1
|
Tallarico LDF, Silva FNVD, Miranda MS, Nakano E. Sensitivity assessment of Biomphalaria glabrata (SAY, 1818) using reference substance sodium dodecyl sulfate for ecotoxicological analyzes. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1135-1144. [PMID: 39259421 DOI: 10.1007/s10646-024-02803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Sodium dodecyl sulfate (SDS) is a surfactant used and recommended by regulatory agencies as a reference substance in ecotoxicological analyzes. In this work, acute toxicity assays were performed with adults and embryos of the freshwater snail Biomphalaria glabrata, an endemic organism with environmental and public health importance, to evaluate the effects of the surfactant and establish a sensitivity control chart. The organisms were exposed to SDS for 24 h to a range of concentrations, as well as a control group. Six assays were performed to establish the control chart for adults (with a median LC50 of 36.87 mg L-1) and differential sensitivity was observed at each embryonic stage (EC50 = blastulae 33.03, gastrulae 35.03, trochophore 39.71 and veliger 72.55 mg L-1). The following behavioral responses were observed in exposed adult snails: release of hemolymph and mucus, body outside the shell, and penile overexposure. Embryos at the blastulae and gastrulae stages were more sensitive, and teratogenic effects were accentuated in the trochophore stage. The difference in results obtained between adults and embryos underscore the importance of carrying out analyzes at different developmental stages. The serial assays established with SDS for B. glabrata demonstrated efficiency and constancy conditions in the assays with good laboratory practice standards. The wide distribution of Biomphalaria species in several countries, their easy maintenance and cultivation in the laboratory, in addition to ecological importance, make them economical alternatives for ecotoxicological assays.
Collapse
Affiliation(s)
| | | | - Marcel Sabino Miranda
- Reef Biology Laboratory, Department of Biological Oceanography, University of São Paulo, 05508-120, São Paulo, SP, Brazil
| | - Eliana Nakano
- Parasitology Laboratory, Butantan Institute, Vital Brasil Avenue, 1500, 05503-900, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Oliveira WDL, Mota TFM, da Silva AP, Oliveira RDDL, Comelli CL, Orlandini ND, Zimmer DF, de Oliveira EC, Ghisi NDC. Does the atrazine increase animal mortality: Unraveling through a meta-analytic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175553. [PMID: 39153636 DOI: 10.1016/j.scitotenv.2024.175553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Atrazine is one of the most used herbicides in the world, although it is banned in several countries. Pollution of terrestrial and aquatic ecosystems represents a threat to non-target organisms, with various damages already reported in different species. However, there is controversy in studies on atrazine. The question of whether atrazine increases animal mortality is not yet clearly resolved. In this context, this study aimed to carry out a meta-analytic review, focusing on studies on environmental concentrations of the herbicide atrazine to evaluate its lethal effects on various animal species. We identified and analyzed 107 datasets through a selection process that used the Scopus, PubMed, and Web of Science (WoS) databases. A significant increase in the mortality rate of animals exposed to environmental concentrations of atrazine was observed. Nematodes, amphibians, molluscs, insects, and fish showed increased mortality after exposure to atrazine. Animals in the larval and juvenile stages showed greater susceptibility when exposed to different concentrations of atrazine. Furthermore, both commercial and pure formulations resulted in high mortality rates for exposed animals. Atrazine and other pesticides had a synergistic effect, increasing the risk of mortality in animals. There are still many gaps to be filled, and this study can serve as a basis for future regulations involving atrazine.
Collapse
Affiliation(s)
- Wesley de Lima Oliveira
- Graduate Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Thais Fernandes Mendonça Mota
- Universidade Estadual do Paraná - Unespar e Rede Estadual de Educação Básica do Paraná, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Ana Paula da Silva
- Programa de Pós-Graduação em Agroecossistemas (PPGSIS), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil; Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Rangel David de Lima Oliveira
- Pontifícia Universidade Católica de Campinas, Rua Professor Dr. Euryclides de Jesus Zerbini, 1516 - Parque Rural Fazenda Santa Cândida, Campinas, SP 13087-571, Brazil
| | - Camila Luiza Comelli
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | | | - Douglas Fernando Zimmer
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Elton Celton de Oliveira
- Programa de Pós-Graduação em Agroecossistemas (PPGSIS), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia (PPGBIOTEC), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade São Cristóvão, P.O. Box 157, 85660-000 Dois Vizinhos, Paraná, Brazil.
