1
|
Riedel JA, Smolina I, Donat C, Svendheim LH, Farkas J, Hansen BH, Olsvik PA. Into the deep: Exploring the molecular mechanisms of hyperactive behaviour induced by three rare earth elements in early life-stages of the deep-sea scavenging amphipod Tmetonyx cicada (Lysianassidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175968. [PMID: 39226952 DOI: 10.1016/j.scitotenv.2024.175968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
With increasing socio-economic importance of the rare earth elements and yttrium (REY), Norway has laid out plans for REY mining, from land-based to deep-sea mining, thereby enhancing REY mobility in the marine ecosystem. Little is known about associated environmental consequences, especially in the deep ocean. We explored the toxicity and modes of action of a light (Nd), medium (Gd) and heavy (Yb) REY-Cl3 at four concentrations (3, 30, 300, and 3000 μg L-1) in the Arcto-boreal deep-sea amphipod Tmetonyx cicada. At the highest concentration, REY solubility was limited and increased with atomic weight (Nd < Gd < Yb). Lethal effects were practically restricted to this treatment, with the lighter elements being more acutely toxic than Yb (from ∼50 % mortality in the Gd-group at dissolved 689-504 μg L-1 to <20 % in the Yb-group at ca. 2000 μg L-1), which could be a function of bioavailability. All three REY induced hyperactivity at the low-medium concentrations. Delving into the transcriptome of T. cicada allowed us to determine a whole array of potential (neurotoxic) mechanisms underlying this behaviour. Gd induced the vastest response, affecting serotonin-synthesis; sphingolipid-synthesis; the renin-angiotensin system; mitochondrial and endoplasmic reticulum functioning (Gd, Nd); and lysosome integrity (Gd, Yb); as well as the expression of hemocyanin, potentially governing REY-uptake (Gd, Yb). While Nd and Yb shared only few pathways, suggesting a link between mode of action and atomic weight/radius, almost all discussed mechanisms imply the disruption of organismal Ca-homeostasis. Despite only fragmental genomic information available for crustaceans to date, our results provide novel insight into the toxicophysiology of REY in marine biota. The neurotoxic/behavioural effects in T. cicada at concentrations with potential environmental relevance warn about the possibility of bottom-up ecological consequences in mining exposed fjords and deep-sea ecosystems, calling for follow-up studies and regulatory measures prior to the onset of REY mining in Norway.
Collapse
Affiliation(s)
- Juliane Annemieke Riedel
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.
| | - Irina Smolina
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| | - Coline Donat
- IUT de Saint Étienne, Université Jean Monnet, 28 Av. Léon Jouhaux, 42100 Saint-Étienne, France
| | | | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway
| |
Collapse
|
2
|
Gambardella C, Miroglio R, Costa E, Cachot J, Morin B, Clérandeau C, Rotander A, Rocco K, d'Errico G, Almeda R, Alonso O, Grau E, Piazza V, Pittura L, Benedetti M, Regoli F, Faimali M, Garaventa F. New insights into the impact of leachates from in-field collected plastics on aquatic invertebrates and vertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124233. [PMID: 38801877 DOI: 10.1016/j.envpol.2024.124233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The impact of leachates from micronized beached plastics of the Mediterranean Sea and Atlantic Ocean on coastal marine ecosystems was investigated by using a multidisciplinary approach. Chemical analysis and ecotoxicological tests on phylogenetically distant species were performed on leachates from the following plastic categories: bottles, pellets, hard plastic (HP) containers, fishing nets (FN) and rapido trawling rubber (RTR). The bacteria Alivibrio fischeri, the nauplii of the crustaceans Amphibalanus amphitrite and Acartia tonsa, the rotifer Brachionus plicatilis, the embryos of the sea urchin Paracentrotus lividus, the ephyrae of the jellyfish Aurelia sp. and the larvae of the medaka Oryzias latipes were exposed to different concentrations of leachates to evaluate lethal and sub-lethal effects. Thirty-one additives were identified in the plastic leachates; benzophenone, benzyl butyl phthalate and ethylparaben were present in all leachates. Ecotoxicity of leachates varied among plastic categories and areas, being RTR, HP and FN more toxic than plastic bottles and pellets to several marine invertebrates. The ecotoxicological results based on 13 endpoints were elaborated within a quantitative weight of evidence (WOE) model, providing a synthetic hazard index for each data typology, before their integrations in an environmental risk index. The WOE assigned a moderate and slight hazard to organisms exposed to leachates of FN and HP collected in the Mediterranean Sea respectively, and a moderate hazard to leachates of HP from the Atlantic Ocean. No hazard was found for pellet, bottles and RTR. These findings suggest that an integrated approach based on WOE on a large set of bioassays is recommended to get a more reliable assessment of the ecotoxicity of beached-plastic leachates. In addition, the additives leached from FN and HP should be further investigated to reduce high concentrations and additive types that could impact marine ecosystem health.
Collapse
Affiliation(s)
- Chiara Gambardella
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| | - Roberta Miroglio
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Elisa Costa
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Jérôme Cachot
- University of Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805, F-33600, Pessac, France
| | - Bénédicte Morin
- University of Bordeaux, CNRS, Bordeaux INP, EPOC UMR 5805, F-33600, Pessac, France
| | | | - Anna Rotander
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Kevin Rocco
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Spain
| | - Olalla Alonso
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria (ULPGC), Spain
| | - Etienne Grau
- University of Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629, F-33600, Pessac, France
| | - Veronica Piazza
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Lucia Pittura
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Faimali
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | - Francesca Garaventa
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio degli Impatti Antropici e Sostenibilità in ambiente marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| |
Collapse
|
3
|
Capparelli MV, Pérez-Ceballos R, Moulatlet GM, Rodríguez-Santiago MA, Dzul-Caamal R, Mora A, Suárez-Mozo NY, Abessa DM, Zaldívar-Jiménez A. Application of ecotoxicological tools to evaluate the quality status of mangroves under restoration in the Yucatán Peninsula, Mexico. MARINE POLLUTION BULLETIN 2024; 203:116386. [PMID: 38703625 DOI: 10.1016/j.marpolbul.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Ecotoxicological tools, namely biomarkers and bioassays, may provide insights on the ecological quality status of mangroves under restoration. We investigated how 1) physicochemical parameters and water bioassays using Artemia franciscana; and 2) quantification of sublethal (osmoregulatory capacity, biochemical, and oxidative stress) and individual biomarkers (density, length-weight relationship [LWR], parasitic prevalence) in the sentinel fiddler crab Minuca rapax, can improve restoration indicators in mangroves from the Yucatán Peninsula, Southern Gulf of Mexico. We showed that water quality was improved with restoration, but still presented toxicity. Regarding sublethal biomarkers, M rapax from restored areas lower osmotic regulatory capacity, higher oxidative stress, and showed lipid peroxidation. As to the individual biomarkers, the density, LWR, and the prevalence of parasites in M. rapax was higher in restored areas. The use of bioassays/biomarkers were useful as early warning indicators to better assess the health of mangroves under restoration.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, CP 24157 Ciudad del Carmen, Campeche, Mexico
| | - Rosela Pérez-Ceballos
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, CP 24157 Ciudad del Carmen, Campeche, Mexico; Consejo Nacional de Humanidades de Ciencias y Tecnologías, Mexico
| | - Gabriel M Moulatlet
- The Arizona Institute for Resilience, University of Arizona, Tucson, AZ, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - María Amparo Rodríguez-Santiago
- Consejo Nacional de Humanidades de Ciencias y Tecnologías, Mexico; Universidad Autónoma del Carmen, Ciudad del Carmen, Campeche, Mexico
| | - Ricardo Dzul-Caamal
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla de Zaragoza 72453, Mexico
| | - Nancy Yolimar Suárez-Mozo
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, CP 24157 Ciudad del Carmen, Campeche, Mexico
| | - Denis M Abessa
- Universidade Estadual Paulista, Campus de São Vicente, São Vicente, SP 11380-972, Brazil
| | | |
Collapse
|
4
|
Wu X, Jeong CB, Huang W, Ip JCH, Guo J, Lai KP, Liu W, Mo J. Environmental occurrence, biological effects, and health implications of zinc pyrithione: A review. MARINE POLLUTION BULLETIN 2024; 203:116466. [PMID: 38713926 DOI: 10.1016/j.marpolbul.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
5
|
Huang Y, Wu J, Lu Y, Wang R, Lan Y, Jia N. Use of acoustic stimulus to determine behavioral changes in zebrafish after Cd exposure in a water quality warning system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168943. [PMID: 38036119 DOI: 10.1016/j.scitotenv.2023.168943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Behavioral changes in zebrafish are an effective early warning system to determine water quality. However, only a few studies have examined the response of zebrafish to non-chemical stimulus after exposure to a contaminant. Therefore, this study investigated the differences in the behavioral responses of zebrafish to acoustic stimuli before and after exposure to cadmium (Cd). Acoustic escape response sensitivity curves were obtained and analyzed, followed by the determination of sensitive stimulus conditions at 100 Hz and 97 dB with a duration of 30 s and an interval of 30 min. Zebrafish exhibit a significant acoustic escape response, which is significantly reduced after exposure to Cd. The results showed that zebrafish stop demonstrating acoustic escape responses when exposed to higher Cd concentrations or longer acoustic exposures. Based on these results, a novel method for detecting abnormal behavior in zebrafish by acoustic stimulation has been proposed, which is expected to reduce the false alarm rate of this type of water quality technology.
Collapse
Affiliation(s)
- Yi Huang
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China.
| | - Junxu Wu
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Yuetong Lu
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Runchao Wang
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Yaqiong Lan
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Ning Jia
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
6
|
Nilén G, Larsson M, Hyötyläinen T, Keiter SH. A complex mixture of polycyclic aromatic compounds causes embryotoxic, behavioral, and molecular effects in zebrafish larvae (Danio rerio), and in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167307. [PMID: 37804991 DOI: 10.1016/j.scitotenv.2023.167307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) are prevalent in the environment, typically found in complex mixtures and high concentrations. Our understanding of the effects of PACs, excluding the 16 priority polycyclic aromatic hydrocarbons (16 PAHs), remains limited. Zebrafish embryos and in vitro bioassays were utilized to investigate the embryotoxic, behavioral, and molecular effects of a soil sample from a former gasworks site in Sweden. Additionally, targeted chemical analysis was conducted to analyze 87 PACs in the soil, fish, water, and plate material. CALUX® assays were used to assess the activation of aryl hydrocarbon and estrogen receptors, as well as the inhibition of the androgen receptor. Larval behavior was measured by analyzing activity during light and darkness and in response to mechanical stimulation. Furthermore, qPCR analyses were performed on a subset of 36 genes associated with specific adverse outcomes, and the total lipid content in the larvae was measured. Exposure to the sample resulted in embryotoxic effects (LC50 = 0.480 mg dry matter soil/mL water). The mixture also induced hyperactivity in darkness and hypoactivity in light and in response to the mechanical stimulus. qPCR analysis revealed differential regulation of 15 genes, including downregulation of opn1sw1 (eye pigmentation) and upregulation of fpgs (heart failure). The sample caused significant responses in three bioassays (ERα-, DR-, and PAH-CALUX), and the exposed larvae exhibited elevated lipid levels. Chemical analysis identified benzo[a]pyrene as the predominant compound in the soil and approximately half of the total PAC concentration was attributed to the 16 PAHs. This study highlights the value of combining in vitro and in vivo methods with chemical analysis to assess toxic mechanisms at specific targets and to elucidate the possible interactions between various pathways in an organism. It also enhances our understanding of the risks associated with environmental mixtures of PACs and their distribution during toxicity testing.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
7
|
Pinheiro SKDP, Lima AKM, Miguel TBAR, Filho AGS, Ferreira OP, Pontes MDS, Grillo R, Miguel EDC. Assessing toxicity mechanism of silver nanoparticles by using brine shrimp (Artemia salina) as model. CHEMOSPHERE 2024; 347:140673. [PMID: 37951401 DOI: 10.1016/j.chemosphere.2023.140673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The acute toxicity of silver nanoparticles (AgNPs) in Artemia salina is primarily attributed to the interaction between silver ions (Ag+) and chitin, which constitutes the main structural component of the organism's cuticle. To investigate this interaction and gain a deeper understanding of its nature, geometric optimization calculations and symmetry-adapted perturbation theory (SAPT0) analysis were performed. These calculations aimed to determine the most favorable conformation based on the binding energies of silver ions with chitin and to elucidate the underlying mechanisms of their interaction. The results indicate an ionic effect dependent on the ion state, with simulations revealing that Ag3+ ions have the potential to cause significant deformation of the chitin structure. Furthermore, this study evaluated the behavior of AgNPs using nauplii of A. salina instar I, assessing both mortality rates and cell damage. Toxicity of AgNPs was observed in A. salina at concentrations of 50 and 100 ppm within a timeframe of 24-48 h. The toxicity of AgNPs can be attributed to their interaction with the cuticle and subsequent modification of the chitin structure through the binding of ionic silver. Light microscopy (LM) analysis confirmed the presence of AgNPs in the cuticle, while confocal laser scanning microscopy (CLSM) revealed cellular damage. In addition, this research offers new perspectives on the toxicity mechanism of AgNPs by introducing a novel model that explores the interaction of silver ions with the cuticle of A. salina. These insights are derived from a combination of atomistic models and ecotoxicology assays.
