1
|
Bahraini F, Sayadi M, Safarpour H, Zarban A, Mesbahzadeh B, Sajjadi SM. n-3 polyunsaturated fatty acids enhanced efficacy of cytarabine in iron-overloaded NALM-6 cells via apoptotic and oxidative pathways. Toxicol In Vitro 2025; 103:105976. [PMID: 39613235 DOI: 10.1016/j.tiv.2024.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Despite progress in treating acute lymphoblastic leukemia (ALL), the adverse effects of chemotherapy toxicity and iron overload from transfusions continue to affect patients' quality of life. Polyunsaturated fatty acids (PUFAs) exhibit both antitumor and anti-inflammatory properties in leukemia. This study investigated the influence of n-3 PUFA on the efficacy of cytarabine in cells with iron overload. Iron overload was induced in NALM-6 cells using ferric ammonium citrate (FAC) and quantified through atomic absorption spectroscopy (AAS). The impact of n-3 PUFA on NALM-6 cells' response to cytarabine was evaluated using MTT, lactate dehydrogenase (LDH), apoptosis, and cell cycle assays. Additionally, gene expression analyses were performed on apoptotic, anti-apoptotic, and inflammatory genes, along with oxidative stress markers such as reactive oxygen species (ROS) and malondialdehyde (MDA) levels. The administration of n-3 PUFA significantly enhanced the effectiveness of cytarabine in iron-overloaded NALM-6 cells, leading to increased LDH secretion, elevated apoptosis rates, and G1 phase cell cycle arrest. These effects were associated with the upregulation of apoptotic genes such as P53 and caspase-8, the downregulation of the anti-apoptotic gene Bcl2, and a decrease in the inflammatory gene TNF-α. Furthermore, there was a notable increase in ROS and MDA levels. Overall, n-3 PUFA treatment improved cytarabine's efficacy in iron-overloaded NALM-6 cells by activating apoptotic processes and oxidative stress pathways.
Collapse
Affiliation(s)
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Asghar Zarban
- Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| | - Behzad Mesbahzadeh
- Department of Physiology, School of Allied Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Zhao B, Zhang J, Zhao K, Wang B, Liu J, Wang C, Zeng L, Zeng X, Luo Y. Effect of rapamycin on hepatic metabolomics of non-alcoholic fatty liver rats based on non-targeted platform. J Pharm Biomed Anal 2024; 253:116541. [PMID: 39489928 DOI: 10.1016/j.jpba.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Rapamycin (Rapa) is an inhibitor of mTOR complex, and its therapeutic effect on liver function was examined in non-alcoholic fatty liver disease (NAFLD) rats here. And the possible mechanism of Rapa in NAFLD was preliminarily elucidated based on the non-targeted metabolomics analysis. Adult male SD rats were fed with a high-fat and high-cholesterol diet (HFD) to establish NAFLD model. For Rapa group, 0.8 mg/(kg.d) Rapa was given to the HFD rats. Ultra-performance liquid chromatography and Q-Tof-mass spectrometry (UPLC and Q-TOF/MS) analysis were applied for the identification of metabolites in the serum of rats, which were annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG). NAFLD rats presented with disturbed liver function, lipid metabolism and oxidative stress, but Rapa exerted a mitigating influence on the disorders. The metabolite profile data identified 579 metabolites that varied remarkably between the Rapa and HFD groups, with the main classes of amino acids and peptides, benzene, lipids and fatty acids. The differential metabolites were mainly involved in biosynthesis of cofactors, bile secretion, and glycerophospholipid metabolism were mainly enriched. In conclusion, Rapa has a potential protective effect against HFD-induced NAFLD, its hepatoprotective effect may achieved through mediating bile secretion and glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Baiyun Zhao
- Drug Clinical Trial Institution, Hangzhou Normal University Affiliated Hospital, Hangzhou, China; Department of Pharmacy, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Kaiyue Zhao
- Medical Department, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Bin Wang
- Department of Critical Care Medicine, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Jing Liu
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chaoxuan Wang
- Drug Clinical Trial Institution, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Ling Zeng
- Drug Clinical Trial Institution, Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Xin Zeng
- Traditional Chinese Pharmacy, China Pharmaceutical University School, Nanjing, China
| | - Yan Luo
- Department of Translational Medicine Center, Hangzhou Normal University Affiliated Hospital, Hangzhou, China.
| |
Collapse
|
3
|
Fontes A, Jauch AT, Sailer J, Engler J, Azul AM, Zischka H. Metabolic Derangement of Essential Transition Metals and Potential Antioxidant Therapies. Int J Mol Sci 2024; 25:7880. [PMID: 39063122 PMCID: PMC11277342 DOI: 10.3390/ijms25147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adrian T. Jauch
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Judith Sailer
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Jonas Engler
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| |
Collapse
|
4
|
Torshin IY, Gromova OA, Bogacheva TE. Systematic analysis of the relationship between non-alcoholic fatty liver disease and tissue iron overload: promising areas for the use of polypeptide therapy. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:139-152. [DOI: 10.31146/1682-8658-ecg-218-10-139-152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Iron overload in non-alcoholic fatty liver disease (NAFLD) is a fairly common phenomenon that receives very little attention in clinical practice. However, iron overload, leading to hemosiderosis (deposition of “indigestible” nanodispersed iron oxides in various tissues) significantly aggravates NAFLD, stimulating increased chronic inflammation, insulin resistance and hemosiderosis of other organs. As a result, ferroptosis of hepatocytes occurs (apoptosis caused by iron overload and hemosiderosis), which accelerates the transformation of non-alcoholic steatosis into non-alcoholic steatohepatitis (NASH) and, subsequently, into liver cirrhosis. Iron overload is aggravated by micronutrient deficiencies and pathogenic intestinal microbiota. The paper presents the results of a systematic analysis of this issue, describes the prospects for therapy using micronutrients and human placenta hydrolysates (HPP), which contribute not only to the regeneration of liver tissue, but also to the normalization of iron homeostasis.
Collapse
Affiliation(s)
- I. Yu. Torshin
- Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
| | - O. A. Gromova
- Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
| | | |
Collapse
|
5
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
7
|
Kose T, Moreno-Fernandez J, Vera-Aviles M, Sharp PA, Latunde-Dada GO. Ferulic acid protects HepG2 cells and mouse liver from iron-induced damage. Biochem Biophys Rep 2023; 35:101521. [PMID: 37560439 PMCID: PMC10407627 DOI: 10.1016/j.bbrep.2023.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Liver as iron storage organ is particularly susceptible to oxidative stress-induced injury from excess iron. Thus, antioxidant therapies are often used to reverse oxidative damage and protect cells and tissues. This study investigated the protective effects of phenolic acids; ferulic acid (FA) and its metabolite, ferulic acid 4-O-sulfate disodium salt (FAS) against oxidative stress under iron overload conditions in mouse and HepG2 cells. Cells were exposed to FA or FAS and then treated with iron-induced oxidative stress complex of 50 μmol/L FAC and 20 μmol/L of 8-hydroxyquinoline 8HQ (8HQ-FAC). Iron dextran was injected intraperitoneally on alternate days for 10 days to induce the iron overload condition in BALB/c mice. The study revealed that the phenolic acids were protective against ROS production, lipid peroxidation and antioxidant depletion in HepG2 cells and liver tissues of BALB/c mice during iron-induced oxidative stress. The protective function of phenolic acids was achieved by the transcriptional activation of nuclear factor erythroid-2-related factor 2 (Nrf2) to regulate antioxidant genes. In conclusion, the study provides evidence that FA has the potential as a therapeutic agent against iron-related diseases such as T2D.