| |
Collapse
|
3
|
Brito DQ, Henke-Oliveira C, Oliveira-Filho EC. Acute Toxicity of Commercial Wildfire Retardants to Two Daphniid Species ( Ceriodaphnia dubia and Daphnia magna). TOXICS 2024; 12:548. [PMID: 39195650 PMCID: PMC11360807 DOI: 10.3390/toxics12080548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
In the face of global climate change, there has been an increase in wildfires around the world, highlighting the need for improved firefighting techniques, such as the use of fire retardants (FRs). These products can enter aquatic systems directly or through runoff, posing potential risks to aquatic biota. In this study, the acute toxicity (24-h/48-h EC50) of three distinct FRs (N-Borate, N-Phosphate+, and N-Phosphate-) was assessed on the immobility of freshwater microcrustaceans Ceriodaphnia dubia and Daphnia magna. The toxicity of the FRs varied up to two orders of magnitude, all of which presented risks to cladocerans even at dilutions much below those recommended by their manufacturers. Among the tested FRs, N-Phosphate- emerged as the most harmful to both species. Specifically, for C. dubia, the 24 h EC50 was 0.005% and the 48 h EC50 was 0.0019%, while for D. magna, 24 h EC50 was 0.003% and the 48 h EC50 was 0.0023%. With the increasing use of FRs for wildfire control, our study highlights the toxicity of newly formulated FRs to daphniid species and emphasizes the need for further evidence-based evaluations of their effects on freshwater ecosystems, which is crucial for choosing FRs that pose the lowest hazard to zooplankton communities.
Collapse
Affiliation(s)
- Darlan Quinta Brito
- Faculty UnB at Planaltina, University of Brasília, Brasilia 73345-010, DF, Brazil;
| | | | | |
Collapse
|
4
|
Cruz P, Cuccaro A, Pretti C, He Y, Soares AMVM, Freitas R. Comparative subcellular responses to pharmaceutical exposures in the mussel Mytilus galloprovincialis: An in vitro study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104314. [PMID: 37979633 DOI: 10.1016/j.etap.2023.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Pharmaceutical active compounds (PhACs) have raised concerns in the last decade due to their increased consumption and inadequate elimination during discharge, resulting in their introduction into water systems and potential significant threats to non-target organisms. However, few studies have investigated the sublethal impacts of PhAC exposure on marine invertebrates. Thus, the present study aimed to assess tissue-specific responses in Mytilus galloprovincialis to sodium lauryl sulfate (SLS), salicylic acid (SA), and caffeine (CAF) (4.0 mg/L, 4.0 mg/L and 2.0 μg/L, respectively). Short-term in vitro exposures with mussel digestive gland and gill tissues were conducted and biochemical responses related to antioxidant and detoxification capacity, cellular damage and neurotoxicity were assessed. The present results clearly showed significant differences in tissue sensitivity and biochemical responses to the contaminants tested. This study highlights the suitability of filter-feeder species as valuable model organisms for studying the sublethal effects of unintended environmental exposures to PhACs.
Collapse
Affiliation(s)
- Patrícia Cruz
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Alessia Cuccaro
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM-Centre for Environmental and Sea Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", Livorno 57128, Italy
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM-Centre for Environmental and Sea Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM-Centre for Environmental and Sea Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Qin S, Yang T, Yu B, Zhang L, Gu L, Sun Y, Yang Z. The stress effect of atrazine on the inducible defense traits of Daphnia pulex in response to fish predation risk: Evidences from morphology, life history traits, and expression of the defense-related genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119965. [PMID: 35998771 DOI: 10.1016/j.envpol.2022.119965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Herbicide pollution is persistent, which not only has a negative impact on individual organisms, but also may endanger the interspecific relationship between predators and prey. Cladocerans, i.e. zooplankton that plays an important role in the energy flow and material circulation in freshwater ecosystem, usually develop induced defense in response to predation risk. We used atrazine, one of the most used herbicides in the world, and Daphnia pulex, a representative cladocerans, to test the possible interference effect of herbicides on the induced defensive traits of cladocerans in response to predator fish (Rhodeus ocellatus) kairomone, including morphological defense, life history strategies, and the expression of defense-related genes. Atrazine reduced the body size, spine size, growth rate, total offspring, and the relative reproductive output of D. pulex, which further affected the response strength of the morphological and life history defenses, i.e., atrazine significantly reduced the spine size, relative spine size, and fecundity of D. pulex in response to R. ocellatus kairomone. Exposure to atrazine affected the expression of defense-related genes, and we speculated that atrazine affected the signaling process in the induced anti-predation defense of cladocerans. Specially, fish kairomone attenuated the negative effects of high concentrations of atrazine on the life history traits of D. pulex. Our results will help to accurately assess the potential risk of artificial compounds in freshwater ecosystems from the perspective of interspecific relationships, and help to understand the impact of environmental changes on the inducible anti-predator defense of prey in aquatic ecosystems.
