lines and primary ECs. The cellular model used here consists of D492, a breast epithelial cell line with stem cell properties, and two isogenic D492-derived EMT cell lines, D492M and D492HER2. D492M was generated by endothelial-induced EMT and is non-tumorigenic while D492HER2 is tumorigenic, expressing the ErbB2/HER2 oncogene. To investigate cellular cross talk, we used both conditioned medium (CM) and 2D/3D co-culture systems. Secretome analysis of D492 cell lines was performed using mass spectrometry and candidate knockdown (KD), and overexpression (OE) was done using siRNA and CRISPRi/CRISPRa technology. D492HER2 directly enhances endothelial network formation and activates a molecular axis in ECs promoting D492HER2 migration and invasion, suggesting an endothelial feedback response. Secretome analysis identified extracellular matrix protein 1 (ECM1) as potential angiogenic inducer in D492HER2. Confirming its involvement, KD of ECM1 reduced the ability of D492HER2-CM to increase endothelial network formation and induce the endothelial feedback, while recombinant ECM1 (rECM1) increased both. Interestingly, NOTCH1 and NOTCH3 expression was upregulated in ECs upon treatment with D492HER2-CM or rECM1 but not by CM from D492HER2 with ECM1 KD. Blocking endothelial NOTCH signaling inhibited the increase in network formation and the ability of ECs to promote D492HER2 migration and invasion. In summary, our data demonstrate that cancer-secreted ECM1 induces a NOTCH-mediated endothelial feedback promoting cancer progression by enhancing migration and invasion. Targeting this interaction may provide a novel possibility to improve cancer treatment.
Collapse
Affiliation(s)
- Sophie Sarah Steinhaeuser
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Erika Morera
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Zuzana Budkova
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alexander Schepsky
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Qiong Wang
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Angela Riedel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Aileen Krueger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Bylgja Hilmarsdottir
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Gunhild Mari Maelandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Bryndis Valdimarsdottir
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Anna Karen Sigurdardottir
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni Agnar Agnarsson
- Department of Pathology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jon Gunnlaugur Jonasson
- Department of Pathology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Saevar Ingthorsson
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Thorarinn Gudjonsson
- Department of Anatomy, Stem Cell Research Unit, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Center for Systems Biology, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.
| |
Collapse
|
41
|
Bone interface modulates drug resistance in breast cancer bone metastasis. Colloids Surf B Biointerfaces 2020; 195:111224. [PMID: 32634713 DOI: 10.1016/j.colsurfb.2020.111224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Metastatic breast cancer cells on arriving at bone site interact with the bone cells to influence their growth, proliferation, and chemoresistance. There are currently no effective therapeutics available in the clinic for bone metastases. Many existing anti-cancer therapeutics are ineffective at the metastatic bone site due to a lack of accurate models of breast cancer bone metastasis for drug screening. Here, we report the development of an effective in vitro model using osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells on 3D nanoclay scaffolds as a testbed for screening drugs. Our results demonstrate that breast cancer cells grown in 3D bone-mimetic scaffolds exhibited altered physiological and biochemical properties, including tumoroids formation, elevated levels of cytokine such as IL-6, and its downstream effector-mediated inhibition of apoptosis and upregulation of multidrug transporters proteins, leading to drug resistance against paclitaxel. Most importantly, Signal Transducer and Activator of Transcription 3 (STAT3), a potential biomarker for chemoresistance in many cancers, was activated in the 3D breast cancer bone metastasis model. Thus, our data suggest that 3D bone-mimetic nanoclay scaffolds-based in vitro tumor model is a promising testbed for screening new therapeutics for breast cancer bone metastasis where bone interface governs drug resistance in breast cancer cells.