Collapse
Affiliation(s)
- Tugba Kose
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Jorge Moreno-Fernandez
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London, SE1 9NH, UK
- Department of Physiology, University of Granada, 18071, Granada, Spain
| | - Mayra Vera-Aviles
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London, SE1 9NH, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Paul A. Sharp
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Gladys O. Latunde-Dada
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
8
|
Kose T, Sharp PA, Latunde-Dada GO. Phenolic Acids Rescue Iron-Induced Damage in Murine Pancreatic Cells and Tissues. Molecules 2023; 28:molecules28104084. [PMID: 37241825 DOI: 10.3390/molecules28104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Iron is an essential element involved in a variety of physiological functions. However, excess iron catalyzes the generation of reactive oxygen species (ROS) via the Fenton reaction. Oxidative stress, caused by an increase in intracellular ROS production, can be a contributory factor to metabolic syndromes such as dyslipidemia, hypertension, and type 2 diabetes (T2D). Accordingly, interest has grown recently in the role and use of natural antioxidants to prevent iron-induced oxidative damage. This study investigated the protective effect of the phenolic acids; ferulic acid (FA) and its metabolite ferulic acid 4-O-sulfate disodium salt (FAS) against excess iron-related oxidative stress in murine MIN6 cells and the pancreas of BALB/c mice. Rapid iron overload was induced with 50 μmol/L ferric ammonium citrate (FAC) and 20 μmol/L 8-hydroxyquinoline (8HQ) in MIN6 cells, while iron dextran (ID) was used to facilitate iron overload in mice. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, ROS levels were determined by dihydrodichlorofluorescein (H2DCF) cell-permeant probe, iron levels were measured by inductively coupled plasma mass spectrometry (ICP-MS), glutathione, SOD (superoxide dismutase) and lipid peroxidation, and mRNA were assayed with commercially available kits. The phenolic acids enhanced cell viability in iron-overloaded MIN6 cells in a dose-dependent manner. Furthermore, MIN6 cells exposed to iron showed elevated levels of ROS, glutathione (GSH) depletion and lipid peroxidation (p < 0.05) compared to cells that were protected by treatment with FA or FAS. The treatment of BALB/c mice with FA or FAS following exposure to ID increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) gene levels in the pancreas. Consequently, levels of its downstream antioxidant genes, HO-1, NQO1, GCLC and GPX4, increased in the pancreas. In conclusion, this study shows that FA and FAS protect pancreatic cells and liver tissue from iron-induced damage via the Nrf2 antioxidant activation mechanism.
Collapse
Affiliation(s)
- Tugba Kose
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK
| | - Paul A Sharp
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK
| | - Gladys O Latunde-Dada
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
9
|
Sohal A, Chaudhry H, Kowdley KV. Genetic Markers Predisposing to Nonalcoholic Steatohepatitis. Clin Liver Dis 2023; 27:333-352. [PMID: 37024211 DOI: 10.1016/j.cld.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The growing prevalence of nonalcoholic fatty liver disease (NAFLD) has sparked interest in understanding genetics and epigenetics associated with the development and progression of the disease. A better understanding of the genetic factors related to progression will be beneficial in the risk stratification of patients. These genetic markers can also serve as potential therapeutic targets in the future. In this review, we focus on the genetic markers associated with the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Aalam Sohal
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA
| | - Hunza Chaudhry
- Department of Internal Medicine, UCSF Fresno, 155 North Fresno Street, Fresno, CA 93722, USA
| | - Kris V Kowdley
- Liver Institute Northwest, 3216 Northeast 45th Place Suite 212, Seattle, WA 98105, USA; Elson S. Floyd College of Medicine, Washington State University, WA, USA.
| |
Collapse
|
10
|
Li Y, Ouyang Q, Chen Z, Chen W, Zhang B, Zhang S, Cong M, Xu A. Intracellular labile iron is a key regulator of hepcidin expression and iron metabolism. Hepatol Int 2022; 17:636-647. [DOI: 10.1007/s12072-022-10452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
|
11
|
Repression of the iron exporter ferroportin may contribute to hepatocyte iron overload in individuals with type 2 diabetes. Mol Metab 2022; 66:101644. [PMID: 36436807 PMCID: PMC9719871 DOI: 10.1016/j.molmet.2022.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Hyperferremia and hyperferritinemia are observed in patients and disease models of type 2 diabetes mellitus (T2DM). Likewise, patients with genetic iron overload diseases develop diabetes, suggesting a tight link between iron metabolism and diabetes. The liver controls systemic iron homeostasis and is a central organ for T2DM. Here, we investigate how the control of iron metabolism in hepatocytes is affected by T2DM. METHODS Perls Prussian blue staining was applied to analyze iron distribution in liver biopsies of T2DM patients. To identify molecular mechanisms underlying hepatocyte iron accumulation we established cellular models of insulin resistance by treatment with palmitate and insulin. RESULTS We show that a subset of T2DM patients accumulates iron in hepatocytes, a finding mirrored in a hepatocyte model of insulin resistance. Iron accumulation can be explained by the repression of the iron exporter ferroportin upon palmitate and/or insulin treatment. While during palmitate treatment the activation of the iron regulatory hormone hepcidin may contribute to reducing ferroportin protein levels in a cell-autonomous manner, insulin treatment decreases ferroportin transcription via the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways. CONCLUSION Repression of ferroportin at the transcriptional and post-transcriptional level may contribute to iron accumulation in hepatocytes observed in a subset of patients with T2DM.
Collapse
|
12
|
Incorporation of Oxidized Phenylalanine Derivatives into Insulin Signaling Relevant Proteins May Link Oxidative Stress to Signaling Conditions Underlying Chronic Insulin Resistance. Biomedicines 2022; 10:biomedicines10050975. [PMID: 35625712 PMCID: PMC9138545 DOI: 10.3390/biomedicines10050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
A link between oxidative stress and insulin resistance has been suggested. Hydroxyl free radicals are known to be able to convert phenylalanine (Phe) into the non-physiological tyrosine isoforms ortho- and meta-tyrosine (o-Tyr, m-Tyr). The aim of our study was to examine the role of o-Tyr and m-Tyr in the development of insulin resistance. We found that insulin-induced uptake of glucose was blunted in cultures of 3T3-L1 grown on media containing o- or m-Tyr. We show that these modified amino acids are incorporated into cellular proteins. We focused on insulin receptor substrate 1 (IRS-1), which plays a role in insulin signaling. The activating phosphorylation of IRS-1 was increased by insulin, the effect of which was abolished in cells grown in m-Tyr or o-Tyr media. We found that phosphorylation of m- or o-Tyr containing IRS-1 segments by insulin receptor (IR) kinase was greatly reduced, PTP-1B phosphatase was incapable of dephosphorylating phosphorylated m- or o-Tyr IRS-1 peptides, and the SH2 domains of phosphoinositide 3-kinase (PI3K) bound the o-Tyr IRS-1 peptides with greatly reduced affinity. According to our data, m- or o-Tyr incorporation into IRS-1 modifies its protein–protein interactions with regulating enzymes and effectors, thus IRS-1 eventually loses its capacity to play its role in insulin signaling, leading to insulin resistance.