Collapse
Affiliation(s)
- Shanshan Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Tingting Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Bo Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
6
|
Toxic Effects of Sodium Lauryl Sulfate on Antioxidant Defense System and DNA Damage in Fish Primary Hepatocyte Cultures. MACEDONIAN VETERINARY REVIEW 2022. [DOI: 10.2478/macvetrev-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Abstract
Synthetic detergents which have a major role in environmental pollution accumulate over time and reach levels that harm nature. The surfactants which are abundantly used as cleaning components are discharged into the Van Lake with the sewage water. These chemicals accumulating in the lake may reach a level that could affect the only fish species of the lake, the Van fish. This study aimed to determine the antioxidant levels of Van fish hepatocyte cell culture medium treated with sodium lauryl sulphate (SLS) and to assess the DNA damage. The effect of SLS was assessed by its dose (1x10−5, 1x10-6, 1x10−7 M) and treatment time (24 h, 48 h). Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and DNA damage (8-OHdG) were determined in the SLS hepatocyte culture. SOD and GSH-Px were higher on 24 h and 48 h compared to the control group. A significant increase was observed in CAT level in the first 24 h, especially in 1x10−6 and 1x10-5 M concentration. At 48 h, it was observed that the CAT level decreased significantly as the concentration increased. It was determined that MDA and 8-OHdG levels increased depending on concentration and time. In conclusion, different concentrations of SLS affected antioxidant levels in the primary hepatocyte culture of Van Fish and were found to cause an increase in the levels of MDA and 8-OHdG.
Collapse
|
7
|
Freitas R, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. The influence of salinity on sodium lauryl sulfate toxicity in Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103715. [PMID: 34311115 DOI: 10.1016/j.etap.2021.103715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The influence of salinity on the effects of sodium lauryl sulfate (SLS) was evaluated using the Mediterranean mussel Mytilus galloprovincialis, exposed for 28 days to SLS (control-0.0 and 4.0 mg/L) under three salinity levels (Control-30, 25 and 35). The effects were monitored using biomarkers related to metabolism and energy reserves, defence mechanisms (antioxidant and biotransformation enzymes) and cellular damage. The results revealed that non-contaminated mussels tended to maintain their metabolic capacity regardless of salinity, without activation of antioxidant defence strategies. On the contrary, although contaminated mussels presented decreased metabolic capacity at salinities 25 and 35, they were able to activate their antioxidant mechanisms, preventing cellular damage. Overall, the present findings indicate that SLS, especially under stressful salinity levels, might potentially jeopardize population survival and reproduction success since reduced metabolism and alterations on mussels' antioxidant mechanisms will impair their biochemical and, consequently, physiological performance.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy.
| |
Collapse
|
8
|
Moreira RA, de Araujo GS, Silva ARRG, Daam MA, Rocha O, Soares AMVM, Loureiro S. Effects of abamectin-based and difenoconazole-based formulations and their mixtures in Daphnia magna: a multiple endpoint approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1486-1499. [PMID: 32388636 DOI: 10.1007/s10646-020-02218-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the toxicity of pesticide formulations Kraft® 36 EC (active ingredient-a.i. abamectin) and Score® 250 EC (a.i. difenoconazole), and their mixtures in Daphnia magna at different biological levels of organization. Survival, reproduction and biochemical markers (cholinesterase (ChE), catalase (CAT) and lipid peroxidation (LPO)) were some of the endpoints evaluated. Total proteins and lipids were also studied together with energy consumption (Ec). D. magna neonates were exposed for 96 h to Kraft (2, 4, and 6 ng a.i./L) and Score (12.5, 25, and 50 µg a.i./L) for the biochemical experiments, and for 15 days to abamectin (1-5 ng a.i./L) and to difenoconazole (3.12-50 µg a.i./L) to assess possible changes in reproduction. Exposures of organisms to both single compounds did not cause effects to antioxidant and detoxifying enzymes, except for LPO occurring at the highest concentration of difenoconazole tested. For ChE and CAT there was enzymatic induction in mixture treatments organisms, occurring at minor pesticides concentrations for CAT and at the two highest concentrations for ChE. There were no significant differences for total protein in D. magna but lipids showed an increase at the highest concentrations of pesticide mixture combinations. There was a significant increase of Ec in individuals of all treatments tested. In the chronic test, increased fecundity occurred for D. magna under difenoconazole exposures and mixtures. This study demonstrated that mixtures of these pesticides caused greater toxicity to D. magna than when tested individually, except for Ec. Therefore, effects of mixtures are very hard to predict only based on information from single compounds, which most possibly is the result of biological complexity and redundancy in response pathways, which need further experimentation to become better known.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil.
| | | | | | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Freitas R, Silvestro S, Coppola F, Costa S, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C. Toxic impacts induced by Sodium lauryl sulfate in Mytilus galloprovincialis. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110656. [PMID: 31927089 DOI: 10.1016/j.cbpa.2020.110656] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Pharmaceuticals and personal care products (PPCPs) are continuously dispersed into the environment, as a result of human and veterinary use, reaching aquatic coastal systems and inhabiting organisms. However, information regarding to toxic effects of these compounds towards marine invertebrates is still scarce, especially in what regards to metabolic capacity and oxidative status alterations induced in bivalves after chronic exposure. In the present study, the toxic impacts of Sodium lauryl sulfate (SLS), an anionic surfactant widely used as an emulsifying cleaning agent in household and cosmetics, were evaluated in the mussel Mytilus galloprovincialis, after exposure for 28 days to different concentrations (0.0; 0.5; 1.0; 2.0 and 4.0 mg/L). For this, effects on mussels respitation rate, metabolic capacity and oxidative status were evaluated. The obtained results indicate a significant decrease on mussel's respiration rate after exposure to different SLS concentrations, an alteration that was accompanied by a decrease of bioconcentration factor along the increasing exposure gradient, especially at the highest exposure concentration. Nonetheless, the amount of SLS accumulated in organisms originated alterations in mussel's metabolic performance, with higher metabolic capacity up to 2.0 mg/L followed by a decrease at the highest tested concentration (4.0 mg/L). Mussels exposed to SLS revealed limited antioxidant defense mecanhisms but cellular damage was only observed at the highest exposure concentration (4.0 mg/L). In fact, up to 2.0 mg/L of SLS limited toxic impacts were observed, namely in terms of oxidative stress and redox balance. However, since mussel's respiration rate was greatly affected by the presence of SLS, the present study may highlight the potential threat of SLS towards marine bivalves, limiting their filtration capacity and, thus, affecting their global physiological development (including growth and reproduction) and ultimely their biochemical performance (afecting their defense capacity towards stressful conditons).
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Serena Silvestro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
10
|
Yoon DS, Park JC, Park HG, Lee JS, Han J. Effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105213. [PMID: 31200332 DOI: 10.1016/j.aquatox.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is a widely used pesticide which acts as an endocrine disruptor in various organisms. The aim of this study was to investigate adverse effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. In T. japonicus, no mortality was shown in response to atrazine up to 20 mg/L in acute toxicity assessment. In nauplii, retardation in the growth and prolonged molting and metamorphosis resulted under chronic exposure of atrazine at 20 mg/L. In addition, body sizes of T. japonicus nauplii were significantly decreased (P < 0.01 in length and P < 0.001 in width) in response to 20 mg/L of atrazine. Furthermore, atrazine induced oxidative stress by the generation of reactive oxygen species at all concentrations compared to the control in the nauplii. Also, significant increase in glutathione-S transferase activity was observed in adult T. japonicus at low concentration of atrazine. To understand effects of atrazine on ecdysteroid biosynthetic pathway-involved genes (e.g., neverland, CYP307E1, CYP306A1, CYP302A1, CYP3022A1 [CYP315A1], CYP314A1, and CYP18D1) were examined with mRNA expressions of ecdysone receptor (EcR) and ultraspiracle (USP) in response to 20 mg/L atrazine in nauplii and adults. In the nauplii, these genes were significantly downregulated (P < 0.05) in response to atrazine, compared to the control but not in the adult T. japonicus. These results suggest that atrazine can interfere in vivo life parameters by oxidative stress-induced retrogression and ecdysteroid biosynthetic pathway in this species.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
11
|
Santos VSV, Campos CF, de Campos Júnior EO, Pereira BB. Acute ecotoxicity bioassay using Dendrocephalus brasiliensis: alternative test species for monitoring of contaminants in tropical and subtropical freshwaters. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:635-640. [PMID: 29796722 DOI: 10.1007/s10646-018-1951-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
In International guidelines for standard ecotoxicological bioassays, Daphnia magna is the most applied microcrustacea for assessing toxicity of different pollutants. However, in research realized in tropical and subtropical areas, autochthonous species must be prioritized because they are adapted to the specificities of ecosystems. In this sense, the present study aimed to assess and compare (with D. magna) the sensitivity of the tropical species Dendrocephalus brasiliensis as alternative test species for monitoring of contaminants in tropical and subtropical freshwaters, by carrying out acute toxicity tests with different pollutants. According results, D. brasiliensis presented EC50-48 h values lower than D. magna for all substances tested, indicating higher sensitivity of the tropical organism in relation to the temperate organism. Furthermore, comparing the results obtained with data from other studies, D. brasiliensis is more sensitive to the chemicals tested than D. magna and has similar sensitivity to Pseudosida ramosa and Ceriodaphnia dubia, common species in tropical areas. In view of this, we suggest that D. brasiliensis can be used as alternative test species for monitoring of contaminants in tropical and subtropical freshwaters.