Collapse
|
42
|
Raguraman R, Parameswaran S, Kanwar JR, Vasudevan M, Chitipothu S, Kanwar RK, Krishnakumar S. Gene expression profiling of tumor stroma interactions in retinoblastoma. Exp Eye Res 2020; 197:108067. [PMID: 32585195 DOI: 10.1016/j.exer.2020.108067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 01/18/2023]
Abstract
We aimed to identify the critical molecular pathways altered upon tumor stroma interactions in retinoblastoma (RB). In vitro 2 D cocultures of RB tumor cells (Weri-Rb-1 and NCC-RbC-51) with primary bone marrow stromal cells (BMSC) was established. Global gene expression patterns in coculture samples were assessed using Affymetrix Prime view human gene chip microarray and followed with bioinformatics analyses. Key upregulated genes from Weri-Rb-1 + BMSC and NCC-RbC-51 + BMSC coculture were validated using qRT-PCR to ascertain their role in RB progression. Whole genome microarray experiments identified significant (P ≤ 0.05, 1.1 log 2 FC) transcriptome level changes induced upon coculture of RB cells with BMSC. A total of 1155 genes were downregulated and 1083 upregulated in Weri-Rb-1 + BMSC coculture. Similarly, 1865 genes showed downregulation and 1644 genes were upregulation in NCC-RbC-51 + BMSC coculture. The upregulated genes were significantly associated with pathways of focal adhesion, PI3K-Akt signalling, ECM-receptor interaction, JAK-STAT, TGF-β signalling thus contributing to RB progression. Validation of key genes by qRT-PCR revealed significant overexpression of IL8, IL6, MYC and SMAD3 in the case of Weri-Rb-1 + BMSC coculture and IL6 in the case of NCC-RbC-51 + BMSC coculture. The microarray expression study on in vitro RB coculture models revealed the pathways that could be involved in the progression of RB. The gene signature obtained in a stimulated model when a growing tumor interacts with its microenvironment may provide new horizons for potential targeted therapy in RB.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India; School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India
| | - Jagat Rakesh Kanwar
- School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | | | - Srujana Chitipothu
- Central Research Instrumentation Facility, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India
| | - Rupinder Kaur Kanwar
- School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | - Subramanian Krishnakumar
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India; School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia.
| |
Collapse
|
43
|
Zanotelli MR, Chada NC, Johnson CA, Reinhart-King CA. The Physical Microenvironment of Tumors: Characterization and Clinical Impact. ACTA ACUST UNITED AC 2020. [DOI: 10.1142/s1793048020300029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tumor microenvironment plays a critical role in tumorigenesis and metastasis. As tightly controlled extracellular matrix homeostasis is lost during tumor progression, a dysregulated extracellular matrix can significantly alter cellular phenotype and drive malignancy. Altered physical properties of the tumor microenvironment alter cancer cell behavior, limit delivery and efficacy of therapies, and correlate with tumorigenesis and patient prognosis. The physical features of the extracellular matrix during tumor progression have been characterized; however, a wide range of methods have been used between studies and cancer types resulting in a large range of reported values. Here, we discuss the significant mechanical and structural properties of the tumor microenvironment, summarizing their reported values and clinical impact across cancer type and grade. We attempt to integrate the values in the literature to identify sources of reported differences and commonalities to better understand how aberrant extracellular matrix dynamics contribute to cancer progression. An intimate understanding of altered matrix properties during malignant transformation will be crucial in effectively detecting, monitoring, and treating cancer.
Collapse
Affiliation(s)
- Matthew R. Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14583, USA
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - Neil C. Chada
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - C. Andrew Johnson
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| |
Collapse
|
44
|
Ojalill M, Virtanen N, Rappu P, Siljamäki E, Taimen P, Heino J. Interaction between prostate cancer cells and prostate fibroblasts promotes accumulation and proteolytic processing of basement membrane proteins. Prostate 2020; 80:715-726. [PMID: 32364250 DOI: 10.1002/pros.23985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Tumor microenvironment or stroma has the potency to regulate the behavior of malignant cells. Fibroblast-like cells are abundant in tumor stroma and they are also responsible for the synthesis of many extracellular matrix components. Fibroblast-cancer cell interplay can modify the functions of both cell types. METHODS We applied mass spectrometry and proteomics to unveil the matrisome in 3D spheroids formed by DU145 prostate cancer cells, PC3 prostate cancer cells, or prostate-derived fibroblasts. Similarly, DU145/fibroblast and PC3/fibroblast coculture spheroids were also analyzed. Western blot analysis and immunofluorescence were used to confirm the presence of specific proteins in spheroids. Cancer dissemination was studied by utilizing "out of spheroids" migration and invasion assays. RESULTS In the spheroid model cancer cell-fibroblast interplay caused remarkable changes in the extracellular matrix and accelerated the invasion of DU145 cells. Fibroblasts produced structural matrix proteins, growth factors, and matrix metalloproteinases. In cancer cell/fibroblast cocultures basement membrane components, including laminins (α3, α5, β2, and β3), heparan sulfate proteoglycan (HSPG2 gene product), and collagen XVIII accumulated in a prominent manner when compared with spheroids that contained fibroblasts or cancer cells only. Furthermore, collagen XVIII was intensively processed to different endostatin-containing isoforms by cancer cell-derived cathepsin L. CONCLUSIONS Fibroblasts can promote carcinoma cell dissemination by several different mechanisms. Extracellular matrix and basement membrane proteins provide attachment sites for cell locomotion promoting adhesion receptors. Growth factors and metalloproteinases are known to accelerate cell invasion. In addition, cancer cell-fibroblast interplay generates biologically active fragments of basement membrane proteins, such as endostatin.
