1
|
van Vorstenbosch R, van Munster K, Stavropoulos G, Pachen D, van Schooten FJ, Ponsioen C, Smolinska A. The potential of volatile organic compounds to diagnose primary sclerosing cholangitis. JHEP Rep 2024; 6:101103. [PMID: 39131082 PMCID: PMC11315128 DOI: 10.1016/j.jhepr.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024] Open
Abstract
Background & Aims Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts. PSC is a complex disease of largely unknown aetiology that is strongly associated with inflammatory bowel disease (IBD). Diagnosis, especially at an early stage, is difficult and to date there is no diagnostic biomarker. The present study aimed to assess the diagnostic potential of volatile organic compounds (VOCs) in exhaled breath to detect (early) PSC in an IBD population. Methods Breath samples were obtained from 16 patients with PSC alone, 47 with PSC and IBD, and 53 with IBD alone during outpatient clinic visits. Breath sampling was performed using the ReCIVA breath sampler and subsequently analysed by gas chromatography mass spectrometry. Random forest modelling was performed to find discriminatory VOCs and create a predictive model that was tested using an independent test set. Results The final model to discriminate patients with PSC, with or without IBD, from patients with IBD alone included twenty VOCs and achieved a sensitivity, specificity, and area under the receiver-operating curve on the test set of 77%, 83%, and 0.84 respectively. Three VOCs (isoprene, 2-octanone and undecane) together correlated significantly with the Amsterdam-Oxford score for PSC disease prognosis. A sensitivity analysis showed stable results across early-stage PSC, including in those with normal alkaline phosphatase levels, as well as further progressed PSC. Conclusion The present study demonstrates that exhaled breath can distinguish PSC cases from IBD and has potential as a non-invasive clinical breath test for (early) PSC. Impact and implications Primary sclerosing cholangitis is a complex chronic liver disease, which ultimately results in cirrhosis, liver failure, and death. Detection, especially in early disease stages, can be challenging, and therefore therapy typically starts when there is already some irreversible damage. The current study shows that metabolites in exhaled breath, so called volatile organic compounds, hold promise to non-invasively detect primary sclerosing cholangitis, including at early disease stages.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Kim van Munster
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Center, Amsterdam, The Netherlands
| | - Georgios Stavropoulos
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle Pachen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Academic Medical Center, Amsterdam, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Tiankanon K, Pungpipattrakul N, Sukaram T, Chaiteerakij R, Rerknimitr R. Identification of breath volatile organic compounds to distinguish pancreatic adenocarcinoma, pancreatic cystic neoplasm, and patients without pancreatic lesions. World J Gastrointest Oncol 2024; 16:894-906. [PMID: 38577457 PMCID: PMC10989381 DOI: 10.4251/wjgo.v16.i3.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Volatile organic compounds (VOCs) are a promising potential biomarker that may be able to identify the presence of cancers. AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocarcinoma (PDAC) from intraductal papillary mucinous neoplasm (IPMN) and healthy volunteers. METHODS We collected exhaled breath from histologically proven PDAC patients, radiological diagnosis IPMN, and healthy volunteers using the ReCIVA® device between 10/2021-11/2022. VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups. RESULTS A total of 156 participants (44% male, mean age 62.6 ± 10.6) were enrolled (54 PDAC, 42 IPMN, and 60 controls). Among the nine VOCs identified, two VOCs that showed differences between groups were dimethyl sulfide [0.73 vs 0.74 vs 0.94 arbitrary units (AU), respectively; P = 0.008] and acetone dimers (3.95 vs 4.49 vs 5.19 AU, respectively; P < 0.001). After adjusting for the imbalance parameters, PDAC showed higher dimethyl sulfide levels than the control and IPMN groups, with adjusted odds ratio (aOR) of 6.98 (95%CI: 1.15-42.17) and 4.56 (1.03-20.20), respectively (P < 0.05 both). Acetone dimer levels were also higher in PDAC compared to controls and IPMN (aOR: 5.12 (1.80-14.57) and aOR: 3.35 (1.47-7.63), respectively (P < 0.05 both). Acetone dimer, but not dimethyl sulfide, performed better than CA19-9 in PDAC diagnosis (AUROC 0.910 vs 0.796). The AUROC of acetone dimer increased to 0.936 when combined with CA19-9, which was better than CA19-9 alone (P < 0.05). CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants. Additional prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Kasenee Tiankanon
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Nuttanit Pungpipattrakul
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanikan Sukaram
