1
|
Voss U. Enteric neuroprotection-A matter of balancing redox potentials, limiting inflammation, and boosting resilience. Neurogastroenterol Motil 2024:e14871. [PMID: 39038122 DOI: 10.1111/nmo.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) orchestrates intricate and autonomous functions throughout the gastrointestinal (GI) tract. Disruptions in ENS function are associated GI disorders. This mini review focuses on the past decade's research, utilizing rodent models, with an emphasis on protecting enteric neurons from loss. The review specifically looks at efforts to reduce oxidative stress, limit inflammation, and enhance neuronal resilience. Protective interventions including administration of antioxidants and compounds targeting cellular redox buffer systems, are evaluated for their effectiveness in preventing loss of enteric neurons in the ischemia-reperfusion model and streptozotocin-induced diabetes model. Interventions such as engrafting mesenchymal stem cells and targeting inflammatory signaling pathways in enteric neurons and glial cells are evaluated in inflammatory bowel disease models including the Winnie mouse, DSS-, and DNBS/TNBS-induced colitis models. The review also touches upon neuronal resilience, particularly in the context of Parkinson's disease models. Including estrogen's neuroprotective role, and the influence of metal ions on enteric neuronal protection. Understanding the dynamic interplay within the ENS and its role in disease pathogenesis holds promise for developing targeted therapies to effectively manage and treat various GI ailments.
Collapse
Affiliation(s)
- Ulrikke Voss
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Sestak SS, da Motta Lima FG, de Oliveira AP, Barateiro LGRP, Vieira-Frez FC, de Souza SRG, Guarnier FA, Perles JVCM, Zanoni JN. Effects of cancer-induced cachexia and administration of L-glutathione on the intestinal mucosa in rat. Amino Acids 2024; 56:30. [PMID: 38607556 PMCID: PMC11009745 DOI: 10.1007/s00726-024-03391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Walker-256 tumor is an experimental model known to promote cachexia syndrome, oxidative stress, and systemic inflammation. This study evaluated the duodenal mucosa of rats with Walker-256 tumor administered with 1% L-glutathione, intending to evaluate the damage caused by cancer-associated cachexia in the gastrointestinal tract and the effects of antioxidant administration on mucosal protection. Twenty-four 55-day-old male Wistar rats were distributed into four groups: control (C); control administered with 1% L-glutathione (C-GSH); Walker-256 tumor (W) and Walker-256 tumor administered with 1% L-glutathione (W-GSH). After 14 days of treatment, the duodenum was harvested for morphometric analysis of the mucosa, proliferation, apoptosis, immunostaining of varicosities immunoreactive (IR) to vasoactive intestinal peptide (VIP) and 5-HT-IR cells, and quantification of mast cells and goblet cells. Walker-256 tumor-bearing rats showed cachexia syndrome, mucosal atrophy, reduced cell proliferation, reduced 5-HT-IR cells, and increased goblet cells and VIPergic varicosities, which were not reversed by L-glutathione. On the other hand, L-glutathione caused a reduction of cells in apoptosis and mast cell recruitment, demonstrating a partial recovery of the damage detected in the intestinal mucosa.
Collapse
Affiliation(s)
- Sabrina Silva Sestak
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | - Fabiana Galvão da Motta Lima
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | - Ana Paula de Oliveira
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | | | | | | | | | | | - Jacqueline Nelisis Zanoni
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil.
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
3
|
Lima FGDM, Silva MPAD, Sestak SS, Guarnier FA, de Oliveira AP, Kuller JV, Gulbransen BD, Perles JVCM, Zanoni JN. Cancer-induced morphological changes in enteric glial cells in the jejunum of Walker-256 tumor-bearing rats. Acta Histochem 2024; 126:152146. [PMID: 38422841 PMCID: PMC11039380 DOI: 10.1016/j.acthis.2024.152146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Cancer-induced cachexia is associated with systemic inflammation and gastrointestinal dysfunction. How changes to cells of the enteric nervous system contribute to gut dysfunction in tumor development and cancer cachexia is unknown. Here, we tested the hypothesis that changes to enteric glia, a type of peripheral glia that surround enteric neurons and regulate gut homeostasis, are associated with tumor development and that supplementing with the antioxidant L-glutathione is protective against the changes induced. Immunohistochemistry for neurons, enteric glial cells and immune cells was performed in whole-mount preparations and frozen histological sections of the jejunum from 20 Wistar rats, distributed in 4 groups: control, tumor of Walker-256, control administered with 1 % L-glutathione, and tumor of Walker-256 administered with 1 % L-glutathione. Morphoquantitative analyses were made using Image-Pro® Plus 4.5 and ImageJ® 1.43° software. Tumor development significantly reduced neuronal and glial cell populations in the myenteric and submucosal plexuses and enlarged glial cell body area in the submucosal plexus. In contrast, tumors increased glia in the jejunal mucosa and this effect was accompanied by B-lymphocyte recruitment. GSH-supplemented diet was not sufficient to protect against changes to neurons and glia in the submucosal plexus but was partially protective in the myenteric plexus. L-glutathione had no effect on physiological parameters of cachexia but was sufficient to preserve enteric glial cell density in the myenteric plexus. These results suggest that changes to both enteric neurons and glia likely contribute to the gastrointestinal effects of tumor development and that oxidative stress contributes to these effects in the enteric nervous system.