Collapse
|
13
|
Giannini C, Polidori N, Saltarelli MA, Chiarelli F, Basilico R, Mohn A. Increased hepcidin levels and non-alcoholic fatty liver disease in obese prepubertal children: a further piece to the complex puzzle of metabolic derangements. J Pediatr Endocrinol Metab 2022; 35:39-47. [PMID: 34726357 DOI: 10.1515/jpem-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Several studies on obese youths and adults have reported increased hepcidin levels, which seems to be related to metabolic and iron metabolism alterations. The complete mechanisms involved in hepcidin increase remain to be elucidated, and particularly its role in the development of other known complications such as Nonalcoholic Fatty Liver Disease (NAFLD). NAFLD in prepubertal children might be of special interest in understanding the underlying mechanisms. METHODS Anthropometric measurements, liver ultrasonography, lipid profile, liver function, oxidative stress, inflammatory state, and iron metabolism were studied in 42 obese prepubertal children and 33 healthy controls. We, therefore, evaluated the presence of possible correlations between Hepcidin and the other metabolic variables, and the possible association between NAFLD and iron metabolism. RESULTS Hepcidin levels were significantly increased in the obese prepubertal children (p=0.001) with significant differences between obese children with and without NAFLD (p=0.01). Blood iron was lower in obese children (p=0.009). In the obese group, a negative correlation between hepcidin and both blood iron levels (p=0.01) and LagPHASE (p=0.02) was found. In addition, a positive association between hepcidin and NAFLD (p=0.03) was detected. CONCLUSIONS We suggest that an increase in hepcidin levels may represent an early step in iron metabolism derangements and metabolic alterations, including NAFLD, in prepubertal obese children.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy.,Clinical Research Center, "G. d'Annunzio" Foundation, University of Chieti, Chieti, Italy
| | - Nella Polidori
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy.,Clinical Research Center, "G. d'Annunzio" Foundation, University of Chieti, Chieti, Italy
| | - Raffaella Basilico
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Angelika Mohn
- Department of Pediatrics, University of Chieti, Chieti, Italy.,Clinical Research Center, "G. d'Annunzio" Foundation, University of Chieti, Chieti, Italy
| |
Collapse
|
14
|
Al Akl NS, Khalifa O, Errafii K, Arredouani A. Association of dyslipidemia, diabetes and metabolic syndrome with serum ferritin levels: a middle eastern population-based cross-sectional study. Sci Rep 2021; 11:24080. [PMID: 34916585 PMCID: PMC8677797 DOI: 10.1038/s41598-021-03534-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Elevated serum ferritin (SFer) levels are implicated in many energy metabolism abnormalities. The association between SFer levels and metabolic disorders has not been studied in Middle Eastern populations. We aimed at exploring the association between SFer levels and serum lipids, diabetes determinants, and metabolic syndrome in a sample of Qatari adults. This study used biochemical parameters obtained from 1928 participants from the Qatar Biobank cohort. We utilized adjusted multivariable logistic regression analysis to estimate the odds ratios (ORs) for dyslipidemia, type 2 diabetes, the homeostasis model assessment of insulin resistance (HOMA-IR), and metabolic syndrome (MetS) according to sex-specific SFer quartiles (Q1 to Q4). Results revealed that the ORs for dyslipidemia increased progressively and significantly across the SFer quartiles, up to two folds in Q4 for women (OR 2.47 (1.68-3.62)) and men (OR 2.24 (1.41-3.55)) versus Q1 (OR:1). Exclusively in women, the ORs for IR (HOMA-IR > 3.58) increased significantly in Q4 (OR 1.79 (1.19-2.70)) versus OR 1 in Q1 as did the ORs for diabetes (OR: 2.03 (1.15-3.57) in Q4 versus OR 1 in Q1). We observed the same result when we pooled the participants with prediabetes and diabetes in one group. The OR for MetS also increased significantly across the Sfer Quartiles from OR: 1 in Q1 to 1.92 (1.06-3.02) in Q4 for women and to 2.07 (1.08-3.98) in Q4 in men. Our results suggest the elevated Sfer levels as a potential risk biomarker for dyslipidemia and MetS in adult Qatari men and women, and diabetes and IR in women only.
Collapse
Affiliation(s)
- Neyla S Al Akl
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Khaoula Errafii
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
15
|
Yue L, Sun T, Yang K, Cheng Q, Li J, Pan Y, Wang S, Wang R. Supramolecular nanovesicles for synergistic glucose starvation and hypoxia-activated gene therapy of cancer. NANOSCALE 2021; 13:9570-9576. [PMID: 34008688 DOI: 10.1039/d1nr02159a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glucose starvation has emerged as a therapeutic strategy to inhibit tumor growth by regulating glucose metabolism. However, the rapid proliferation of cancer cells could induce the hypoxic tumor microenvironment (TME) which limits the therapeutic efficacy of glucose starvation by vascular isomerization. Herein, we developed a "dual-lock" supramolecular nanomedicine system for synergistic cancer therapy by integrating glucose oxidase (GOx) induced starvation and hypoxia-activated gene therapy. The host-guest interactions (that mediate nano-assembly formation) and hypoxia-activatable promoters act as two locks to keep glucose oxidase (GOx) and a therapeutic plasmid (RTP801::p53) inside supramolecular gold nanovesicles (Au NVs). Upon initial dissociation of the host-guest interactions and hence Au NVs by cancer-specific reactive oxygen species (ROS), GOx is released to consume glucose and oxygen, generate H2O2 and induce the hypoxic TME, which act as the two keys for triggering burst payload release and promoter activation, thus allowing synergistic starvation and gene therapy of cancer. This "dual-lock" supramolecular nanomedicine exhibited integrated therapeutic effects in vitro and in vivo for tumor suppression.