Collapse
Affiliation(s)
- Vanessa Santana Vieira Santos
- Department of Environmental Health, Laboratory of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil.
- Institute of Genetics and Biochemistry, Department of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil.
| | - Carlos Fernando Campos
- Department of Genetics and Biochemistry, Laboratory of Cytogenetics and Mutagenesis, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil
| | - Edimar Olegário de Campos Júnior
- Department of Genetics and Biochemistry, Laboratory of Cytogenetics and Mutagenesis, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Department of Environmental Health, Laboratory of Environmental Health, Federal University of Uberlândia, Santa Mônica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Daam MA, Rico A. Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13235-13243. [PMID: 27530199 DOI: 10.1007/s11356-016-7451-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
The aquatic risk assessment of pesticides in tropical areas has often been disputed to rely on toxicity data generated from tests performed with temperate species. Given the differences in ecosystem structure between temperate and tropical ecosystems, test species other than those used in temperate regions have been proposed as surrogates for tropical aquatic effect assessments. Freshwater shrimps, for example are important components of tropical freshwater ecosystems, both in terms of their role in ecosystem functioning and their economic value. In the present study, available toxicity data of (tropical and sub-tropical) freshwater shrimps for insecticides and fungicides were compiled and compared with those available for Daphnia magna and other aquatic invertebrates. Freshwater shrimps appeared to be especially sensitive to GABA-gated chloride channel antagonist and sodium channel modulator insecticides. However, shrimp taxa showed a moderate and low sensitivity to acetylcholinesterase inhibiting insecticides and fungicides respectively. Implications for the use of freshwater shrimps in tropical pesticide effect assessments and research needs are discussed.
Collapse
Affiliation(s)
- Michiel A Daam
- DCEA/Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal.
- NEEA/CRHEA São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Mansano AS, Moreira RA, Dornfeld HC, Diniz LGR, Vieira EM, Daam MA, Rocha O, Seleghim MHR. Acute and chronic toxicity of diuron and carbofuran to the neotropical cladoceran Ceriodaphnia silvestrii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13335-13346. [PMID: 28004367 DOI: 10.1007/s11356-016-8274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
In order to contribute to the increase of the body of knowledge on the sensitivity of tropical indigenous species to pesticides, acute and chronic toxicity tests were conducted with the neotropical cladoceran Ceriodaphnia silvestrii. Tests were carried out with the active ingredients diuron and carbofuran and one of their commercial formulations, the Diuron Nortox® 500 SC and the Furadan® 350 SC, respectively. For carbofuran, the active ingredient was more toxic than the commercial product, whereas for diuron, the commercial product appeared more toxic. In addition, hormetic effects on fertility were recorded for intermediate diuron concentrations. Acute and chronic toxicity data indicated that C. silvestrii was among the most sensitive invertebrate species for both test compounds. Based on concentrations measured in Brazilian water bodies, these compounds represent ecological risks for causing direct and indirect toxic effects on C. silvestrii and other aquatic organisms. Our results support previous claims on the advantages of using native species to better tune ecological risk assessment of chemicals in tropical ecosystems.