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Liu Q, Li S, Li Y, Yu L, Zhao Y, Wu Z, Fan Y, Li X, Wang Y, Zhang X, Zhang Y. Identification of urinary volatile organic compounds as a potential non-invasive biomarker for esophageal cancer. Sci Rep 2023; 13:18587. [PMID: 37903959 PMCID: PMC10616168 DOI: 10.1038/s41598-023-45989-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Early diagnosis of esophageal cancer (EC) is extremely challenging. The study presented herein aimed to assess whether urinary volatile organic compounds (VOCs) may be emerging diagnostic biomarkers for EC. Urine samples were collected from EC patients and healthy controls (HCs). Gas chromatography-ion mobility spectrometry (GC-IMS) was next utilised for volatile organic compound detection and predictive models were constructed using machine learning algorithms. ROC curve analysis indicated that an 8-VOCs based machine learning model could aid the diagnosis of EC, with the Random Forests having a maximum AUC of 0.874 and sensitivities and specificities of 84.2% and 90.6%, respectively. Urine VOC analysis aids in the diagnosis of EC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuxiao Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhihong Wu
- Department of Traditional Chinese Medicine, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yingjing Fan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Catanzaro E, Gringeri E, Burra P, Gambato M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers (Basel) 2023; 15:4947. [PMID: 37894314 PMCID: PMC10604939 DOI: 10.3390/cancers15204947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC), accounting for 2-8% of cases and being the leading cause of death in these patients. The majority of PSC-associated CCAs (PSC-CCA) develop within the first few years after PSC diagnosis. Older age and male sex, as well as concomitant inflammatory bowel disease (IBD) or high-grade biliary stenosis, are some of the most relevant risk factors. A complex combination of molecular mechanisms involving inflammatory pathways, direct cytopathic damage, and epigenetic and genetic alterations are involved in cholangiocytes carcinogenesis. The insidious clinical presentation makes early detection difficult, and the integration of biochemical, radiological, and histological features does not always lead to a definitive diagnosis of PSC-CCA. Surveillance is mandatory, but current guideline strategies failed to improve early detection and consequently a higher patient survival rate. MicroRNAs (miRNAs), gene methylation, proteomic and metabolomic profile, and extracellular vesicle components are some of the novel biomarkers recently applied in PSC-CCA detection with promising results. The integration of these new molecular approaches in PSC diagnosis and monitoring could contribute to new diagnostic and surveillance strategies.
Collapse
Affiliation(s)
- Elisa Catanzaro
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Center, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Patrizia Burra
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Martina Gambato
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
5
|
Ungkulpasvich U, Hatakeyama H, Hirotsu T, di Luccio E. Pancreatic Cancer and Detection Methods. Biomedicines 2023; 11:2557. [PMID: 37760999 PMCID: PMC10526344 DOI: 10.3390/biomedicines11092557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The pancreas is a vital organ with exocrine and endocrine functions. Pancreatitis is an inflammation of the pancreas caused by alcohol consumption and gallstones. This condition can heighten the risk of pancreatic cancer (PC), a challenging disease with a high mortality rate. Genetic and epigenetic factors contribute significantly to PC development, along with other risk factors. Early detection is crucial for improving PC outcomes. Diagnostic methods, including imagining modalities and tissue biopsy, aid in the detection and analysis of PC. In contrast, liquid biopsy (LB) shows promise in early tumor detection by assessing biomarkers in bodily fluids. Understanding the function of the pancreas, associated diseases, risk factors, and available diagnostic methods is essential for effective management and early PC detection. The current clinical examination of PC is challenging due to its asymptomatic early stages and limitations of highly precise diagnostics. Screening is recommended for high-risk populations and individuals with potential benign tumors. Among various PC screening methods, the N-NOSE plus pancreas test stands out with its high AUC of 0.865. Compared to other commercial products, the N-NOSE plus pancreas test offers a cost-effective solution for early detection. However, additional diagnostic tests are required for confirmation. Further research, validation, and the development of non-invasive screening methods and standardized scoring systems are crucial to enhance PC detection and improve patient outcomes. This review outlines the context of pancreatic cancer and the challenges for early detection.