Collapse
Affiliation(s)
| | - Noora Virtanen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Pekka Rappu
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
45
|
Kim B, Im NR, Yang TD, Kim J, Jung KY, Kim TH, Baek SK. Enhancement of aberrantly modified integrin‑mediated cell motility in multicellular tumor spheroids. Int J Oncol 2020; 56:1490-1498. [PMID: 32236635 DOI: 10.3892/ijo.2020.5016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/29/2020] [Indexed: 11/05/2022] Open
Abstract
Multicellular tumor spheroids (MTSs) of malignant cells can display cell‑cell and cell‑matrix interactions, different from monolayer cultures. The objective of the present study was to examine difference in intercellular and cell‑matrix interaction between monolayered cultures and spheroid cultures. Expression levels of cell adhesion molecules (CAMs) and epithelial‑mesenchymal transition (EMT) signaling molecules in monolayered cells and MTS cells were compared. The motility of single cells dispersed from each culture was evaluated using a live‑cell imaging device. The effect of an E‑cadherin neutralizing antibody, DECMA, was also compared between the two cultures. Among various CAMs, only E‑cadherin was increased in MTSs. The motility of single cells dispersed from MTSs was higher than that from monolayered cells. Compared with monolayered cells, the molecular weight (MW) of β1 integrin was decreased during MTS formation, particularly during the early stage. This notable reduction was maintained when DECMA was used to treat MTSs. Additionally, the expression levels of the EMT signaling molecules Snail and ILK increased more in MTSs than in monolayered cells. The blocking of E‑cadherin elicited increased expression levels of EMT molecules and cellular motility only in MTSs. In conclusion, the alteration of E‑cadherin expression and presence of low‑MW β1 integrin in MTS may enhance cell motility via the upregulation of EMT signaling molecules that may be intensified by blocking E‑cadherin.
Collapse
Affiliation(s)
- Byoungjae Kim
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Nu-Ri Im
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Taeseok Daniel Yang
- School of Biomedical Engineering, Korea University, Seoul 136‑705, Republic of Korea
| | - Jian Kim
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Kwang-Yoon Jung
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Tae Hoon Kim
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - Seung-Kuk Baek
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| |
Collapse
|
46
|
Xu J, Cui X, Wang B, Wang G, Han M, Li R, Qi Y, Xiu J, Yang Q, Liu Z, Han M. Texture analysis of early cerebral tissue damage in magnetic resonance imaging of patients with lung cancer. Oncol Lett 2020; 19:3089-3100. [PMID: 32256809 PMCID: PMC7074325 DOI: 10.3892/ol.2020.11426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Primary tumors can secrete many cytokines, inducing tissue damage or microstructural changes in distant organs. The purpose of this study was to investigate changes in texture features in the cerebral tissue of patients with lung cancer without brain metastasis. In this study, 50 patients with lung cancers underwent 3.0-T magnetic resonance imaging (MRI) within 2 weeks of being diagnosed with lung cancer. Texture analysis (TA) was carried out in 8 gray matter areas, including bilateral frontal cortices, parietal cortices, occipital cortices and temporal cortices, as well as 2 areas of bilateral frontoparietal white matter. The same procedure was performed for 57 healthy controls. A total of 32 texture parameters were separately compared between the patients and controls in the different cerebral tissue sites. Texture features among patients based on histological type and clinical stage were also compared. Of the 32 texture parameters, 27 showed significant differences between patients with lung cancer and healthy controls. There were significant differences in cerebral tissue, both gray matter and white matter between patients and controls, especially in several wavelet-based parameters. However, there were no significant differences between tissue at homologous sites in bilateral hemispheres, either in patients or controls. TA detected overt changes in the texture features of cerebral tissue in patients with lung cancer without brain metastasis compared with those of healthy controls. TA may be considered as a novel and adjunctive approach to conventional brain MRI to reveal cerebral tissue changes invisible on MRI alone in patients with lung cancer.
