1
|
Zhang F, Zhang D, Lou H, Li X, Fu H, Sun X, Sun P, Wang X, Bao M. Distribution, sources and ecological risks of PAHs and n-alkanes in water and sediments of typically polluted estuaries: Insights from the Xiaoqing River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121471. [PMID: 38878581 DOI: 10.1016/j.jenvman.2024.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Seasonal water and sediment samples were collected from the Xiaoqing River estuary and the neighboring sea to study the spatial and temporal distributions, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. The results showed significant spatial and temporal differences in the concentrations of PAHs and n-alkanes under the influence of precipitation, temperature, and human activities. The concentrations of PAHs in water were lower in the wet season than in the dry season, and those in sediments were higher in the wet season than in the dry season. The concentrations of n-alkanes were higher in the rainy season than in the dry season for both water and sediments. The spatial distributions of PAHs and n-alkanes were estuarine > offshore. The concentration ranges of ∑PAHs in water and sediments were 230.66-599.86 ng/L and 84.51-5548.62 ng/g, respectively, in the wet season and 192.46-8649.55 ng/L and 23.39-1208.92 ng/g, respectively, in the dry season. The proportion of three-ring PAHs in water (57.03% and 78.27% in the wet and dry seasons, respectively) was high, followed by two-ring PAHs (27.31% and 13.59% in the wet and dry seasons, respectively). The proportion of four-ring PAHs was higher in sediments (24.79% and 32.20% in the wet and dry seasons, respectively). The ecological risk of PAHs assessed using the toxicity equivalent quotient and risk quotient was at moderate to moderately high risk levels. The high concentration of n-alkane fraction C16 (611.65-75594.58 ng/L) in the water is indicative of petroleum or other fossil fuel inputs. The main peaks of n-alkanes in river sediments were C27, C29 and C31, indicating higher inputs of plant sources. The sediments in the estuary showed dominance of both short-chain C16 and long-chain C25-C31, indicating a combined input of higher plants and petroleum. The diagnostic ratios of PAHs and n-alkanes indicated that their sources were mainly oil/coal/biomass combustion and petroleum spills attributed to frequent vehicular, vessel and mariculture activities. Given the potential ecological risks of PAHs and n-alkanes in water and sediments, future studies should focus on their bioaccumulation and biotoxicity.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Xiaoyue Li
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Meng B, Min XZ, Xiao MY, Xie WX, Li WL, Cai MG, Xiao H, Zhang ZF. Multimedia distribution, dynamics, and seasonal variation of PAHs in Songhua wetland: Implications for ice-influenced conditions. CHEMOSPHERE 2024; 354:141641. [PMID: 38460850 DOI: 10.1016/j.chemosphere.2024.141641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
The knowledge of polycyclic aromatic hydrocarbons (PAHs) in wetlands remains limited. There is a research need for the dynamics between interfaces of multimedia when ice is present in this fragile ecosystem. In this study, sediment, open-water, sub-ice water, and ice samples were collected from the Songhua wetland to study the behaviors of PAHs with and without influences from ice. The concentration of all individual PAHs in sub-ice water (370-1100 ng/L) were higher than the open-water collected from non-ice-covered seasons (50-250 ng/L). Enrichment of PAHs in the ice of wetland was found, particularly for high-molecular-weight PAHs (HMW). This could be attributed to the relatively lower polarity of hydrocarbons compounds, making them more likely to remain in the ice layer during freezing. Source assessments reveal common sources for sub-ice water and ice, which differ from those in the open water in non-ice-covered seasons. This difference is primarily attributed to heating activities in the Harbin during winter. The average percentage contributions were 79% for sub-ice water and 36% for ice related to vehicle exhausts and coal combustion. Additionally, wood burning contributed 25% to sub-ice water and 62% to ice. Sediment in the wetland was found to serve as a final deposit particularly for heavier PAHs, especially those with 6 rings. Sediment also has the potential to act as a source for the secondary emission of low-molecular-weight PAHs (LMW) congeners into the water. PAHs in wetland displayed low ecological risk, while HMW PAHs with relative higher ecological risk is recommended to be further monitored.