Collapse
Affiliation(s)
| | | | | | - Eric di Luccio
- Hirotsu Bioscience Inc., 22F The New Otani Garden Court, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (U.U.); (H.H.); (T.H.)
| |
Collapse
|
6
|
Pelling M, Chandrapalan S, West E, Arasaradnam RP. A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers. Cancers (Basel) 2023; 15:2308. [PMID: 37190235 PMCID: PMC10136496 DOI: 10.3390/cancers15082308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Hepatobiliary cancers are notoriously difficult to detect, frequently leading to diagnosis in later stages of disease when curative treatment is not an option. The currently used biomarkers such as AFP (alpha-fetoprotein) and CA19.9 lack sensitivity and specificity. Hence, there is an unmet need for an alternative biomarker. AIM To evaluate the diagnostic accuracy of volatile organic compounds (VOCs) for the detection of hepatobiliary and pancreatic cancers. METHODS A systematic review of VOCs' use in the detection of hepatobiliary and pancreatic cancers was performed. A meta-analysis was performed using the software R. Heterogeneity was explored through meta-regression analysis. RESULTS A total of 18 studies looking at 2296 patients were evaluated. Pooled sensitivity and specificity of VOCs for the detection of hepatobiliary and pancreatic cancer were 0.79 (95% CI, 0.72-0.85) and 0.81 (97.5% CI, 0.76-0.85), respectively. The area under the curve was 0.86. Meta-regression analysis showed that the sample media used contributed to heterogeneity. Bile-based VOCs showed the highest precision values, although urine and breath are preferred for their feasibility. CONCLUSIONS Volatile organic compounds have the potential to be used as an adjunct tool to aid in the early diagnosis of hepatobiliary cancers.
Collapse
Affiliation(s)
- Melina Pelling
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | | - Emily West
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ramesh P. Arasaradnam
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Department of Gastroenterology, University Hospital of Coventry and Warwickshire, Coventry CV2 2DX, UK
- Health, Biological & Experimental Sciences, University of Coventry, Coventry CV1 5FB, UK
- School of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
7
|
Zhou Z, Ren H, Zhou L, Wang P, Lou X, Zou H, Cao Y. Recent Development on Determination of Low-Level 90Sr in Environmental and Biological Samples: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010090. [PMID: 36615288 PMCID: PMC9821828 DOI: 10.3390/molecules28010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
In the context of the rapid development of the world's nuclear power industry, it is vital to establish reliable and efficient radioanalytical methods to support sound environment and food radioactivity monitoring programs and a cost-effective waste management strategy. As one of the most import fission products generated during human nuclear activities, 90Sr has been widely determined based on different analytical techniques for routine radioactivity monitoring, emergency preparedness and radioactive waste management. Herein, we summarize and critically review analytical methods developed over the last few decades for the determination of 90Sr in environmental and biological samples. Approaches applied in different steps of the analysis including sample preparation, chemical separation and detection are systematically discussed. The recent development of modern materials for 90Sr concentration and advanced instruments for rapid 90Sr measurement are also addressed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiyao Cao
- Correspondence: ; Tel.: +86-(0571)-87115089
| |
Collapse
|
8
|
Teränen V, Nissinen S, Roine A, Antila A, Siiki A, Vaalavuo Y, Kumpulainen P, Oksala N, Laukkarinen J. Bile-volatile organic compounds in the diagnostics of pancreatic cancer and biliary obstruction: A prospective proof-of-concept study. Front Oncol 2022; 12:918539. [PMID: 36479080 PMCID: PMC9720309 DOI: 10.3389/fonc.2022.918539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/31/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVES Detection of volatile organic compounds (VOCs) from bodily fluids with field asymmetric waveform ion mobility spectrometry (FAIMS) and related methods has been studied in various settings. Preliminary results suggest that it is possible to detect prostate, colorectal, ovarian and pancreatic cancer from urine samples. In this study, our primary aim was to differentiate pancreatic cancer from pancreatitis and benign tumours of the pancreas by using bile samples obtained during endoscopic retrograde cholangiopancreatography (ERCP). Secondarily, we aimed to differentiate all pancreatic region malignancies from all other kinds of benign causes of biliary obstruction. METHODS A bile sample was successfully aspirated from 94 patients during ERCP in Tampere University Hospital. Hospital and patient records were prospectively followed up for at least two years after ERCP. Bile samples were analysed using a Lonestar chemical analyser (Owlstone, UK) using an ATLAS sampling system and a split-flow box. Diagnoses and corresponding data from the analyses were matched and divided into two subcategories for comparison. Statistical analysis was performed using linear discriminant analysis, support vector machines, and 5-fold cross-validation. RESULTS Pancreatic cancers (n=8) were differentiated from benign pancreatic lesions (n=9) with a sensitivity of 100%, specificity of 77.8%, and correct rate of 88%. All pancreatic region cancers (n=19) were differentiated from all other kinds of benign causes of biliary obstruction (n=75) with corresponding values of 21.1%, 94.7%, and 80.7%. The sample size was too small to try to differentiate pancreatic cancers from adjacent cancers. CONCLUSION Analysing bile VOCs using FAIMS shows promising capability in detecting pancreatic cancer and other cancers in the pancreatic area.