Collapse
Affiliation(s)
| | | | - Sabrina Silva Sestak
- Laboratory of Enteric Neural Plasticity, State University of Maringá, Maringá, PR, Brazil
| | | | | | - João Victor Kuller
- Laboratory of Enteric Neural Plasticity, State University of Maringá, Maringá, PR, Brazil
| | | | | | | |
Collapse
|
4
|
de Oliveira AP, Perles JVCM, de Souza SRG, Sestak SS, da Motta Lima FG, Almeida GHDR, Cicero LR, Clebis NK, Guarnier FA, Blegniski FP, Vasconcelos RC, Araújo AA, Comar JF, Moreira LS, Sehaber-Sierakowski CC, Zanoni KPS, Zanoni JN. L-glutathione 1% promotes neuroprotection of nitrergic neurons and reduces the oxidative stress in the jejunum of rats with Walker-256-bearing tumor. Neurogastroenterol Motil 2023; 35:e14688. [PMID: 37831748 DOI: 10.1111/nmo.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
AIMS Our main goals were to investigate the effects of L-glutathione (1%) treatment in Walker-256 tumor-bearing rats by analyzing immunoreactive neurons (IR), responsive to the nNOS enzyme and 3-Nitrotyrosine, in their jejunum myenteric plexus. Moreover, the oxidative state and inflammatory process in these animals were investigated. METHODS Four experimental groups were utilized: control (C), control treated with L-glutathione (CGT), Walker-256 tumor-bearing rats (TW), and Walker-256 tumor-bearing rats treated with L-glutathione (TWGT). After 14 days of tumor inoculation, the jejunum was collected for immunohistochemical techniques and assessment of oxidative status. Plasma was collected to evaluate oxidative status and measure cytokines. RESULTS The TW group exhibited a decrease of reduced glutathione in their jejunum, which was prevented in the L-glutathione treated TWGT group. TW animals presented pronounced oxidative stress by increasing levels of lipoperoxidation in their jejunum and malondialdehyde in their plasma; however, the L-glutathione treatment in TWGT group was not able to avoid it. The total antioxidant capacity was altered in groups TW and TWGT, yet the last one had a better index in their plasma. The IL-10, and TNF-α levels increased in TWGT animals. The nNOS-IR neuron density decreased in the jejunum myenteric plexus of the TW group, which was avoided in the TWGT group. The nNOS +3-Nitrotyrosine neurons quantification did not show significative alterations. CONCLUSION The treatment with L-glutathione (1%) imposed an important defense to some parameters of oxidative stress induced by TW-256, leading to neuroprotection to the loss in the nNOS-IR neuron density.
Collapse
Affiliation(s)
- Ana Paula de Oliveira
- Department of Physiology Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Sabrina Silva Sestak
- Department of Physiology Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Lídia Rodrigues Cicero
- Department of Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Naianne Kelly Clebis
- Department of Morphology, Center of Biosciences Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Roseane Carvalho Vasconcelos
- Department of Dentistry, Program of Oral pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Aurigena Antunes Araújo
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | | | | | - Jacqueline Nelisis Zanoni
- Department of Physiology Sciences, State University of Maringá, Maringá, Paraná, Brazil
- Department of Morphology Sciences, State University of Maringá, Maringá, Paraná, Brazil
- Department of Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
5
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
6
|
|
7
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
8
|
Guimaraes de Souza Melo C, Nelisis Zanoni J, Raquel Garcia de Souza S, Zignani I, de Lima Leite A, Domingues Heubel A, Vanessa Colombo Martins Perles J, Afonso Rabelo Buzalaf M. Global Proteomic Profile Integrated to Quantitative and Morphometric Assessment of Enteric Neurons: Investigation of the Mechanisms Involved in the Toxicity Induced by Acute Fluoride Exposure in the Duodenum. Neurotox Res 2021; 39:800-814. [PMID: 33689147 DOI: 10.1007/s12640-020-00296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 10/21/2022]
Abstract
The enteric nervous system is responsible for controlling the gastrointestinal tract (GIT) functions. Enteric neuropathies are highly correlated to the development of several intestinal disturbances. Fluoride (F) is extensively applied for dental health improvement and its ingestion can promote systemic toxicity with mild to severe GIT symptomatology and neurotoxicity. Although F harmful effects have been published, there is no information regarding noxiousness of a high acute F exposure (25 mg F/kg) on enteric neurons and levels of expression of intestinal proteins in the duodenum. Quantitative proteomics of the duodenum wall associated to morphometric and quantitative analysis of enteric neurons displayed F effects of a high acute exposure. F-induced myenteric neuroplasticity was characterized by a decrease in the density of nitrergic neurons and morphometric alterations in the general populations of neurons, nitrergic neurons, and substance P varicosities. Proteomics demonstrated F-induced alterations in levels of expression of 356 proteins correlated to striated muscle cell differentiation; generation of precursor metabolites and energy; NADH and glutathione metabolic process and purine ribonucleoside triphosphate biosynthesis. The neurochemical role of several intestinal proteins was discussed specially related to the modulation of enteric neuroplasticity. The results provide a new perspective on cell signaling pathways of gastrointestinal symptomatology promoted by acute F toxicity.
Collapse
Affiliation(s)
| | | | | | - Isabela Zignani
- Department of Morphophysiological Sciences, State University of Maringá, Paraná, Brazil
| | - Aline de Lima Leite
- Department of Biological Sciences, School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | |
Collapse
|
9
|
Protective effects of quercetin-loaded microcapsules on the enteric nervous system of diabetic rats. Auton Neurosci 2021; 230:102759. [DOI: 10.1016/j.autneu.2020.102759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
|
10
|
Martins-Perles JVC, Bossolani GDP, Zignani I, de Souza SRG, Frez FCV, de Souza Melo CG, Barili E, de Souza Neto FP, Guarnier FA, Armani ALC, Cecchini R, Zanoni JN. Quercetin increases bioavailability of nitric oxide in the jejunum of euglycemic and diabetic rats and induces neuronal plasticity in the myenteric plexus. Auton Neurosci 2020; 227:102675. [PMID: 32474374 DOI: 10.1016/j.autneu.2020.102675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Considering the antioxidant, neuroprotective, inflammatory and nitric oxide modulatory actions of quercetin, the aim of this study was to test the effect of quercetin administration in drinking water (40 mg/day/rat) on neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), overall population of myenteric neurons (HuC/D) and nitric oxide (NO) levels in the jejunal samples from diabetic rats. Male Wistar rats were distributed into four groups (8 rats per group): euglycemic (E), euglycemic administered with quercetin (E+Q), diabetic (D) and diabetic administered with quercetin (D+Q). Rats were induced to diabetes with streptozotocin (35mg/kg/iv) and, after 120 days, the proximal jejunum were collected and processed for immunohistochemical (VIP, nNOS and HuC/D) and chemiluminescence (quantification of tissue NO levels) techniques. Diabetes mellitus reduced the number of nNOS-IR (immunoreactive) (p <0.05) and HuC/D-IR (p <0.001) neurons, however, promoted an increased morphometric area of nNOS-IR neurons (p <0.001) and VIP-IR varicosities (p <0.05). In D+Q group, neuroplasticity effects were observed on HuC/D-IR neurons, accompanied by a reduction of cell body area of neurons nNOS- and VIP-IR varicosities (p <0.05). The NO levels were increased in the E+Q (p <0.05) and D+Q group (p <0.001) compared to the control group. In conclusion, the results showed that quercetin supplementation increased the bioavailability of NO in the jejunum in euglycemic and mitigate the effects of diabetes on nNOS-IR neurons and VIP-IR varicosities in the myenteric plexus of diabetic rats.