Collapse
Affiliation(s)
- Bo Meng
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, Harbin University, Harbin, 150086, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Meng-Yuan Xiao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wen-Xi Xie
- Qiqihar Environmental Monitoring Station, No. 571 Bukunan Street, Longsha District, Qiqihar City, Heilongjiang Province, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States
| | - Ming-Gang Cai
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| |
Collapse
|
3
|
Lin K, Wang R, Tan L, Jiang S, Xu H, Cao Y, Wang J. Assessing the potential risks, sources and the relationship between the dissolved and particulate polycyclic aromatic hydrocarbons (PAHs) in the typical semi-enclosed bay, Bohai Bay of China. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106192. [PMID: 37783158 DOI: 10.1016/j.marenvres.2023.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
This study aimed to investigate the spatial and temporal distribution as well as the partitioning behavior of dissolved and particulate polycyclic aromatic hydrocarbons (PAHs) during the summer and autumn seasons of 2020. It was found that the average concentration of PAHs in surface seawater was significantly higher in autumn (58.16 ng L-1) than in summer (40.47 ng L-1) due to a large amount of input in autumn and more photodegradation and biodegradation affected by higher temperatures in summer. The spatial distribution indicated that the river had a significant dilution effect on PAHs in summer and became a significant input source in autumn. In addition, a large number of oil and gas development platforms were distributed throughout the Bohai Bay, and the discharge of production and domestic sewage contributed to the PAHs pollution level. As a semi-enclosed bay, the water exchange capacity of Bohai Bay was poor, leading to a greater accumulation of PAHs in the marine environment. The diagnostic ratios and PCA-MLR indicated that petroleum was the most important source of PAHs with a contribution of 45%, followed by fuel combustion (39%) such as coal and oil. Photooxidation in seawater resulted in a reduction of BaP/BeP, indicating that seasonal variations in photooxidation had a significant impact on the composition of PAHs (summer: 1.49, autumn: 2.96). The concentration of particulate PAHs was correlated with the concentration of dissolved PAHs and SPM, and the proportion of 3-rings (43.8%) and 4-rings (49.8%) PAHs was significantly higher on SPM. The distribution coefficients Log Kd and φspm-water showed a trend of increasing and then decreasing as the number of rings increased, with the 4-rings Pyr exhibiting the highest value. According to the ecological risk assessment, the ecological risk of total PAHs was low (RQNCs < 800, RQMECs < 1), but the ecological risk of individual PAHs and the carcinogenicity of high-ring PAHs could not be ignored (>96.5%). This study is significant for investigating the "sources and sinks" of PAHs in the complex marine environment by analyzing the partitioning behavior of PAHs in different phases.
Collapse
Affiliation(s)
- Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518000, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Shan Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hongyan Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yali Cao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Wu Y, Zhang Z, Huang W, Liu H, Zhang R, Jiao H, Sun A, Chen J, Shi X. Environmental profile, potential sources, and ecological risk of polycyclic aromatic hydrocarbons in a typical coastal bay and outer bay area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27885-3. [PMID: 37264168 DOI: 10.1007/s11356-023-27885-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
As a class of persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) are widely present and accumulate in multimedia environments. The pollution characteristics, spatiotemporal distribution, potential sources, influencing factors, and ecological risks of 16 PAHs were investigated in the water-sediment system of the Hangzhou Bay and outer bay area (HZB and OBA, respectively). The total concentrations of 16 PAHs (∑PAHs) were 220 ± 97.0 and 130 ± 36.0 ng/L in the seawater and 343 ± 179 and 505 ± 415 μg/kg (dry weight) in the sediments of the HZB and OBA, respectively. The pollution level of PAHs in the HZB seawater was higher than that in the OBA seawater, but the opposite result was found in the sediments. Moreover, ∑PAHs exhibited high temporal variability in the HZB seawater (rainy season > dry season), whereas ∑PAHs in the sediments showed no significant difference between seasons. The molecular diagnostic ratio method was used to identify pollution sources and showed that the PAHs in seawater came from different pollution sources (fuel combustion and petroleum), whereas the PAHs in the sediments originated from coincident sources (mixed combustion). Correlation analysis revealed that temperature was positively related to ∑PAHs, whereas salinity was negatively related to seawater ∑PAHs values. Ecological risk assessment demonstrated that the potential for adverse ecological effects was low to moderate in seawater but moderate to high in the sediments.
Collapse
Affiliation(s)
- Yuyao Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, People's Republic of China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, People's Republic of China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, People's Republic of China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, People's Republic of China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, People's Republic of China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, People's Republic of China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, People's Republic of China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
5
|
Satyanarayana GNV, Kumar A, Pandey AK, Sharma MT, Natesan M, Mudiam MKR. Evaluating chemicals of emerging concern in the Ganga River at the two major cities Prayagraj and Varanasi through validated analytical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1520-1539. [PMID: 35917068 DOI: 10.1007/s11356-022-22226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Evaluating environmental water quality means to assess and protect the environment against unfriendly impacts from various organic impurities emerging from industrial emissions and those released during harvesting. Potential risks related with release of polycyclic aromatic hydrocarbons (PAHs), pesticides and pharmaceuticals (PhAcs), and personal care products (PCPs) into the environment have turned into an increasingly serious issue in ecological safety. Monitoring helps in control of chemicals and ecological status compliance to safeguard specific water uses, for example, drinking water abstraction. A longitudinal review was carried out for 55 different persistent organic pollutants (POPs) for the Ganga River which passes through the urban areas of Prayagraj and Varanasi, India, through validated analytical approaches and measurement uncertainty (MU) estimation to assess their potential use for routine analysis. Furthermore, environmental risk assessment (ERA) carried out in the present study has revealed risk quotient (RQ) higher than 1 in a portion of the aquatic bodies. Using a conservative RQ strategy, POPs were assessed for having extensive risks under acute and chronic exposure, proposing that there is currently critical ecological risk identified with these compounds present in the Ganga River. In general, these outcomes demonstrate a significant contribution for focusing on measures and feasible techniques to minimize the unfavorable effects of contaminants on the aquatic environment.