Collapse
Affiliation(s)
- Ville Teränen
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuli Nissinen
- Department of Internal Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Antti Roine
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Antila
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Antti Siiki
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Yrjö Vaalavuo
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Pekka Kumpulainen
- Department of Internal Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Niku Oksala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Johanna Laukkarinen
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
9
|
Siriwong N, Sukaram T, Tansawat R, Apiparakoon T, Tiyarattanachai T, Marukatat S, Rerknimitr R, Chaiteerakij R. Exhaled volatile organic compounds for cholangiocarcinoma diagnosis. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Hu W, Wu W, Jian Y, Haick H, Zhang G, Qian Y, Yuan M, Yao M. Volatolomics in healthcare and its advanced detection technology. NANO RESEARCH 2022; 15:8185-8213. [PMID: 35789633 PMCID: PMC9243817 DOI: 10.1007/s12274-022-4459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Collapse
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi’an, 730107 China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Yingying Jian
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Hossam Haick
- Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002 Israel
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Yun Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Mingshui Yao
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006 China
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
11
|
Ney A, Garcia-Sampedro A, Goodchild G, Acedo P, Fusai G, Pereira SP. Biliary Strictures and Cholangiocarcinoma - Untangling a Diagnostic Conundrum. Front Oncol 2021; 11:699401. [PMID: 34660269 PMCID: PMC8515053 DOI: 10.3389/fonc.2021.699401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma is an uncommon and highly aggressive biliary tract malignancy with few manifestations until late disease stages. Diagnosis is currently achieved through a combination of clinical, biochemical, radiological and histological techniques. A number of reported cancer biomarkers have the potential to be incorporated into diagnostic pathways, but all lack sufficient sensitivity and specificity limiting their possible use in screening and early diagnosis. The limitations of standard serum markers such as CA19-9, CA125 and CEA have driven researchers to identify multiple novel biomarkers, yet their clinical translation has been slow with a general requirement for further validation in larger patient cohorts. We review recent advances in the diagnostic pathway for suspected CCA as well as emerging diagnostic biomarkers for early detection, with a particular focus on non-invasive approaches.
Collapse
Affiliation(s)
- Alexander Ney
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - George Goodchild
- St. Bartholomew's hospital, Barts Health NHS Trust, London, United Kingdom
| | - Pilar Acedo
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Giuseppe Fusai
- Division of Surgery and Interventional Science - University College London, London, United Kingdom
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| |
Collapse
|
12
|
A prediction model using 2-propanol and 2-butanone in urine distinguishes breast cancer. Sci Rep 2021; 11:19801. [PMID: 34611278 PMCID: PMC8492640 DOI: 10.1038/s41598-021-99396-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Safe and noninvasive methods for breast cancer screening with improved accuracy are urgently needed. Volatile organic compounds (VOCs) in biological samples such as breath and blood have been investigated as noninvasive novel markers of cancer. We investigated volatile organic compounds in urine to assess their potential for the detection of breast cancer. One hundred and ten women with biopsy-proven breast cancer and 177 healthy volunteers were enrolled. The subjects were divided into two groups: a training set and an external validation set. Urine samples were collected and analyzed by gas chromatography and mass spectrometry. A predictive model was constructed by multivariate analysis, and the sensitivity and specificity of the model were confirmed using both a training set and an external set with reproducibility tests. The training set included 60 breast cancer patients (age 34–88 years, mean 60.3) and 60 healthy controls (age 34–81 years, mean 58.7). The external validation set included 50 breast cancer patients (age 35–85 years, mean 58.8) and 117 healthy controls (age 18–84 years, mean 51.2). One hundred and ninety-one compounds detected in at least 80% of the samples from the training set were used for further analysis. The predictive model that best-detected breast cancer at various clinical stages was constructed using a combination of two of the compounds, 2-propanol and 2-butanone. The sensitivity and specificity in the training set were 93.3% and 83.3%, respectively. Triplicated reproducibility tests were performed by randomly choosing ten samples from each group, and the results showed a matching rate of 100% for the breast cancer patient group and 90% for the healthy control group. Our prediction model using two VOCs is a useful complement to the current diagnostic tools. Further studies inclusive of benign tumors and non-breast malignancies are warranted.