Collapse
Affiliation(s)
- Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil.
| | - Raquel A Moreira
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - Hugo C Dornfeld
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - Lia G R Diniz
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Michiel A Daam
- Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - Mirna H R Seleghim
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
14
|
Gunnarsson JS, Castillo LE. Ecotoxicology in tropical regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13203-13206. [PMID: 29691739 PMCID: PMC5978835 DOI: 10.1007/s11356-018-1887-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 03/26/2018] [Indexed: 05/31/2023]
Affiliation(s)
- Jonas S. Gunnarsson
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University (SU), Stockholm, Sweden
| | - Luisa E. Castillo
- Regional Institute for Studies on Toxic Substances (IRET), National University (UNA), Heredia, Costa Rica
| |
Collapse
|
15
|
Sobrino-Figueroa A. Toxic effect of commercial detergents on organisms from different trophic levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13283-13291. [PMID: 27757746 DOI: 10.1007/s11356-016-7861-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
The toxic effects of four powder detergents: two laundry detergents (A and B), one household detergent (C), one dishwashing detergent (D), and the surfactant alkylbenzene sulfonate (LAS) were analyzed in this study on organisms from different trophic levels (microalgae, cladocerans, ostracods, amphipods, macrophytes, and fish). LC50 and EC50 values obtained in the toxicity bioassays varied between 0.019 and 116.9 mg L-1. The sensitivity of the organisms to the detergents was (from most sensitive to least sensitive) Ostracods > microalgae > amphipods > cladocerans > fishes > macrophytes. The toxicity of the commercial products (from most toxic to least toxic) was LAS > D (dishwashing detergent) > A (laundry detergent) > B (laundry detergent) > C (household detergent). When comparing the sensitivity of organisms that inhabit temperate zones (T = 18 °C) to those that are found in tropical zones (T > 25 °C), it was clear that the species that inhabit the tropics are more sensitive to detergents.
Collapse
Affiliation(s)
- A Sobrino-Figueroa
- Laboratorio Alejandro Villalobos, Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186 Colonia Vicentina, C.P. 09340, Ciudad de México, México.
| |
Collapse
|
16
|
Zheng L, Zhang Y, Yan Z, Zhang J, Li L, Zhu Y, Zhang Y, Zheng X, Wu J, Liu Z. Derivation of predicted no-effect concentration and ecological risk for atrazine better based on reproductive fitness. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:464-470. [PMID: 28458230 DOI: 10.1016/j.ecoenv.2017.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Atrazine (ATZ) is an herbicide most commonly used in China and other regions of the world. It is reported toxic to aquatic organisms, and frequently occurs at relatively high concentrations. Currently, ATZ has been proved to affect reproduction of aquatic species at much lower levels. So it is controversial to perform ecological risk assessment using predicted no-effect concentrations (PENCs) derived from traditional endpoints, which fail to provide adequate protection to aquatic organisms. In this study, PNECs of ATZ were derived based on six endpoints of survival, growth, behavior, biochemistry, genetics and reproduction. The PNEC derived from reproductive lesion was 0.044μg ATZ L-1, which was obviously lower than that derived from other endpoints. In addition, a tiered ecological risk assessment was conducted in the Taizi River based on six PNECs derived from six categories of toxicity endpoints. Results of these two methods of ecological risk assessment were consistent with each other, and the risk level of ATZ to aquatic organisms reached highest as taking reproductive fitness into account. The joint probability indicated that severe ecological risk rooting in reproduction might exist 93.9% and 99.9% of surface water in the Taizi River, while 5% threshold (HC5) and 1% threshold (HC1) were set up to protect aquatic organisms, respectively. We hope the present work could provide valuable information to manage and control ATZ pollution.