Collapse
Affiliation(s)
- G N V Satyanarayana
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M.G. Marg, Uttar Pradesh, P.O. Box-80, Lucknow, 226001, India
- Department of Chemistry, School of Basic Sciences, Babu Banarasi Das University, Uttar Pradesh, Lucknow, 226028, India
| | - Anu Kumar
- CSIRO Land and Water, Urrbrae, SA, 5064, Australia
| | - Alok K Pandey
- Nanomaterial Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M. G. Marg, Uttar Pradesh, P. O. Box-80, Lucknow, 226001, India
| | - Manisha T Sharma
- Department of Chemistry, School of Basic Sciences, Babu Banarasi Das University, Uttar Pradesh, Lucknow, 226028, India
| | - Manickam Natesan
- Department of Environmental Biotechnology, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, M. G. Marg, Uttar Pradesh, P. O. Box-80, Lucknow, 226001, India
| | - Mohana Krishna Reddy Mudiam
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
6
|
Ambade B, Sethi SS, Kurwadkar S, Mishra P, Tripathee L. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in surface sediment residues of Mahanadi River Estuary: Abundance, source, and risk assessment. MARINE POLLUTION BULLETIN 2022; 183:114073. [PMID: 36084609 DOI: 10.1016/j.marpolbul.2022.114073] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, we examined the distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from the Mahanadi River Estuary (MRE), identified sources, and evaluated the ecological toxicity. The PAHs distributions in MRE ranged from 13.1 to 685.4 ng g-1 (dry weight), with a mean value of 192.91 ± 177.56 ng g-1 (dry weight). Sediments at sites S11, S8, and S13 have the highest 3-rings, 4-rings, and 5-rings PAHs, respectively. In MRE, pyrene has a significantly higher concentration with a mean value of 30.51 ng g-1, followed by Fluoranthene (86.2 ng g-1), Chrysene (67.4 ng g-1), and Benzo(k)fluoranthene (54.2 ng g-1). Site S8 had a higher total PAH concentration than sites S11, S13, and S1. The diagnostic and principal component analysis suggests that PAHs originated from petroleum, oil, biomass, and coal combustion. Higher toxic and mutagenic equivalent quotients indicate potential aquatic toxicity and a need for continuous monitoring of MRE for PAHs pollution.
Collapse
Affiliation(s)
- Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur 831014, Jharkhand, India.
| | - Shrikanta Shankar Sethi
- Department of Chemistry, National Institute of Technology, Jamshedpur 831014, Jharkhand, India
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, Fullerton, CA, 92831, USA.
| | - Phoolendra Mishra
- Department of Civil and Environmental Engineering, California State University, Fullerton, CA, 92831, USA
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Şimşek İ, Bilgili A. Investigation of monthly residues of polycyclic aromatic hydrocarbons in water and sediment samples from Kirikkale Kizilirmak River Basin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:683. [PMID: 35978225 DOI: 10.1007/s10661-022-10344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) contain two or more benzene rings and are categorized as general environmentally harmful pollutants. PAHs occur because of various combustion and pyrolysis processes with different environmental and anthropogenic sources. The Kizilirmak River is one of the major important water sources used for drinking water and irrigation purposes in Turkey. There are important industrial facilities around the river and PAH pollution is important in terms of environmental health. This study was carried out to determine the residues of PAHs in water and sediment samples according to month and to identify the pollution sources. Thus, water and sediment samples were collected from five different stations in the Kirikkale basin of the Kizilirmak River every 15 days for a year. In this way, 120 water and 120 sediment samples were collected over a year and analyzed in terms of 16 priority PAHs according to the Environmental Protection Agency. The monthly average of the water and sediment samples was calculated. Analyses were carried out with high-performance liquid chromatography based on solid phase extraction. GC-MS was used for confirmation. Acenaphthene, acenaphthylene, benzo[b]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and dibenzo[a,h]anthracene were not found in the water samples. The total PAH levels in water and sediment were detected in the range of 0.04 to 1.545 μg/L and 43.15-386.115 μg/kg, respectively. PAHs found in water and sediment samples had pyrogenic and petrogenic origin and pollution changed significantly between autumn and winter. As a result, precautions should be taken in terms of preventing environmental pollution.
Collapse
Affiliation(s)
- İlker Şimşek
- Department of Medical Services and Techniques, Environmental Health Program, Eldivan Vocational School of Health Services, Cankiri University, 18700, Cankiri, Turkey.
| | - Ali Bilgili
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara University, 06110, Ankara, Turkey
| |
Collapse
|
8
|
Ambade B, Sethi SS, Giri B, Biswas JK, Bauddh K. Characterization, Behavior, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Estuary Sediments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:243-252. [PMID: 34716769 DOI: 10.1007/s00128-021-03393-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances that have ubiquitous presence in water, air, soil, and sediment environments. The growth of PAH toxicities and related ecotoxicology risk in estuary sediment has a serious concern. Present study examined the PAHs concentration, sources, and ecological risk from selected sites in Subarnarekha River estuary (SRE) sediment deposits. The sum of toxic 16 PAHs was ranged from 36.8 to 670.8 ng/g (mean = 223.46 ± 196.35 ng/g). The total PAH concentration varied significantly among the sampling sites (range 511.3 ng/g to 233.8 ng/g) based on allochthonous contaminant loads. Among the 16 compounds, Phen had the highest concentration (40.18 ng/g), followed by Pye (31.86 ng/g), Flur (29.36 ng/g), and NA (19.33 ng/g). Most of the sampling sites contained abundant 3-ring and 4-5-ring PAHs. Based on diagnostic ratios and PCA analysis petroleum combustion, biomass, and coal-burning have been identified as the major sources. The PAHs had high mutagenic equivalent factor and toxic equivalent factor values posing great ecological threats and health risks.
