1
|
Botelho MT, Umbuzeiro GDA. Designing and applying a methodology to assess sperm cell viability and DNA damage in a model amphipod. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175318. [PMID: 39111426 DOI: 10.1016/j.scitotenv.2024.175318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Sperm quality is defined as the sperm cell ability to successfully fertilize eggs and allow normal embryo development. Few studies explore sperm quality using aquatic invertebrates. Parhyale hawaiensis is a marine amphipod with a circumtropical distribution and considered a model for evolution, development, and ecotoxicological studies. We aimed to develop a methodology to collect sperm cells of P. hawaiensis and evaluate their viability and DNA damage (comet assay). We directly exposed the sperm cells to different mutagenic agents to optimize/develop the protocols. Then, as a proof of concept, we exposed the males to mutagenic compounds (EMS, benzo[a]pyrene (BaP), azo and anthraquinone dyes) at non-lethal concentrations verified by the proposed viability test and analyzed their sperm cells for DNA damage (comet assay). Organisms exposed to EMS presented a clear concentration response in the DNA damage response. We also showed that BaP was able to induce a statistically significant increase in DNA damage of the sperm cells. For the two dyes, although DNA damage increased, statistically differences were not observed. We believe we successfully developed a test to detect genotoxicity of chemicals in sperm cells using an invertebrate model. The protocol for sperm cell viability needs to be further explored with different chemicals to verify its utility as a toxicity endpoint. The developed genotoxicity test has the advantages to employ organisms that are easily cultivated in reduced space, use simple laboratory resources and reduced amount of material and reagents. Positive responses with this model could be used to disclose new germ cell mutagen candidates which could be further confirmed in vertebrates' systems.
Collapse
|
2
|
Lawan I, Umbuzeiro GDA, Lyndon AR, Henry TB. Developing behavioural ecotoxicology assessment methods in the tropical marine amphipod, Parhyale hawaiensis: A study with benzo[a]pyrene (BaP). MARINE POLLUTION BULLETIN 2024; 209:117142. [PMID: 39432986 DOI: 10.1016/j.marpolbul.2024.117142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Toxicant-induced behavioural changes provide important insights into environmental toxicity, particularly in vulnerable tropical marine habitats. However, ecotoxicological knowledge of organisms in these environments is insufficient. We aimed to develop innovative and cost-effective ecotoxicology methods using Parhyale hawaiensis as a tropical model organism. Adult P. hawaiensis were exposed to aqueous benzo[a]pyrene (BaP) (2 μM) and dietary BaP (50, 250, or 1250 μg BaP/g diet). Survival (24 to 96 h) and behavioural responses (21d) to foraging, reproduction, and predator avoidance were studied. Aqueous and dietary exposures to benzo[a]pyrene (BaP) did not affect survival but induced significant immobility with effective concentration (EC50 ± SE, 96 h at 11.89 ± 1.19 μM). Relative to the control group, aqueous exposure to 2 μM and dietary exposure to 250 and 1250 μg BaP/g feed resulted in statistically significant behavioural changes. These included a 55-76 % reduction in feeding rates, 133 % increase in chemosensation time, 60-122 % drop in moulting frequency, 200 % delay in precopulatory activity, 50-83 % decrease in geotactic activity, and 300-400 % increase in phototactic activity (all significant at p ≤ 0.05). The methods developed in this study are cost-effective, sensitive, and readily integrated into other endpoint analyses, reinforcing the potential of P. hawaiensis as a tropical ecotoxicology model for detecting toxicant-induced behavioural responses and enhancing marine risk assessments.
Collapse
Affiliation(s)
- Ibrahim Lawan
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | | | - Alastair Robert Lyndon
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom; Department of Forestry Wildlife and Fisheries, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
3
|
Ramírez-Olivares AI, Vargas-Abúndez JA, Capparelli MV. Microplastics impair the reproductive behavior and life history traits of the amphipod Parhyale hawaiensis. MARINE POLLUTION BULLETIN 2024; 205:116630. [PMID: 38925027 DOI: 10.1016/j.marpolbul.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
We investigated the distribution and effects of waterborne microplastic (MP) (polyethylene microspheres, 53-63 um) on the emergent model for ecotoxicology, the amphipod Parhyale hawaiensis, during 30 days of exposure. The following life-history traits were measured: (1) survival, (2) specific growth rate (SGR), (3) reproductive performance (precopulatory pairing behavior, fecundity, and time to release neonates), (4) molting frequency, (5) F1 newborn offspring survival and (6) MP bioaccumulation. No significant mortality or molt was seen in any of the treatments. MP caused a reduction in SGR, being more pronounced in females. The time for precopulatory pairing was 3-fold longer in amphipods exposed to MP. Fecundity decreased by 50 %, and the time to release juveniles was 6.7 days longer for amphipods exposed to MP. Finally, neonate survival decreased by 80 % after ten days of release. MP disrupts the reproductive mechanisms and triggers adverse effects on life history traits in P. hawaiensis.