Collapse
Affiliation(s)
- Sergimar Kennedy de Paiva Pinheiro
- Biomaterials Laboratory (BIOMAT), Department of Metallurgical Engineering and Materials (DEMM) and Analytical Center, Federal University of Ceará - UFC, Campus do Pici, Fortaleza, Ce, Brazil
| | - Ana Kamila Medeiros Lima
- Biomaterials Laboratory (BIOMAT), Department of Metallurgical Engineering and Materials (DEMM) and Analytical Center, Federal University of Ceará - UFC, Campus do Pici, Fortaleza, Ce, Brazil
| | | | - Antonio Gomes Souza Filho
- Advanced Functional Materials Laboratory (LaMFA), Physics Department, Federal University of Ceará - UFC, Campus do Pici, Fortaleza, Ce, Brazil.
| | - Odair Pastor Ferreira
- Advanced Functional Materials Laboratory (LaMFA), Chemistry Department, State University of Londrina - UEL, Londrina, PR, Brazil
| | - Montcharles da Silva Pontes
- Optics and Photonics Group, SISFOTON Lab, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Renato Grillo
- School of Engineering, Department of Physics and Chemistry, São Paulo State University (UNESP), Ilha Solteira, SP 15385-000, Brazil
| | - Emilio de Castro Miguel
- Biomaterials Laboratory (BIOMAT), Department of Metallurgical Engineering and Materials (DEMM) and Analytical Center, Federal University of Ceará - UFC, Campus do Pici, Fortaleza, Ce, Brazil.
| |
Collapse
|
8
|
Silva-Neto HA, Zucolotto V, D'Alessandro EB, Tavares MGO, Antoniosi Filho NR, Coltro WKT, Grosseli GM, Fadini PS, Urban RC. Preliminary assessment of toxicity of aerosol samples from central-west Brazil using Artemia spp. bioassays. CHEMOSPHERE 2023:139283. [PMID: 37348616 DOI: 10.1016/j.chemosphere.2023.139283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/26/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The present study reports the development of a bioassay using Artemia spp. to analyse the preliminary ecotoxicity of atmospheric aerosols (PM), which can affect the environment and human health. Herein, PM samples were collected in the city of Goiânia (Brazil) in 2016, extracted with ultrapure water and subsequently filtered through membranes with different pore sizes (100, 0.8, and 0.22 μm), and the extracts employed in the bioassays. The mortality rates (endpoint analysed) declined to membranes with smaller pore sizes (15 ± 4%, 47 ± 10% and 43 ± 9% for pore sizes of 100 μm, 0.8 μm and 0.22 μm, respectively). In general, the toxicity of the extract depended on its concentration, except for the sample with a higher negative particle surface charge, which presents a lower affinity for the negatively charged surfaces of cellular membranes. Moreover, although the PM concentration was higher for the sample collected during the dry season (September), the mortality rate was not significantly different to that determined for a sample with similar physical and chemical characteristics collected in the rainy season (December). This result demonstrates the importance of monitoring PM toxicities and their chemical and physical characteristics, in addition to their concentrations. Therefore, the new protocol to provide a preliminary analysis of the toxicity of the extracts of aerosol emerges as a useful, accessible, and fast tool for monitoring possible environmental hazards, and can simplify fieldwork.
Collapse
Affiliation(s)
- Habdias A Silva-Neto
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Valtencir Zucolotto
- Physics Institute of São Carlos (IFSC), University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | | | - Maria G O Tavares
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | | - Wendell K T Coltro
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | - Guilherme M Grosseli
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Pedro S Fadini
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Roberta C Urban
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
9
|
Belamy T, Legeay A, Cachot J, Clérandeau C, Baudrimont M. Locomotion behavior of juveniles of the freshwater pearl mussel Margaritifera margaritifera: A new non-invasive tool for the evaluation of stress effects. CHEMOSPHERE 2023; 327:138521. [PMID: 36990359 DOI: 10.1016/j.chemosphere.2023.138521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The lack of knowledge about the sensitivity of the endangered freshwater pearl mussel (FWPM) Margaritifera margaritifera to environmental pollution and the rapid decline of its populations in Europe, have led to the need of developing non-destructive experimental protocols in order to assess the impact of such pollution. This species has a complex life cycle and the early life stages are considered the most sensitive. This study deals with the development of a methodology for the assessment of juvenile mussels' locomotor behavior using an automated video tracking system. Different parameters were determined such as the duration of the video recording and light exposure as a stimulus during the experiment. Locomotion behavior pattern of juveniles was assessed in control condition and also following exposure to sodium chloride as a positive control in order to validate the experimental protocol developed in this study. Results showed that juveniles locomotion behavior was stimulated under light exposure. Moreover, exposure to sublethal concentrations of sodium chloride (0.8 and 1.2 g/L) for 24 h was found to decrease juveniles' locomotion by almost three-times, thus validating our experimental methodology. This study allowed to provide a new tool for the assessment of stress condition impacts on the juveniles of the endangered FWPM, highlighting the interest of such non-destructive biomarker of health for protected species. Consequently, this will help in the improvement of our knowledge on M. margaritifera sensitivity to environmental pollution.
Collapse
Affiliation(s)
- Tiare Belamy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France; University of French Polynesia, EIO, UMR 241, F-98702, Faa'a, Tahiti, French Polynesia.
| | - Alexia Legeay
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | | | - Magalie Baudrimont
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| |
Collapse
|
10
|
Granada L, Lemos MFL, Bossier P, Novais SC. Swimming behaviour as an alternative endpoint to assess differences in abiotic stress sensitivities between strains of Brachionus koreanus (Rotifera: Monogononta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56137-56147. [PMID: 36913023 PMCID: PMC10121490 DOI: 10.1007/s11356-023-26190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Brachionus plicatilis is a cosmopolitan rotifer used as a model organism in several research areas and as live food in aquaculture. Being a species complex, responses to stressors vary even among strains of the same species and, thus, the responses of one species are not representative of the whole complex. This study aimed to address the effects of extreme salinity ranges, and different concentrations of hydrogen peroxide, copper, cadmium, and chloramphenicol, in two strains of B. koreanus (MRS10 and IBA3) from B. plicatilis species complex, by assessing effects on their survival and swimming capacity. Neonates (0-4 h old) were exposed to the stressors in 48 well-microplates, for 24 and 6 h, to evaluate lethal and behavioural effects, respectively. Tested conditions of chloramphenicol did not show any effects on rotifers. The behavioural endpoint showed to be particularly sensitive to assess the effects of high salinity, hydrogen peroxide, and copper sulfate, as swimming capacity impairment was observed for both strains in the lowest concentrations used in lethal tests. Overall, results showed that IBA3 was more tolerant to the majority of stressors, comparing to MRS10, which may be due to differences in physiological characteristics, highlighting the importance of performing multiclonal experiments. Also, swimming capacity inhibition proved to be a good alternative to the classical lethality tests, being sensitive to lower concentrations and with shorter exposure periods.
Collapse
Affiliation(s)
- Luana Granada
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| |
Collapse
|
11
|
Kim DI. Metabolic Rates of Japanese Anchovy (Engraulis japonicus) during Early Development Using a Novel Modified Respirometry Method. Animals (Basel) 2023; 13:ani13061035. [PMID: 36978576 PMCID: PMC10044659 DOI: 10.3390/ani13061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The allometric relationship between metabolic rate (VO2) and body mass (M) has been a subject of fascination and controversy for decades. Nevertheless, little is known about intraspecific size-scaling metabolism in marine animals such as teleost fish. The Japanese anchovy Engraulis japonicus is a planktotrophic pelagic fish with a rapid growth and metabolic rate. However, metabolic rate measurements are difficult in this species due to their extremely small body size after hatching. Herein, the metabolic rate of this species during its early developmental stage was measured for 47 individuals weighing 0.00009–0.09 g (from just after hatching to 43 days old) using the micro-semi-closed method, a newly modified method for monitoring metabolism developed specifically for this study. As a result, three distinct allometric phases were identified. During these phases, two stepwise increases in scaling constants occurred at around 0.001 and 0.01 g, although the scaling exponent constant remained unchanged in each phase (b^ = 0.683). Behavioral and morphological changes accompanied the stepwise increases in scaling constants. Although this novel modified respirometry method requires further validation, it is expected that this study will be useful for future metabolic ecology research in fish to determine metabolism and survival strategy.