Collapse
Affiliation(s)
- Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur, Jharkhand, 831014, India.
| | - Shrikanta Shankar Sethi
- Department of Chemistry, National Institute of Technology, Jamshedpur, Jharkhand, 831014, India
| | - Basant Giri
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, University of Kalyani, Nadia, West Bengal, India.
- International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India.
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
9
|
Kong J, Dai Y, Han M, He H, Hu J, Zhang J, Shi J, Xian Q, Yang S, Sun C. Nitrated and parent PAHs in the surface water of Lake Taihu, China: Occurrence, distribution, source, and human health risk assessment. J Environ Sci (China) 2021; 102:159-169. [PMID: 33637241 DOI: 10.1016/j.jes.2020.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (NPAHs) have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons (PAHs) and thus have received increasing attention in recent years. In this study, the occurrence, distribution, source, and human health risk assessment of 15 NPAHs and 16 PAHs were investigated in the surface water from 20 sampling sites of Lake Taihu during the dry, normal, and flood seasons of 2018. The ΣPAH concentrations ranged from 255 to 7298 ng/L and the ΣNPAH concentrations ranged from not-detected (ND) to 212 ng/L. Among the target analytes, 2-nitrofluorene (2-nFlu) was the predominant NPAH, with a detection frequency ranging from 85% to 90% and a maximum concentration of 56.2 ng/L. The three-ringed and four-ringed NPAHs and PAHs comprised the majority of the detected compounds. In terms of seasonal variation, the highest levels of the ΣNPAHs and ΣPAHs were in the dry season and flood season, respectively. Diagnostic ratio analysis indicated that the prime source of NPAHs was direct combustion, whereas in the case of PAHs the contribution was predominantly from a mixed pattern including pollution from unburned petroleum and petroleum combustion. The human health risk of NPAHs and PAHs was evaluated using a lifetime carcinogenic risk assessment model. The carcinogenic risk level of the targets ranged from 2.09 × 10-7 to 5.75 × 10-5 and some surface water samples posed a potential health risk.
Collapse
Affiliation(s)
- Jijie Kong
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuxuan Dai
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengshu Han
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China.
| | - Jiapeng Hu
- College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
| | - Junyi Zhang
- Wuxi Environmental Monitoring Centre, Wuxi 214121, China
| | - Junzhe Shi
- Wuxi Environmental Monitoring Centre, Wuxi 214121, China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Zhao Z, Gong X, Zhang L, Jin M, Cai Y, Wang X. Riverine transport and water-sediment exchange of polycyclic aromatic hydrocarbons (PAHs) along the middle-lower Yangtze River, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123973. [PMID: 33265014 DOI: 10.1016/j.jhazmat.2020.123973] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
We examined the riverine transport of polycyclic aromatic hydrocarbons (PAHs) based on their spatial-temporal distributions in water and sediments from the mainstream along the middle and lower Yangtze River. According to the fugacity fraction (ff) estimation, sediments performed as a secondary emission source of two-, three-, and four-ringed PAHs and as a sink for five- and six-ringed congeners, leading to higher ecological and human health risks especially towards the lower reaches. The higher PAH levels observed in the more developed delta and megacities were highly linked to economic parameters. This was further supported by the source apportionment performed using the principal component analysis-multiple linear regression (PCA-MLR) model, which showed major contributions of coal and coke combustions along with vehicle emissions. The spatial-temporal distribution revealed that water runoff was the major contribution to PAHs transport along the middle-lower Yangtze River, whereas a sharp decrease in sediment discharge due to the dam impoundment along the upper reaches would lead to an increase in the catchment retention effect of PAHs. Hence, the biogeochemical processes of PAHs and their impacts on the fragile ecosystems as a consequence of the further modification of the sedimentary system in rivers need to be fully explored.