Collapse
|
13
|
Liver Impairment-The Potential Application of Volatile Organic Compounds in Hepatology. Metabolites 2021; 11:metabo11090618. [PMID: 34564434 PMCID: PMC8471934 DOI: 10.3390/metabo11090618] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Liver diseases are currently diagnosed through liver biopsy. Its invasiveness, costs, and relatively low diagnostic accuracy require new techniques to be sought. Analysis of volatile organic compounds (VOCs) in human bio-matrices has received a lot of attention. It is known that a musty odour characterises liver impairment, resulting in the elucidation of volatile chemicals in the breath and other body fluids such as urine and stool, which may serve as biomarkers of a disease. Aims: This study aims to review all the studies found in the literature regarding VOCs in liver diseases, and to summarise all the identified compounds that could be used as diagnostic or prognostic biomarkers. The literature search was conducted on ScienceDirect and PubMed, and each eligible publication was qualitatively assessed by two independent evaluators using the SANRA critical appraisal tool. Results: In the search, 58 publications were found, and 28 were kept for inclusion: 23 were about VOCs in the breath, one in the bile, three in urine, and one in faeces. Each publication was graded from zero to ten. A graphical summary of the metabolic pathways showcasing the known liver disease-related VOCs and suggestions on how VOC analysis on liver impairment could be applied in clinical practice are given.
Collapse
|
14
|
Wen Q, Boshier P, Myridakis A, Belluomo I, Hanna GB. Urinary Volatile Organic Compound Analysis for the Diagnosis of Cancer: A Systematic Literature Review and Quality Assessment. Metabolites 2020; 11:17. [PMID: 33383923 PMCID: PMC7824454 DOI: 10.3390/metabo11010017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
The analysis of urinary volatile organic compounds (VOCs) is a promising field of research with the potential to discover new biomarkers for cancer early detection. This systematic review aims to summarise the published literature concerning cancer-associated urinary VOCs. A systematic online literature search was conducted to identify studies reporting urinary VOC biomarkers of cancers in accordance with the recommendations of the Cochrane Library and Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Thirteen studies comprising 1266 participants in total were included in the review. Studies reported urinary VOC profiles of five cancer subtypes: prostate cancer, gastrointestinal cancer, leukaemia/lymphoma, lung cancer, and bladder cancer. Forty-eight urinary VOCs belonging to eleven chemical classes were identified with high diagnostic performance. VOC profiles were distinctive for each cancer type with limited cross-over. The metabolic analysis suggested distinctive phenotypes for prostate and gastrointestinal cancers. The heterogenicity of study design, methodological and reporting quality may have contributed to inconsistencies between studies. Urinary VOC analysis has shown promising performance for non-invasive diagnosis of cancer. However, limitations in study design have resulted in inconsistencies between studies. These limitations are summarised and discussed in order to support future studies.
Collapse
Affiliation(s)
| | | | | | | | - George B. Hanna
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London W2 1NY, UK; (Q.W.); (P.B.); (A.M.); (I.B.)
| |
Collapse
|
15
|
da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:27-37. [PMID: 34820523 PMCID: PMC8600992 DOI: 10.1016/j.clinms.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The development of non-invasive screening techniques for early cancer detection is one of the greatest scientific challenges of the 21st century. One promising emerging method is the analysis of volatile organic compounds (VOCs). VOCs are low molecular weight substances generated as final products of cellular metabolism and emitted through a variety of biological matrices, such as breath, blood, saliva and urine. Urine stands out for its non-invasive nature, availability in large volumes, and the high concentration of VOCs in the kidneys. This review provides an overview of the available data on urinary VOCs that have been investigated in cancer-focused clinical studies using mass spectrometric (MS) techniques. A literature search was conducted in ScienceDirect, Pubmed and Web of Science, using the keywords "Urinary VOCs", "VOCs biomarkers" and "Volatile cancer biomarkers" in combination with the term "Mass spectrometry". Only studies in English published between January 2011 and May 2020 were selected. The three most evaluated types of cancers in the reviewed studies were lung, breast and prostate, and the most frequently identified urinary VOC biomarkers were hexanal, dimethyl disulfide and phenol; with the latter seeming to be closely related to breast cancer. Additionally, the challenges of analyzing urinary VOCs using MS-based techniques and translation to clinical utility are discussed. The outcome of this review may provide valuable information to future studies regarding cancer urinary VOCs.