Collapse
Affiliation(s)
- Dong In Kim
- Aquaculture Research Institute, Kindai University, Shirahama 3153, Nishimuro, Wakayama 649-2211, Japan
| |
Collapse
|
12
|
Agostini VO, Martinez ST, Muxagata E, Macedo AJ, Pinho GLL. Antifouling activity of isonitrosoacetanilides against microfouling and macrofouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26435-26444. [PMID: 36367651 DOI: 10.1007/s11356-022-24016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Biofouling is responsible for structural and economic damage to man-made surfaces. Antifouling paints with biocides have been applied to structures to avoid organism adhesion; however, they have high toxicity and are not able to prevent all biofouling processes, necessitating the periodic mechanical removal of organisms and paint reapplication. Thus, there is an urgent demand for novel, effective, and environmentally friendly antifouling alternatives. As isonitrosoacetanilide is the precursor for many compounds with antibacterial activity, we believe that it could have antifouling activity against microfouling and, consequently, against macrofouling. The aim of this work was to investigate the antifouling potential of six isonitrosoacetanilide compounds and their toxicity. The compounds were employed at different concentrations (0.625-1.25-2.5-5-10 µg mL-1) in this study. The biofilm and planktonic bacteria inhibition and biofilm eradication potential were evaluated by crystal violet assay, while Amphibalus amphitrite barnacle settlement was evaluated by cyprid settlement assay. Toxicity evaluation (LC50 and EC50) was performed with A. amphitrite nauplii II and cyprid larvae. At least one of the tested concentrations of 4-Br-INA, 4-CH3-INA, and 2-Br-INA compounds showed nontoxic antifouling activity against microfouling (antibiofilm) and macrofouling (antisettlement). However, only 4-CH3-INA and 2-Br-INA also showed biofilm eradication potential. These compounds with antibiofilm activity and nontoxic effects could be combined with acrylic base paint resin or added directly into commercial paints in place of toxicant biocides to cover artificial structures as friendly antifouling agents.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Regenera Moléculas do Mar, Centro de Biotecnologia da Universidade Federal do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-970, Brazil.
| | - Sabrina Teixeira Martinez
- Centro Interdisciplinar em Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Centro Universitário SENAI-CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Caixa Postal, 474, Rio Grande, RS, 96203-900, Brazil
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia da, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-900, Brazil
| | - Grasiela Lopes Leães Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Caixa Postal, 474, CEP, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
13
|
Piazza V, Gambardella C, Costa E, Miroglio R, Faimali M, Garaventa F. Cold storage effects on lethal and sublethal responses of Amphibalanus amphitrite Nauplii. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1078-1086. [PMID: 35838933 PMCID: PMC9458687 DOI: 10.1007/s10646-022-02571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Bioassays are extensively used in ecotoxicology and there is a constant need for even more sensitive, reliable and easy to rear and obtain model organisms. Larvae of the crustacean Amphibalanus amphitrite are a good ecotoxicological model, for their high sensitivity to a wide range of toxicants and emerging contaminants. A standardized protocol for this toxicity bioassay has been recently proposed. Nevertheless, a limit of this model organism is the lack of resting stages and the need to use larvae immediately after their release from adults, thus increasing laboratory efforts related to the maintenance of adults. The aim of this work is to verify if short-term cold storage of A. amphitrite larvae prior to use in ecotoxicological tests may affect the ecotoxicological responses of these organisms. Three end-points (mortality, immobilization and swimming speed alteration) were measured on nauplii after storing them at 4 ± 1 °C for different times (24, 72 and 120 h) before bioassay set-up. Bioassays were set up using: (i) clean filtered natural sea water (0.22 µm FNSW), (ii) a reference toxicant (Cadmium Nitrate) and (iii) an environmental matrix (sediment elutriate). Results show that mortality, differently from the other two endpoints, was not affected by cold-storage. Even after 5 days of larvae storage at 4 ± 1 °C before bioassay set up, mortality data were comparable to those obtained for non-cold-stored organisms. Moreover, larval sensitivity to the reference toxicant and sediment elutriate did not change. Regarding the other two end points, low cadmium concentrations significantly changed immobility and swimming activity in cold-stored nauplii compared to larvae used immediately after larval release. In conclusion, short-term cold storage of A. amphitrite nauplii before bioassay set up is an appropriate procedure in ecotoxicological testing if mortality is the endpoint to be considered for final evaluation.
Collapse
Affiliation(s)
- Veronica Piazza
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy.
| | - Chiara Gambardella
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| | - Elisa Costa
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| | - Roberta Miroglio
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| | - Marco Faimali
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| | - Francesca Garaventa
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16140, Genova, Italy
| |
Collapse
|
14
|
Bai Y, Henry J, Karpiński TM, Wlodkowic D. High-Throughput Phototactic Ecotoxicity Biotests with Nauplii of Artemia franciscana. TOXICS 2022; 10:508. [PMID: 36136473 PMCID: PMC9501151 DOI: 10.3390/toxics10090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Analysis of sensorimotor behavioral responses to stimuli such as light can provide an enhanced relevance during rapid prioritisation of chemical risk. Due to technical limitations, there have been, however, only minimal studies on using invertebrate phototactic behaviors in aquatic ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built analytical system for a high-throughput phototactic biotest with nauplii of euryhaline brine shrimp Artemia franciscana. We also, for the first time, present a novel and dedicated bioinformatic approach that facilitates high-throughput analysis of phototactic behaviors at scale with great fidelity. The nauplii exhibited consistent light-seeking behaviors upon extinguishing a brief programmable light stimulus (5500K, 400 lux) without habituation. A proof-of-concept validation involving the short-term exposure of eggs (24 h) and instar I larval stages (6 h) to sub-lethal concentrations of insecticides organophosphate chlorpyrifos (10 µg/L) and neonicotinoid imidacloprid (50 µg/L) showed perturbation in light seeking behaviors in the absence of or minimal alteration in general mobility. Our preliminary data further support the notion that phototactic bioassays can represent an attractive new avenue in behavioral ecotoxicology because of their potential sensitivity, responsiveness, and low cost.
Collapse
Affiliation(s)
- Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
| |
Collapse
|
15
|
Di Giannantonio M, Gambardella C, Miroglio R, Costa E, Sbrana F, Smerieri M, Carraro G, Utzeri R, Faimali M, Garaventa F. Ecotoxicity of Polyvinylidene Difluoride (PVDF) and Polylactic Acid (PLA) Microplastics in Marine Zooplankton. TOXICS 2022; 10:479. [PMID: 36006158 PMCID: PMC9416274 DOI: 10.3390/toxics10080479] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 05/09/2023]
Abstract
The aim of this study was to investigate the ecotoxicity of polyvinylidene difluoride (PVDF) and polylactic acid (PLA) microplastics (MPs) in two marine zooplankton: the crustacean Artemia franciscana and the cnidarian Aurelia sp. (common jellyfish). To achieve this goal, (i) MP uptake, (ii) immobility, and (iii) behavior (swimming speed, pulsation mode) of crustacean larval stages and jellyfish ephyrae exposed to MPs concentrations (1, 10, 100 mg/L) were assessed for 24 h. Using traditional and novel techniques, i.e., epifluorescence microscopy and 3D holotomography (HT), PVDF and PLA MPs were found in the digestive systems of the crustaceans and in the gelatinous tissue of jellyfish. Immobility was not affected in either organism, while a significant behavioral alteration in terms of pulsation mode was found in jellyfish after exposure to both PVDF and PLA MPs. Moreover, PLA MPs exposure in jellyfish induced a toxic effect (EC50: 77.43 mg/L) on the behavioral response. This study provides new insights into PLA and PVDF toxicity with the potential for a large impact on the marine ecosystem, since jellyfish play a key role in the marine food chain. However, further investigations incorporating additional species belonging to other trophic levels are paramount to better understand and clarify the impact of such polymers at micro scale in the marine environment. These findings suggest that although PVDF and PLA have been recently proposed as innovative and, in the case of PLA, biodegradable polymers, their effects on marine biota should not be underestimated.
Collapse
Affiliation(s)
| | - Chiara Gambardella
- Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), National Research Council, Via de Marini 16, 16149 Genova, Italy
| | - Roberta Miroglio
- Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), National Research Council, Via de Marini 16, 16149 Genova, Italy
| | - Elisa Costa
- Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), National Research Council, Via de Marini 16, 16149 Genova, Italy
| | - Francesca Sbrana
- Institute of Biophysics (CNR-IBF), National Research Council, Via de Marini 16, 16149 Genova, Italy
- Schaefer SEE srl, Via Luigi Einaudi 23, 45100 Rovigo, Italy
| | - Marco Smerieri
- Institute of Materials for Electronics and Magnetism (CNR-IMEM), National Research Council, Via Dodecaneso 33, 16149 Genova, Italy
| | - Giovanni Carraro
- Institute of Materials for Electronics and Magnetism (CNR-IMEM), National Research Council, Via Dodecaneso 33, 16149 Genova, Italy
| | - Roberto Utzeri
- Institute of Molecular Science and Technologies (CNR-SCITEC), National Research Council, Via de Marini 16, 16149 Genova, Italy
| | - Marco Faimali
- Institute for the Study of the Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), National Research Council, Via de Marini 16, 16149 Genova, Italy
| | - Francesca Garaventa
- Early PostDoc Mobility Grant—Swiss National Science Foundation, 3000 Bern, Switzerland
| |
Collapse
|
16
|
Won EJ, Byeon E, Lee YH, Jeong H, Lee Y, Kim MS, Jo HW, Moon JK, Wang M, Lee JS, Shin KH. Molecular evidence for suppression of swimming behavior and reproduction in the estuarine rotifer Brachionus koreanus in response to COVID-19 disinfectants. MARINE POLLUTION BULLETIN 2022; 175:113396. [PMID: 35149311 PMCID: PMC8824532 DOI: 10.1016/j.marpolbul.2022.113396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 05/06/2023]
Abstract
The increased use of disinfectants due to the spread of the novel coronavirus infection (e.g. COVID-19) has caused burden in the environment but knowledge on its ecotoxicological impact on the estuary environment is limited. Here we report in vivo and molecular endpoints that we used to assess the effects of chloroxylenol (PCMX) and benzalkonium chloride (BAC), which are ingredients in liquid handwash, dish soap products, and sanitizers used by consumers and healthcare workers on the estuarine rotifer Brachionus koreanus. PCMX and BAC significantly affected the life table parameters of B. koreanus. These chemicals modulated the activities of antioxidant enzymes such as superoxide dismutase and catalase and increased reactive oxygen species even at low concentrations. Also, PCMX and BAC caused alterations in the swimming speed and rotation rate of B. koreanus. Furthermore, an RNA-seq-based ingenuity pathway analysis showed that PCMX affected several signaling pathways, allowing us to predict that a low concentration of PCMX will have deleterious effects on B. koreanus. The neurotoxic and mitochondrial dysfunction event scenario induced by PCMX reflects the underlying molecular mechanisms by which PCMX produces outcomes deleterious to aquatic organisms.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, South Korea; Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyeong-Wook Jo
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, South Korea
| | - Joon-Kwan Moon
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan 15588, South Korea; Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, South Korea.
| |
Collapse
|
17
|
Cao S, Liu Z, Zhou B, Jiang Y, Xu M, Wang Y. Post-ecological effect and risk assessment of using modified clay in harmful algal bloom mitigation: An attempt based on the responses of zooplankton Brachionus plicatilis and bivalve Mytilus edulis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113134. [PMID: 34973604 DOI: 10.1016/j.ecoenv.2021.113134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The modified clay is the only worldwide-accepted practical method for mitigating algal bloom. Is it ecologically safe? To evidence it, a simulative bloom-occurring system of Karenia mikimotoi was set up, and the sentinel organisms of rotifer Brachionus plicatilis in sea surface and blue mussel Mytilus edulis on the benthos were respectively included. The organisms' physiological responses were determined as the indicators to reflect the ecological impacts when clay settled from surface to the bottom during the mimic bloom-mitigating process. Modified clay at a concentration of 0.1 g/L effectively removed the K. mikimotoi at an 81% removal rate, and its addition would not significantly strengthen the negative impacts on population dynamics and reproductive activities of B. plicatilis induced by sole K. mikimotoi within the first 2 h. Even an alleviation was observed at 2 d indicated by the increase of survival rate, egg and larva production after clay addition compared with those of 2 h. When the clay particles settled to benthos, the physical damage to the gills and digestive glands of M. edulis were found via the tissue and SEM observation, especially in higher treatment groups of 0.5 and 1.0 g/L, and filtering rate, digestive enzymes, condition index, water content and mortality were also influenced. However, little impact was found in group of 0.1 g/L. Risk assessment based on the adverse outcome pathway (AOP) model further revealed that the complete key event-key event relationship-adverse outcome pathway was only clearly observed in 0.5 g/L and 1 g/L groups but not in 0.1 g/L group, inferring the small ecological risk of 0.1 g/L. The integrated biomarker response (IBR) based on the mussel's physiological responses further backed up the AOP outcoming. The combined results from rotifer to bivalve emphasized on one conclusion that modified clay at 0.1 g/L was effective and ecologically safe in coastal bloom mitigation.