Collapse
Affiliation(s)
- Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xionghu Gong
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongjiu Cai
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolong Wang
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
11
|
Estimation of Polycyclic Aromatic Hydrocarbons Pollution in Mediterranean Sea from Volturno River, Southern Italy: Distribution, Risk Assessment and Loads. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041383. [PMID: 33546201 PMCID: PMC7913333 DOI: 10.3390/ijerph18041383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
This study reports the data on the contamination caused by polycyclic aromatic hydrocarbons (PAHs) drained from the Volturno River. The seasonal and spatial distribution of PAHs in water and sediment samples was assessed. The 16 PAHs were determined in the water dissolved phase (DP), suspended particulate matter (SPM), and sediments. A multidimensional statistical approach was used to identify three pollution composite indicators. Contaminant discharges of PAHs into the sea were calculated in about 3158.2 kg/year. Total concentrations of PAHs varied in ranges 434.8 to 872.1 ng g−1 and 256.7 to 1686.3 ng L−1 in sediment samples and in water (DP + SPM), respectively. The statistical results indicated that the PAHs mainly had a pyrolytic source. Considering the sediment quality guidelines (SQGs), the water environmental quality standards (USEPA EQS), and risk quotient (RQ), the Volturno River would be considered as an area in which the environmental integrity is possibly at risk.
Collapse
|
12
|
Jia T, Guo W, Liu W, Xing Y, Lei R, Wu X, Sun S. Spatial distribution of polycyclic aromatic hydrocarbons in the water-sediment system near chemical industry parks in the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142176. [PMID: 32916481 DOI: 10.1016/j.scitotenv.2020.142176] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The Yangtze River Delta (YRD) is one of the most populated and economically prosperous regions in China and contains numerous chemical industry parks. To understand the distribution and sources of polycyclic aromatic hydrocarbons (PAHs), surface water and sediment samples were collected from areas around the industrial parks. The total concentrations of 19 PAHs in water and sediment were 32.98-286 ng L-1 and 15.14-5355 ng g-1, respectively. The highest PAH concentrations in water and sediment were found in samples from Wuxi city, which were dominated by high molecular weight (HMW) PAHs, and strongly influenced by fine chemical parks. HMW compounds dominated in the sediment with PAHs containing four and five rings accounting for 61% of the sedimentary ΣPAHs, PAHs in water were dominated by low molecular weight (LMW) compounds (PAHs with two and three rings represented >68% of ΣPAHs). The results of isomeric ratio analysis and principal component analysis with multiple linear regression indicated that the PAH concentrations in water and sediment near the YRD chemical parks are strongly influenced by industrial emissions. The fugacity fraction approach was applied to explain the trend for water-sediment exchange of 16 priority PAHs, which showed that net fluxes for most were from the sediment into water. The results indicated that the LMW PAHs were in a non-steady state in the sediment-water system. An ecological risk assessment showed that most sites were low to medium risk, but one site was high risk.
Collapse
Affiliation(s)
- Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Xing
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
| | - Rongrong Lei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shurui Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Han B, Li Q, Liu A, Gong J, Zheng L. Polycyclic aromatic hydrocarbon (PAH) distribution in surface sediments from Yazhou Bay of Sanya, South China, and their source and risk assessment. MARINE POLLUTION BULLETIN 2021; 162:111800. [PMID: 33168144 DOI: 10.1016/j.marpolbul.2020.111800] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The distribution, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in surface sediments were analyzed and discussed at 15 sampling sites in Yazhou Bay, Sanya. Results showed that the total PAH content in the surface sediments of Yazhou Bay ranged from 13.20 ng/g to 40.37 ng/g, and the average content was 31.53 ng/g. Component analysis showed that the distribution of various PAHs in the surface sediments of Yazhou Bay was relatively average, and 3- and 4-ring PAHs were the dominant species. PAHs were traced by characteristic ratio method and principal component analysis. PAHs in the surface sediments mainly came from combustion sources, including incomplete combustion of petroleum, coal, and biomass, which also indicated the existence of petroleum sources. The ecological risk assessment results of surface sediments showed that, compared with effect range low and effect range median (ERM) of the ecological risk of 14 kinds of PAHs detected, no ecological risk existed for PAHs of all sampling sites in Yazhou Bay. The mean ERM quotient analysis also showed that PAHs in the sediments in Yazhou Bay were at a low risk level.
Collapse
Affiliation(s)
- Bin Han
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Qian Li
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ang Liu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jinwen Gong
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li Zheng
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
14
|
Distribution, sources and ecological risk of trace elements and polycyclic aromatic hydrocarbons in sediments from a polluted urban river in central Bangladesh. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100318] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Xie Z, Gao L, Liang Z, Chen J, Li S, Zhu A, Wu Y, Yang Z, Li R, Wang Z. Characteristics, Sources, and Risks of Polycyclic Aromatic Hydrocarbons in Topsoil and Surface Water from the Liuxi River Basin, South China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:401-415. [PMID: 32008048 DOI: 10.1007/s00244-020-00711-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The concentrations, composition, sources, and risks of polycyclic aromatic hydrocarbons (PAHs) in topsoil and surface water of the Liuxi River basin, south China were analyzed in this study. The total concentrations of 16 PAHs ranged from 296.26 to 888.14 ng/g in topsoil and from 156.73 to 422.03 ng/L in surface water, indicating mild pollution. The PAHs in topsoil exhibited an even spatial distribution, suggesting that they originated primarily from dry and wet deposition of transported pollutants. The concentration of PAHs in surface water did not differ significantly geographically, but the concentrations of total, three-, and four-ring PAHs were significantly lower in the Liuxi River than in its tributaries. Three- and two-ring PAHs predominated in topsoil and surface water, respectively. A correlation analysis suggested that the total organic carbon content and pH exerted a negligible effect on the spatial distribution of PAHs in topsoil, and they may have common sources. Fossil fuel combustion (particularly vehicle emissions) and coking production were the dominant sources of PAHs in topsoil, whereas those in surface water were derived from a variety of sources. The total toxic equivalent concentrations of 16 PAHs in topsoil ranged from 3.73 to 105.66 ng/g (mean, 30.93 ng/g), suggesting that exposure to the basin's topsoil does not pose a risk to the environment or public health according to the Canadian soil quality guidelines. A risk assessment revealed that the total PAH concentrations in surface water posed a low ecological risk.