Collapse
Key Words
- Biomarkers
- CAS, chemical abstracts service
- CYP450, cytochrome P450
- Cancer
- FAIMS, high-field asymmetric waveform ion mobility spectrometry
- GC, gas chromatography
- HS, headspace
- IMS, ion mobility spectrometry
- LC, liquid chromatography
- MS, mass spectrometry or mass spectrometric
- Mass Spectrometry
- Metabolomics
- NT, needle trap
- PSA, prostate-specific antigen
- PTR, proton transfer reaction
- PTV, programed temperature vaporizer
- ROS, reactive oxygen species
- SBSE, stir bar sorptive extraction
- SIFT, selected ion flow tube
- SPME, solid phase microextraction
- Urine
- VOCs
- VOCs, volatile organic compounds
- eNose, electronic nose
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP 14040-903, Brazil
| | - Bruno Spinosa De Martinis
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo. Av., Bandeirantes, 3900, Ribeirão Preto, SP 14040-900, Brazil
| |
Collapse
|
16
|
Vedeld HM, Folseraas T, Lind GE. Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis - The promise of DNA methylation and molecular biomarkers. JHEP Rep 2020; 2:100143. [PMID: 32939446 PMCID: PMC7479288 DOI: 10.1016/j.jhepr.2020.100143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy of the bile ducts that arises in up to 20% of patients with primary sclerosing cholangitis (PSC). Current detection methods for CCA display suboptimal sensitivity and/or specificity, and there is no evidence-based screening strategy for CCA in patients with PSC. Consequently, CCA is often detected too late for surgical resection, contributing to the high mortality associated with this malignancy. Recently, biomarkers have emerged with potential to complement current detection methods, and/or be used for cancer surveillance in high-risk patient groups, including patients with PSC. Aberrant DNA methylation patterns represent promising biomarkers with great potential for CCA detection. Such aberrations are frequent in CCA, often occur early, and can be detected in liquid biopsies, including blood, bile and urine. This review summarises and highlights the most promising DNA methylation biomarkers identified for CCA detection so far, focusing on patients with PSC. Other promising molecular biomarkers for detection of PSC-associated CCA in liquid biopsies will also be briefly covered.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
The Effects of Prebiotic Supplementation with OMNi-LOGiC ® FIBRE on Fecal Microbiome, Fecal Volatile Organic Compounds, and Gut Permeability in Murine Neuroblastoma-Induced Tumor-Associated Cachexia. Nutrients 2020; 12:nu12072029. [PMID: 32650568 PMCID: PMC7400931 DOI: 10.3390/nu12072029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant diseases can cause tumor-associated cachexia (TAC). Supplementation with prebiotic non-digestible carbohydrates exerts positive metabolic effects in experimental oncologic diseases. The aim of this project was to assess the effect of prebiotic supplementation with OMNi-LOGiC® FIBRE on intestinal microbiome, bacterial metabolism, gut permeability, and inflammation in a murine model of neuroblastoma (NB)-associated TAC. For this study, 2,000,000 NB cells (MHH-NB11) were implanted into athymic mice followed by daily supplementation with water or 200 mg prebiotic oligosaccharide (POS) OMNi-LOGiC® FIBRE (NB-Aqua, n = 12; NB-POS, n = 12). Three animals of each tumor group did not develop NB. The median time of tumor growth (first visibility to euthanasia) was 37 days (IQR 12.5 days) in the NB-Aqua group and 37 days (IQR 36.5 days) in the NB-POS group (p = 0.791). At euthanasia, fecal microbiome and volatile organic compounds (VOCs), gut permeability (fluorescein isothiocyanate-dextran (FITC-dextran), and gut barrier markers were measured. Values were compared to sham animals following injection of culture medium and gavage of either water or OMNi-LOGiC® FIBRE (SH-Aqua, n = 10; SH-POS, n = 10). Alpha diversity did not differ significantly between the groups. Principal coordinate analysis (PCoA) revealed clustering differences between Aqua and POS animals. Both NB and POS supplementation led to taxonomic alterations of the fecal microbiome. Of 49 VOCs, 22 showed significant differences between the groups. NB animals had significantly higher gut permeability than Aqua animals; POS did not ameliorate these changes. The pore and leak pathways of tight junctions did not differ between groups. In conclusion, our results suggest that NB-induced TAC causes increased gut permeability coupled with compositional changes in the fecal microbiome and VOC profile. Prebiotic supplementation with OMNi-LOGiC® FIBRE seemed to induce modifications of the fecal microbiome and VOC profile but did not improve gut permeability.