Collapse
Affiliation(s)
- Sai Cao
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhengyu Liu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yongshun Jiang
- College of Marine Science and Technology, Qingdao Agricultural University, Qingdao 266237, China.
| | - Mengxue Xu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Lins TF, O'Brien AM, Kose T, Rochman CM, Sinton D. Toxicity of nanoplastics to zooplankton is influenced by temperature, salinity, and natural particulate matter. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2678-2690. [DOI: 10.1039/d2en00123c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Increases in temperature/salinity promote nanoplastics toxicity, while organic matter/natural colloids mitigate toxicity.
Collapse
Affiliation(s)
- Tiago F. Lins
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Anna M. O'Brien
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S3B2, Ontario, Canada
| | - Talha Kose
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Chelsea M. Rochman
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S3B2, Ontario, Canada
| | - David Sinton
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| |
Collapse
|
19
|
Gambardella C, Leggio O, Montarsolo A, Harriague AC, Del Core M, Faimali M, Garaventa F. An integrated approach to characterize deep sediment toxicity in Genoa submarine canyons (NW Mediterranean). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2883-2893. [PMID: 34382166 DOI: 10.1007/s11356-021-15807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to evaluate deep sediment toxicity in Genoa submarine canyons (Northwestern Mediterranean), for the first time, by using an integrated approach that combined chemistry and ecotoxicology. Sediments were collected from the main submarine canyons in the Gulf of Genoa (Polcevera and Bisagno) and along the adjacent Western Open Slope. A multi-endpoint ecotoxicological approach was taken by exposing two crustacean larvae (Amphibalanus amphitrite and Artemia sp.). Lethal and sub-lethal responses (mortality, swimming behavior) were investigated. Chemical analysis showed that this area is characterized by metal enrichment, including lead, cadmium, chromium, and nickel. Ecotoxicological tests highlighted that elutriates from the different submarine canyons were toxic only for A. amphitrite nauplii: Polcevera Canyon and Western Open Slope sediments induced stronger lethal and sub-lethal ecotoxicological effects than those from Bisagno Canyon. No direct correlation was found between the outcome of chemical and ecotoxicological characterization. However, barnacle was the most prone species to metal contamination: lethal and sub-lethal responses found in this species may be linked to an increase in the concentration of some metals (i.e., Cr, Ni) from offshore to coastal waters, probably due to anthropogenic activity. These findings suggest that the proposed approach can be a suitable tool for deep-sea sediment contamination monitoring; however, the use of a battery of bioassays involving multiple species and endpoints is recommended to better clarify the dynamics of contaminants in marine sediments at very high depths.
Collapse
Affiliation(s)
- Chiara Gambardella
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 6, 16149, Genova, Italy.
| | - Oriana Leggio
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 6, 16149, Genova, Italy
| | - Alessio Montarsolo
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 6, 16149, Genova, Italy
| | - Anabella Covazzi Harriague
- Department for the Earth, Environment and Life Sciences (DiSTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Marianna Del Core
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via del Mare 3, 91021, Torretta Granitola, Italy
| | - Marco Faimali
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 6, 16149, Genova, Italy
| | - Francesca Garaventa
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 6, 16149, Genova, Italy
| |
Collapse
|
20
|
Lee Y, Yoon DS, Lee YH, Kwak JI, An YJ, Lee JS, Park JC. Combined exposure to microplastics and zinc produces sex-specific responses in the water flea Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126652. [PMID: 34329117 DOI: 10.1016/j.jhazmat.2021.126652] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/07/2023]
Abstract
Microplastics are ubiquitous environmental pollutants and a great threat to the aquatic environment. Due to their small size (ranging from 1 µm to 5 mm), microplastics be easily ingested by a wide range of organisms and can serve as a vector for various contaminants. In this study, additive or possible synergistic effects of microplastics and zinc were demonstrated through sex-specific alterations in behavior, redox status, and modulation of detoxification-related genes in Daphnia magna, with males being more sensitive than females with stronger modulations of antioxidant responses, particularly on glutathione S-transferases expressions. Furthermore, we demonstrated microplastics may act as vectors for metals (Zn2+) in the aquatic environment in D. magna, with reduced bio-concentration of the total Zn concentration, inducing greater toxicity. Our findings demonstrated synergistic toxicity of the heavy metal Zn and microplastics and could contribute to greater understanding of sex-specific effects of microplastics in aquatic organisms.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Bownik A, Wlodkowic D. Advances in real-time monitoring of water quality using automated analysis of animal behaviour. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147796. [PMID: 34049143 DOI: 10.1016/j.scitotenv.2021.147796] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Monitoring of freshwater quality and its potential sudden contamination is integral to human health, sustainable economic development and prediction of pollutant impact on aquatic ecosystems. Although there have been significant advances in technologies for automated sampling and continuous analysis of water physicochemical parameters, the current capabilities for real-time warning against rapidly developing unknown mixtures of chemical hazards are still limited. Conventional chemical analysis systems are not suitable for assessing unknown mixtures of chemicals as well as additive and/or synergetic effects on biological systems. From the perspective of neurotoxicology the acute exposures to chemical agents that affect nervous system and can enter the freshwater supplies accidentally or as a result of deliberate action, can only be reliably assessed using appropriate functional biological models. In this regard real-time biological early warning systems (BEWS), that can continuously monitor behavioural and/or physiological parameters of suitable aquatic bioindicator species, have been historically proposed to fill the gap and supplement conventional water quality test strategies. Alterations in sub-lethal neuro-behavioural traits have been proven as very sensitive and physiologically relevant endpoints that can provide highly integrative water quality sensing capabilities. Although BEWS are commonly regarded as non-specific and lacking both quantitative and qualitative detection capabilities, their advantages, if properly designed and implemented, lie in continuous sensing and early-warning information about sudden alteration in water quality parameters. In this work we review the future prospects of real-time biological early warning systems as well as recent developments that are anchored in historical successes and practical deployment examples. We concentrate on technologies utilizing analysis of behavioural and physiological endpoints of animal bioindicators and highlight the existing challenges, barriers to future development and demonstrate how recent advances in inexpensive electronics and multidisciplinary bioengineering can help revitalize the BEWS field.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
22
|
Machado AJT, Mataribu B, Serrão C, da Silva Silvestre L, Farias DF, Bergami E, Corsi I, Marques-Santos LF. Single and combined toxicity of amino-functionalized polystyrene nanoparticles with potassium dichromate and copper sulfate on brine shrimp Artemia franciscana larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45317-45334. [PMID: 33860426 DOI: 10.1007/s11356-021-13907-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The increasing use and disposal of plastics has become a persistent problem in the marine environment, calling for studies that refer to realistic scenarios to understand their effects on biota. Particularly, the understanding about the effects of co-exposure with nanoplastic particles and metals on aquatic organisms is still limited. The present work aimed to investigate the acute toxicity of amino-functionalized polystyrene nanoparticles (PS-NH2; 50 nm) as proxy for nanoplastics on brine shrimp Artemia franciscana larvae under different culture conditions and at different stages of development, as well as the combined effect with two reference toxicants - potassium dichromate (K2Cr2O7) and copper sulfate (CuSO4). Nauplii (instar II or III larval stages) were exposed to different concentrations of PS-NH2 (0.005 to 5 μg mL-1) for up to 48 h, with or without agitation in order to mimic a more realistic environmental scenario. Larval mobility and PS-NH2 accumulation were monitored under microscopy. PS-NH2 alone showed toxicity only at the highest concentration tested (5 μg mL-1) regardless the incubation method used (61.2 + 3.1% and 65.0 + 4.5% with and without agitation, respectively). Moreover, instar III stage was the most sensitive to PS-NH2 exposure (38.2% immobility in 24 h of exposure; 5 μg mL-1). Evidence of PS-NH2 retention in the gastrointestinal tract in a concentration- and time-dependent manner was also obtained. Mixtures of PS-NH2 (0.005 and 5 μg mL-1) with different concentrations of K2Cr2O7 increased the immobilization rate of the larvae after 48 h of exposure, when compared to the K2Cr2O7 alone. Similar results were observed for CuSO4 in the co-exposure conditions at different concentrations. However, exposing nauplii to a mixture of PS-NH2 (0.005 μg mL-1) and CuSO4 decreased immobilization rate, in comparison to the group exposed to CuSO4 alone. The present work highlights the potential risk posed by nanoplastics to zooplanktonic species through their interaction with other toxicants.
Collapse
Affiliation(s)
- Antonio Júdson Targino Machado
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil
- Programa de Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba (UFPB, Campus IV), Rio Tinto, Paraíba, Brazil
| | - Bianca Mataribu
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil
| | - Catarina Serrão
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil
| | - Leanderson da Silva Silvestre
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratório de Avaliação de Risco de Novas Tecnologias (LabRisco), Departamento de Biologia Molecular (DBM), Universidade Federal da Paraíba (UFPB, Campus I), João Pessoa, Paraíba, Brazil
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil.
- Programa de Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba (UFPB, Campus IV), Rio Tinto, Paraíba, Brazil.
| |
Collapse
|
23
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
24
|
Ñañez Pacheco GK, Sanabio Maldonado NS, Pastrana Alta RY, Aguilar Vitorino H. Short exposure of Artemia salina to group-12 metals: Comparing hatchability, mortality, lipid peroxidation, and swimming speed. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112052. [PMID: 33631635 DOI: 10.1016/j.ecoenv.2021.112052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The hatchability, mortality rate, lipid peroxide levels, and swimming speed of Artemia salina have been compared based on short exposures of ZnCl2, CdCl2, and HgCl2 in artificial seawater. The hatching tests were carried out for 12, 24, 36, and 48 h at 28 °C. Mortality rate and lipid peroxide (LPO) levels were determined after 24 h of exposure at 28 °C, in the dark, and on living larvae using the FOX method. The swimming speed was determined after 24 h using a microcomputer coupled to a digital camera, with simultaneous treatment of the recorded images every 25 s, at 25 °C, under red-light irradiation. Results showed that Zn caused a gradual inhibition of the hatching for concentrations <900 µmol L-1; however, Cd and Hg displayed almost complete inhibition for concentrations ≤100 µmol L-1. Also, the heavy metals caused a dose-dependent increase of mortality (LD50) in the following order: Zn = 3290 µmol L-1 < Cd = 2206 µmol L-1 < Hg = 15.6 µmol L-1. Furthermore, significant LPO levels were found for Cd (1500-2000 µmol L-1, p < 0.001) and Hg (5-20 µmol L-1, p < 0.001). Finally, the swimming speed values increased significantly, for Zn ≈ 2.5 mm s-1 (1500 µmol L-1, p < 0.001), Cd ≈ 3.5 mm s-1 (2000 µmol L-1, p < 0.05), and Hg ≈ 4.0 mm s-1 (15 µmol L-1, p < 0.05), after 24 h exposure. There is a clear dose-dependent toxicity, indicating that Zn, Cd and Hg can induce significant changes in hatchability, mortality, and ethological and biochemical parameters.