Collapse
Affiliation(s)
| | - Gleison Daion Piovezana Bossolani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Sara Raquel Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Flávia Cristina Vieira Frez
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Carina Guimarães de Souza Melo
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Emerson Barili
- Department of Statistic, Universidade Estadual de Maringá, Avenida Colombo, n 5790, Maringá, PR CEP 87020-900, Brazil
| | - Fernando Pinheiro de Souza Neto
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Flávia Alessandra Guarnier
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Alessandra Lourenço Cecchini Armani
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Rubens Cecchini
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Jacqueline Nelisis Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
11
|
Anti- and pro-oxidant effects of quercetin stabilized by microencapsulation on interstitial cells of Cajal, nitrergic neurons and M2-like macrophages in the jejunum of diabetic rats. Neurotoxicology 2020; 77:193-204. [PMID: 32007490 DOI: 10.1016/j.neuro.2020.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Given the well-known antioxidant and neuroprotective properties of quercetin, the aim of this work was to evaluate the effects of quercetin stabilized by microencapsulation at two doses (10 mg kg-1 and 100 mg kg-1) on the oxidative/antioxidant status, number and morphological features of ICC, nitrergic neurons and M2-like macrophages in jejunum of diabetic rats. The rats were randomly distributed into six groups: normoglycemic control (N), diabetic control (D) and either normoglycemic or diabetic groups treated with quercetin-loaded microcapsules at a dose of 10 mg kg-1 (NQ10 and DQ10, respectively) or 100 mg kg-1 (NQ100 and DQ100, respectively). After 60 days, the jejunum was collected. Whole mounts were immunostained for Ano1, nNOS and CD206, and oxidative stress levels and total antioxidant capacity of the jejunum were measured. Diabetes led to a loss of ICC and nitrergic neurons, but increased numbers of M2-like macrophages and elevated levels of oxidative stress were seen in diabetic animals. High-dose administration of quercetin (100 mg kg-1) further aggravated the diabetic condition (DQ100) but this treatment resulted in harmful effects on healthy rats (NQ100), pointing to a pro-oxidant activity. However, low-dose administration of quercetin (10 mg kg-1) gave rise to antioxidant and protective effects on ICC, nNOS, macrophages and oxidative/antioxidant status in DQ100, but NQ100 displayed infrequent negative outcomes in normoglycemic animals. Microencapsulation of the quercetin may become promising alternatives to reduce diabetes-induced oxidative stress but antioxidant therapies should be careful used under healthy status to avoid toxic effects.
Collapse
|
12
|
Knauf C, Abot A, Wemelle E, Cani PD. Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes" as Therapeutic Gut Factors. Neuroendocrinology 2020; 110:139-146. [PMID: 31280267 DOI: 10.1159/000500602] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
The gut-brain axis is of crucial importance for controlling glucose homeostasis. Alteration of this axis promotes the type 2 diabetes (T2D) phenotype (hyperglycaemia, insulin resistance). Recently, a new concept has emerged to demonstrate the crucial role of the enteric nervous system in the control of glycaemia via the hypothalamus. In diabetic patients and mice, modification of enteric neurons activity in the proximal part of the intestine generates a duodenal hyper-contractility that generates an aberrant message from the gut to the brain. In turn, the hypothalamus sends an aberrant efferent message that provokes a state of insulin resistance, which is characteristic of a T2D state. Targeting the enteric nervous system of the duodenum is now recognized as an innovative strategy for treatment of diabetes. By acting in the intestine, bioactive gut molecules that we called "enterosynes" can modulate the function of a specific type of neurons of the enteric nervous system to decrease the contraction of intestinal smooth muscle cells. Here, we focus on the origins of enterosynes (hormones, neurotransmitters, nutrients, microbiota, and immune factors), which could be considered therapeutic factors, and we describe their modes of action on enteric neurons. This unsuspected action of enterosynes is proposed for the treatment of T2D, but it could be applied for other therapeutic solutions that implicate communication between the gut and brain.
Collapse
Affiliation(s)
- Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France,
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France,
| | - Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
| | - Eve Wemelle
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), Toulouse, France
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM, Toulouse, France
- UCLouvain, Université Catholique de Louvain, WELBIO - Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| |
Collapse
|
13
|
Piovezana Bossolani GD, Silva BT, Colombo Martins Perles JV, Lima MM, Vieira Frez FC, Garcia de Souza SR, Sehaber-Sierakowski CC, Bersani-Amado CA, Zanoni JN. Rheumatoid arthritis induces enteric neurodegeneration and jejunal inflammation, and quercetin promotes neuroprotective and anti-inflammatory actions. Life Sci 2019; 238:116956. [DOI: 10.1016/j.lfs.2019.116956] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
|
14
|
Wang X, Zhang C, Zheng M, Gao F, Zhang J, Liu F. Metabolomics Analysis of L-Arginine Induced Gastrointestinal Motility Disorder in Rats Using UPLC-MS After Magnolol Treatment. Front Pharmacol 2019; 10:183. [PMID: 30881305 PMCID: PMC6405429 DOI: 10.3389/fphar.2019.00183] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Magnolol, as the main active ingredient of Traditional Chinese Medicine, can significantly improve gastrointestinal motility disorders (GMD). In the present study, metabolomics was used to investigate the mechanism of magnolol improving L-arginine induced GMD in rats. Experimental Approach: SD rats were randomly divided into control group, model group and magnolol treated group. L-arginine was injected intraperitoneally in model and magnolol groups to induce GMD model. All intervention regimens were administered by oral gavage, once a day for five consecutive days. Relative gastric emptying rate and propulsive intestinal rate were measured. Metabolites in serum were analyzed based on UPLC-MS metabolomics technique. Results: Magnolol significantly promoted gastric emptying and small intestinal propulsion. Compared with the model group, the level of serotonin and L-tryptophan significantly reversed (P < 0.05) and 22 metabolites reversed in the magnolol group. According to MetPA database analysis, magnolol has mainly affected 10 major metabolic pathways which were related to each other, Tryptophan metabolism is the most critical metabolic pathway associated with gastrointestinal tract. Conclusion: These findings suggest that magnolol has a significantly promoting effect on L-arginine induced gastrointestinal motility disorder in rats, the mechanism is to reduce the production of nitric oxide to weaken the function of nitric oxide relaxing the gastrointestinal smooth muscle and increase the content of serotonin to promote gastrointestinal peristalsis and motility, secretion, absorption of nutrients.