Collapse
Affiliation(s)
- Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tsutsumi N, Nishimata S, Shimura M, Kashiwagi Y, Kawashima H. Hepcidin Levels and Pathological Characteristics in Children with Fatty Liver Disease. Pediatr Gastroenterol Hepatol Nutr 2021; 24:295-305. [PMID: 34046333 PMCID: PMC8128777 DOI: 10.5223/pghn.2021.24.3.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Hepcidin levels have previously been reported to be correlated with liver damage. However, the association between hepcidin levels and liver fibrosis in children with fatty liver disease remains unclear. This study therefore aimed to investigate the pathophysiology of fibrosis in children with fatty liver disease and its association with hepcidin levels. METHODS This retrospective case series included 12 boys aged 6-17 years who were diagnosed with nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH) at the Tokyo Medical University Hospital. Sixteen liver biopsy samples from 12 subjects were analyzed. Serum hepcidin levels were assayed using enzyme-linked immunosorbent assay. Immunostaining for hepcidin was performed, and the samples were stratified by staining intensity. RESULTS Serum hepcidin levels were higher in pediatric NAFLD/NASH patients than in controls. Conversely, a significant inverse correlation was observed between hepcidin immunostaining and Brunt grade scores and between hepcidin scores and gamma-glutamyltranspeptidase, hyaluronic acid, and leukocyte levels. We observed inverse correlations with a high correlation coefficient of >0.4 between hepcidin immunostaining and aspartate aminotransferase, alanine aminotransferase, total bile acid, and platelet count. CONCLUSION There was a significant inverse correlation between hepcidin immunoreactivity and fibrosis in pediatric NAFLD patients; however, serum hepcidin levels were significantly higher, suggesting that these patients experienced a reduction in the hepcidin-producing ability of the liver in response to iron levels, leading to subsequent fibrosis. Therefore, hepcidin levels can be used as markers to identify the progression of fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Norito Tsutsumi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shigeo Nishimata
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Masaru Shimura
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan.,Depatrment of Metabolism, Chiba Children's Hospital, Center for Medical Genetics, Chiba, Japan
| | - Yasuyo Kashiwagi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
17
|
Sun T, Kang Y, Liu J, Zhang Y, Ou L, Liu X, Lai R, Shao L. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J Nanobiotechnology 2021; 19:108. [PMID: 33863340 PMCID: PMC8052793 DOI: 10.1186/s12951-021-00843-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of nanomaterials (NMs) has raised concerns that exposure to them may introduce potential risks to the human body and environment. The liver is the main target organ for NMs. Hepatotoxic effects caused by NMs have been observed in recent studies but have not been linked to liver disease, and the intrinsic mechanisms are poorly elucidated. Additionally, NMs exhibit varied toxicokinetics and induce enhanced toxic effects in susceptible livers; however, thus far, this issue has not been thoroughly reviewed. This review provides an overview of the toxicokinetics of NMs. We highlight the possibility that NMs induce hepatic diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, liver cancer, and metabolic disorders, and explore the underlying intrinsic mechanisms. Additionally, NM toxicokinetics and the potential induced risks in the livers of susceptible individuals, including subjects with liver disease, obese individuals, aging individuals and individuals of both sexes, are summarized. To understand how NM type affect their toxicity, the influences of the physicochemical and morphological (PCM) properties of NMs on their toxicokinetics and toxicity are also explored. This review provides guidance for further toxicological studies on NMs and will be important for the further development of NMs for applications in various fields.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatological Hospital, Foshan University, Foshan, 528000, China.
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China.
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lingling Ou
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Xiangning Liu
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Renfa Lai
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
18
|
Ma B, Sun H, Zhu B, Wang S, Du L, Wang X, Qu S. Hepatic Steatosis Is Associated with Elevated Serum Iron in Patients with Obesity and Improves after Laparoscopic Sleeve Gastrectomy. Obes Facts 2021; 14:64-71. [PMID: 33352578 PMCID: PMC7983566 DOI: 10.1159/000511736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Iron is closely related to metabolism. However, the relationship between iron and hepatic steatosis has not been fully elucidated. OBJECTIVE We aimed to investigate the triangular relationship between iron and hepatic steatosis and laparoscopic sleeve gastrectomy (LSG) in patients with obesity. METHODS A total of 297 patients with obesity and 43 healthy individuals with a normal BMI were enrolled. Eighty-two patients underwent LSG. Anthropometrics, glucose-lipid metabolic markers, and hepatic steatosis assessed by FibroScan (CAP value and E value) were measured at baseline, and again at follow-up time intervals of 6 months and 1 year after surgery. RESULTS (1) Iron was significantly higher in patients with obesity or overweight than in the individuals with normal BMI (8.18 ± 1.47 vs. 7.46 ± 0.99 mmol/L, p = 0.002). Iron was also higher in subjects with high blood pressure, dyslipidemia, and hyperuricemia than non-corresponding disorders (all p < 0.05). Moreover, iron was significantly higher in the severe than mild or moderate non-alcoholic fatty liver disease (NAFLD) group (p = 0.046 and 0.018). (2) Iron was positively associated with body weight, BMI, waist-to-hip ratio, uric acid, liver enzymes, postprandial blood glucose, fasting insulin, HOMA-IR, triglycerides, free fatty acid, and hepatic steatosis (CAP value), and negatively associated with high-density lipoprotein cholesterol (all p < 0.05). Iron was also positively associated with the visceral adipose area in patients with obesity and negatively associated with the subcutaneous adipose area in patients with overweight (all p < 0.05). (3) Iron levels and CAP values were decreased gradually 6 months and 1 year after surgery (all p < 0.05). CONCLUSIONS Overall, our results indicated that iron is associated with hepatic steatosis in obesity. The iron level was significantly higher in patients with severe NAFLD than with mild or moderate NAFLD. LSG may reduce iron levels while improving fat deposition in the liver.
Collapse
Affiliation(s)
- Bingwei Ma
- Department of Endocrinology and Metabolism, Tongji University School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
- Department of Gastrointestinal Surgery, Tongji University School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Hang Sun
- Department of Endocrinology and Metabolism, Tongji University School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Bing Zhu
- Department of Endocrinology and Metabolism, Tongji University School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Shilin Wang
- Department of Liver and Gallbladder Surgery, Tongji University School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Du
- Department of Endocrinology and Metabolism, Tongji University School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xingchun Wang
- Department of Endocrinology and Metabolism, Tongji University School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
- Thyroid Research Center of Shanghai, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Tongji University School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China,
- Thyroid Research Center of Shanghai, Shanghai, China,
| |
Collapse
|
19
|
Enhanced insulin signaling and its downstream effects in iron-overloaded primary hepatocytes from hepcidin knock-out mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118621. [DOI: 10.1016/j.bbamcr.2019.118621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
|
20
|
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic Properties of Curcumin I: Evidence from In Vitro Studies. Nutrients 2020; 12:nu12010118. [PMID: 31906278 PMCID: PMC7019345 DOI: 10.3390/nu12010118] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a growing metabolic disease characterized by insulin resistance and hyperglycemia. Current preventative and treatment strategies for T2DM and insulin resistance lack in efficacy resulting in the need for new approaches to prevent and manage/treat the disease better. In recent years, epidemiological studies have suggested that diets rich in fruits and vegetables have beneficial health effects including protection against insulin resistance and T2DM. Curcumin, a polyphenol found in turmeric, and curcuminoids have been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, immunomodulatory and antidiabetic properties. The current review (I of II) summarizes the existing in vitro studies examining the antidiabetic effects of curcumin, while a second (II of II) review summarizes evidence from existing in vivo animal studies and clinical trials focusing on curcumin’s antidiabetic properties.