Collapse
Affiliation(s)
- Zhenglan Xie
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Gao
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zuobing Liang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianyao Chen
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China.
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shaoheng Li
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Aiping Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Wu
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhigang Yang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui Li
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuowei Wang
- School of Geography and Planning, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
- Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
16
|
Yang Y, Wang H, Chang Y, Yan G, Chu Z, Zhao Z, Li L, Li Z, Wu T. Distributions, compositions, and ecological risk assessment of polycyclic aromatic hydrocarbons and phthalic acid esters in surface sediment of Songhua river, China. MARINE POLLUTION BULLETIN 2020; 152:110923. [PMID: 32479296 DOI: 10.1016/j.marpolbul.2020.110923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 06/11/2023]
Abstract
The distribution, composition, and ecological risk of 16 types of polycyclic aromatic hydrocarbons (PAHs) and 6 types of phthalic acid esters (PAEs) in the surface sediment of Songhua river, northeast China, were investigated. The total weight of the PAHs (∑16PAHs) varied from 226.70 to 7086.62 ng/g dry weight (dw), whereas that of the PAEs (∑6PAEs) ranged from 819.44 to 24,035.39 ng/g dw. The dominant PAHs were four-membered ring PAHs, which varied from 18.65% to 78.10% of the total PAHs. The most abundant PAEs was di-2-ethylhexyl phthalate ester (DEHP), which accounted for 65.02-99.07% of the total PAEs, followed by di-n-butyl phthalate ranging from 1.50 to 55.43%. Pyrolytic origin was the dominant PAH source. Approximately 12.70% target PAHs in the Songhua river sediment exhibited moderate ecological risk with 23.49-1404.09 ng/g carcinogenic toxicity equivalent. DEHP in 80.95% of the sediment samples exceeded the effects range low, indicating its potential harmfulness to the aquatic environment.
Collapse
Affiliation(s)
- Yanyan Yang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Lanzhou University, Lanzhou 730000, PR China; Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yang Chang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| | - Zhuanjun Zhao
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Lanzhou University, Lanzhou 730000, PR China
| | - Li Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zewen Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tong Wu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
17
|
Han B, Zheng L, Lin F. Risk assessment and source apportionment of PAHs in surface sediments from Caofeidian Long Island, China. MARINE POLLUTION BULLETIN 2019; 145:42-46. [PMID: 31590806 DOI: 10.1016/j.marpolbul.2019.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
Sediment samples were collected from Caofeidian Long Island, China to investigate the contamination level and distribution pattern of 16 polycyclic aromatic hydrocarbons (PAHs). Source identification and risk assessment were also performed on these PAHs. The distribution patterns and source identification results indicated that the PAHs in the survey area originated from coal, biomass, and petroleum combustion as well as the combination of these three processes. Although the concentration of fluorene in the sediment exceeded the ERL level in some sampling sites, the effect range low-effect range median ratio implied a relatively low level of toxicity in these sediments. Meanwhile, the mean effects range-median quotient indicated that the 16 PAHs in sediments from Caofeidian Long Island pose a low ecological risk.
Collapse
Affiliation(s)
- Bin Han
- Key laboratory for Marine bioactive substances and modern analytical Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Li Zheng
- Key laboratory for Marine bioactive substances and modern analytical Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Faxiang Lin
- Key laboratory for Marine bioactive substances and modern analytical Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
18
|
Barhoumi B, Beldean-Galea MS, Al-Rawabdeh AM, Roba C, Martonos IM, Bălc R, Kahlaoui M, Touil S, Tedetti M, Driss MR, Baciu C. Occurrence, distribution and ecological risk of trace metals and organic pollutants in surface sediments from a Southeastern European river (Someşu Mic River, Romania). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:660-676. [PMID: 30641395 DOI: 10.1016/j.scitotenv.2018.12.428] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The increasing contamination of fresh water resources by trace metals and persistent organic pollutants is a major environmental concern. In the present study, we investigated, for the first time, the distribution, sources and ecological risk of trace metals and organic pollutants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), in surface sediments from a Southeastern European river (Someşu Mic River, Romania). Concentrations of Cd, Cr, Cu, Pb, Ni and Zn ranged from 0.04 to 0.4, 9.4 to 43.15, 7.2 to 65.6, 12.3 to 131.4, 14.7 to 47.7 and 42.1 to 236.8 mg kg-1 dw, respectively. Concentrations of total PAHs, PCBs and OCPs ranged from 24.8 to 575.6, 2.7 to 252.7 and 2.1 to 44.3 ng g-1 dw, respectively. Some sediment parameters, i.e., pH, total organic carbon (TOC) and total organic matter (OM) contents, played a significant role in the spatial distribution of contaminants. A combined analysis based on diagnostic ratios and multivariate analyses revealed PAHs originating mainly from pyrolytic sources. PCB compositions showed distinct contamination signatures for tri- to tetra-chlorinated PCBs, characteristic of contamination by Aroclor-1016 and -1254 technical mixtures. The dominant OCP congeners were α-HCH and p,p'-DDD, reflecting past use of technical HCHs and DDTs in agricultural practices. Metal source and pollution status was assessed using geoaccumulation index and enrichment factor, which indicate widespread pollution by Pb, Cd, Zn, Ni and Cu. The use of Sediments Quality Guidelines (SQGs), mean effect range-median quotient (m-ERM-Q) and toxic equivalent factor (TEF) indicated that the highest ecological risks occurred for PCBs and DDTs. This work presents not only initial baseline information on the extent of organic and inorganic contaminations in a river of ecological and economical interest, but also provides a diagnostic ratio/statistical combined approach that can be used to evaluate sediment quality in similar environments.