Collapse
Affiliation(s)
- Jiying Xu
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaoxiao Cui
- School of Information Science and Engineering, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Bomin Wang
- School of Information Science and Engineering, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Guangyu Wang
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Meng Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ranran Li
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yana Qi
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianjun Xiu
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qianlong Yang
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhi Liu
- School of Information Science and Engineering, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
47
|
Di Maggio F, El-Shakankery KH. Desmoplasia and Biophysics in Pancreatic Ductal Adenocarcinoma: Can We Learn From Breast Cancer? Pancreas 2020; 49:313-325. [PMID: 32168249 DOI: 10.1097/mpa.0000000000001504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) treatments have historically focused on targeting tumor cells directly. However, in pancreatic masses, the stroma encasing the malignant epithelial cells constitutes up to 80% to 90% of the tumor bulk. This extracellular matrix, which was previously neglected when designing cancer therapies, is now considered fundamental for tumor progression and drug delivery. Desmoplastic tissue is extensively cross-linked, resulting in tremendous tensile strength. This key pathological feature is procarcinogenic, linking PDAC and breast cancer (BC). Physical forces exerted onto cellular surfaces are detected intracellularly and transduced via biochemical messengers in a process called mechanotransduction. Mechanotransduction and tensional homeostasis are linked, with an integral role in influencing tumor growth, metastasis, and interactions with the immune system. It is essential to enhance our knowledge of these integral elements of parenchymal tumors. We aim to review the topic, with a special emphasis on desmoplastic processes and their importance in pancreatic and BC development and treatments, mindful that innovative diagnostic and therapeutic strategies cannot focus on biochemical pathways alone. We then focus on common therapeutic targets identified in both PDAC and BC models and/or patients, aiming to understand these treatments and draw similarities between the two tumors.
Collapse
|
48
|
Eriksson J, Le Joncour V, Jahkola T, Juteau S, Laakkonen P, Saksela O, Hölttä E. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1) is a biomarker of poor prognosis in primary melanomas, and its depletion inhibits melanoma cell invasion and disrupts tumor blood vessel walls. Mol Oncol 2020; 14:742-762. [PMID: 32053263 PMCID: PMC7138405 DOI: 10.1002/1878-0261.12649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is an unpredictable, highly metastatic malignancy, and treatment of advanced melanoma remains challenging. Novel molecular markers based on the alterations in gene expression and the molecular pathways activated or deactivated during melanoma progression are needed for predicting the course of the disease already in primary tumors and for providing new targets for therapy. Here, we sought to identify genes whose expression in primary melanomas correlate with patient disease‐specific survival using global gene expression profiling. Many of the identified potential markers of poor prognosis were associated with the epithelial–mesenchymal transition, extracellular matrix formation, and angiogenesis. We studied further the significance of one of the genes, prolyl 4‐hydroxylase subunit alpha 1 (P4HA1), in melanoma progression. P4HA1 depletion in melanoma cells reduced cell adhesion, invasion, and viability in vitro. In melanoma xenograft assays, we found that P4HA1 knockdown reduced melanoma tumor invasion as well as the deposition of collagens, particularly type IV collagen, in the interstitial extracellular matrix and in the basement membranes of tumor blood vessels, leading to vessel wall rupture and hemorrhages. Further, P4HA1 knockdown reduced the secretion of collagen triple helix repeat containing 1 (CTHRC1), an important mediator of melanoma cell migration and invasion, in vitro and its deposition around tumor blood vessels in vivo. Taken together, P4HA1 is an interesting potential prognostic marker and therapeutic target in primary melanomas, influencing many aspects of melanoma tumor progression.