Collapse
Affiliation(s)
- Giuliana K Ñañez Pacheco
- BIOMET Research Group, Faculty of Science, National University of Engineering, Av. Túpac Amaru 210, Rímac 15333, Lima, Peru
| | - Nelson S Sanabio Maldonado
- BIOMET Research Group, Faculty of Science, National University of Engineering, Av. Túpac Amaru 210, Rímac 15333, Lima, Peru
| | - Roxana Y Pastrana Alta
- BIOMET Research Group, Faculty of Science, National University of Engineering, Av. Túpac Amaru 210, Rímac 15333, Lima, Peru
| | - Hector Aguilar Vitorino
- BIOMET Research Group, Faculty of Science, National University of Engineering, Av. Túpac Amaru 210, Rímac 15333, Lima, Peru; Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 0550800, SP, Brazil.
| |
Collapse
|
25
|
Parlapiano I, Biandolino F, Grattagliano A, Ruscito A, Libralato G, Prato E. Effects of commercial formulations of glyphosate on marine crustaceans and implications for risk assessment under temperature changes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112068. [PMID: 33636470 DOI: 10.1016/j.ecoenv.2021.112068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate-based formulations are the most commonly used herbicides worldwide with the risk of potential contamination of aquatic bodies. The present study assessed the response of four marine crustaceans to three different brands of herbicides Roundup®Platinum, Efesto® and Taifun® MK CL.T, under two selected temperatures of 20 °C and 30 °C. The harpacticoid copepod Tigriopus fulvus, the anostracan Artemia franciscana, the amphipod Corophium insidiosum and the isopod Sphaeroma serratum were chosen as testing organisms. Effects of herbicides and temperatures were assessed by estimating lethal concentrations. The results showed that the high temperature rises the toxicity of glyphosate with an increase of mortality of all the tested species. This is an important aspect for future risk assessments of pesticides under global climate change scenarios. Efesto® resulted the most toxic brand, showing C. insidiosum the most sensitive with 96 h-LC50 values of 3.25 mg/L acid equivalent (a.e.) at 30 °C and 7.94 mg/L a.e. at 20 °C followed by T. fulvus while A. franciscana and S. serratum were the less sensitive. This study provides important information for assessing the toxic effects of three different brands of glyphosate-based herbicides on non-target marine organisms suggesting that they should be carefully managed to minimize any negative impact on marine organisms.
Collapse
Affiliation(s)
- Isabella Parlapiano
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123 Taranto, Italy
| | - Francesca Biandolino
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123 Taranto, Italy
| | - Asia Grattagliano
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1, 00133 Roma, Italy
| | - Andrea Ruscito
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1, 00133 Roma, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Ermelinda Prato
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123 Taranto, Italy.
| |
Collapse
|
26
|
Kang HM, Byeon E, Jeong H, Lee Y, Hwang UK, Jeong CB, Yoon C, Lee JS. Arsenic exposure combined with nano- or microplastic induces different effects in the marine rotifer Brachionus plicatilis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105772. [PMID: 33618324 DOI: 10.1016/j.aquatox.2021.105772] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Besides the adverse biological effects induced by microplastics (MPs), the effects associated with sorption of ambient pollutants on MPs are considered as an emerging environmental problem as MPs act as a mediator of pollutants. The present study examines the combined effects of nano(micro)plastics (NMPs) and arsenic (As) by exposing the marine rotifer Brachionus plicatilis to MP particles at the micro-scale (6 μm) and nano-scale (nanoplastics, NPs) (50 nm) along with As. In vivo toxicity, bioaccumulation, and biochemical reactions were used to examine the effects of combined exposure. The results of in vivo experiments showed that As toxicity increased with NP exposure, whereas toxicity was alleviated by MPs, indicating a different mode of action between NPs and MPs in combination with As. The highest level of As bioaccumulation was detected in NP + As groups, and followed by MP + As and As-only exposure groups, whereas no significant difference between groups was shown for As metabolites. In addition, the activity of several ATP-binding cassette proteins that confer multixenobiotic resistance, which is responsible for efflux of As, was activated by As but significantly inhibited by NP exposure, supporting the findings of in vivo experiments. Our results show that the effects of combining exposure to As with NP and MPs differ depending on particle size and provide an in-depth understanding of both environmental pollutants.
Collapse
Affiliation(s)
- Hye-Min Kang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea; Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, 46083, South Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon, 22012, South Korea
| | - Cheolho Yoon
- Korea Basic Science Institute, Seoul Center, Seoul, 02841, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
27
|
Miguel TBAR, Porto ECM, de Paiva Pinheiro SK, de Castro Miguel E, Fernandes FAN, Rodrigues S. Protective Effect of Natural and Processed Coconut Water by Non-thermal Technologies Against Oxidative Stress in Brine Shrimp (Artemia salina). FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02600-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
High-Throughput Screening of Psychotropic Compounds: Impacts on Swimming Behaviours in Artemia franciscana. TOXICS 2021; 9:toxics9030064. [PMID: 33803064 PMCID: PMC8003060 DOI: 10.3390/toxics9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Animal behaviour is becoming increasingly popular as an endpoint in ecotoxicology due to its increased sensitivity and speed compared to traditional endpoints. However, the widespread use of animal behaviours in environmental risk assessment is currently hindered by a lack of optimisation and standardisation of behavioural assays for model species. In this study, assays to assess swimming speed were developed for a model crustacean species, the brine shrimp Artemia franciscana. Preliminary works were performed to determine optimal arena size for this species, and weather lux used in the experiments had an impact on the animals phototactic response. Swimming speed was significantly lower in the smallest arena, whilst no difference was observed between the two larger arenas, suggesting that the small arena was limiting swimming ability. No significant difference was observed in attraction to light between high and low light intensities. Arena size had a significant impact on phototaxis behaviours. Large arenas resulted in animals spending more time in the light side of the arena compared to medium and small, irrespective of light intensity. The swimming speed assay was then used to expose specimens to a range of psychotropic compounds with varying modes of action. Results indicate that swimming speed provides a valid measure of the impacts of behaviour modulating compounds on A. franciscana. The psychotropic compounds tested varied in their impacts on animal behaviour. Fluoxetine resulted in increased swimming speed as has been found in other crustacean species, whilst oxazepam, venlafaxine and amitriptyline had no significant impacts on the behaviours measured. The results from this study suggest a simple, fast, high throughput assay for A. franciscana and gains insight on the impacts of a range of psychotropic compounds on the swimming behaviours of a model crustacean species used in ecotoxicology studies.
Collapse
|
29
|
Cormier B, Gambardella C, Tato T, Perdriat Q, Costa E, Veclin C, Le Bihanic F, Grassl B, Dubocq F, Kärrman A, Van Arkel K, Lemoine S, Lagarde F, Morin B, Garaventa F, Faimali M, Cousin X, Bégout ML, Beiras R, Cachot J. Chemicals sorbed to environmental microplastics are toxic to early life stages of aquatic organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111665. [PMID: 33396175 DOI: 10.1016/j.ecoenv.2020.111665] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 05/24/2023]
Abstract
Microplastics are ubiquitous in aquatic ecosystems, but little information is currently available on the dangers and risks to living organisms. In order to assess the ecotoxicity of environmental microplastics (MPs), samples were collected from the beaches of two islands in the Guadeloupe archipelago, Petit-Bourg (PB) located on the main island of Guadeloupe and Marie-Galante (MG) on the second island of the archipelago. These samples have a similar polymer composition with mainly polyethylene (PE) and polypropylene (PP). However, these two samples are very dissimilar with regard to their contamination profile and their toxicity. MPs from MG contain more lead, cadmium and organochlorine compounds while those from PB have higher levels of copper, zinc and hydrocarbons. The leachates of these two samples of MPs induced sublethal effects on the growth of sea urchins and on the pulsation frequency of jellyfish ephyrae but not on the development of zebrafish embryos. The toxic effects are much more marked for samples from the PB site than those from the MG site. This work demonstrates that MPs can contain high levels of potentially bioavailable toxic substances that may represent a significant ecotoxicological risk, particularly for the early life stages of aquatic animals.
Collapse
Affiliation(s)
- Bettie Cormier
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden.
| | - Chiara Gambardella
- Institute for the study of Anthropic Impacts and Sustainability in Marine Environment - National Research Council (CNR-IAS), Genova, Italy
| | - Tania Tato
- Faculty of Marine Sciences, University of Vigo, E-36310 Vigo, Galicia, Spain
| | - Quentin Perdriat
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France
| | - Elisa Costa
- Institute for the study of Anthropic Impacts and Sustainability in Marine Environment - National Research Council (CNR-IAS), Genova, Italy
| | - Cloé Veclin
- CNRS/University of Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| | - Florane Le Bihanic
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France
| | - Bruno Grassl
- CNRS/University of Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| | - Florian Dubocq
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Anna Kärrman
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Kim Van Arkel
- Race for Water Foundation, Lausanne 1007, Switzerland
| | - Soazig Lemoine
- Laboratoire de biologie marine, Université des Antilles, French West Indies, Campus de Fouillole, BP 592, 97117, Pointe-à-Pitre, France
| | - Fabienne Lagarde
- Institut des Molécules et Matériaux du Mans (IMMM, UMR CNRS 6283), Université du Maine, Avenu Olivier Messiaen, F-72085 Le Mans, France
| | - Bénédicte Morin
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France
| | - Francesca Garaventa
- Institute for the study of Anthropic Impacts and Sustainability in Marine Environment - National Research Council (CNR-IAS), Genova, Italy
| | - Marco Faimali
- Institute for the study of Anthropic Impacts and Sustainability in Marine Environment - National Research Council (CNR-IAS), Genova, Italy
| | - Xavier Cousin
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, 34250 Palavas-les-Flots, France; University of Paris-Saclay, AgroParisTech, INRAE, GABI, 78350 Jouy-en-Josas, France
| | - Marie-Laure Bégout
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, 34250 Palavas-les-Flots, France
| | - Ricardo Beiras
- Faculty of Marine Sciences, University of Vigo, E-36310 Vigo, Galicia, Spain
| | - Jérôme Cachot
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France.