Collapse
Affiliation(s)
- Xiao Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyue Zheng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Darmaun D, Torres-Santiago L, Mauras N. Glutamine and type 1 diabetes mellitus: is there a role in glycemic control? Curr Opin Clin Nutr Metab Care 2019; 22:91-95. [PMID: 30461450 DOI: 10.1097/mco.0000000000000530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Recent literature suggests dietary glutamine supplementation may lower blood glucose in patients with type 1 diabetes (T1D), who have no residual insulin secretion. The mechanisms and potential relevance to the care of T1D remain unclear. RECENT FINDINGS Glutamine is involved in multiple pathways including gluconeogenesis, lipolysis, antioxidant defense, the production of nitric oxide, the secretion of peptides (e.g., glucagon-like peptide 1, GLP-1), or neuromediators (e.g., [Latin Small Letter Gamma]-aminobutyric acid), all processes that may impact insulin sensitivity and/or glucose homeostasis. The article reviews potential mechanisms and literature evidence suggesting a role in improving glucose tolerance in patients with illness associated with insulin resistance, as well as the preliminary evidence for the increased incidence of postexercise hypoglycemia in T1D after oral glutamine. SUMMARY Further studies are warranted to determine whether the lowering effect of glutamine on blood glucose is sustained over time. If so, long-term randomized trials would be warranted to determine whether there is a role for glutamine as an adjunct dietary supplement to improve glucose control in patients with T1D.
Collapse
Affiliation(s)
- Dominique Darmaun
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
- INRA and University of Nantes, IMAD, CRNH-Ouest, Nantes, France
| | - Lournaris Torres-Santiago
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
| | - Nelly Mauras
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
| |
Collapse
|
16
|
Resveratrol promotes neuroprotection and attenuates oxidative and nitrosative stress in the small intestine in diabetic rats. Biomed Pharmacother 2018; 105:724-733. [PMID: 29906751 DOI: 10.1016/j.biopha.2018.06.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
Damages to the enteric nervous system caused by diabetes mellitus (DM) are frequently attributed to oxidative and nitrosative stress. We aimed to investigate the effect of Resveratrol (RSV) (10 mg/kg) on oxidative and nitrosative stress in the intestinal wall and morphoquantitative aspects of the myenteric plexus of the duodenum, jejunum and ileum in diabetic rats. Twenty-four rats were distributed into four groups (n = 6/group): control (C group), control treated with RSV (CR group), diabetic (D group), and diabetic treated with RSV (DR group) for 120 days. Immunohistochemical staining techniques for the general neuronal population, nitrergic and calretinin neuronal subpopulations, enteric glial cells and glial fibrillary acid protein were performed in the myenteric plexus. Furthermore, parameters of oxidative and nitrosative stress were analyzed in the intestinal wall. RSV attenuated oxidative and nitrosative stress and prevented neuronal loss and hypertrophy of the HuC/D-IR, nNOS-IR and CALR-IR neuronal subpopulations in the DR group compared with the D group (P < 0.05). In addition, RSV prevented the increase in glial fibrillary acid protein fluorescence in the DR group compared with the D (P < 0.05). These results suggest that RSV has antioxidant and neuroprotective effects in myenteric plexus in rats with experimental DM.
Collapse
|
17
|
Supplementation with l -glutathione improves oxidative status and reduces protein nitration in myenteric neurons in the jejunum in diabetic Rattus norvegicus. Exp Mol Pathol 2018; 104:227-234. [DOI: 10.1016/j.yexmp.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/23/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022]
|
18
|
Chronic treatment with fluoride affects the jejunum: insights from proteomics and enteric innervation analysis. Sci Rep 2018; 8:3180. [PMID: 29453425 PMCID: PMC5816638 DOI: 10.1038/s41598-018-21533-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/06/2018] [Indexed: 01/29/2023] Open
Abstract
Gastrointestinal symptoms are the first signs of fluoride (F) toxicity. In the present study, the jejunum of rats chronically exposed to F was evaluated by proteomics, as well as by morphological analysis. Wistar rats received water containing 0, 10 or 50 mgF/L during 30 days. HuC/D, neuronal Nitric Oxide (nNOS), Vasoactive Intestinal Peptide (VIP), Calcitonin Gene Related Peptide (CGRP), and Substance P (SP) were detected in the myenteric plexus of the jejunum by immunofluorescence. The density of nNOS-IR neurons was significantly decreased (compared to both control and 10 mgF/L groups), while the VIP-IR varicosities were significantly increased (compared to control) in the group treated with the highest F concentration. Significant morphological changes were seen observed in the density of HUC/D-IR neurons and in the area of SP-IR varicosities for F-treated groups compared to control. Changes in the abundance of various proteins correlated with relevant biological processes, such as protein synthesis, glucose homeostasis and energy metabolism were revealed by proteomics.
Collapse
|
19
|
Bódi N, Szalai Z, Chandrakumar L, Bagyánszki M. Region-dependent effects of diabetes and insulin-replacement on neuronal nitric oxide synthase- and heme oxygenase-immunoreactive submucous neurons. World J Gastroenterol 2017; 23:7359-7368. [PMID: 29151690 PMCID: PMC5685842 DOI: 10.3748/wjg.v23.i41.7359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the intestinal segment-specific effects of diabetes and insulin replacement on the density of different subpopulations of submucous neurons.