Collapse
Affiliation(s)
- Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia; Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Fântânele Street, No. 30, 400294 Cluj-Napoca, Romania
| | - Mihail Simion Beldean-Galea
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Fântânele Street, No. 30, 400294 Cluj-Napoca, Romania
| | - Abdulla M Al-Rawabdeh
- Department of Earth and Environmental Science, Yarmouk University, Irbid 21163, Jordan
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Fântânele Street, No. 30, 400294 Cluj-Napoca, Romania; Research Institute for Sustainability and Disaster Management Based on High Performance Computing (ISUMADECIP), Babeş-Bolyai University, Fântânele Street, No. 30, 400294 Cluj-Napoca, Romania
| | - Ildiko Melinda Martonos
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Fântânele Street, No. 30, 400294 Cluj-Napoca, Romania
| | - Ramona Bălc
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Fântânele Street, No. 30, 400294 Cluj-Napoca, Romania
| | - Massoud Kahlaoui
- Laboratoire de physique des matériaux, Unité de service commun spectromètre de surfaces, Université de Carthage, Faculté des Sciences de Bizerte, Zarzouna, Bizerte 7021, Tunisia
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288 Marseille, France
| | - Mohamed Ridha Driss
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Călin Baciu
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Fântânele Street, No. 30, 400294 Cluj-Napoca, Romania.
| |
Collapse
|
19
|
Masood N, Halimoon N, Aris AZ, Zakaria MP, Vaezzadeh V, Magam SM, Mustafa S, Ali MM, Keshavarzifard M, Alkhadher SAA, Bong CW, Alsalahi MA. Seasonal variability of anthropogenic indices of PAHs in sediment from the Kuala Selangor River, west coast Peninsular Malaysia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2551-2572. [PMID: 29802607 DOI: 10.1007/s10653-018-0122-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Rapid increase in industrialization and urbanization in the west coast of Peninsular Malaysia has led to the intense release of petroleum and products of petroleum into the environment. Surface sediment samples were collected from the Selangor River in the west coast of Peninsular Malaysia during four climatic seasons and analyzed for PAHs and biomarkers (hopanes). Sediments were soxhlet extracted and further purified and fractionated through first and second step column chromatography. A gas chromatography-mass spectrometry (GC-MS) was used for analysis of PAHs and hopanes fractions. The average concentrations of total PAHs ranged from 219.7 to 672.3 ng g-1 dw. The highest concentrations of PAHs were detected at 964.7 ng g-1 dw in station S5 in the mouth of the Selangor River during the wet inter-monsoonal season. Both pyrogenic and petrogenic PAHs were detected in the sediments with a predominance of the former. The composition of hopanes was homogeneous showing that petroleum hydrocarbons share an identical source in the study area. Diagnostic ratios of hopanes indicated that some of the sediment samples carry the crankcase oil signature.