Collapse
Affiliation(s)
| | - Jorge Arturo Vargas-Abúndez
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, Mexico
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| |
Collapse
|
4
|
de Farias NO, Rodrigues AR, Botelho MT, Magalhães GR, Räisänen R, Freeman HS, Umbuzeiro GDA. The natural anthraquinone dye emodin: Eco/genotoxicological characterization for aquatic organisms. Food Chem Toxicol 2024; 189:114749. [PMID: 38768938 DOI: 10.1016/j.fct.2024.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Emodin is an anthraquinone secondary metabolite produced by several species of plants and fungi. Emodin is known for its pharmacological versatility, and, in the textile industry, for its good dyeing properties. However, its use in the textile industry can result in the formation and disposal of large volumes of wastewater. Emodin mutagenicity has been shown in bacteria and in human cells, but little is known about its possible toxic, genotoxic, or mutagenic effects in aquatic organisms. We have evaluated the eco/genotoxicity of emodin to aquatic organisms. Emodin was toxic to Daphnia similis (EC50 = 130 μg L-1) and zebrafish embryos (LC50 = 25 μg L-1). No toxicity was observed for Raphidocelis subcapitata, Ceriodaphnia dubia, or Parhyale hawaiensis. Additional biochemistry/molecular studies are needed to elucidate the toxic/mutagenic pathways of emodin in aquatic organisms. The PNEC value for emodin was 0.025 μg L-1. In addition to mutagenicity in the Salmonella/microsome assay, emodin was mutagenic in the micronucleus assay in the amphipod P. hawaiensis. Among the anthraquinone dyes tested to date, natural or synthetic, emodin was the most toxic to aquatic species.
Collapse
Affiliation(s)
- Natália Oliveira de Farias
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil; Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil
| | - Amanda Rocha Rodrigues
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil
| | - Marina Tenório Botelho
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil
| | | | - Riikka Räisänen
- Helsinki Institute of Sustainability Science, Craft Studies, University of Helsinki, UH, Helsinki, Finland
| | - Harold S Freeman
- Wilson College of Textiles, North Carolina State University, NCSU, Raleigh, USA
| | - Gisela de Aragão Umbuzeiro
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil; Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Farias NOD, Albuquerque AFD, Dos Santos A, Almeida GCF, Freeman HS, Räisänen R, Umbuzeiro GDA. Is natural better? An ecotoxicity study of anthraquinone dyes. CHEMOSPHERE 2023; 343:140174. [PMID: 37741366 DOI: 10.1016/j.chemosphere.2023.140174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
The concept of sustainability has gained prominence in recent years, enhancing the need to develop products that are less harmful to the environment. Dyes are used by various industrial sectors and have a lot of market value; they are used on a large scale mainly by the textile industry that uses large volumes of water and is one of the main contributors to the contamination of water bodies. Some natural compounds, especially anthraquinones are re-emerging as possible alternatives to synthetic dyes, some of which are known for their toxic and/or mutagenic effects. The BioColour project (https://biocolour.fi/) which is interested in promoting the development of new alternative molecules to synthetic dyes, provided us highly purified anthraquinone dyes dermocybin and dermorubin (>98% purity) extracted from a specie of fungus Cortinarius sanguineus. Dyes were tested for their acute and chronic toxicity using different aquatic organisms. Dermorubin was not toxic to any of the organisms tested for the highest test concentration of 1 mg L-1 and it was the most promising dye. Dermocybin was toxic to Daphnia similis (EC50 = 0.51 mg L-1), Ceriodaphnia dubia (IC10 = 0.13 mg L-1) and Danio rerio embryos (extrapolated LC50 = 2.44 mg L-1). A safety limit, i.e, predicted no-effect concentration (PNEC) of 0.0026 mg L-1 was derived based on the toxicity of dermocybin. The PNEC value can be used to provide hazard information for future application in commercial dyeing processes. Then, we compared the toxicity of dermocybin and dermorubin with ecotoxicity data available in the literature on other anthraquinone dyes of natural and synthetic origin. Some natural dyes can be as toxic as synthetic ones, or more toxic when chronic effects are considered. Despite natural dyes being used since centuries past, there are few ecotoxicological studies available. This study is designed to help develop a more comprehensive understanding of their toxicological properties.
Collapse
Affiliation(s)
- Natália Oliveira de Farias
- School of Technology, University of Campinas, UNICAMP, Limeira, SP, Brazil; Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | | - Amanda Dos Santos
- School of Technology, University of Campinas, UNICAMP, Limeira, SP, Brazil; School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Riikka Räisänen
- Helsinki Institute of Sustainability Science, Craft Studies, University of Helsinki, UH, Helsinki, Finland
| | - Gisela de Aragão Umbuzeiro
- School of Technology, University of Campinas, UNICAMP, Limeira, SP, Brazil; Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
6
|
Dos Santos A, Umbuzeiro GDA. Proposal of a chronic toxicity test using the tropical epibenthic amphipod Parhyale hawaiensis. MARINE POLLUTION BULLETIN 2023; 194:115375. [PMID: 37579598 DOI: 10.1016/j.marpolbul.2023.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Chronic toxicity tests with representative organisms are essential for ecological risk assessment. The circumtropical marine amphipod Parhyale hawaiensis is a promising test organism in ecotoxicology. This study aimed to develop a chronic toxicity protocol for liquid samples testing with P. hawaiensis using reproduction and growth as endpoints. In the proposed protocol, organisms (≤52 days old) are placed in 5 replicates each containing 100 mL of solution, 10 organisms, and 5 g of crushed coral for 42 days of exposure. The protocol was successfully developed but reproduction showed better performance than growth rate. NOECs based on reproduction were determined for zinc (0.10 mg Zn L-1) and 3,4-DCA (0.50 mg L-1), and they are of the same order of magnitude compared with the values of other amphipods. The developed test based on reproduction can be considered a promising tool for hazard characterizations although more tests with different substances are still needed.