METHODS Ten weeks after the onset of type 1 diabetes samples were taken from the duodenum, ileum and colon of streptozotocin-induce diabetic, insulin-treated diabetic and sex- and age-matched control rats. Whole-mount preparations of submucous plexus were prepared from the different gut segments for quantitative fluorescent immunohistochemistry. The following double-immunostainings were performed: neuronal nitric oxide synthase (nNOS) and HuC/D, heme oxygenase (HO) 1 and peripherin, as well as HO2 and peripherin. The density of nNOS-, HO1- and HO2-immunoreactive (IR) neurons was determined as a percentage of the total number of submucous neurons.
RESULTS The total number of submucous neurons and the proportion of nNOS-, HO1- and HO2-IR subpopulations were not affected in the duodenal ganglia of control, diabetic and insulin-treated rats. While the total neuronal number did not change in either the ileum or the colon, the density of nitrergic neurons exhibited a 2- and 3-fold increase in the diabetic ileum and colon, respectively, which was further enhanced after insulin replacement. The presence of HO1- and HO2-IR submucous neurons was robust in the colon of controls (38.4%-50.8%), whereas it was significantly lower in the small intestinal segments (0.0%-4.2%, P < 0.0001). Under pathophysiological conditions the only alteration detected was an increase in the ileum and a decrease in the colon of the proportion of HO-IR neurons in insulin-treated diabetic animals.
CONCLUSION Diabetes and immediate insulin replacement induce the most pronounced region-specific alterations of nNOS-, HO1- and HO2-IR submucous neuronal density in the distal parts of the gut.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Lalitha Chandrakumar
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
20
|
Abstract
OPINION STATEMENT Diabetes mellitus (DM) and its associated complications are becoming increasingly prevalent. Gastrointestinal symptoms associated with diabetes is known as diabetic enteropathy (DE) and may manifest as either diarrhea, fecal incontinence, constipation, dyspepsia, nausea, and vomiting or a combination of symptoms. The long-held belief that vagal autonomic neuropathy is the primary cause of DE has recently been challenged by newer theories of disease development. Specifically, hyperglycemia and the resulting oxidative stress on neural networks, including the nitrergic neurons and interstitial cells of Cajal (ICC), are now believed to play a central role in the development of DE. DE occurs in the majority of patients with diabetes; however, tools for early diagnosis and targeted therapy to counter the detrimental and potentially irreversible effects on the small bowel are lacking. Delay in diagnosis is further compounded by the fact that DE symptoms overlap with those of gastroparesis or can be confused with side effects from diabetes medications. Still, early recognition of the presence of DE is essential to mitigating symptoms and preventing further progression of complications including dysmotility and malabsorption. Current diagnostic modalities include manometry, wireless motility capsule (SmartPill™), and scintigraphy; however, these are not regularly utilized in clinical practice due to limited availability. Several medications are available for symptom relief in DE patients including rifaximin for small intestinal bacterial overgrowth (SIBO) and somatostatin analogues for diarrhea. While rodent models on stem cell therapy and alteration of the microbiome are promising, there is still a great need for further research on the pathologic underpinnings and development of novel treatment modalities for DE.
Collapse
Affiliation(s)
- Jonathan Gotfried
- Temple University Digestive Disease Center, Temple University Hospital, Philadelphia, PA, USA
| | - Stephen Priest
- Temple University Lewis Katz School of Medicine at Temple University & Temple University Health System, Philadelphia, PA, USA
| | - Ron Schey
- Temple University Digestive Disease Center, Temple University Hospital, Philadelphia, PA, USA. .,Temple University Lewis Katz School of Medicine at Temple University & Temple University Health System, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Melo CGDS, Perles JVCM, Zanoni JN, Souza SRGD, Santos EX, Leite ADL, Heubel AD, E Souza CO, Souza JGD, Buzalaf MAR. Enteric innervation combined with proteomics for the evaluation of the effects of chronic fluoride exposure on the duodenum of rats. Sci Rep 2017; 7:1070. [PMID: 28432311 PMCID: PMC5430799 DOI: 10.1038/s41598-017-01090-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
Ingested fluoride (F) is absorbed mainly in the small intestine, which is controlled by the Enteric Nervous System (ENS). Although important intestinal symptomatology has been described after excessive F exposure, there have been no studies reporting the effects of F on the ENS. In this study, the effects of chronic F exposure were evaluated on the duodenums of rats through proteomic and morphological analyses. Concentrations of 0, 10, or 50 ppm of F were applied to the drinking water for 30 days. Immunofluorescence techniques were performed in the myenteric plexus of the duodenum to detect HuC/D, neuronal nitric oxide (nNOS), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), and substance P (SP). The 50 ppm F group presented a significant decrease in the density of nNOS-IR neurons. Significant morphological alterations were also observed in HUC/D-IR and nNOS-IR neurons; VIP-IR, CGRP-IR, and SP-IR varicosities for both groups (10 and 50 ppm F). Proteomic analysis of the duodenum demonstrated alterations in the expression of several proteins, especially those related to important biological processes, such as protein polymerization, which helps to explain the downregulation of many proteins upon exposure to 50 ppm of F.
Collapse
Affiliation(s)
| | | | | | | | - Erika Xavier Santos
- Department of Morphophysiological Sciences, State University of Maringá, Paraná, Brazil
| | - Aline de Lima Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Camila Oliveira E Souza
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Juliana Gadelha de Souza
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | |
Collapse
|
22
|
Martins HA, Bazotte RB, Vicentini GE, Lima MM, Guarnier FA, Hermes-Uliana C, Frez FCV, Bossolani GDP, Fracaro L, Fávaro LDS, Manzano MI, Zanoni JN. l-Glutamine supplementation promotes an improved energetic balance in Walker-256 tumor-bearing rats. Tumour Biol 2017; 39:1010428317695960. [PMID: 28345452 DOI: 10.1177/1010428317695960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We evaluated the effects of supplementation with oral l-glutamine in Walker-256 tumor-bearing rats. A total of 32 male Wistar rats aged 54 days were randomly divided into four groups: rats without Walker-256 tumor, that is, control rats (C group); control rats supplemented with l-glutamine (CG group); Walker-256 tumor rats without l-glutamine supplementation (WT group); and WT rats supplemented with l-glutamine (WTG group). l-Glutamine was incorporated into standard food at a proportion of 2 g/100 g (2%). After 10 days of the experimental period, the jejunum and duodenum were removed and processed. Protein expression levels of key enzymes of gluconeogenesis, that is, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, were analyzed by western blot and immunohistochemical techniques. In addition, plasma corticosterone, glucose, insulin, and urea levels were evaluated. The WTG group showed significantly increased plasma glucose and insulin levels ( p < 0.05); however, plasma corticosterone and urea remained unchanged. Moreover, the WTG group showed increased immunoreactive staining for jejunal phosphoenolpyruvate carboxykinase and increased expression of duodenal glucose-6-phosphatase. Furthermore, the WTG group presented with less intense cancer cachexia and slower tumor growth. These results could be attributed, at least partly, to increased intestinal gluconeogenesis and insulinemia, and better glycemia maintenance during fasting in Walker-256 tumor rats on a diet supplemented with l-glutamine.