Collapse
|
18
|
Wannhoff A, Gotthardt DN. Recent developments in the research on biomarkers of cholangiocarcinoma in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol 2019; 43:236-243. [PMID: 30266579 DOI: 10.1016/j.clinre.2018.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Primary sclerosing cholangitis (PSC) is characterized by a chronic inflammatory process of the bile ducts of unclear aetiology. It is often complicated by cholangiocarcinoma (CCA) with a dismal prognosis. Early detection of CCA is important because treatment options for advanced disease are limited. Besides the established markers, like CA19-9, recent developments have been made using latest technologies. This review summarizes the recent advances and remaining limitations of biomarkers of CCA in PSC.
Collapse
Affiliation(s)
- Andreas Wannhoff
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel N Gotthardt
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
19
|
Wang Y, Hua L, Jiang J, Xie Y, Hou K, Li Q, Wu C, Li H. High-pressure photon ionization time-of-flight mass spectrometry combined with dynamic purge-injection for rapid analysis of volatile metabolites in urine. Anal Chim Acta 2018; 1008:74-81. [PMID: 29420946 DOI: 10.1016/j.aca.2018.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
Small molecule metabolites are widely used as biomarkers in the research field of metabolomics for disease diagnosis and exposure assessment. As a readily available biofluid containing plenty of volatile organic metabolites (VOMs), urine is ideal for non-invasive metabolomic analysis; however, there is still lack of rapid analysis method for VOMs in urine. Here we report a kind of rapid method for urine analysis by employing high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) combined with dynamic purge-injection. Various types of metabolites, such as ketones, alcohols, acids, sulfides, pyrroles and amines were detected directly by simple acidification or alkalization of urines. It is noteworthy that nitrogen-containing compounds, especially polar amines, could be ultrasensitively measured without any derivatization. The analytical capability of the direct HPPI-MS technique was demonstrated by analyzing five valuable metabolites, i.e., toluene, 2,5-dimethylpyrrole, trimethlyamine, styrene, and p-xylene, which exhibited relatively low limits of detection, wide linear range and satisfactory repeatability. Being highly sensitive and humidity-friendly, the whole analytical procedure is easily operated in less than 6 min. Interestingly, a new biomarker 2,5-dimethylpyrrole was exclusively found in the smoker's urine sample besides toluene. The work presents a novel tool for rapid nontarget disease biomarkers screening or target monitoring of specific compounds through the investigation of volatile metabolites in urine.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Jichun Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Yuanyuan Xie
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Keyong Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Qingyun Li
- Department of Instrumentation and Electrical Engineering, Jilin University, Jilin 130021, People's Republic of China
| | - Chenxin Wu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.
| |
Collapse
|
20
|
Panebianco C, Kelman E, Vene K, Gioffreda D, Tavano F, Vilu R, Terracciano F, Pata I, Adamberg K, Andriulli A, Pazienza V. Cancer sniffer dogs: how can we translate this peculiarity in laboratory medicine? Results of a pilot study on gastrointestinal cancers. Clin Chem Lab Med 2017; 56:138-146. [PMID: 28590915 DOI: 10.1515/cclm-2016-1158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/16/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Identification of cancer biomarkers to allow early diagnosis is an urgent need for many types of tumors, whose prognosis strongly depends on the stage of the disease. Canine olfactory testing for detecting cancer is an emerging field of investigation. As an alternative, here we propose to use GC-Olfactometry (GC/O), which enables the speeding up of targeted biomarker identification and analysis. A pilot study was conducted in order to determine odor-active compounds in urine that discriminate patients with gastrointestinal cancers from control samples (healthy people). METHODS Headspace solid phase microextraction (HS-SPME)-GC/MS and GC-olfactometry (GC/O) analysis were performed on urine samples obtained from gastrointestinal cancer patients and healthy controls. RESULTS In total, 91 key odor-active compounds were found in the urine samples. Although no odor-active biomarkers present were found in cancer carrier's urine, significant differences were discovered in the odor activities of 11 compounds in the urine of healthy and diseased people. Seven of above mentioned compounds were identified: thiophene, 2-methoxythiophene, dimethyl disulphide, 3-methyl-2-pentanone, 4-(or 5-)methyl-3-hexanone, 4-ethyl guaiacol and phenylacetic acid. The other four compounds remained unknown. CONCLUSIONS GC/O has a big potential to identify compounds not detectable using untargeted GC/MS approach. This paves the way for further research aimed at improving and validating the performance of this technique so that the identified cancer-associated compounds may be introduced as biomarkers in clinical practice to support early cancer diagnosis.