Collapse
Affiliation(s)
- Amanda Dos Santos
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil
| | | |
Collapse
|
7
|
Botelho MT, Militão GG, Brinkmann M, Umbuzeiro GDA. Toxicity and mutagenicity studies of 6PPD-quinone in a marine invertebrate species and bacteria. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:335-341. [PMID: 37402651 DOI: 10.1002/em.22560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone), an oxidation product of the tire additive, 6PPD, has been associated with high mortality of salmonids (0.1 μg/L). The objective of this study was to determine the acute toxicity using neonates and mutagenicity (micronuclei in hemolymph of exposed adults) of 6PPD-quinone in the marine amphipod Parhyale hawaiensis. Also, we studied its mutagenicity in the Salmonella/microsome assay using five strains of Salmonella with and without metabolic system (rat liver S9, 5%). 6PPD-quinone did not present acute toxicity to P. hawaiensis from 31.25 to 500 μg/L. Micronuclei frequency increased after 96 h-exposure to 6PPD-quinone (250 and 500 μg/L) when compared to the negative control. 6PPD-quinone also showed a weak mutagenic effect for TA100 only in the presence of S9. We conclude that 6PPD-quinone is mutagenic to P. hawaiensis and weakly mutagenic to bacteria. Our work provides information for future risk assessment of the presence of 6PPD-quinone in the aquatic environment.
Collapse
Affiliation(s)
| | | | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
8
|
Dos Santos A, Botelho MT, Vannuci-Silva M, Artal MC, Vacchi FI, Magalhães GR, Gomes V, Henry TB, Umbuzeiro GDA. The amphipod Parhyale hawaiensis as a promising model in ecotoxicology. CHEMOSPHERE 2022; 307:135959. [PMID: 35944683 DOI: 10.1016/j.chemosphere.2022.135959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Near-shore marine/estuarine environments play an important role in the functioning of the marine ecosystem and are extremely vulnerable to the presence of chemical pollution. The ability to investigate the effects of pollution is limited by a lack of model organisms for which sufficient ecotoxicological information is available, and this is particularly true for tropical regions. The circumtropical marine amphipod Parhyale hawaiensis has become an important model organism in various disciplines, and here we summarize the scientific literature regarding the emergence of this model within ecotoxicology. P. hawaiensis is easily cultured in the laboratory and standardized ecotoxicity protocols have been developed and refined (e.g., miniaturized), and effects of toxicants on acute toxicity (Cd, Cu, Zn, Ag, ammonia, dyes, pesticides, environmental samples), genotoxicity as comet assay/micronuclei, and gene expression (Ag ion and Ag nanoparticles) and regeneration (pesticides) have been published. Methods for determination of internal concentrations of metals (Cu and Ag) and organic substances (synthetic dye) in hemolymph were successfully developed providing sources for the establishment of toxicokinetics models in aquatic amphipods. Protocols to evaluate reproduction and growth, for testing immune responses and DNA damage in germ cells are under way. The sensitivity of P. hawaiensis, measured as 50% lethal concentration (LC50), is in the same range as other amphipods. The combination of feasibility to culture P. hawaiensis in laboratory, the recent protocols for ecotoxicity evaluation and the rapidly expanding knowledge on its biology make it especially attractive as a model organism and promising tool for risk assessment evaluations in tropical environments.
Collapse
Affiliation(s)
- Amanda Dos Santos
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil
| | | | | | | | - Francine I Vacchi
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil; Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Vicente Gomes
- Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, Scotland, UK; Department of Forestry Wildlife and Fisheries, and Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
| | - Gisela de Aragão Umbuzeiro
- School of Technology, University of Campinas, Limeira, SP, Brazil; Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
9
|
Genotoxic effects of silver nanoparticles on a tropical marine amphipod via feeding exposure. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503527. [DOI: 10.1016/j.mrgentox.2022.503527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
|
10
|
Paris M, Wolff C, Patel NH, Averof M. The crustacean model Parhyale hawaiensis. Curr Top Dev Biol 2022; 147:199-230. [PMID: 35337450 DOI: 10.1016/bs.ctdb.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.