Collapse
Affiliation(s)
| | - Vadim Le Joncour
- Faculty of Medicine, Translational Cancer Medicine Research Program, University of Helsinki, Finland
| | - Tiina Jahkola
- Department of Plastic Surgery, Helsinki University Hospital, Finland
| | - Susanna Juteau
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Finland
| | - Pirjo Laakkonen
- Faculty of Medicine, Translational Cancer Medicine Research Program, University of Helsinki, Finland.,Laboratory Animal Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Olli Saksela
- Department of Dermatology, Helsinki University Hospital, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, Finland
| |
Collapse
|
49
|
The Extracellular Matrix Modulates the Metastatic Journey. Dev Cell 2020; 49:332-346. [PMID: 31063753 DOI: 10.1016/j.devcel.2019.03.026] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022]
Abstract
The extracellular matrix is perturbed in tumors. The tumor matrix promotes the growth, survival, and invasion of the cancer and modifies fibroblast and immune cell behavior to drive metastasis and impair treatment. Here, we discuss how the tumor matrix regulates metastasis by fostering tumor cell invasion into the stroma and migration toward the vasculature. We describe the role of the tumor matrix in cancer cell intravasation and vascular dissemination. We examine the impact of the matrix on disseminated tumor cell extravasation and on tumor dormancy and metastatic outgrowth. Finally, we discuss the clinical outcome of therapeutics that normalize tumor-matrix interactions.
Collapse
|
50
|
Shen P, Xu J, Wang P, Zhao X, Huang B, Wu F, Wang L, Chen W, Feng Y, Guo Z, Liu X, Deng Y, Jiang J, Shi D, Lu F. A new three-dimensional glass scaffold increases the in vitro maturation efficiency of buffalo (Bubalus bubalis) oocyte via remodelling the extracellular matrix and cell connection of cumulus cells. Reprod Domest Anim 2020; 55:170-180. [PMID: 31816136 DOI: 10.1111/rda.13602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
At present, many three-dimensional (3D) culture systems have been reported, improving the oocyte quality of in vitro maturation (IVM), yet the mechanism still needs to be further explored. Here we examined the effects of a new self-made 3D glass scaffold on buffalo oocyte maturation; meanwhile, the underlying mechanism on buffalo oocyte maturation was also detected. Compared to the two-dimensional (2D) glass dish culture, results revealed that the 3D culture can improve the first polar body rate of oocytes, subsequent cleavage and blastocysts rate of parthenogenetic activation embryos (p < .05). The extracellular matrix-related proteins COL1A1, COL2A1, COL3A1, FN and cell connection-related proteins N-cadherin, E-cadherin, GJA1 were found higher in cumulus cells of 3D culture. Moreover, in cumulus cells, proteins of the PI3K/AKT pathway reported being regulated by FN and E-cadherin including PI3K P85 and p-AKT were also higher in 3D culture. Furthermore, proapoptosis proteins P53, BAX, caspase-3 were lower in both cumulus cells and oocytes in 3D culture, while proteins PCNA and BCL2 showed the opposite result. Results also showed that the apoptosis was inhibited, and the proliferation was enhanced in cumulus cells of 3D culture. Finally, the cumulus expansion-related genes HAS2, CD44, HMMR, PTX3, PTGS2 were found higher in cumulus cells of 3D culture. Taken together, the 3D culture could promote oocyte maturation by regulating proteins correlated with the ECM, cell connection and PI3K/AKT pathway, inhibiting the apoptosis of cumulus cells and oocytes, enhancing the proliferation of cumulus cells and the cumulus expansion.
Collapse
Affiliation(s)
- Penglei Shen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jie Xu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Ping Wang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xin Zhao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Ben Huang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fei Wu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Lulu Wang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Weili Chen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yun Feng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Zhenwei Guo
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiaohua Liu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jianrong Jiang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|