| |
Collapse
|
30
|
Zhang X, Tang X, Yang Y, Sun Z, Ma W, Tong X, Wang C, Zhang X. Responses of the reproduction, population growth and metabolome of the marine rotifer Brachionus plicatilis to tributyl phosphate (TnBP). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116462. [PMID: 33497947 DOI: 10.1016/j.envpol.2021.116462] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The typical alkyl organophosphorus flame retardant tributyl phosphate (TnBP) can leak from common products into the marine environment, with potential negative effects on marine organisms. However, risk assessments for TnBP regarding zooplankton are lacking. In this study, a marine rotifer, Brachionus plicatilis, was used to analyze the effect of TnBP (0.1 μg/L, environmental concentration; 1 and 6 mg/L) on reproduction, population growth, oxidative stress, mitochondrial function and metabolomics. Mortality increased as the TnBP concentration rose; the 24-h LC50 value was 12.45 mg/L. All tested TnBP concentrations inhibited B. plicatilis population growth, with reproductive toxicity at the higher levels. Microstructural imaging showed ovary injury, the direct cause of reproductive toxicity. Despite elevated glutathione reductase activities, levels of reactive oxygen species and malonyldialdehyde increased under TnBP stress, indicating oxidative imbalance. TnBP induced mitochondrial malformation and activity suppression; the ROS scavenger N-acetylcysteine alleviated this inhibition, suggesting an internal connection. Nontargeted metabolomics revealed 398 and 583 differentially expressed metabolites in the 0.1 μg/L and 6 mg/L treatments relative to control, respectively, which were enriched in the pathways such as biosynthesis of amino acids, purine metabolism, aminoacyl-tRNA biosynthesis. According to metabolic pathway analysis, oxidative stress from purine degradation, mitochondrial dysfunction, disturbed lipid metabolism and elevated protein synthesis were jointly responsible for reproduction and population growth changes. This study echoes the results previously found in rotifer on trade-off among different life processes in response to environmental stress. Our systematic study uncovers the TnBP toxic mode of action.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Zijie Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Wenqian Ma
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xin Tong
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Chengmin Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
31
|
Li XD, Wang XY, Xu ME, Jiang Y, Yan T, Wang XC. Progress on the usage of the rotifer Brachionus plicatilis in marine ecotoxicology: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105678. [PMID: 33197688 DOI: 10.1016/j.aquatox.2020.105678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The rotifer, Brachionus plicatilis, is a widely used model species in marine ecotoxicology for evaluating pollutions, toxins, and harmful algae. In this paper, the marine ecotoxicology of Brachionus plicatilis was reviewed, including toxicity measurements of harmful algae species and environmental stresses. In addition, marine pollution involving pesticides, heavy metals, drugs, petroleum, and petrochemicals were addressed. Methods for measuring toxicity were also discussed. The standard acute lethal assay and the chronic population dynamics test were indicated as common methods of toxicity evaluating using B. plicatilis. Research on other biomarkers, such as behaviour, enzyme activity, or gene expression, are also reported here, with potential applications for fast detection or the scientific exploration of underlying molecular mechanisms. It is suggested that the methods selected should reflect the experimental purpose. Additionally, series assays should be conducted for comprehensive evaluation of ecotoxicity as well as to elucidate the correct mechanisms. Genetic methods, such as transcriptomics, were suggested as useful tools for exploring the toxicity mechanism using the rotifer B. plicatilis.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Xin-Yi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Meng-En Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Tian Yan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Xiao-Cheng Wang
- National Marine Environmental Monitoring Centre, Dalian, Liaoning Province, 116023, China
| |
Collapse
|
32
|
Rahi JE, Weeber MP, Serafy GE. Modelling the effect of behavior on the distribution of the jellyfish Mauve stinger (Pelagia noctiluca) in the Balearic Sea using an individual-based model. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Dong L, Wang H, Ding T, Li W, Zhang G. Effects of TiO
2
nanoparticles on the life‐table parameters, antioxidant indices, and swimming speed of the freshwater rotifer
Brachionus calyciflorus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:230-239. [DOI: 10.1002/jez.2343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/01/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Li‐Li Dong
- College of Life and Environment SciencesHuangshan University Huangshan Anhui P. R. China
| | - Heng‐Xing Wang
- College of Life and Environment SciencesHuangshan University Huangshan Anhui P. R. China
| | - Tao Ding
- College of Life and Environment SciencesHuangshan University Huangshan Anhui P. R. China
| | - Wei Li
- College of Life and Environment SciencesHuangshan University Huangshan Anhui P. R. China
| | - Gen Zhang
- Shenzhen GenProMetab Biotechnology Company Limited Shenzhen Guangdong P. R. China
| |
Collapse
|
34
|
Costa E, Gambardella C, Piazza V, Vassalli M, Sbrana F, Lavorano S, Garaventa F, Faimali M. Microplastics ingestion in the ephyra stage of Aurelia sp. triggers acute and behavioral responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109983. [PMID: 31785944 DOI: 10.1016/j.ecoenv.2019.109983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/24/2023]
Abstract
For the first time, we report a correspondence between microplastics (MP) ingestion and ecotoxicological effects in gelatinous zooplankton (Cnidarian jellyfish). The ephyra stage of the jellyfish Aurelia sp. was exposed to both environmental and high concentrations of fluorescent 1-4 μm polyethylene MP (0.01-10 mg/L). After 24 and 48 h, MP accumulation, acute (Immobility) and behavioral (Frequency pulsation) endpoints were investigated. MP were detected by confocal and tomographic investigations on gelatinous body and mouth, either attached on the surface or ingested. This interaction was responsible for impairing ephyrae survival and behavior at all tested concentrations after 24 h. Acute and behavioral effects were also related to mechanical disturbance, caused by MP, triggering a loss of radial symmetry. Contaminated ephyrae exposed to clean seawater showed full recovery after 72 h highlighting the organisms without the microspheres, attached on body jellyfish surface around the mouth and lappets. In conclusion, short-term exposure to MP affects ephyrae jellyfish health, impairing both their survival and behavior. Polyethylene MP temporarily affect both Immobility and Frequency of pulsation of Aurelia sp. jellyfish. This study provides a first step towards understanding and clarifying the potential impacts of MP contamination in gelatinous zooplankton.
Collapse
Affiliation(s)
- Elisa Costa
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| | - Chiara Gambardella
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| | - Veronica Piazza
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| | - Massimo Vassalli
- National Research Council, Institute of Biophysics (CNR-IBF), Via de Marini 6, 16149, Genova, Italy.
| | | | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128, Genoa, Italy.
| | - Francesca Garaventa
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| | - Marco Faimali
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Via de Marini 6, 16149, Genova, Italy.
| |
Collapse
|
35
|
Gamain P, Roméro-Ramirez A, Gonzalez P, Mazzella N, Gourves PY, Compan C, Morin B, Cachot J. Assessment of swimming behavior of the Pacific oyster D-larvae (Crassostrea gigas) following exposure to model pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3675-3685. [PMID: 30706262 DOI: 10.1007/s11356-019-04156-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
This study describes an image analysis method that has been used to analyze the swimming behavior of native oyster D-larvae (Crassostrea gigas) from the Arcachon Bay (SW, France). In a second time, this study evaluated the impact of copper and S-metolachlor pollutants on D-larvae swimming activity and the possible relationship between developmental malformations and abnormal swimming behavior. Analyses in wild and cultivated oyster D-larvae were investigated during two breeding-seasons (2014 and 2015) at different sampling sites and dates. In controlled conditions, the average speed of larvae was 144 μm s-1 and the maximum speed was 297 μm s-1 while the trajectory is mainly rectilinear. In the presence of environmental concentration of copper or S-metolachlor, no significant difference in maximum or average larval speed was observed compared to the control condition but the percentage of circular trajectory increased significantly while the rectilinear swimming larvae significantly declined. The current study demonstrates that rectilinear trajectories are positively correlated to normal larvae while larvae with shell anomalies are positively correlated to circular trajectories. This abnormal behavior could affect the survival and spread of larvae, and consequently, the recruitment and colonization of new habitats.
Collapse
Affiliation(s)
| | | | | | - Nicolas Mazzella
- IRSTEA, UR EABX (Water Research Unit), 50 avenue de Verdun, Gazinet, 33612, Cestas Cedex, France
| | | | | | | | - Jérôme Cachot
- Univ. Bordeaux, EPOC, UMR 5805, 33600, Pessac, France.
| |
Collapse
|
36
|
Khan NA, Ninawe AS, Sharma J, Chakrabarti R. Effect of light intensity on survival, growth and physiology of rohu,Labeo rohita(Cyprinidae) fry. Int J Radiat Biol 2020; 96:552-559. [DOI: 10.1080/09553002.2020.1704905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nawaz Alam Khan
- Aqua Research Lab, Department of Zoology, University of Delhi, New Delhi, India
| | | | - JaiGopal Sharma
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Rina Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, New Delhi, India
| |
Collapse
|
37
|
Savall ASP, Fidélis EM, Gutierrez MEZ, Martins BB, Gervini VC, Puntel RL, Roos DH, Ávila DS, Pinton S. Pre‐clinical evidence of safety and protective effect of isatin and oxime derivatives against malathion‐induced toxicity. Basic Clin Pharmacol Toxicol 2019; 126:399-410. [DOI: 10.1111/bcpt.13359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
|
38
|
Di Lorenzo T, Di Cicco M, Di Censo D, Galante A, Boscaro F, Messana G, Paola Galassi DM. Environmental risk assessment of propranolol in the groundwater bodies of Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113189. [PMID: 31542673 DOI: 10.1016/j.envpol.2019.113189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
A growing concern for contamination due to pharmaceutical compounds in groundwater is expanding globally. The β-blocker propranolol is a β-adrenoceptors antagonist commonly detected in European groundwater bodies. The effect of propranolol on stygobiotic species (obligate groundwater dweller species) is compelling in the framework of environmental risk assessment (ERA) of groundwater ecosystems. In fact, in Europe, ERA procedures for pharmaceuticals in groundwater are based on data obtained with surrogate surface water species. The use of surrogates has aroused some concern in the scientific arena since the first ERA guideline for groundwater was issued. We performed an ecotoxicological and a behavioural experiment with the stygobiotic crustacean species Diacyclops belgicus (Copepopda) to estimate a realistic value of the Predicted No Effect Concentration (PNEC) of propranolol for groundwater ecosystems and we compared this value with the PNEC estimated based on EU ERA procedures. The results of this study showed that i) presently, propranolol does not pose a risk to groundwater bodies in Europe at the concentrations shown in this study and ii) the PNEC of propranolol estimated through the EU ERA procedures is very conservative and allows to adequately protect these delicate ecosystems and their dwelling fauna. The methodological approach and the results of this study represent a first contribution to the improvement of ERA of groundwater ecosystems.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
| | - Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| | - Davide Di Censo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy; Institute for superconductors, oxides and other innovative materials and devices, National Research Council (CNR-SPIN), Via Vetoio 1, 67100 L'Aquila, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Gran Sasso, Assergi, 67100, L'Aquila, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center, University of Florence, Via U. Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Giuseppe Messana
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, 10 L'Aquila, Italy
| |
Collapse
|
39
|
Agostini VO, Macedo AJ, Muxagata E, da Silva MV, Pinho GLL. Natural and non-toxic products from Fabaceae Brazilian plants as a replacement for traditional antifouling biocides: an inhibition potential against initial biofouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27112-27127. [PMID: 31317435 DOI: 10.1007/s11356-019-05744-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
In this study, we screened for the antifouling activity of 15 species plant extracts from Brazilian the Brazilian Caatinga Fabaceae against the initial colonization of natural marine bacterial biofilm. We also investigated the potential toxicity of extracts against planktonic and benthic non-target organisms. Aqueous extracts of plants collected in the Caatinga biome (PE, Brazil) were prepared and tested at different concentration levels (0, 0.5, 1, 2, 4, and 8 mg mL-1). Natural marine bacterial consortium was inoculated in multi-well plates and incubated with the different treatments for 48 h. The biofilm and planktonic bacterial density and biomass inhibition were evaluated along with biofilm biomass eradication. The extracts that showed the highest bacterial biofilm inhibition were evaluated for toxicity against microalgae and crustaceans. The biofilm and planktonic bacterial inhibition potential were evaluated through flow cytometry and spectrophotometry. The selected treatments were evaluated for their toxicity using the microalgae Chaetoceros calcitrans, the copepod Nitokra sp., and the brine shrimp Artemia salina as bioindicators. Our work demonstrates the biotechnological potential of Fabaceae plant compounds as a safe antifouling alternative. Anadenanthera colubrina var. cebil fruits and Apuleia leiocarpa leaf extracts showed antibiofilm activity (≥ 80%), while Myroxylon peruiferum and Dioclea grandiflora leaf extracts showed antibiotic activity. These extracts were safe to planktonic and benthic non-target organisms. The results of this study point to potential substitutes to highly toxic antifouling paints and shed light on the prospect of a yet to be explored biome for more sustainable alternatives in biofouling research.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Caixa Postal, 474, Rio Grande, RS, CEP: 96203-900, Brazil.
- Programa de Pós-graduação em Oceanologia (PPGO), Programa Nacional de Pós-Doutorado da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD-CAPES), Rio Grande, RS, Brazil.