Collapse
Affiliation(s)
- Heber Amilcar Martins
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Roberto Barbosa Bazotte
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Mariana Machado Lima
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Catchia Hermes-Uliana
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | - Luciane Fracaro
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|
23
|
de Souza SRG, de Miranda Neto MH, Martins Perles JVC, Vieira Frez FC, Zignani I, Ramalho FV, Hermes-Uliana C, Bossolani GDP, Zanoni JN. Antioxidant Effects of the Quercetin in the Jejunal Myenteric Innervation of Diabetic Rats. Front Med (Lausanne) 2017; 4:8. [PMID: 28224126 PMCID: PMC5293826 DOI: 10.3389/fmed.2017.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose Enteric glial cells (EGCs) exert a critical role in the structural integrity, defense, and metabolic function of enteric neurons. Diabetes mellitus is a chronic disease characterized by metabolic disorders and chronic autonomic neuropathy. Quercetin supplementation, which is a potent antioxidant, has been used in order to reduce the effects of diabetes-induced oxidative stress. The purpose of this research was to investigate the effects of quercetin supplementation in the drinking water at a daily dose of 40 mg on the glial cells and neurons in the jejunum of diabetic rats. Materials and methods Twenty 90-day-old male adult Wistar rats were split into four groups: normoglycemic control (C), normoglycemic control supplemented with quercetin (Q), diabetic (D), and diabetic supplemented with quercetin (DQ). After 120 days, the jejunums were collected, and immunohistochemical technique was performed to label S-100-immunoreactive glial cells and HuC/D-immunoreactive neurons. Results An intense neuronal and glial reduction was observed in the jejunum of diabetic rats. Quercetin displayed neuroprotective effects due to reduced cell body areas of neurons and glial cells in Q and DQ groups compared to their controls (C and D groups). Interestingly, quercetin prevented the glial and neuronal loss with a higher density for the HuC/D-immunoreactive neurons (23.06%) and for the S100-immunoreactive glial cells (14.55%) in DQ group compared to D group. Conclusion Quercetin supplementation promoted neuroprotective effects through the reduction of neuronal and glial body areas and a slight prevention of neuronal and glial density reduction.
Collapse
Affiliation(s)
- Sara R Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | | | | | | | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | - Francielle Veiga Ramalho
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | | | | | | |
Collapse
|
24
|
Vicentini GE, Fracaro L, de Souza SRG, Martins HA, Guarnier FA, Zanoni JN. Experimental Cancer Cachexia Changes Neuron Numbers and Peptide Levels in the Intestine: Partial Protective Effects after Dietary Supplementation with L-Glutamine. PLoS One 2016; 11:e0162998. [PMID: 27635657 PMCID: PMC5026352 DOI: 10.1371/journal.pone.0162998] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal dysmotility frequently occurs in cancer cachexia and may result from damage to enteric innervation caused by oxidative stress, especially due to glutathione depletion. We assessed the effect of dietary supplementation with 20 g/kg l-glutamine (a glutathione precursor) on the intrinsic innervation of the enteric nervous system in healthy and Walker 256 tumor-bearing Wistar rats during the development of experimental cachexia (14 days), in comparison with non-supplemented rats, by using immunohistochemical methods and Western blotting. The total neural population and cholinergic subpopulation densities in the myenteric plexus, as well as the total population and VIPergic subpopulation in the submucosal plexus of the jejunum and ileum, were reduced in cachectic rats, resulting in adaptive morphometric alterations and an increase in vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) expression, suggesting a neuroplastic response. l-glutamine supplementation prevented decrease in myenteric neuronal density in the ileum, morphometric alterations in the neurons and nerve fibers (in both the plexuses of the jejunum and ileum), and the overexpression of VIP and CGRP. Cancer cachexia severely affected the intrinsic innervation of the jejunum and ileum to various degrees and this injury seems to be associated with adaptive neural plasticity. l-glutamine supplementation presented partial protective effects on the enteric innervation against cancer cachexia, possibly by attenuating oxidative stress.
Collapse
Affiliation(s)
- Geraldo E. Vicentini
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Luciane Fracaro
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Sara R. G. de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Heber A. Martins
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Flávia A. Guarnier
- Department of General Pathology, Universidade Estadual de Londrina, Londrina, Parana, Brazil
| | - Jacqueline N. Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringa, Maringa, Parana, Brazil
- * E-mail:
| |
Collapse
|
25
|
Supplementation with l-glutamine prevents tumor growth and cancer-induced cachexia as well as restores cell proliferation of intestinal mucosa of Walker-256 tumor-bearing rats. Amino Acids 2016; 48:2773-2784. [DOI: 10.1007/s00726-016-2313-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
|
26
|
Panizzon CPDNB, Zanoni JN, Hermes-Uliana C, Trevizan AR, Sehaber CC, Pereira RVF, Linden DR, Neto MHDM. Desired and side effects of the supplementation with l-glutamine and l-glutathione in enteric glia of diabetic rats. Acta Histochem 2016; 118:625-631. [PMID: 27470531 DOI: 10.1016/j.acthis.2016.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Enteric neuropathy associated with Diabetes Mellitus causes dysfunction in the digestive system, such as: nausea, diarrhea, constipation, vomiting, among others. The aim of this study was to compare the effects of supplementation with 2% l-glutamine and 1% l-glutathione on neurons and enteric glial cells of ileum of diabetic rats. METHODS Thirty male Wistar rats have been used according to these group distributions: Normoglycemic (N), Normoglycemic supplemented with l-glutamine (NG), Normoglycemic supplemented with l-glutathione (NGO), Diabetic (D), Diabetic supplemented with l-glutamine (DG) and Diabetic supplemented with l-glutathione (DGO). After 120days, the ileum was processed for immunohistochemistry of HuC/D and S100β. Quantitative and morphometric analysis have been performed. RESULTS Diabetic rats presented a decrease in the number of neurons when compared to normoglycemic animals. However, diabetes was not associated with a change in glial density. l-Glutathione prevented the neuronal death in diabetic rats. l-Glutathione increased a glial proliferation in diabetic rats. The neuronal area in diabetic rats increased in relation to the normoglycemics. The diabetic rats supplemented with l-glutamine and l-glutathione showed a smaller neuronal area in comparison to diabetic group. The glial cell area was a decreased in the diabetics. The diabetic rats supplemented with l-glutamine and l-glutathione did not have significant difference in the glial cell body area when compared to diabetic rats. CONCLUSION It is concluded that the usage of l-glutamine and l-glutathione as supplements presents both desired and side effects that are different for the same substance in considering normoglycemic or diabetic animals.