Collapse
Affiliation(s)
- Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France
| | - Carsten Wolff
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, United States; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France.
| |
Collapse
|
11
|
Dos Santos A, Vannuci-Silva M, Vendemiatti JADS, Artal MC, Silva BFD, Zanoni MVB, Umbuzeiro GDA. Measuring concentrations of a dye in the hemolymph of a marine amphipod: Development of a protocol for exposure assessment. MARINE POLLUTION BULLETIN 2022; 175:113376. [PMID: 35131559 DOI: 10.1016/j.marpolbul.2022.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The increasing pollution of aquatic environments due to old and emerging contaminants requires the development of integrative methods for exposure assessment. Internal concentrations are a reliable way to estimate total exposure of contaminants originated from different routes (water, sediment, and food). We developed a protocol to evaluate the concentration of a dye, C.I. Disperse Red 1, in the hemolymph of Parhyale hawaiensis, a marine amphipod. LOD and LOQ were satisfactory to detect the dye in all hemolymph samples. The concentration detected in the hemolymph varied related to exposure time and dye concentration (0.003 to 0.086 μg mL-1). Polynomial regression model was the best fit. The protocol was reliable to detect and quantify dye exposure in marine amphipods and can be considered for future assessments of estuarine and marine regions under the influence of dye processing plants. The method possibly can be easily adapted to other amphipods and other azo dyes.
Collapse
Affiliation(s)
- Amanda Dos Santos
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil
| | | | | | | | | | | | - Gisela de Aragão Umbuzeiro
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil; Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Diehl OJ, Assano PK, da Costa TRG, Oliveira R, Marques-Souza H, Umbuzeiro GDA. Antenna regeneration as an ecotoxicological endpoint in a marine amphipod: a proof of concept using dimethyl sulfoxide and diflubenzuron. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:751-755. [PMID: 33770306 DOI: 10.1007/s10646-021-02395-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Regeneration is a widely spread process across the animal kingdom, including many species of marine crustaceans. It is strongly linked to hormonal cycles and, therefore, a great endpoint candidate for toxicology studies. We selected the amphipod Parhyale hawaiensis as test organism, already used in ecotoxicological studies and able to regenerate its body appendages. We are proposing a protocol to use the antenna regeneration as a toxicity endpoint. First, we evaluated differences in time of completion of regeneration in males and females after the amputation of one antenna of 6 months old animals. Then we compared the influence of different testing volumes in the regeneration process (100 and 5 mL). We used as testing substances, dimethyl sulfoxide (DMSO) and diflubenzuron, a chitin synthesis inhibitor. The most suitable protocol consisted of volumes of 5 mL in 12-well microplates, with 1 organism per well, 12 organisms per concentration (1:1 females/males) and test time duration of around 5 weeks. DMSO accelerated regeneration time with a NOEC of 0.06%. Diflubenzuron inhibited the time necessary to its completion with a NOEC of 0.32 μg L-1. We conclude that the Parhyale hawaiensis antenna regeneration protocol proposed here is a potential tool in ecotoxicology, but more studies are required for its validation not only to verify its utility for testing chemicals but also environmental samples.
Collapse
Affiliation(s)
- Otávio J Diehl
- School of Technology, University of Campinas, Limeira, 13484-332, Brazil
| | - Patrícia K Assano
- School of Technology, University of Campinas, Limeira, 13484-332, Brazil
| | | | - Rhaul Oliveira
- School of Technology, University of Campinas, Limeira, 13484-332, Brazil
| | | | | |
Collapse
|
13
|
Vargas-Abúndez JA, López-Vázquez HI, Mascaró M, Martínez-Moreno GL, Simões N. Marine amphipods as a new live prey for ornamental aquaculture: exploring the potential of Parhyale hawaiensis and Elasmopus pectenicrus. PeerJ 2021; 9:e10840. [PMID: 33614288 PMCID: PMC7881717 DOI: 10.7717/peerj.10840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 01/28/2023] Open
Abstract
Marine amphipods are gaining attention in aquaculture as a natural live food alternative to traditional preys such as brine shrimps (Artemia spp.). The use of Artemia is convenient for the culture of many marine species, but often problematic for some others, such as seahorses and other marine ornamental species. Unlike Artemia, marine amphipods are consumed by fish in their natural environment and show biochemical profiles that better match the nutritional requirements of marine fish, particularly of polyunsaturated fatty acids (PUFA), including eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Despite their potentially easy culture, there are no established culture techniques and a deeper knowledge on the reproductive biology, nutritional profiles and culture methodologies is still needed to potentiate the optimization of mass production. The present study assessed, for the first time, the aquaculture potential of Parhyale hawaiensis and Elasmopus pectenicrus, two cosmopolitan marine gammarids (as per traditional schemes of classification) that naturally proliferate in the wild and in aquaculture facilities. For that purpose, aspects of the population and reproductive biology of the species were characterized and then a series of laboratory-scale experiments were conducted to determine amphipod productivity, the time needed to reach sexual maturity by hatchlings (generation time), cannibalism degree, the effects of sex ratio on fecundity and the effects of diet (shrimp diet, plant-based diet and commercial fish diet) on fecundity and juvenile growth. P. hawaiensis, unlike E. pectenicrus, was easily maintained and propagated in laboratory conditions. P. hawaiensis showed a higher total length (9.3 ± 1.3 mm), wet weight (14.4 ± 6.2 mg), dry weight (10.5 ± 4.4 mg), females/males sex ratio (2.24), fecundity (12.8 ± 5.7 embryos per female), and gross energy content (16.71 ± 0.67 kJ g-1) compared to E. pectenicrus (7.9 ± 1.2 mm total length; 8.4 ± 4.3 mg wet weight; 5.7 ± 3.2 mg dry weight; 1.34 females/males sex ratio; 6.5 ± 3.9 embryos per female; 12.86 ± 0.82 kJ g−1 gross energy content). P. hawaiensis juvenile growth showed a small, but significant, reduction by the use of a plant-based diet compared to a commercial shrimp and fish diet; however, fecundity was not affected, supporting the possible use of inexpensive diets to mass produce amphipods as live or frozen food. Possible limitations of P. hawaiensis could be their quite long generation times (50.9 ± 5.8 days) and relatively low fecundity levels (12.8 ± 5.7 embryos per female). With an observed productivity rate of 0.36 ± 0.08 juveniles per amphipod couple per day, P. hawaiensis could become a specialty feed for species that cannot easily transition to a formulated diet such as seahorses and other highly priced marine ornamental species.