Collapse
Affiliation(s)
- Danja J. Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alessandra Gabriel
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Correspondence: or ; Tel.: +1-905-688-5550 (ext. 3881)
| |
Collapse
|
21
|
Martin-Rodriguez J, Gonzalez-Cantero J, Gonzalez-Cantero A, Martí-Bonmatí L, Alberich-Bayarri Á, Gonzalez-Cejudo T, Gonzalez-Calvin J. Insulin resistance and NAFLD: Relationship with intrahepatic iron and serum TNF-α using 1H MR spectroscopy and MRI. DIABETES & METABOLISM 2019; 45:473-479. [PMID: 30660761 DOI: 10.1016/j.diabet.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
|
22
|
Guest NS, Horne J, Vanderhout SM, El-Sohemy A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front Nutr 2019; 6:8. [PMID: 30838211 PMCID: PMC6389634 DOI: 10.3389/fnut.2019.00008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
An individual's dietary and supplement strategies can influence markedly their physical performance. Personalized nutrition in athletic populations aims to optimize health, body composition, and exercise performance by targeting dietary recommendations to an individual's genetic profile. Sport dietitians and nutritionists have long been adept at placing additional scrutiny on the one-size-fits-all general population dietary guidelines to accommodate various sporting populations. However, generic "one-size-fits-all" recommendations still remain. Genetic differences are known to impact absorption, metabolism, uptake, utilization and excretion of nutrients and food bioactives, which ultimately affects a number of metabolic pathways. Nutrigenomics and nutrigenetics are experimental approaches that use genomic information and genetic testing technologies to examine the role of individual genetic differences in modifying an athlete's response to nutrients and other food components. Although there have been few randomized, controlled trials examining the effects of genetic variation on performance in response to an ergogenic aid, there is a growing foundation of research linking gene-diet interactions on biomarkers of nutritional status, which impact exercise and sport performance. This foundation forms the basis from which the field of sport nutrigenomics continues to develop. We review the science of genetic modifiers of various dietary factors that impact an athlete's nutritional status, body composition and, ultimately athletic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Justine Horne
- Department of Health and Rehabilitation Sciences, University of Western Ontario, London, ON, Canada
| | - Shelley M Vanderhout
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| |
Collapse
|
23
|
Curcumin and (-)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells Against Iron Toxicity and Erastin-Induced Ferroptosis. Pharmaceuticals (Basel) 2019; 12:ph12010026. [PMID: 30736288 PMCID: PMC6469157 DOI: 10.3390/ph12010026] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/31/2023] Open
Abstract
Ferroptosis is a form of programmed cell death that is characterized by lipid peroxidation and is inducible by iron and the accumulation of reactive oxygen species (ROS). It is triggered by erastin but inhibited by antioxidants such as α-tocopherol, β-carotene, polyphenols, and iron chelators such as deferoxamine (DFO), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA). This study investigated the protective effects of two polyphenols, curcumin and (−)- epigallocatechin-3-gallate (EGCG), against iron loading and erastin-mediated ferroptosis in MIN6 cells. Cells were treated with polyphenols before exposure to iron-induced oxidative stress comprising of 20 μmol/L of 8-hydroxyquinoline (8HQ) and 50 μmol/L of ferric ammonium citrate, (FAC) (8HQ+FAC) or Fenton reaction substrate (FS) (30 μmol/L of FeSO4 and 0.5 of mmol/L H2O2) and 20 μmol/L erastin. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, iron levels were measured by inductively-coupled plasma mass spectrometry (ICP-MS), glutathione and lipid peroxidation were assayed with commercially-available kits. Curcumin and EGCG both significantly protected pancreatic cells against iron-induced oxidative damage. Moreover, both compounds also protected against erastin-induced ferroptosis in pancreatic cells. The polyphenols enhanced cell viability in erastin-treated MIN6 cells in a dose- and time-dependent manner. Furthermore, MIN6 cells exposed to erastin alone showed elevated levels of iron, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) degradation and lipid peroxidation (p < 0.05) compared to cells that were protected by pre-treatment with curcumin or EGCG. Taken together, the data identify curcumin and EGCG as novel ferroptosis inhibitors, which might exert their protective effects by acting as iron chelators and preventing GSH depletion, GPX4 inactivation, and lipid peroxidation in MIN6 cells. The implications of the findings on the effects of iron overload and ferroptosis represent a potential therapeutic strategy against iron-related diseases.
Collapse
|
24
|
Serum ferritin levels are associated with insulin resistance in Chinese men and post-menopausal women: the Shanghai Changfeng study. Br J Nutr 2018; 120:863-871. [PMID: 30189905 DOI: 10.1017/s0007114518002167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associations between ferritin and insulin sensitivity have been described in recent studies. The possible association showed conflicting results by sex and menopausal status. We aimed to investigate the cross-sectional association of ferritin levels with insulin resistance and β-cell function. A total of 2518 participants (1033 men, 235 pre-menopausal women and 1250 post-menopausal women) were enrolled from the Changfeng Study. A standard interview was conducted, as well as anthropometric measurements and laboratory analyses, for each participant. The serum ferritin level was measured using electrochemiluminescence immunoassay. Insulin resistance and β-cell function indices were derived from a homeostasis model assessment. The results showed that the serum ferritin levels were 250·4 (sd 165·2), 94·6 (sd 82·0) and 179·8 (sd 126·6) ng/ml in the men, pre-menopausal and post-menopausal women, respectively. In fully adjusted models (adjusting for age, current smoking, BMI, waist:hip ratio, systolic blood pressure, diastolic blood pressure, TAG, HDL-cholesterol, LDL-cholesterol, log urine albumin:creatinine ratio, leucocytes, alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transpeptidase), serum ferritin concentrations are significantly associated with insulin resistance in men and post-menopausal females, and the null association was observed in pre-menopausal females. Interestingly, an increased β-cell function associated with higher ferritin was observed in post-menopausal participants, but not in male participants. In conclusion, these results suggested that elevated serum ferritin levels were associated with surrogate measures of insulin resistance among the middle-aged and elderly male and post-menopausal women, but not in pre-menopausal women.
Collapse
|
25
|
Correlation between PAI-1, leptin and ferritin with HOMA in HIV/AIDS patients. Exp Mol Pathol 2018; 105:115-119. [PMID: 29940157 DOI: 10.1016/j.yexmp.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/09/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Data about correlation of interleukins (IL-1 α, IL-1 β, IFN γ, IL-2, IL-4, IL-6, IL-8, IL-10), adipocytokines (leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), resistin, plasminogen activator inhibitor-1 (PAI-1), tumor necrosis factor alpha (TNFα), ferritin, C reactive protein (CRP) and vascular endothelial growth factor (VEGF) with homeostasis model assessment (HOMA) in HIV/AIDS patients are still limited. Therefore the aim of this study was to evaluate the possible correlations of serum levels of PAI-1, leptin and ferritin with HOMA in HIV/AIDS patients treated with combined antiretroviral therapy (cART). METHODS This cross-sectional study included 64 HIV/AIDS patients, all Caucasians, receiving cART at the HIV/AIDS Centre, Belgrade, Serbia. PAI-1, leptin, ferritin and insulin levels were measured using the Metabolic Syndrome Array I (Randox Laboratories Ltd., London, UK), while adiponectin and resistin levels were measured using Metabolic Syndrome Array II (Randox Laboratories Ltd., London, UK), interleukins (IL-1 α, IL-1 β, IFN γ, IL-2, IL-4, IL-6, IL-8, IL-10), MCP-1, TNF-α as well as VEGF was measured using Cytokine Array I (Randox Laboratories Ltd., London, UK). Insulin resistance was determined using the homeostasis model assessment index (HOMA). Multicollinearity of independent variables in multivariate model was analyzed using Variance Inflation Factor. RESULTS Correlation analysis revealed significant correlations between HOMA and waist circumference, body mass index, patients' age, number of cART combinations and triglycerides (p = 0.001, p = 0.001, p = 0.050, p = 0.044, p = 0.002, respectively). HOMA negatively correlated with levels of high density lipoprotein (HDL) (Rho = -0.282; p = 0.025). PAI-1 (Rho = 0.334; p= 0.007) and leptin (Rho = 0.492; p = 0.001) together with ferritin (Rho = 0.396, p = 0.001) positively and significantly correlated with HOMA. Levels of IL-1 α, IL-1 β, IFN γ, IL-2, IL-4, IL-6, IL-8, IL-10, adiponectin, MCP-1, resistin, TNF-α, CRP and VEGF did not significantly correlate with HOMA. Further, multiple logistic regression showed that there is a statistically significant correlation between PAI, leptin and ferritin with HOMA levels (p = 0.042; p < 0.001, p = 0.009). CONCLUSIONS We showed significant correlation between PAI-1, leptin and ferritin, independently of each other with HOMA, in HIV/AIDS patients on cART.