Collapse
|
27
|
PEREIRA RENATAV, LINDEN DAVIDR, MIRANDA-NETO MARCÍLIOH, ZANONI JACQUELINEN. Differential effects in CGRPergic, nitrergic, and VIPergic myenteric innervation in diabetic rats supplemented with 2% L-glutamine. ACTA ACUST UNITED AC 2016; 88 Suppl 1:609-22. [DOI: 10.1590/0001-3765201620150228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022]
Abstract
ABSTRACT The objective of this study was to investigate the effects of 2% L-glutamine supplementation on myenteric innervation in the ileum of diabetic rats, grouped as follows: normoglycemic (N); normoglycemic supplemented with L-glutamine (NG); diabetic (D); and diabetic supplemented with L-glutamine (DG). The ileums were subjected to immunohistochemical techniques to localize neurons immunoreactive to HuC/D protein (HuC/D-IR) and neuronal nitric oxide synthase enzyme (nNOS-IR) and to analyze varicosities immunoreactive to vasoactive intestinal polypeptide (VIP-IR) and calcitonin gene-related peptide (CGRP-IR). L-Glutamine in the DG group (i) prevented the increase in the cell body area of nNOS-IR neurons, (ii) prevented the increase in the area of VIP-IR varicosities, (iii) did not prevent the loss of HuC/D-IR and nNOS-IR neurons per ganglion, and (iv) reduced the size of CGRP-IR varicosities. L-Glutamine in the NG group reduced (i) the number of HuC/D-IR and nNOS-IR neurons per ganglion, (ii) the cell body area of nNOS-IR neurons, and (iii) the size of VIP-IR and CGRP-IR varicosities. 2% L-glutamine supplementation exerted differential neuroprotective effects in experimental diabetes neuropathy that depended on the type of neurotransmitter analyzed. However, the effects of this dose of L-glutamine on normoglycemic animals suggests there are additional actions of this beyond its antioxidant capacity.
Collapse
|
28
|
Góis MB, Hermes-Uliana C, Barreto Zago MC, Zanoni JN, da Silva AV, de Miranda-Neto MH, de Almeida Araújo EJ, Sant'Ana DDMG. Chronic infection with Toxoplasma gondii induces death of submucosal enteric neurons and damage in the colonic mucosa of rats. Exp Parasitol 2016; 164:56-63. [PMID: 26902605 DOI: 10.1016/j.exppara.2016.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 02/14/2016] [Accepted: 02/17/2016] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial secretion is coordinated by the submucosal plexus (SMP). Chemical mediators from SMP regulate the immunobiological response and direct actions against infectious agents. Toxoplasma gondii is a worldwide parasite that causes toxoplasmosis. This study aimed to determine the effects of chronic infection with T. gondii on the morphometry of the mucosa and the submucosal enteric neurons in the proximal colon of rats. Male adult rats were distributed into a control group (n = 10) and an infected group (n = 10). Infected rats received orally 500 oocysts of T. gondii (ME-49). After 36 days, the rats were euthanized and samples of the proximal colon were processed for histology to evaluate mucosal thickness in sections. Whole mounts were stained with methylene blue and subjected to immunohistochemistry to detect vasoactive intestinal polypeptide. The total number of submucosal neurons decreased by 16.20%. Vasoactive intestinal polypeptide-immunoreactive neurons increased by 26.95%. Intraepithelial lymphocytes increased by 62.86% and sulfomucin-producing goblet cells decreased by 22.87%. Crypt depth was greater by 43.02%. It was concluded that chronic infection with T. gondii induced death and hypertrophy in the remaining submucosal enteric neurons and damage to the colonic mucosa of rats.
Collapse
Affiliation(s)
- Marcelo Biondaro Góis
- State University of Maringa, Department of Morphological Sciences, Maringa, PR, Brazil.
| | | | | | | | - Aristeu Vieira da Silva
- State University of Feira de Santana, Department of Biological Sciences, Feira de Santana, BA, Brazil
| | | | | | | |
Collapse
|
29
|
Fracaro L, Frez F, Silva B, Vicentini G, de Souza S, Martins H, Linden D, Guarnier F, Zanoni J. Walker 256 tumor-bearing rats demonstrate altered interstitial cells of Cajal. Effects on ICC in the Walker 256 tumor model. Neurogastroenterol Motil 2016; 28:101-15. [PMID: 26526599 PMCID: PMC4688090 DOI: 10.1111/nmo.12702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cachexia is a significant problem in patients with cancer. The effect of cancer on interstitial cells of Cajal (ICC) and neurons of the gastrointestinal tract have not been studied previously. Although supplementation with L-glutamine 2% may have beneficial effects in cancer-related cachexia, and be protective of ICC in models of oxidative stress such as diabetes, its effects on ICC in cancer have also not been studied. METHODS Twenty-eight male Wistar rats were divided into four groups: control (C), control supplemented with L-glutamine (CG), Walker 256 tumor (WT), and Walker 256 tumor supplemented with L-glutamine (WTG). Rats were implanted with tumor cells or injected with saline in the right flank. After 14 days, the jejunal tissues were collected and processed for immunohistochemical techniques including whole mounts and cryosections and Western blot analysis. KEY RESULTS Tumor-bearing rats demonstrate reduced numbers of Myenteric ICC and deep muscular plexus ICC and yet increased Ano1 protein expression and enhanced ICC networks. In addition, there is more nNOS protein expressed in tumor-bearing rats compared to controls. L-glutamine treatment had a variety of effects on ICC that may be related to the disease state and the interaction of ICC and nNOS neurons. Regardless, L-glutamine reduced the size of tumors and also tumor-induced cachexia that was not due to altered food intake. CONCLUSIONS & INFERENCES There are significant effects on ICC in the Walker 256 tumor model. Although supplementation with L-glutamine has differential and complex effects of ICC, it reduces tumor size and tumor-associated cachexia, which supports its beneficial therapeutic role in cancer.