Collapse
Affiliation(s)
- Lei Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yizhang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Juan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yan Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yahui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, State Oceanic Administration People's Republic of China, Beijing 100194, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
17
|
Mansano AS, Moreira RA, Pierozzi M, Oliveira TMA, Vieira EM, Rocha O, Regali-Seleghim MH. Effects of diuron and carbofuran pesticides in their pure and commercial forms on Paramecium caudatum: The use of protozoan in ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:160-172. [PMID: 26890484 DOI: 10.1016/j.envpol.2015.11.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Toxic effects of diuron and carbofuran on Paramecium caudatum were evaluated. Acute and chronic tests were conducted with diuron and carbofuran active ingredients and their commercial formulations, Diuron Nortox(®) 500 SC and Furadan(®) 350 SC, respectively. The sensitivity range of P. caudatum to reference substance sodium chloride was established. A preliminary risk assessment of diuron and carbofuran for Brazilian water bodies was performed. The tests indicated that toxicity of pure diuron and its commercial formulation was similar, while the commercial product carbofuran was more toxic than its pure form. In acute tests, readings were carried out at 2, 3, 4 and 6 h and showed an increase of mortality with increasing exposure time. The sensitivity of P. caudatum to NaCl ranged from 3.31 to 4.44 g L(-1), averaging 3.88 g L(-1). For diuron, the 6 h LC50 was 64.6 ± 3.3 mg L(-1) for its pure form and 62.4 ± 2.5 mg L(-1) for its commercial formulation. Carbofuran active ingredient was less toxic than that of diuron, presenting a 6 h LC50 of 142.0 ± 2.4 mg L(-1) for its pure form and 70.4 ± 2.2 mg L(-1) for its commercial product. Chronic tests showed that these pesticides cause significant decrease on population growth, generation number and biomass of P. caudatum. The 24 h IC50 was 7.10 ± 0.58 mg L(-1) for pure diuron, 6.78 ± 0.92 mg L(-1) for commercial diuron, 22.95 ± 3.57 mg L(-1) for pure carbofuran and 4.98 ± 0.62 mg L(-1) for commercial carbofuran. Preliminary risk assessment indicated that diuron and carbofuran present potential ecological risks for Brazilian water bodies. P. caudatum was a suitable and sensitive test organism to evaluate diuron and carbofuran toxicity to freshwater protozooplankton and, taking into account the relevant role of protozoans in aquatic environments, we strongly recommend its inclusion in ecotoxicological studies.
Collapse
Affiliation(s)
- Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905, São Carlos, SP, Brazil.
| | - Raquel A Moreira
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905, São Carlos, SP, Brazil
| | - Mayara Pierozzi
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905, São Carlos, SP, Brazil
| | - Thiessa M A Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970, São Carlos, SP, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970, São Carlos, SP, Brazil
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905, São Carlos, SP, Brazil
| | - Mirna H Regali-Seleghim
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
18
|
Freitas EC, Printes LB, Rocha O. Use of cholinesterase activity as an ecotoxicological marker to assess anatoxin-a(s) exposure: Responses of two cladoceran species belonging to contrasting geographical regions. HARMFUL ALGAE 2016; 55:150-162. [PMID: 28073528 DOI: 10.1016/j.hal.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 06/06/2023]
Abstract
The specificity of cholinesterase (ChE) activity to detect the presence of anatoxin-a(s) and sublethal effects of a 7-day exposure to Anabaena spiroides extract containing anatoxin-a(s) were assessed in two freshwater cladoceran species. Activities of ChE of both Pseudosida ramosa and Daphnia magna can be used to indicate the presence of the neurotoxin anatoxin-a(s), but not for the hepatotoxic microcystin. Activity of ChE of P. ramosa, however, performed better as a biomarker of exposure to A. spiroides than that of D. magna. Furthermore, sublethal exposure to A. spiroides extract significantly inhibited the ChE activity in P. ramosa and negatively affected both individual and population endpoints. For D. magna, the inhibition of ChE activity was not related to effects at higher levels of biological organization, since no direct effect was recorded on the individual and population endpoints. The activity of ChE in P. ramosa also proved to be a good predictor of chronic effects of the A. spiroides extract at higher levels of biological organization, since 48-h ChE inhibition was linked to the sublethal effects on the individual and population. These relationships could not be established for D. magna. Since relationships between the effects of A. spiroides extract at different levels of biological organization were species-specific, it can be concluded that the choice of test organism interferes with the accuracy of the environment risk assessment of this neurotoxin and, hence, the use of native species is recommended for its assessment.
Collapse
Affiliation(s)
- Emanuela Cristina Freitas
- Post-Graduate Program of Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905 São Carlos, SP, Brazil.
| | - Liane Biehl Printes
- Special Bureau for the Environment, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil.