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana - Faculdade de Farmácia e Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Bairro Azenha, Porto Alegre, RS, 90610-000, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Caixa Postal, 474, Rio Grande, RS, 96203-900, Brazil
| | - Márcia Vanusa da Silva
- Laboratório de Produtos Naturais - Departamento de Bioquímica da Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Grasiela Lopes Leães Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Caixa Postal, 474, Rio Grande, RS, CEP: 96203-900, Brazil
| |
Collapse
|
40
|
Khan NA, Sharma J, Chakrabarti R. The study of ameliorative effect of dietary supplementation of vitamin C, vitamin E, and tryptophan on Labeo rohita (Cyprinidae) fry exposed to intense light. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1153-1165. [PMID: 30847628 DOI: 10.1007/s10695-019-00626-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The stress ameliorating effect of dietary supplementation of vitamin C, vitamin E, and tryptophan on rohu Labeo rohita fry was evaluated. Rohu fry (1.1 ± 0.03 g) were cultured under five different feeding regimes: enriched with 0.08% vitamin C (D1), 0.02% vitamin E (D2), 1.42% tryptophan (D3), a combination of these three ingredients at similar doses (D4), and control diet (D5). Rohu fry of D5 were divided into two groups-exposed to experimental light (D5FL) and ambient light (114 ± 4 lx, D5AL). All fry (except D5AL) were exposed at light intensity of 3442 ± 648 lx. Feeding of rohu with enriched diets significantly (P < 0.05) enhanced the survival rate and average weight. A 15-25% higher survival and 1.3-1.8-fold higher average weight were recorded in rohu fed with enriched diet compared to D5FL treatment. Supplementation of vitamin C in diet (D1) of rohu resulted in 4.1-fold and 6.9-fold higher nitric oxide synthase and reduced glutathione (GSH) levels, respectively compared to the D5FL treatment. The tryptophan-enriched diet (D3) showed 5.8-fold higher melatonin and 4.4-fold lower cortisol levels in rohu compared to the D5FL treatment. Significantly (P < 0.05) higher nitric oxide synthase, GSH and melatonin, and lower cortisol, glucose, thiobarbituric acid reactive substances, carbonyl protein, glutathione S-transferase, and glutathione peroxidase levels were found in D4 diet fed rohu compared to the other treatments. Reduced level of stress in D4 treatment resulted in best performance of rohu in terms of less swimming activity and higher survival and growth compared to the other treatments.
Collapse
Affiliation(s)
- Nawaz Alam Khan
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - JaiGopal Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, Delhi, 110042, India
| | - Rina Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
41
|
Pelizaro BI, Braga FC, Crispim BDA, de Barros LGML, Pessatto LR, Oliveira EJT, Vani JM, de Souza AP, Grisolia AB, Antoniolli-Silva ACMB, de Lima DP, Dos Santos Jaques JA, Beatriz A, Oliveira RJ. Assessment of acute toxicity and cytotoxicity of fluorescent markers produced by cardanol and glycerol, which are industrial waste, to different biological models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9193-9202. [PMID: 30719661 DOI: 10.1007/s11356-019-04376-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The amphyphylic triazoanilines recently synthesized 1-(4-(3-aminophenyl)-1H-1,2,3- triazole-1-yl)-3-(3-pentadecylphenoxy)propan-2-ol (1) and 1-(4-(4-aminophenyl)-1H- 1,2,3-triazole-1-yl)-3-(3-pentadecylphenoxy)propan-2-ol (2), synthesized from cardanol and glycerol, have photophysical properties which allow their use in the development of fluorescent biomarkers with applicability in the biodiesel quality control. Based on this, the present research evaluated the toxic effects of both compounds in different biological models through the investigation of survival and mortality percentages as a measure of acute toxicity on Daphnia similis and Oreochromis niloticus, larvicidal assay against Aedes aegypti, and cytotoxic activity on mammary cells. Results demonstrate that these triazoanilines 1 and 2 have shown low acute toxicity to the biological models investigated in this study up to the following concentrations: 4.0 mg L-1 (D. similis), 4.0 mg L-1 (A. aegypti larvae), 1.0 mg L-1 (O. niloticus), and 1.0 mg mL-1 (mammary cells). This fact suggests the potential for safe use of compounds 1 and 2 as fluorescent markers for the monitoring of biodiesel quality, even in the case of environmental exposure. Besides all of that, the reuse of cardanol and glycerol, both industrial wastes, favors the maintenance of environmental health and is in agreement with the assumptions of green chemistry. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Bruno Ivo Pelizaro
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Master's Program in Pharmacy, Faculty of Pharmaceutical Sciences, Food and Nutrition - FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Felipe Camargo Braga
- Chemistry Institute - INQUI, SINTMOL Laboratory, Federal University of Mato Grosso do Sul, Avenue Senador Filinto Müller, 1555 - Universitário, Campo Grande, Mato Grosso do Sul, 79074-460, Brazil
| | - Bruno do Amaral Crispim
- Laboratory of Ecotoxicology and Genotoxicity (LECOGEN), Faculty of Biological and Environmental Sciences - FCBA, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Luiz Guilherme Maiolino Lacerda de Barros
- Laboratory of Environmental Quality, Faculty of Engineering Architecture and Urbanism and Geography - FAENG, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lucas Roberto Pessatto
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Programme in Genetics and Molecular Biology, Department of General Biology, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Edwin José Torres Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Programme in Genetics and Molecular Biology, Department of General Biology, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Juliana Miron Vani
- Graduate Programme in Health and Development in the Central-West Region, School of Medicine (FAMED) "Dr. Hélio Mandetta", Federal University of Mato Grosso do Sul (UFMS), Cidade Universitária, S/N., Campo Grande, MS, 79070-900, Brazil
| | - Antonio Pancrácio de Souza
- Biosciences Institute- INBIO, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alexeia Barufatti Grisolia
- Laboratory of Ecotoxicology and Genotoxicity (LECOGEN), Faculty of Biological and Environmental Sciences - FCBA, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Andréia Conceição Milan Brochado Antoniolli-Silva
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Programme in Health and Development in the Central-West Region, School of Medicine (FAMED) "Dr. Hélio Mandetta", Federal University of Mato Grosso do Sul (UFMS), Cidade Universitária, S/N., Campo Grande, MS, 79070-900, Brazil
| | - Dênis Pires de Lima
- Chemistry Institute - INQUI, SINTMOL Laboratory, Federal University of Mato Grosso do Sul, Avenue Senador Filinto Müller, 1555 - Universitário, Campo Grande, Mato Grosso do Sul, 79074-460, Brazil
| | - Jeandre Augusto Dos Santos Jaques
- Master's Program in Pharmacy, Faculty of Pharmaceutical Sciences, Food and Nutrition - FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Adilson Beatriz
- Chemistry Institute - INQUI, SINTMOL Laboratory, Federal University of Mato Grosso do Sul, Avenue Senador Filinto Müller, 1555 - Universitário, Campo Grande, Mato Grosso do Sul, 79074-460, Brazil.
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Brazilian Hospital Services Company (EBSERH), Campo Grande, Mato Grosso do Sul, Brazil.
- Graduate Programme in Genetics and Molecular Biology, Department of General Biology, State University of Londrina (UEL), Londrina, Paraná, Brazil.
- Graduate Programme in Health and Development in the Central-West Region, School of Medicine (FAMED) "Dr. Hélio Mandetta", Federal University of Mato Grosso do Sul (UFMS), Cidade Universitária, S/N., Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
42
|
Ragavendran C, Srinivasan R, Kim M, Natarajan D. Aspergillus terreus (Trichocomaceae): A Natural, Eco-Friendly Mycoinsecticide for Control of Malaria, Filariasis, Dengue Vectors and Its Toxicity Assessment Against an Aquatic Model Organism Artemia nauplii. Front Pharmacol 2018; 9:1355. [PMID: 30534070 PMCID: PMC6275207 DOI: 10.3389/fphar.2018.01355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023] Open
Abstract
Vector-borne diseases like malaria, filariasis, and dengue are transmitted by mosquitoes and they cause global mortality and morbidity due to an increased resistance against commercial insecticides. The present study was aimed to evaluate the neurobehavioral toxicity, knock-down effect, histopathology, ovicidal, adulticidal, and smoke toxicity effect of Aspergillus terreus extract against three mosquito species, namely Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti (Diptera: Culicidae). The isolated fungal strain was identified as A. terreus (GenBank accession no: KX694148.1) through morphological and molecular (phylogenetic) analysis. The morphological changes in the treated fourth instar larvae shown the demelanization of cuticle and shrinkage of the internal cuticle of anal papillae. The time duration of extract exposure against the larvae determines the level of toxicity. The extract treated larvae were displayed excitation, violent vertical and horizontal movements with aggressive anal biting behavior as the toxic effect on the neuromuscular system. The results of the biochemical analysis indicated that a decrease in the level of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase in extract treated fourth instar larvae of all tested mosquito species. The findings of histopathological investigation shown the disorganization of the abdominal region, mainly in mid, hindgut, and gastric caeca, loss of antenna, lateral hair, caudal hair, upper and lower head hairs in the mycelium extract treated An. stephensi, Cx. quinquefasciatus, and Ae. aegypti. The ovicidal bioassay test results showed the mosquito hatchability percentage was directly related to the concentrations of mycelium extract. Nil hatchability of mosquito eggs was noticed at 500 μg/ml concentration. The adulticidal activity of fungal mycelia ethyl acetate extract resulted in a dose-dependent activity (15 and 30 min recovery periods). The higher concentration of extract (1000 mg/L) acted as a repellent, the adult mosquitoes showed restless movement, uncontrolled/anesthetic flight at last died. The better adulticidal activity was observed in the ethyl acetate extract against An. stephensi, Cx. quinquefasciatus followed by Ae. aegypti with the best score of LD50 and LD90 values and nil mortality was found in the control. The results of smoke toxicity assay of the mycelia extract exhibited significant mortality rate against Ae. aegypti (91%), Cx. quinquefasciatus (89%), and An. stephensi (84%). In addition, the present investigation reported the stability and toxic effects of A. terreus mycelium ethyl acetate extract on Artemia nauplii. The swimming speed (0.88 mm s-1) of A. terreus was reduced with ethyl extract 24 h treatment whereas, the control A. nauplii showed the normal speed of 2.96 mm s-1. Altered behavior and swimming movement were observed in the 8 h A. terreus mycelium extract treated A. nauplii. A pale yellow color substance (metabolites) was found in the mid-gut region of the mycelial extract exposed A. nauplii. The outcome of the present study, suggest that the A. terreus metabolites might serve as an alternative, cost-effective, eco-friendly, and target specific mosquitocidal agent in the future.
Collapse
Affiliation(s)
- C. Ragavendran
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, India
| | - R. Srinivasan
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Department of Food Science and Technology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, India
| |
Collapse
|
43
|
Sarasamma S, Audira G, Juniardi S, Sampurna BP, Liang ST, Hao E, Lai YH, Hsiao CD. Zinc Chloride Exposure Inhibits Brain Acetylcholine Levels, Produces Neurotoxic Signatures, and Diminishes Memory and Motor Activities in Adult Zebrafish. Int J Mol Sci 2018; 19:ijms19103195. [PMID: 30332818 PMCID: PMC6213992 DOI: 10.3390/ijms19103195] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer’s Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid β) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Bonifasius Putera Sampurna
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, No. 55 Hwa-Kang Rd, Taipei 11114, Taiwan.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
44
|
Beiras R, Bellas J, Cachot J, Cormier B, Cousin X, Engwall M, Gambardella C, Garaventa F, Keiter S, Le Bihanic F, López-Ibáñez S, Piazza V, Rial D, Tato T, Vidal-Liñán L. Ingestion and contact with polyethylene microplastics does not cause acute toxicity on marine zooplankton. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:452-460. [PMID: 30142596 DOI: 10.1016/j.jhazmat.2018.07.101] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 05/23/2023]
Abstract
Toxicity of polyethylene microplastics (PE-MP) of size ranges similar to their natural food to zooplanktonic organisms representative of the main taxa present in marine plankton, including rotifers, copepods, bivalves, echinoderms and fish, was evaluated. Early life stages (ELS) were prioritized as testing models in order to maximize sensitivity. Treatments included particles spiked with benzophenone-3 (BP-3), a hydrophobic organic chemical used in cosmetics with direct input in coastal areas. Despite documented ingestion of both virgin and BP-3 spiked microplastics no acute toxicity was found at loads orders of magnitude above environmentally relevant concentrations on any of the invertebrate models. In fish tests some effects, including premature or reduced hatching, were observed after 12 d exposure at 10 mg L-1 of BP-3 spiked PE-MP. The results obtained do not support environmentally relevant risk of microplastics on marine zooplankton. Similar approaches testing more hydrophobic chemicals with higher acute toxicity are needed before these conclusions could be extended to other organic pollutants common in marine ecosystems. Therefore, the replacement of these polymers in consumer products must be carefully considered.