Collapse
Affiliation(s)
- L. Fracaro
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - F.C.V. Frez
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - B.C. Silva
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - G.E. Vicentini
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - S.R.G. de Souza
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - H.A. Martins
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - D.R. Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - F.A. Guarnier
- Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - J.N. Zanoni
- Department of Morfological Sciences, Universidade Estadual de Maringá, Maringá, Brazil,Address for Correspondence: Prof Jacqueline Nelisis Zanoni, Department of Morfological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, 87020-900, Brazil. Tel: (+55) 443011-5944; ,
| |
Collapse
|
30
|
da Rosa CVD, Azevedo SCSF, Bazotte RB, Peralta RM, Buttow NC, Pedrosa MMD, de Godoi VAF, Natali MRM. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats. PLoS One 2015; 10:e0143005. [PMID: 26659064 PMCID: PMC4681705 DOI: 10.1371/journal.pone.0143005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a whole. Thus, we can conclude that local differences in absorption and metabolism could explain the differences between the supplementation with L-glutamine or GDP.
Collapse
Affiliation(s)
| | | | - Roberto B. Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Rosane M. Peralta
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Nilza C. Buttow
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Vilma A. F. de Godoi
- Department of Physiological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Maria Raquel M. Natali
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
- * E-mail: (MR)
| |
Collapse
|
31
|
Tashima CM, Hermes-Uliana C, Perles JVCM, de Miranda Neto MH, Zanoni JN. Vitamins C and E (ascorbate/α-tocopherol) provide synergistic neuroprotection in the jejunum in experimental diabetes. ACTA ACUST UNITED AC 2015; 22:241-8. [PMID: 26433445 DOI: 10.1016/j.pathophys.2015.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022]
Abstract
The present study evaluated the synergistic effects of the association of ascorbic acid and α-tocopherol on myenteric in the jejunum of diabetic rats. The rats were randomly divided into four equal groups: untreated normoglycemic (UC), untreated diabetic (UD), ascorbic acid and α-tocopherol-treated normoglycemic (CAE) and ascorbic acid and α-tocopherol-treated diabetic (DAE). The rats from the CAE and DAE group received supplementation with ascorbic acid (1g/L in water) and α-tocopherol (1% in chow). At 210-days-old, the animals were sacrified and their jejunum was collected and submitted to immunohistochemistry. Quantitative and/or morphometric analysis were performed. Supplementation with ascorbic acid and α-tocopherol prevented the cell loss of myenteric neurons expressing HuC/D and TrkA in an equivalent proportion. We also observed a reduction of the CGRP nerve fiber varicosities and the prevention of the increased cell body size of submucosal VIP neurons (p<0.05). The association of ascorbic acid and α-tocopherol reduced the deleterious effects of diabetes promoting protection on the enteric neurons.
Collapse
Affiliation(s)
- Cristiano Massao Tashima
- Department of Health and Education, Universidade Estadual do Norte do Paraná, 86360-000 Paraná, Brazil
| | - Catchia Hermes-Uliana
- Universidade Federal de Mato Grosso do Sul, 79400-000 Coxim, Mato Grosso do Sul, Brazil
| | | | | | - Jacqueline Nelisis Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringá, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
32
|
Chaudhury A, De Miranda-Neto MH, Pereira RVF, Zanoni JN. Myosin Va but Not nNOSα is Significantly Reduced in Jejunal Musculomotor Nerve Terminals in Diabetes Mellitus. Front Med (Lausanne) 2014; 1:17. [PMID: 25705628 PMCID: PMC4335397 DOI: 10.3389/fmed.2014.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) mediated slow inhibitory junction potential and mechanical relaxation after electrical field stimulation (EFS) is impaired in diabetes mellitus. Externally added NO donor restore nitrergic function, indicating that this reduction result from diminution of NO synthesis within the pre-junctional nerve terminals. The present study aimed to investigate two specific aims that may potentially provide pathophysiological insights into diabetic nitrergic neuropathy. Specifically, alteration in nNOSα contents within jejunal nerve terminals and a local subcortical transporter myosin Va was tested 16 weeks after induction of diabetes by low dose streptozotocin (STZ) in male Wistar rats. The results show that diabetic rats, in contrast to vehicle treated animals, have: (a) nearly absent myosin Va expression in nerve terminals of axons innervating smooth muscles and (b) significant decrease of myosin Va in neuronal soma of myenteric plexus. In contrast, nNOSα staining in diabetic jejunum neuromuscular strips showed near intact expression in neuronal cell bodies. The space occupancy of nitrergic nerve fibers was comparable between groups. Normal concentration of nNOSα was visualized within a majority of nitrergic terminals in diabetes, suggesting intact axonal transport of nNOSα to distant nerve terminals. These results reveal the dissociation between presences of nNOSα in the nerve terminals but deficiency of its transporter myosin Va in the jejunum of diabetic rats. This significant observation of reduced motor protein myosin Va within jejunal nerve terminals may potentially explain impairment of pre-junctional NO synthesis during EFS of diabetic gut neuromuscular strips despite presence of the nitrergic synthetic enzyme nNOSα.
Collapse
Affiliation(s)
- Arun Chaudhury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School and VA Boston HealthCare System , West Roxbury, MA , USA
| | | | | | | |
Collapse
|