Collapse
Affiliation(s)
- Jorge Arturo Vargas-Abúndez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Ciudad de Mexico, Mexico
| | - Humberto Ivan López-Vázquez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Ciudad de Mexico, Mexico
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigacion de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Gemma Leticia Martínez-Moreno
- Unidad Multidisciplinaria de Docencia e Investigacion de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Nuno Simões
- Unidad Multidisciplinaria de Docencia e Investigacion de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.,International Chair for Coastal and Marine Studies in Mexico, Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States of America
| |
Collapse
|
14
|
Response of Tropical African Macroinvertebrates with Varying Tolerances to Different Levels of Nitrate and Phosphate. INTERNATIONAL JOURNAL OF ECOLOGY 2020. [DOI: 10.1155/2020/4034069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute toxicity test was performed to determine the sensitivity of Neorpela spio, Baetis harrisoni, and Tubifex spp. to nitrates (NO3-N) and phosphates (PO4-P) with different concentrations after 96 hours of exposure time. The observed lethal effects and/or mortality increased with concentration and exposure time among tested species of different sensitivities. The results demonstrated that both nitrate and phosphate are toxic to the three studied organisms under the test conditions, with Neorpela spio displaying the highest acute effect in water with nitrate and phosphate compared with Baetis harrisoni and Tubifex spp. The 100% cumulative mortality was experienced at 3.2 mg NO3-N/L and 2.4 mg PO4-P/L for N. spio, 5.6 mg NO3-N/L and 4.8 mg PO4-P/L for B. harrisoni, and 128 mg NO3-N/L and 24 mg PO4-P/L for T. spp. However, N. spio and B. harrisoni showed high mortality at the Tanzanian nitrate recommended lower and maximum limits of 10 and 75 mg NO3-N/L, respectively, for drinking water and significant mortality at the recommended limits of nitrite (20 mg NO3-N/L) and phosphorus (6 mg PO4-P/L) concentrations for municipal and industrial wastewaters. Therefore, there is a need for these Tanzanian recommended nitrate ranges for drinking water of 10 to 75 mg NO3-N/L and 20 mg NO3-N/L and 6 mg PO4-P/L for municipal and industrial wastewaters to be refined for the betterment of protecting both human health and riverine organisms.
Collapse
|
15
|
Duarte LFDA, Blasco J, Catharino MGM, Moreira EG, Trombini C, Nobre CR, Moreno BB, Abessa DMDS, Pereira CDS. Lead toxicity on a sentinel species subpopulation inhabiting mangroves with different status conservation. CHEMOSPHERE 2020; 251:126394. [PMID: 32155497 DOI: 10.1016/j.chemosphere.2020.126394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Lead is a priority pollutant introduced in the aquatic environment by different sources commonly located in estuarine regions, such as ports, marinas and industries. Environmental agencies around the world set the maximum allowable concentration of lead in effluents, surface water and sediment, but few studies reported its accumulation and chronic toxicity in mangrove benthic invertebrates using concentrations believed to be safe. In the case of Brazilian mangrove environments, Ucides cordatus is a crab species of choice to be used in bioaccumulation studies. We have assessed biomarkers' responses (DNA strand breaks, micronucleated cells, metallothioneins, enzymatic activity of aminolevulinic acid dehydratase and neutral red retention time) and the total bioaccumulation in six tissues of U. cordatus crabs resident to mangrove areas under different conservation status during a 28-day period bioassay. We also investigated Pb subcellular partition and biomarkers' responses using a supposedly safe concentration (10 μg L-1). During the Pb exposure, the highest concentration of Pb was observed in crab gills. Crabs also showed a high ability to allocate Pb in detoxified forms. Multivariate analysis pointed out that bioaccumulation (total, active and detoxified) is linked to biomarkers. Even in supposedly safe dosage, U. cordatus triggered its defense mechanisms expressing more metallothioneins and presented relevant cyto-genotoxic damage. Our data suggest the development of biological tolerance to Pb in crabs from polluted areas. Our results provided a new insight about lead toxicity even at concentrations considered environmentally safe, which could support new strategies to manage estuarine areas considering their respective conservation status.