Collapse
|
26
|
Varghese J, James J, Vaulont S, Mckie A, Jacob M. Increased intracellular iron in mouse primary hepatocytes in vitro causes activation of the Akt pathway but decreases its response to insulin. Biochim Biophys Acta Gen Subj 2018; 1862:1870-1882. [PMID: 29859963 DOI: 10.1016/j.bbagen.2018.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND An iron-overloaded state has been reported to be associated with insulin resistance. On the other hand, conditions such as classical hemochromatosis (where iron overload occurs primarily in the liver) have been reported to be associated with increased insulin sensitivity. The reasons for these contradictory findings are unclear. In this context, the effects of increased intracellular iron per se on insulin signaling in hepatocytes are not known. METHODS Mouse primary hepatocytes were loaded with iron in vitro by incubation with ferric ammonium citrate (FAC). Intracellular events related to insulin signaling, as well as changes in gene expression and hepatocyte glucose production (HGP), were studied in the presence and absence of insulin and/or forskolin (a glucagon mimetic). RESULTS In vitro iron-loading of hepatocytes resulted in phosphorylation-mediated activation of Akt and AMP-activated protein kinase. This was associated with decreased basal and forskolin-stimulated HGP. Iron attenuated forskolin-mediated induction of the key gluconeogenic enzyme, glucose-6-phosphatase. It also attenuated activation of the Akt pathway in response to insulin, which was associated with decreased protein levels of insulin receptor substrates 1 and 2, constituting insulin resistance. CONCLUSIONS Increased intracellular iron has dual effects on insulin sensitivity in hepatocytes. It increased basal activation of the Akt pathway, but decreased activation of this pathway in response to insulin. GENERAL SIGNIFICANCE These findings may help explain why both insulin resistance and increased sensitivity have been observed in iron-overloaded states. They are of relevance to a variety of disease conditions characterized by hepatic iron overload and increased risk of diabetes.
Collapse
Affiliation(s)
- Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore 632002, India(1).
| | - Jithu James
- Department of Biochemistry, Christian Medical College, Vellore 632002, India(1)
| | | | - Andrew Mckie
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College, London, UK
| | - Molly Jacob
- Department of Biochemistry, Christian Medical College, Vellore 632002, India(1)
| |
Collapse
|
27
|
Green tea activity and iron overload induced molecular fibrogenesis of rat liver. Saudi J Biol Sci 2017; 26:531-540. [PMID: 30899168 PMCID: PMC6408694 DOI: 10.1016/j.sjbs.2017.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/24/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Iron overload toxicity was shown to associate with chronic liver diseases which lead to hepatic fibrosis and subsequently the progression to cancer through oxidative stress and apoptotic pathways. Green tea potential activity as chelating, anti-oxidative, or anti-apoptotic mechanisms against metal toxicity was poorly clarified. Here, we are trying to evaluate the anti-oxidant and anti-apoptotic properties of green tea in the regulation of serum hepcidin levels, reduction in iron overloads, and improve of liver fibrosis in iron overloaded experimental rats. Three groups of male adult rats were randomly classified into three groups and treated as follows: control rats, iron treated rats for two months in drinking water followed by either vehicle or green tea extract (AGTE; 100 mg/kg) treatment for 2 more months. Thereafter, we studied the effects of AGTE on iron overload-induced lipid peroxidation, anti-oxidant depletion, liver cell injury and apoptosis. Treatment of iron-overloaded rats with AGTE resulted in marked decreases in iron accumulation within liver, depletion in serum ferritin, and hepcidin levels. Iron-overloaded rats had significant increase in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver when compared to control group. Also, significant change in cytochrome c and DNA content as apoptotic markers were reported in iron treated rats. The effects of iron overload on lipid peroxidation, NO levels, cytochrome c and DNA content were significantly reduced by the intervention treatment with AGTE (P < 0.001). Furthermore, the endogenous anti-oxidant capacities/levels (TAC) in liver were also significantly decreased in chronic iron overload and administration of AGTE restored the decrease in the hepatic antioxidant activities/levels. Also, hepatic hepcidin was shown to be significantly correlated with oxidative and apoptotic relating biomarkers as well as an improvement in liver fibrosis of iron treated rats following AGTE treatment. In-vitro analysis showed that, the improvement in iron toxicity of the liver depend mainly on antioxidant and protective ability of green tea polyphenolic compounds especiallyepigallocatechin-3-gallate (EGCG). Our study showed that green tea extract (GTE) ameliorates iron overload induced hepatotoxicity, apoptosis and oxidative stress in rat liver via inhibition of hepatic iron accumulation; improve of liver antioxidant capacity, and down regulation of serum hepcidin as well as reduction in the release of apoptotic relating proteins.
Collapse
|
28
|
Su Y, Yang Y, Huang Y. Loss of ppr3, ppr4, ppr6, or ppr10 perturbs iron homeostasis and leads to apoptotic cell death in Schizosaccharomyces pombe. FEBS J 2017; 284:324-337. [PMID: 27886462 DOI: 10.1111/febs.13978] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins characterized by tandem arrays of a degenerate 35-amino-acid repeat belong to a large family of RNA-binding proteins that are involved in post-transcriptional control of organelle gene expression. PPR proteins are ubiquitous in eukaryotes, and particularly prevalent in higher plants. Schizosaccharomyces pombe has 10 PPR proteins. Among them, ppr3, ppr4, ppr6, and ppr10 participate in mitochondrial post-transcriptional processes and are required for mitochondrial electron transport chain (ETC) function. In the present work, we showed that deletion of ppr3, ppr4, ppr6, or ppr10 led to apoptotic cell death, as revealed by DAPI and Annexin V-FITC staining. These mutants also exhibited elevated levels of reactive oxygen species (ROS). RNA sequencing (RNA-seq) and quantitative RT-PCR analyses revealed that deletion of ppr10 affected critical biological processes. In particular, a core set of genes involved in iron uptake and/or iron homeostasis was elevated in the Δppr10 mutant, suggesting an elevated level of intracellular iron in the mutant. Consistent with this notion, Δppr3, Δppr4, Δppr6, and Δppr10 mutants exhibited increased sensitivity to iron. Furthermore, the iron chelator, bathophenanthroline disulfonic acid, but not the calcium chelator EGTA, nearly restored the viabilities of Δppr3, Δppr4, Δppr6, and Δppr10 mutants, and reduced ROS levels in the mutants. These results show for the first time that deletion of a ppr gene leads to perturbation of iron homeostasis. Our results also suggest that disrupted iron homeostasis in Δppr3, Δppr4, Δppr6, and Δppr10 mutants may lead to an increase in the level of ROS and induction of apoptotic cell death in S. pombe. DATABASE The RNA-seq data have been deposited in the National Center for Biotechnology Information (NCBI) BioProject database (accession number SRP091623) and Gene Expression Omnibus (GEO) database (accession number GSE90144).