Collapse
|
21
|
Horsley-Silva JL, Rodriguez EA, Franco DL, Lindor KD. An update on cancer risk and surveillance in primary sclerosing cholangitis. Liver Int 2017; 37:1103-1109. [PMID: 28028930 DOI: 10.1111/liv.13354] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/20/2016] [Indexed: 02/13/2023]
Abstract
Malignancy represents substantial morbidity and mortality in patients with primary sclerosing cholangitis (PSC). This subset of patients has been proven to be at increased risk for developing cholangiocarcinoma, gallbladder carcinoma and colorectal cancer in those with overlapping inflammatory bowel disease. Herein, we review the prevalence of these malignancies and recommend screening tools and current knowledge to reduce the disease burden in this population. Cholangiocarcinoma is the most dominant malignancy affecting PSC patients, with a lifetime risk ranging from 5% to 20%. We advocate for serial US or MRI/MRCP and CA 19-9 to screen for cholangiocarcinoma. Gallbladder cancer has a lifetime risk around 2% in this population and we agree with annual imaging for lesions as recommended by national guidelines. Patients with PSC and concomitant IBD are at increased risk of colorectal carcinoma from time of diagnosis and therefore should likely undergo annual surveillance. The low rates of hepatocellular cancer and pancreatic cancer indicate surveillance for these malignancies is less advantageous.
Collapse
Affiliation(s)
| | | | - Diana L Franco
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ, USA.,College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
22
|
Horsley-Silva JL, Carey EJ, Lindor KD. Advances in primary sclerosing cholangitis. Lancet Gastroenterol Hepatol 2016; 1:68-77. [DOI: 10.1016/s2468-1253(16)30010-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
|
23
|
Risk and Surveillance of Cancers in Primary Biliary Tract Disease. Gastroenterol Res Pract 2016; 2016:3432640. [PMID: 27413366 PMCID: PMC4930812 DOI: 10.1155/2016/3432640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
Primary biliary diseases have been associated in several studies with various malignancies. Understanding the risk and optimizing surveillance strategy of these malignancies in this specific subset of patients are an important facet of clinical care. For instance, primary sclerosing cholangitis is associated with an increased risk for cholangiocarcinoma (which is very challenging to diagnose) and when IBD is present for colorectal cancer. On the other hand, primary biliary cirrhosis patients with cirrhosis or not responding to 12 months of ursodeoxycholic acid therapy are at increased risk of hepatocellular carcinoma. In this review we will discuss in detail the risks and optimal surveillance strategies for patients with primary biliary diseases.
Collapse
|
24
|
Techniques and issues in breath and clinical sample headspace analysis for disease diagnosis. Bioanalysis 2016; 8:677-90. [PMID: 26978667 DOI: 10.4155/bio.16.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Analysis of volatile organic compounds (VOCs) from breath or clinical samples for disease diagnosis is an attractive proposition because it is noninvasive and rapid. There are numerous studies showing its potential, yet there are barriers to its development. Sampling and sample handling is difficult, and when coupled with a variety of analytical instrumentation, the same samples can give different results. Background air and the environment a person has been exposed to can greatly affect the VOCs emitted by the body; however, this is not an easy problem to solve. This review investigates the use of VOCs in disease diagnosis, the analytical techniques employed and the problems associated with sample handling and standardization. It then suggests the barriers to future development.
Collapse
|
25
|
Abstract
Cutoff levels on the scales for benzene, ethylbenzene, toluene, styrene, o-xylene and m/p-xylene in blood were developed to classify smokers from non-smokers. Self-reported smoking during the last 5 d was used as the true smoking status. Receiver operating characteristics methods that minimized the difference between specificity and sensitivity were used to develop these cutoffs. Data from National Health and Nutrition Examination Survey for the cycle 2005-2006 were used for this purpose. For the total population, a cutoff of 0.038 ng/ml for benzene was able to classify smokers from non-smokers with a sensitivity of 83.6% and specificity of 83.7%.
Collapse
Affiliation(s)
- Ram B Jain
- a Private Consultant , Dacula , GA , USA
| |
Collapse
|