Collapse
Affiliation(s)
- Luis Felipe de Almeida Duarte
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP, 11030-100, Brazil.
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Campus Río San Pedro, s/n, Puerto Real, Cádiz, Spain.
| | - Marília Gabriela Miranda Catharino
- Instituto de Pesquisas Energéticas e Nucleares (IPEN - CNEN/SP), Av. Professor Lineu Prestes, 2242, Cidade Universitária, 05508-000, São Paulo, SP, Brazil.
| | - Edson Gonçalves Moreira
- Instituto de Pesquisas Energéticas e Nucleares (IPEN - CNEN/SP), Av. Professor Lineu Prestes, 2242, Cidade Universitária, 05508-000, São Paulo, SP, Brazil.
| | - Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Campus Río San Pedro, s/n, Puerto Real, Cádiz, Spain.
| | - Caio Rodrigues Nobre
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP, 11030-100, Brazil.
| | - Beatriz Barbosa Moreno
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP, 11030-100, Brazil.
| | - Denis Moledo de Souza Abessa
- Universidade Estadual de São Paulo - UNESP, Center of Investigation on Aquatic Pollution and Ecotoxicology, Praça Infante Dom Henrique, s/n, 11330-900, São Vicente, SP, Brazil.
| | - Camilo Dias Seabra Pereira
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP, 11030-100, Brazil; Universidade Santa Cecília, Laboratório de Ecotoxicologia, Rua Oswaldo Cruz, 266, Santos, SP, 11045-907, Brazil.
| |
Collapse
|
16
|
Artal MC, Pereira KD, Luchessi AD, Okura VK, Henry TB, Marques-Souza H, de Aragão Umbuzeiro G. Transcriptome analysis in Parhyale hawaiensis reveal sex-specific responses to AgNP and AgCl exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113963. [PMID: 32004961 DOI: 10.1016/j.envpol.2020.113963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Analysis of the transcriptome of organisms exposed to toxicants offers new insights for ecotoxicology, but further research is needed to enhance interpretation of results and effectively incorporate them into useful environmental risk assessments. Factors that must be clarified to improve use of transcriptomics include assessment of the effect of organism sex within the context of toxicant exposure. Amphipods are well recognized as model organisms for toxicity evaluation because of their sensitivity and amenability to laboratory conditions. To investigate whether response to metals in crustaceans differs according to sex we analyzed the amphipod Parhyale hawaiensis after exposure to AgCl and Ag nanoparticles (AgNP) via contaminated food. Gene specific analysis and whole genome transcriptional profile of male and female organisms were performed by both RT-qPCR and RNA-seq. We observed that expression of transcripts of genes glutathione transferase (GST) did not differ among AgCl and AgNP treatments. Significant differences between males and females were observed after exposure to AgCl and AgNP. Males presented twice the number of differentially expressed genes in comparison to females, and more differentially expressed were observed after exposure to AgNP than AgCl treatments in both sexes. The genes that had the greatest change in expression relative to control were those genes related to peptidase and catalytic activity and chitin and carbohydrate metabolic processes. Our study is the first to demonstrate sex specific differences in the transcriptomes of amphipods upon exposure to toxicants and emphasizes the importance of considering gender in ecotoxicology.
Collapse
Affiliation(s)
- Mariana Coletty Artal
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, 05508-000, Brazil; School of Technology, University of Campinas, Limeira, São Paulo, 13484-332, Brazil
| | - Karina Danielle Pereira
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, 13484-350, Brazil; Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, 13506-900, Brazil
| | - Augusto Ducati Luchessi
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, 13484-350, Brazil; Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, 13506-900, Brazil
| | - Vagner Katsumi Okura
- Life Sciences Core Facility (LaCTAD), University of Campinas, Campinas, São Paulo, 13083-886, Brazil
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, EH14 4AS, Edinburgh, Scotland, UK; Center for Environmental Biotechnology, The University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996-1605, United States
| | - Henrique Marques-Souza
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, 13083-970, Brazil.
| | - Gisela de Aragão Umbuzeiro
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, 05508-000, Brazil; School of Technology, University of Campinas, Limeira, São Paulo, 13484-332, Brazil.