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| | - Yanmei Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
29
|
Hagström H, Nasr P, Bottai M, Ekstedt M, Kechagias S, Hultcrantz R, Stål P. Elevated serum ferritin is associated with increased mortality in non-alcoholic fatty liver disease after 16 years of follow-up. Liver Int 2016; 36:1688-1695. [PMID: 27064133 DOI: 10.1111/liv.13144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS High levels of ferritin in patients with non-alcoholic fatty liver disease (NAFLD) are associated with significant fibrosis and higher NAFLD activity score (NAS). It is unclear if this association has an impact on mortality. We investigated if high levels of ferritin, with or without iron overload, were associated with an increased mortality in NAFLD. METHODS We included 222 patients between 1979 and 2009 with biopsy-proven NAFLD and available serum ferritin concentrations. The cohort was divided into 'high' (n = 89) and 'normal' (n = 133) ferritin values, using a cut-point of 350 μg/L in males, and 150 μg/L in females, and stratified upon iron overload status. Data on mortality were obtained from a national, population-based register. Poisson regression was used to estimate hazard ratios for mortality. The estimates were adjusted for age at biopsy, sex, smoking, BMI, diabetes, hypertension, cardiovascular disease and fibrosis stage at the time of biopsy. RESULTS The median follow-up time was 15.6 years (range: 0.5-34.2). Patients with high ferritin had more advanced fibrosis and higher NAS than patients with normal ferritin (P < 0.05). Fifteen years after diagnosis, and after adjusting for confounders, the high-ferritin group showed an increasingly higher mortality that was statistically significant (Hazard ratio = 1.10 per year, 95% Confidence interval 1.01-1.21, P < 0.05). There was no difference in mortality between patients with different iron overload patterns. CONCLUSIONS High levels of ferritin are associated with a long-term increased risk of death.
Collapse
Affiliation(s)
- Hannes Hagström
- Center for Digestive Diseases, Unit of Hepatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Patrik Nasr
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Ekstedt
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Rolf Hultcrantz
- Center for Digestive Diseases, Unit of Hepatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Per Stål
- Center for Digestive Diseases, Unit of Hepatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Britton LJ, Subramaniam VN, Crawford DHG. Iron and non-alcoholic fatty liver disease. World J Gastroenterol 2016; 22:8112-8122. [PMID: 27688653 PMCID: PMC5037080 DOI: 10.3748/wjg.v22.i36.8112] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that promote liver injury in non-alcoholic fatty liver disease (NAFLD) are yet to be thoroughly elucidated. As such, effective treatment strategies are lacking and novel therapeutic targets are required. Iron has been widely implicated in the pathogenesis of NAFLD and represents a potential target for treatment. Relationships between serum ferritin concentration and NAFLD are noted in a majority of studies, although serum ferritin is an imprecise measure of iron loading. Numerous mechanisms for a pathogenic role of hepatic iron in NAFLD have been demonstrated in animal and cell culture models. However, the human data linking hepatic iron to liver injury in NAFLD is less clear, with seemingly conflicting evidence, supporting either an effect of iron in hepatocytes or within reticulo-endothelial cells. Adipose tissue has emerged as a key site at which iron may have a pathogenic role in NAFLD. Evidence for this comes indirectly from studies that have evaluated the role of adipose tissue iron with respect to insulin resistance. Adding further complexity, multiple strands of evidence support an effect of NAFLD itself on iron metabolism. In this review, we summarise the human and basic science data that has evaluated the role of iron in NAFLD pathogenesis.
Collapse
|
31
|
Kim MK, Chon SJ, Jung YS, Kim BO, Noe EB, Yun BH, Cho S, Choi YS, Lee BS, Seo SK. The Relationship between Serum Ferritin Levels and Insulin Resistance in Pre- and Postmenopausal Korean Women: KNHANES 2007-2010. PLoS One 2016; 11:e0157934. [PMID: 27337113 PMCID: PMC4919039 DOI: 10.1371/journal.pone.0157934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/07/2016] [Indexed: 01/25/2023] Open
Abstract
Background Serum ferritin levels increase in postmenopausal women, and they are reported to be linked to major health problems. Here, we investigated the association between serum ferritin levels and insulin resistance (IR) in postmenopausal women. Methods A total of 6632 healthy Korean women (4357 premenopausal and 2275 postmenopausal) who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) in 2007–2010 were enrolled in the study. Serum ferritin values were divided into six groups for the premenopausal and postmenopausal groups. IR and obesity indices were evaluated according to the six serum ferritin groups. Statistical analysis was carried out using SAS software, version 9.2 (SAS Institute Inc., Cary, NC, USA). Results The association between the IR indices and ferritin groups had a higher level of statistical significance in the postmenopausal group than in the premenopausal group. In addition, for the postmenopausal group, the estimates increased significantly in the sixth ferritin group compared to those in the first ferritin group. However, the association between the obesity indices and ferritin levels was not significantly different between the premenopausal and postmenopausal groups. Conclusion Elevated serum ferritin levels were associated with an increased risk of insulin resistance in postmenopausal women.
Collapse
Affiliation(s)
- Min Kyoung Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gil Hospital, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yeon Soo Jung
- Department of Obstetrics and Gynecology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Bo Ok Kim
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Bee Noe
- Seoul Rachel Fertility Center, Seoul, Republic of Korea
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - SiHyun Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Lee HJ, Choi JS, Lee HJ, Kim WH, Park SI, Song J. Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction. J Nutr Biochem 2015; 26:1414-23. [DOI: 10.1016/j.jnutbio.2015.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023]
|
33
|
Liu BW, Xuan XM, Liu JR, Li FN, Yin FZ. The Relationship between Serum Ferritin and Insulin Resistance in Different Glucose Metabolism in Nonobese Han Adults. Int J Endocrinol 2015; 2015:642194. [PMID: 26357514 PMCID: PMC4556820 DOI: 10.1155/2015/642194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/08/2015] [Accepted: 08/09/2015] [Indexed: 12/17/2022] Open
Abstract
The exact mechanism through which elevated serum ferritin promotes the development of type 2 diabetes is unknown. This study showed that ferritin concentration in impaired glucose regulation and newly diagnosed diabetes mellitus subjects of nonobesity already significantly increased when compared with normal glucose tolerant subjects of nonobesity. Elevated serum ferritin levels are associated with insulin resistance and may be not associated with the decline of insulin beta cells in different status of glucose tolerance in nonobese Han adults.