Collapse
Affiliation(s)
- R Beiras
- ECIMAT, University of Vigo, Illa de Toralla E-36331, Vigo, Galicia, Spain.
| | - J Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Cabo Estay, E-36390, Vigo, Galicia, Spain
| | - J Cachot
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400 Talence, France
| | - B Cormier
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - X Cousin
- IFREMER, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, UMR MARBEC, chemin de Maguelone, 34250 Palavas, France; UMR GABI INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - M Engwall
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | | | - F Garaventa
- CNR-ISMAR, Via de Marini 6, 16149 Genova, Italy
| | - S Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - F Le Bihanic
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400 Talence, France
| | - S López-Ibáñez
- ECIMAT, University of Vigo, Illa de Toralla E-36331, Vigo, Galicia, Spain
| | - V Piazza
- CNR-ISMAR, Via de Marini 6, 16149 Genova, Italy
| | - D Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Cabo Estay, E-36390, Vigo, Galicia, Spain
| | - T Tato
- ECIMAT, University of Vigo, Illa de Toralla E-36331, Vigo, Galicia, Spain
| | - L Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Cabo Estay, E-36390, Vigo, Galicia, Spain
| |
Collapse
|
45
|
Piazza V, Gambardella C, Garaventa F, Massanisso P, Chiavarini S, Faimali M. A new approach to testing potential leaching toxicity of fouling release coatings (FRCs). MARINE ENVIRONMENTAL RESEARCH 2018; 141:305-312. [PMID: 30274719 DOI: 10.1016/j.marenvres.2018.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/02/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Fouling release coatings (FRCs) are today the main environment-friendly alternative to traditional self-polishing coatings, that continuously release biocides and/or heavy metals into water. FRCs are available on the market as environmentally friendly AF paints and most of them do not contain bioactive agents, however no complete and reliable assessment of their environmental impact has yet been carried out. Only few literature data proving their AF efficacy combined with a demonstrated lack of toxicological effects are available. Ecotoxicological bioassays are commonly used to predict the potential environmental impact of traditional AF paints. Standardized methodologies to obtain leaching products from biocide-based paints are available, while few studies propose experimental methods to assess the potential effects of biocide-free FRCs leachates on non-target organisms. The aim of this work is to propose an experimental protocol to obtain leaching products from biocide-free FRCs in order to evaluate the potential release of substances having toxic effects, by means of an ecotoxicological bioassay. Two ecotoxicological end-points with different sensitivity levels were considered (multi-end-point approach). Five silicone-based commercial coatings were used: their leaching products were collected after different immersion times following the developed experimental method and then two ecotoxicological end-points were evaluated on II stage nauplii of the crustacean Amphibalanus amphitrite as model organism. Moreover, chemical analyses were performed on leachates collected after each immersion time, focusing on the presence of metals in leaching products. From the results obtained from the bioassay, even if not indicative of the real environmental impact of FRCs, a release of toxic substances was observed from tested coatings during early immersion stages, likely to affect the exposed model organism. The potential leaching toxicity of the five tested products was compared. No clear correspondence could be identified between the concentrations of metals detected in leachates and the obtained ecotoxicological data, thus suggesting that other active components might be released by FRCs responsible for the toxic effects pointed out on A. amphitrite larvae.
Collapse
Affiliation(s)
- Veronica Piazza
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149, Genova, Italy.
| | - Chiara Gambardella
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149, Genova, Italy
| | - Francesca Garaventa
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149, Genova, Italy
| | | | | | - Marco Faimali
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149, Genova, Italy
| |
Collapse
|
46
|
Gambardella C, Morgana S, Bramini M, Rotini A, Manfra L, Migliore L, Piazza V, Garaventa F, Faimali M. Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. MARINE ENVIRONMENTAL RESEARCH 2018; 141:313-321. [PMID: 30274720 DOI: 10.1016/j.marenvres.2018.09.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/28/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to detect ecotoxicological effects of 0.1 μm polystyrene microbeads in marine organisms belonging to different trophic levels. MP build up, lethal and sub-lethal responses were investigated in the bacterium Vibrio anguillarum (culturability), in the green microalga Dunaliella tertiolecta (growth inhibition), in the rotifer Brachionus plicatilis (mortality and swimming speed alteration) and in the sea urchin Paracentrotus lividus (immobility and swimming speed alteration) exposed to a wide range of microplastic (MP) concentrations (from 0.001 to 10 mg L-1). Survival was not affected in all organisms up to 10 mg L-1, while algal growth inhibition, rotifer and sea urchin larvae swimming behaviour alterations were observed after exposure to MPs. Ingestion was only observed in rotifers and it was directly correlated with sub-lethal effects. These results account for the ecotoxicological risk associated to the polystyrene microbeads, which are able to affect different endpoints in primary producers and consumers (rotifers and sea urchins) since no effects were observed in decomposers. This study points out the importance of using a battery of marine organisms belonging to different trophic levels by studying acute toxicity of MPs at low and high contamination levels, and investigating sub-lethal responses. Further investigations aimed at studying the transfer of these materials through the web are particularly recommended.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Council of Researches (CNR), Via De Marini 6, 16149, Genova, Italy.
| | - Silvia Morgana
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Council of Researches (CNR), Via De Marini 6, 16149, Genova, Italy
| | - Mattia Bramini
- IIT, Italian Institute of Technology, Via Morego 30, 16163, Genova, Italy
| | - Alice Rotini
- Italian Institute for Environmental Protection and Research, Via Vitaliano Brancati, 60, 00144, Rome, Italy; Department of Biology, Tor Vergata University, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Loredana Manfra
- Italian Institute for Environmental Protection and Research, Via Vitaliano Brancati, 60, 00144, Rome, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Luciana Migliore
- Department of Biology, Tor Vergata University, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Veronica Piazza
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Council of Researches (CNR), Via De Marini 6, 16149, Genova, Italy
| | - Francesca Garaventa
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Council of Researches (CNR), Via De Marini 6, 16149, Genova, Italy
| | - Marco Faimali
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Council of Researches (CNR), Via De Marini 6, 16149, Genova, Italy
| |
Collapse
|
47
|
Cartlidge R, Wlodkowic D. Rapid Fabrication of Chip‐Based Physiometers for Neurobehavioral Toxicity Assays Using Rotifers
Brachionus calyciflorus. Cytometry A 2018; 93:837-847. [DOI: 10.1002/cyto.a.23510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Rhys Cartlidge
- The Phenomics Laboratory School of Science, RMIT University Melbourne Victoria Australia
| | - Donald Wlodkowic
- The Phenomics Laboratory School of Science, RMIT University Melbourne Victoria Australia
| |
Collapse
|
48
|
Liu C, Tang X, Zhou B, Jiang Y, Lv M, Zang Y, Wang Y. Is it photosensitization or photodegradation when UV-B irradiation is combined with BDE-47? Evidence from the growth and reproduction changes of rotifer Brachionus plicatilis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:562-572. [PMID: 29453184 DOI: 10.1016/j.scitotenv.2018.01.306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Ecotoxicological methods were applied in the present study, and the marine rotifer Brachionus plicatilis was used as the toxic endpoint to depict what occurred when 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was combined with solar ultraviolet-B radiation (UV-B). B. plicatilis was exposed to three different combination methods of BDE-47 and UV-B at an equal toxicity ratio, including normal rotifer co-cultured with UV-B-irradiated BDE-47 (known as Method I), UV-B-irradiated rotifer co-cultured with BDE-47 exposure (known as Method II) and normal rotifer co-cultured with the simultaneous addition of BDE-47 and UV-B irradiation (known as Method III). Acute and chronic experiments were preformed to determine the toxicity differentiation according to the growth and reproduction changes in the rotifer. Twenty-four-hour acute experiments showed that the modes of three combined methods changed from antagonism to additive, to synergistic with the concentration/dose increment, and the contribution rates of Method I and Method II to Method III were calculated by approximately 40.4% and 59.6%, respectively. Chronic exposure to either the single stressor or the combination of stressors inhibited the growth and reproduction of the rotifer, demonstrating the inhibition of the population growth rate and the decrease in the larvae production. Three combined groups presented more serious damages compared to groups with single stress exposure, and the ascending sequence of toxicity was Method I<Method II<Method III. A higher bioaccumulation of BDE-47 was found in all combined groups than BDE-47 single stress group, and bioconcentration factor (BCF) general ranked Method II<Method I<Method III. Moreover, BDE-28, photodegradation production of BDE-47, were found in groups preformed Method I and III. We thus speculated that the toxicity enhancement when BDE-47 was combined with UV-B was mainly due to photosensitization and photodegradation, and the photosensitization might be more noxious to the growth and reproduction of the rotifer.
Collapse
Affiliation(s)
- Chunchen Liu
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China.
| | - Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Mengchen Lv
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Yu Zang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
49
|
Cartlidge R, Wlodkowic D. Caging of planktonic rotifers in microfluidic environment for sub-lethal aquatic toxicity tests. BIOMICROFLUIDICS 2018; 12:044111. [PMID: 30123401 PMCID: PMC6076045 DOI: 10.1063/1.5042779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 05/17/2023]
Abstract
Quantification of neuro-behavioural responses of intact small model organisms has been proposed as a sensitive, sub-lethal alternative to conventional toxicity testing. Such bioassays are characterized by a high physiological and ecological relevance, short response times, increased sensitivity, and non-invasive nature. Despite a significant potential for predictive aquatic toxicology analysis of behavioural traits of micro-invertebrates in microfluidic environment has received little attention. In this work, we demonstrate a new Lab-on-a-Chip technology capable of effectively caging freshwater rotifers Brachionus calyciflorus for real-time video-microscopy analysis. We demonstrate that behavioural bioassays performed under microfluidic perfusion can significantly enhance the sensitivity of conventional ecotoxicology test protocols.
Collapse
Affiliation(s)
| | - Donald Wlodkowic
- Author to whom correspondence should be addressed: , Telephone: +61 3 992 57157, Fax: +61 3 992 57110. Also at: The Phenomics Laboratory School of Science, RMIT University, Plenty Road, PO Box 71, Bundoora, VIC 3083, Australia. URL: http://www.rmit.edu.au/staff/donald-wlodkowic
| |
Collapse
|
50
|
Vieira GAL, Magrini MJ, Bonugli-Santos RC, Rodrigues MVN, Sette LD. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process. Braz J Microbiol 2018; 49:749-756. [PMID: 29805073 PMCID: PMC6175740 DOI: 10.1016/j.bjm.2018.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/14/2018] [Accepted: 04/13/2018] [Indexed: 11/16/2022] Open
Abstract
Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08mgmL-1) after 48h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology.
Collapse
Affiliation(s)
- Gabriela A L Vieira
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências, Departamento de Bioquímica e Microbiologia, Rio Claro, SP, Brazil
| | - Mariana Juventina Magrini
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, SP, Brazil
| | - Rafaella C Bonugli-Santos
- Universidade Federal da Integração Latino-Americana (UNILA), Instituto Latino Americano de Ciências da Vida e da Natureza, Foz do Iguaçu, PR, Brazil
| | - Marili V N Rodrigues
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, SP, Brazil
| | - Lara D Sette
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências, Departamento de Bioquímica e Microbiologia, Rio Claro, SP, Brazil; Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, SP, Brazil.
| |
Collapse
|