| |
Collapse
|
17
|
Lee H, Park J, Shin K, Depuydt S, Choi S, De Saeger J, Han T. Application of a programmed semi-automated Ulva pertusa bioassay for testing single toxicants and stream water quality. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105426. [PMID: 32036234 DOI: 10.1016/j.aquatox.2020.105426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
A toxicity test based on inhibition of reproduction in the green macroalga Ulva pertusa involves quantifying the change in thallus color as reproduction progresses. However, interpretation of this color change is reliant on the skill level of the examiner. This study aimed to validate a new toxicity test based on inhibition of reproduction in the green macroalga U. pertusa using a vital stain and programmed semi-automated analysis (using Image J) of the change in thallus color. The toxicity rank by inverse EC50 values was: irgarol (0.048 mg L-1) > Ag (0.132 mg L-1) > As (0.172 mg L-1) > simazine (0.378 mg L-1) > formaldehyde (0.442 mg L-1) > DCOIT (0.783 mg L-1) > ZnPT (3.556 mg L-1) > medetomidine (11.600 mg L-1) > phenol (29.316 mg L-1) > methanol (2,736 mg L-1) > ethanol (3,306 mg L-1). The sensitivity of the U. pertusa test to stream waters was similar to or lower than those of the commonly-used Lemna minor and Daphnia magna bioassays. The U. pertusa bioassay is sensitive to, and suitable for, testing various toxicants including metals, volatile organic compounds, herbicide, antifouling agents and phenol and can also be applied to testing freshwater quality after salinity adjustment.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Marine Science, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea; Ghent University Global Campus, 119-5, Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985, Republic of Korea
| | - Jihae Park
- Ghent University Global Campus, 119-5, Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985, Republic of Korea.
| | - Kisik Shin
- Water Environmental Engineering Research Division, National Institute of Environmental Research, 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Stephen Depuydt
- Ghent University Global Campus, 119-5, Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985, Republic of Korea
| | - Soyeon Choi
- Department of Marine Science, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Jonas De Saeger
- Ghent University Global Campus, 119-5, Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985, Republic of Korea
| | - Taejun Han
- Department of Marine Science, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea; Ghent University Global Campus, 119-5, Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985, Republic of Korea.
| |
Collapse
|
18
|
Duarte LFDA, Moreno JB, Catharino MGM, Moreira EG, Trombini C, Pereira CDS. Mangrove metal pollution induces biological tolerance to Cd on a crab sentinel species subpopulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:768-779. [PMID: 31412480 DOI: 10.1016/j.scitotenv.2019.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Metals are persistent pollutants, able to accumulate in the biota and magnify in trophic web. In the specific case of cadmium contamination, it has been the subject of considerable interest in recent years because of its biological effects and it is one of major pollutant in estuarine areas. Ucides cordatus is considered a mangrove local sentinel crab species in Brazil and there are previous studies reporting crab subpopulations living from pristine to heavily metal impacted areas in São Paulo coast (Southeastern Brazil). Taking into account the background knowledge about these subpopulations, we proposed the hypothesis that crabs from a highly polluted mangrove (Cubatão - CUB) have developed biological tolerance to cadmium compared to animals from an Environmental Protected Area (Jureia - JUR). Aiming to verify this hypothesis, we have investigated total bioaccumulation and subcellular partition of Cd, besides biomarkers' responses during a long-term exposure bioassay (28 days, with weekly sampling) using a supposedly safe Cd concentration (0.0022 mg L-1). Specimens from the pristine area (JUR) accumulated higher total Cd, as such as in its biologically active form in gills. Animals living in the polluted site (CUB) presented higher amounts of Cd in the mainly detoxifying tissue (hepatopancreas), which could be considered a pathway leading to tolerance for this metal. Multivariate analysis indicated that bioaccumulation (active, detoxified and total Cd) is linked to geno-cytotoxic damages. CUB subpopulation was considered more tolerant since it presented proportionally less damage and more capacity to allocate Cd in the main detoxifying forms and tissues.
Collapse
Affiliation(s)
- Luis Felipe de Almeida Duarte
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP 11030-100, Brazil.
| | - Julián Blasco Moreno
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Campus Río San Pedro, s/n, Puerto Real, Cádiz, Spain.
| | - Marília Gabriela Miranda Catharino
- Instituto de Pesquisas Energéticas e Nucleares (IPEN - CNEN/SP), Av. Professor Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Edson Gonçalves Moreira
- Instituto de Pesquisas Energéticas e Nucleares (IPEN - CNEN/SP), Av. Professor Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Campus Río San Pedro, s/n, Puerto Real, Cádiz, Spain.
| | - Camilo Dias Seabra Pereira
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, Campus Baixada Santista, Rua Maria Máximo, 168, Ponta da Praia, Santos, SP 11030-100, Brazil.