Collapse
Affiliation(s)
- Bo-wei Liu
- Department of Endocrinology, The First Hospital of Qinhuangdao, No. 258 Wenhua Road, Qinhuangdao, Hebei 066000, China
| | - Xu-min Xuan
- Department of Endocrinology, The First Hospital of Qinhuangdao, No. 258 Wenhua Road, Qinhuangdao, Hebei 066000, China
| | - Jun-ru Liu
- Department of Endocrinology, The First Hospital of Qinhuangdao, No. 258 Wenhua Road, Qinhuangdao, Hebei 066000, China
| | - Fang-ning Li
- Department of Endocrinology, The First Hospital of Qinhuangdao, No. 258 Wenhua Road, Qinhuangdao, Hebei 066000, China
| | - Fu-Zai Yin
- Department of Endocrinology, The First Hospital of Qinhuangdao, No. 258 Wenhua Road, Qinhuangdao, Hebei 066000, China
- *Fu-Zai Yin:
| |
Collapse
|
34
|
Zhan Y, Tang Z, Yu J. Serum ferritin, diabetes, diabetes control, and insulin resistance. Acta Diabetol 2014; 51:991-8. [PMID: 25338070 DOI: 10.1007/s00592-014-0656-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022]
Abstract
AIMS The present study aims to investigate the association between serum ferritin and diabetes, diabetes control, and insulin resistance (IR) and examine whether gender is a modifier for these associations in a community-based sample. METHODS A cross-sectional survey of 8,235 participants was conducted in 2009. Serum ferritin, glucose, hemoglobin A1c (HbA1c), insulin, inflammatory markers, and lipid markers were measured. IR was estimated with a Homeostasis Model Assessment (HOMA-IR) equation. Multiple logistic and linear regression models were applied to evaluate these associations. RESULTS The numbers of diabetic patients and non-diabetic participants in the present study were 644 (7.8 %) and 7,591 (92.2 %). After adjusting for multiple confounders, the odds ratios (ORs) and 95 % confidence intervals (CIs) for diabetes were 1.48 (1.31-1.69) in men and 1.43 (1.24-1.65) in women for one-unit increase in log-transformed serum ferritin levels. Likewise, ORs (95 % CIs) for poor diabetes control (HbA1c ≥7.5 %) were 1.58 (1.21-2.05) and 1.37 (1.07-1.77) in men and women, respectively. As for HOMA-IR, the respective betas (P value) for one-unit increase in log-transformed serum ferritin were 0.07 (P < 0.0001) and 0.06 (P < 0.0001) in men and women. CONCLUSIONS In conclusion, elevated serum ferritin levels were associated with higher risks of diabetes, higher levels of HbA1c, and HOMA-IR independent of several confounders.
Collapse
Affiliation(s)
- Yiqiang Zhan
- Institute of Clinical Epidemiology, School of Public Health, Fudan University, 130 Dong'An Road, Shanghai, People's Republic of China,
| | | | | |
Collapse
|
35
|
Joseph D, Kimar C, Symington B, Milne R, Essop MF. The detrimental effects of acute hyperglycemia on myocardial glucose uptake. Life Sci 2014; 105:31-42. [PMID: 24747137 DOI: 10.1016/j.lfs.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/20/2014] [Accepted: 04/07/2014] [Indexed: 01/14/2023]
Abstract
AIMS Although acute hyperglycemic (AHG) episodes are linked to lower glucose uptake, underlying mechanisms remain unclear. We hypothesized that AHG triggers reactive oxygen species (ROS) production and increases non-oxidative glucose pathway (NOGP) activation, i.e. stimulation of advanced glycation end products (AGE), polyol pathway (PP), hexosamine biosynthetic pathway (HBP), PKC; thereby decreasing cardiac glucose uptake. MAIN METHODS H9c2 cardiomyoblasts were exposed to 25 mM glucose for 24h vs. 5.5mM controls ± modulating agents during the last hour of glucose exposure: a) antioxidant #1 for mitochondrial ROS (250 μM 4-OHCA), b) antioxidant #2 for NADPH oxidase-generated ROS (100 μM DPI), c) NOGP inhibitors - 100 μM aminoguanidine (AGE), 5 μM chelerythrine (PKC); 40 μM DON (HBP); and 10 μM zopolrestat (PP). ROS levels (mitochondrial, intracellular) and glucose uptake were evaluated by flow cytometry. KEY FINDINGS AHG elevated ROS, activated NOGPs and blunted glucose uptake. Transketolase activity (pentose phosphate pathway [PPP] marker) did not change. Respective 4-OHCA and DPI treatment blunted ROS production, diminished NOGP activation and normalized glucose uptake. NOGP inhibitory studies identified PKCβII as a key downstream player in lowering insulin-mediated glucose uptake. When we employed an agent (benfotiamine) known to shunt flux away from NOGPs (into PPP), it decreased ROS generation and NOGP activation, and restored glucose uptake under AHG conditions. SIGNIFICANCE This study demonstrates that AHG elicits maladaptive events that function in tandem to reduce glucose uptake, and that antioxidant treatment and/or attenuation of NOGP activation (PKC, polyol pathway) may limit the onset of insulin resistance.
Collapse
Affiliation(s)
- Danzil Joseph
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Charlene Kimar
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Burger Symington
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Robyn Milne
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
36
|
Variability of the transferrin receptor 2 gene in AMD. DISEASE MARKERS 2014; 2014:507356. [PMID: 24648608 PMCID: PMC3933306 DOI: 10.1155/2014/507356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023]
Abstract
Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674) and c.-258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMI < 26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group. The c.1892C>T and c.-258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors.
Collapse
|
37
|
Pan MH, Lai CS, Tsai ML, Ho CT. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Mol Nutr Food Res 2013; 58:147-71. [PMID: 24302567 DOI: 10.1002/mnfr.201300522] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a wide spectrum of liver disease that is not from excess alcohol consumption, but is often associated with obesity, type 2 diabetes, and metabolic syndrome. NAFLD pathogenesis is complicated and involves oxidative stress, lipotoxicity, mitochondrial damage, insulin resistance, inflammation, and excessive dietary fat intake, which increase hepatic lipid influx and de novo lipogenesis and impair insulin signaling, thus promoting hepatic triglyceride accumulation and ultimately NAFLD. Overproduction of proinflammatory adipokines from adipose tissue also affects hepatic metabolic function. Current NAFLD therapies are limited; thus, much attention has been focused on identification of potential dietary substances from fruits, vegetables, and edible plants to provide a new strategy for NAFLD treatment. Dietary natural compounds, such as carotenoids, omega-3-PUFAs, flavonoids, isothiocyanates, terpenoids, curcumin, and resveratrol, act through a variety of mechanisms to prevent and improve NAFLD. Here, we summarize and briefly discuss the currently known targets and signaling pathways as well as the role of dietary natural compounds that interfere with NAFLD pathogenesis.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
38
|
Ryan MC, Desmond P, Wilson A. Reply to: "might some of the beneficial effects of the Mediterranean diet on non-alcoholic fatty liver disease be mediated by reduced iron stores?". J Hepatol 2013; 59:640. [PMID: 23707363 DOI: 10.1016/j.jhep.2013.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 01/22/2023]
|