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Freitas EC, Printes LB, Fernandes MN, Rocha O. Measurements of cholinesterase activity in the tropical freshwater cladoceran Pseudosida ramosa and its standardization as a biomarker. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 101:70-76. [PMID: 24507129 DOI: 10.1016/j.ecoenv.2013.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
The activity of cholinesterases (ChE) has been recognized as a useful tool for assessing the toxicity in the environmental assessment programs. Nevertheless, the prior optimization of the experimental conditions for the appropriate measuring of the ChE activity enables us to get reliable results. Thus, the main objective of this study was to adapt and optimize a microplate assay for measuring the activity of ChE in the tropical cladoceran Pseudosida ramosa. The best readings for the reaction rates were obtained with buffers of pH 8.0 and molarity of 0.02M. The measurements of the reaction rates for the different substrate concentrations showed that the maximum reaction rate (32mODmin(-1)) was achieved by the final concentration of 2mM of substrate. In relation to the enzyme concentration, reaction rates were directly proportional to the protein concentration, which confirmed the linear kinetics for a maximum reaction rate. On the basis of the results of the assays for the effect of the number of individuals and homogenate dilution on the reaction rate of substrate hydrolysis and ChE activity, we recommend using of 30 individuals (3 days-old) in 250μL of buffer, 20 individuals (7 days-old) in 250μL of buffer and 15 individuals (both 14 and 21 days-old) in 300μL of buffer. The limits of quantitation obtained were 1.419mODmin(-1) (≤72h-old), 1.670mODmin(-1) (7 days-old), 0.943mODmin(-1) (14 days-old) and 0.797mODmin(-1) (21 days-old). In conclusion, it was possible to measure the ChE activity in P. ramosa with the methodology adapted, thus contributing to the implementation of a biochemical biomarker in freshwater toxicity assessments in tropical regions.
Collapse
Affiliation(s)
- Emanuela Cristina Freitas
- Post-Graduate Program of Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905 São Carlos, SP, Brazil.
| | - Liane Biehl Printes
- Special Bureau for the Environment, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905 São Carlos, SP, Brazil.
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905 São Carlos, SP, Brazil.
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
20
|
Freitas EC, Printes LB, Rocha O. Acute effects of Anabaena spiroides extract and paraoxon-methyl on freshwater cladocerans from tropical and temperate regions: links between the ChE activity and survival and its implications for tropical ecotoxicological studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:105-114. [PMID: 24291085 DOI: 10.1016/j.aquatox.2013.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/31/2013] [Accepted: 11/09/2013] [Indexed: 06/02/2023]
Abstract
Cholinesterase (ChE) activity was measured in Pseudosida ramosa and Daphnia magna, which had previously been exposed to Anabaena spiroides extract or to paraoxon-methyl for 48 h. These activities were then related to survival at 48 h. For A. spiroides extract, the observed 48-h LC50 was 2.27 and 2.70 × 10(6)cells mL(-1), while for paraoxon-methyl it was 0.60 and 2.17 μg L(-1), respectively, for P. ramosa and D. magna. Dose-response relationships were obtained for both P. ramosa and D. magna, when exposed to A. spiroides extract or paraoxon-methyl. Thus, when the tested concentrations of the toxicants increased, ChE activity and survival decreased. The ratio between 48-h IC50 for ChE and 48-h LC50 ranged from 75% to 81% for P. ramosa and from 77% to 81% for D. magna. This indicated that the concentrations of both A. spiroides extract and paraoxon-methyl that cause 50% mortality also inhibit ChE activity by 50%. Also, it was found that, for P. ramosa, a 50% inhibition of ChE activity was associated with a survival of 59.5% and 60.9%, respectively, for A. spiroides extract and paraoxon-methyl. However, for D. magna, at high levels of inhibition of ChE activity, almost no mortality was detected. In this specific case, 50% inhibition of the ChE activity was associated with 90.4 and 95.4% survival for A. spiroides extract and paraoxon-methyl, respectively. In contrast, enzyme inhibition slightly above 60% had a strong detrimental effect on survival in D. magna. These different patterns found in the relationship between ChE inhibition and survival may be due to species-specific differences in the affinities of both acetylcholinesterase and pseudocholinesterases, since the cladoceran ChE assays were performed with whole-body homogenates. In conclusion, when using ChE as a biochemical biomarker in risk assessment of cyanobacterial neurotoxic blooms in tropical regions, it is strongly recommended that native species are used, since our results revealed that P. ramosa was more sensitive than D. magna for both assay endpoints and both toxicants. Furthermore, the relationship between ChE activity and survival had a species-specific response. Therefore, the use of the model species D. magna in acute toxicity tests and ChE assays in tropical regions may lead to errors in the estimation of risks to the local species.
Collapse
Affiliation(s)
- Emanuela Cristina Freitas
- Post-Graduate Program of Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | - Liane Biehl Printes
- Special Bureau for the Environment, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|