| |
Collapse
|
19
|
Wittfoth C, Harzsch S, Wolff C, Sombke A. The "amphi"-brains of amphipods: new insights from the neuroanatomy of Parhyale hawaiensis (Dana, 1853). Front Zool 2019; 16:30. [PMID: 31372174 PMCID: PMC6660712 DOI: 10.1186/s12983-019-0330-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Over the last years, the amphipod crustacean Parhyale hawaiensis has developed into an attractive marine animal model for evolutionary developmental studies that offers several advantages over existing experimental organisms. It is easy to rear in laboratory conditions with embryos available year-round and amenable to numerous kinds of embryological and functional genetic manipulations. However, beyond these developmental and genetic analyses, research on the architecture of its nervous system is fragmentary. In order to provide a first neuroanatomical atlas of the brain, we investigated P. hawaiensis using immunohistochemical labelings combined with laser-scanning microscopy, X-ray microcomputed tomography, histological sectioning and 3D reconstructions. RESULTS As in most amphipod crustaceans, the brain is dorsally bent out of the body axis with downward oriented lateral hemispheres of the protocerebrum. It comprises almost all prominent neuropils that are part of the suggested ground pattern of malacostracan crustaceans (except the lobula plate and projection neuron tract neuropil). Beyond a general uniformity of these neuropils, the brain of P. hawaiensis is characterized by an elaborated central complex and a modified lamina (first order visual neuropil), which displays a chambered appearance. In the light of a recent analysis on photoreceptor projections in P. hawaiensis, the observed architecture of the lamina corresponds to specialized photoreceptor terminals. Furthermore, in contrast to previous descriptions of amphipod brains, we suggest the presence of a poorly differentiated hemiellipsoid body and an inner chiasm and critically discuss these aspects. CONCLUSIONS Despite a general uniformity of amphipod brains, there is also a certain degree of variability in architecture and size of different neuropils, reflecting various ecologies and life styles of different species. In contrast to other amphipods, the brain of P. hawaiensis does not display any striking modifications or bias towards processing one particular sensory modality. Thus, we conclude that this brain represents a common type of an amphipod brain. Considering various established protocols for analyzing and manipulating P. hawaiensis, this organism is a suitable model to gain deeper understanding of brain anatomy e.g. by using connectome approaches, and this study can serve as first solid basis for following studies.
Collapse
Affiliation(s)
- Christin Wittfoth
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Carsten Wolff
- Department of Biology, Comparative Zoology, Humboldt University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andy Sombke
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
20
|
Santos VSV, Silveira E, Pereira BB. Ecotoxicological assessment of synthetic and biogenic surfactants using freshwater cladoceran species. CHEMOSPHERE 2019; 221:519-525. [PMID: 30660908 DOI: 10.1016/j.chemosphere.2019.01.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Surfactants have been continuously detected within aquatic environments as a consequence of their use on a global scale. Lipopeptides are biosurfactants naturally produced by Bacillus subtilis that have been explored as green alternatives. The assessment of ecotoxicological parameters of synthetic and biogenic surfactants are required for evaluating toxicity values and to verify the eco-friendly behaviour of the biological compounds. This study aimed to conduct toxicity testing for different surfactants - sodium dodecyl sulphate and Triton X-100 - and biosurfactants - surfactin, iturin and fengycin - at different concentrations using Daphnia magna as model organism and Dendrocephalus brasiliensis as alternative test species for monitoring of pollutants in tropical freshwaters. According results, both species showed high sensitivity for the anionic compound SDS concerning the recommended dosage use, exhibiting EC50-48h values of 24.1 and 15.4 mg/L for D. magna and D. brasiliensis, respectively. Although the biological source, surfactin showed the lower safety behaviour among the biogenic surfactants, while iturin and fengycin revealed very low toxicity effects on both organisms. Besides, data exhibited a higher responsiveness of D. brasiliensis for all tested compounds in comparison to D. magna, highlighting the importance of this species for monitoring of pollutants in tropical and subtropical environments.
Collapse
Affiliation(s)
- Vanessa Santana Vieira Santos
- Federal University of Uberlândia, Department of Environmental Health, Laboratory of Environmental Health, Santa Mônica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil; Federal University of Uberlândia, Institute of Biotechnology, Department of Biotechnology, Umuarama Campus, Avenida Pará, 1720, 38.400-902 Uberlândia, Minas Gerais, Brazil.
| | - Edgar Silveira
- Federal University of Uberlândia, Institute of Biotechnology, Department of Biotechnology, Umuarama Campus, Avenida Pará, 1720, 38.400-902 Uberlândia, Minas Gerais, Brazil.
| | - Boscolli Barbosa Pereira
- Federal University of Uberlândia, Department of Environmental Health, Laboratory of Environmental Health, Santa Mônica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlândia, Minas Gerais, Brazil; Federal University of Uberlândia, Institute of Biotechnology, Department of Biotechnology, Umuarama Campus, Avenida Pará, 1720, 38.400-902 Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Vannuci-Silva M, Cadore S, Henry TB, Umbuzeiro G. Higher silver bioavailability after nanoparticle dietary exposure in marine amphipods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:806-810. [PMID: 30638280 DOI: 10.1002/etc.4359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/04/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
On release into surface waters, engineered silver nanoparticles (AgNPs) tend to settle to sediments and, consequently, epibenthic fauna will be exposed to them through diet. We established Ag uptake and accumulation profiles over time in the hemolymph of a marine amphipod fed with a formulated feed containing AgNPs or AgCl. Silver bioavailability was higher in organisms exposed to AgNPs, indicating that the nanoparticles pose a higher risk of toxicity compared to similar concentrations of AgCl. Environ Toxicol Chem 2019;38:806-810. © 2019 SETAC.
Collapse
Affiliation(s)
- Monizze Vannuci-Silva
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- School of Technology, University of Campinas, Limeira, São Paulo, Brazil
| | - Solange Cadore
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Theodore B Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
- Center for Environmental Biotechnology, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, Tennessee, USA
| | - Gisela Umbuzeiro
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- School of Technology, University of Campinas, Limeira, São Paulo, Brazil
| |
Collapse
|