Collapse
Affiliation(s)
- Najat Masood
- Environmental Forensics Laboratory, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Normala Halimoon
- Environmental Forensics Laboratory, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ahmad Zaharin Aris
- Environmental Forensics Laboratory, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohamad Pauzi Zakaria
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Vahab Vaezzadeh
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sami M Magam
- Environmental Forensics Laboratory, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, 4300, Serdang, Selangor, Malaysia
| | - Masni Mohd Ali
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | | | - Sadeq Abdullah Abdo Alkhadher
- Environmental Forensics Laboratory, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chui Wei Bong
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
- Laboratory of Microbial Ecology, Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Murad Ali Alsalahi
- Department of Marine Chemistry and Pollution, Faculty of Marine Science and Environment, Hodeidah University, Hodeidah, Yemen
| |
Collapse
|
20
|
Li Y, Zhen X, Liu L, Tian C, Pan X, Tang J. From headwaters to estuary: distribution, sources, and ecological risk of polycyclic aromatic hydrocarbons in an intensively human-impacted river, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36604-36614. [PMID: 30377958 DOI: 10.1007/s11356-018-3379-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Located in the Shandong Province, North China, the Xiaoqing River is heavily contaminated by industrial wastewater and domestic sewage. However, it plays a significant role with regard to irrigation for agriculture in the river basin. In this study, spatial distribution, sources, and the ecological risk of aqueous polycyclic aromatic hydrocarbons (PAHs) in the Xiaoqing River Basin were investigated from the headwaters to the estuary. Fifteen USEPA priority PAHs (except naphthalene) were quantified in water particulate and soluble phases and in sediment samples. Σ15PAHs concentrations in the sediment varied from 17.15 to 3808.01 ng/g dry weight (dw), with an average of 988.72 ng/g dw, suggesting severe pollution of the Xiaoqing River in comparison with other rivers worldwide. The composition of PAHs was characterized by the high abundance of 4-ring and 5-ring PAHs in sediments and 2-ring and 3-ring PAHs in water. Industrial wastewater is a significant source of PAHs. In the river section, point source was the main factor affecting the distribution of PAHs, while in the estuary region, estuarine turbidity maximum zone (ETM), riverine flow and discharge, and its hydrodynamic parameters play more key roles on PAH levels. Molecular diagnostic ratios have proved that PAHs in sediments were derived from mixed sources, primarily a combination of several combustion processes. Toxicity equivalency concentrations (TEQs) and Ecological risk assessment by Sediment Quality Guidelines indicated that PAHs in sediments might have certain unfavorable effects on ecosystems in certain sites.
Collapse
Affiliation(s)
- Yanan Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai, 264003, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Zhen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai, 264003, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Lin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai, 264003, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai, 264003, People's Republic of China
| | - Xiaohui Pan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai, 264003, People's Republic of China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai, 264003, People's Republic of China.
| |
Collapse
|
21
|
Sun R, Sun Y, Li QX, Zheng X, Luo X, Mai B. Polycyclic aromatic hydrocarbons in sediments and marine organisms: Implications of anthropogenic effects on the coastal environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:264-272. [PMID: 29859442 DOI: 10.1016/j.scitotenv.2018.05.320] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Intensive human activities aggravate environmental pollution, particularly in the coastal environment. Sixteen priority polycyclic aromatic hydrocarbons (PAHs) were determined in the sediments and marine species from Zhanjiang Harbor, a large harbor in China. The total PAH concentrations ranged from 151 to 453 ng/g dry weight (dw) in sediments and from 86.7 to 256 ng/g wet weight (ww) in organism tissues. High levels of PAHs occurred in the sample sites next to the estuary. A decrease in PAH levels was observed in comparison to the previous survey prior to 2012. Fish exhibited lower lipid weight normalized PAH concentrations than the other species, which may be related to their efficient metabolic transformation. Three ring PAHs dominated both in marine sediments and species, but low molecular weight PAHs exhibited higher proportions in biota than in sediments (p < 0.05). Petrogenic and pyrolytic sources both contributed to the occurrence of PAHs, and the latter became increasingly important in the study area. The ecological risk from PAHs in the sediments was relatively low (9% incidence of adverse biological effect) according to the effects-based sediment quality guideline values. Exposure to PAHs via consuming seafoods might pose a health risk to local residents. Overall, these results revealed anthropogenic activities in the coastal area have an impact on the local ecosystem.
Collapse
Affiliation(s)
- Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yue Sun
- School of Pharmacy, Fudan University, Shanghai 200433, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
22
|
Qiao M, Bai Y, Cao W, Huo Y, Zhao X, Liu D, Li Z. Impact of secondary effluent from wastewater treatment plants on urban rivers: Polycyclic aromatic hydrocarbons and derivatives. CHEMOSPHERE 2018; 211:185-191. [PMID: 30071431 DOI: 10.1016/j.chemosphere.2018.07.167] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The growing population in urban area impacted the water quality of the urban rivers receiving treated municipal wastewater. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (SPAHs) are corresponding to the population density. In this study, the concentrations of 16 PAHs and 17 SPAHs, including 4 methyl PAHs (MPAHs), 4 oxygenated PAHs and 9 chlorinated PAHs were investigated in the major urban rivers receiving the effluent from 5 major wastewater treatment plants (WWTPs) in the mega city Beijing. The concentrations of ΣSPAHs (307 ± 68 ng/L) were similar to ΣPAHs (321 ± 92 ng/L) in the total phase (aqueous + particulate) suggesting that SPAHs in the urban rivers should be taken into consideration. The lower concentrations of ΣPAHs and ΣMPAHs in this study than the wastewater receiving rivers and WWTPs effluent previously (2010-2013), as well as the lower concentration in the heating seasons than the non-heating season in the investigated year implied the reduction of coal combustion for heating and power generation in recent years. Although WWTPs effluent was theoretically the only source to the urban rivers in the investigated season, April and November, PAHs and SPAHs in most rivers were demonstrated to be originated from other unknown sources besides the WWTPs effluent. The reduction from the original source, coal combustion (33% and 30%), was more efficient than from the wastewater treatment upgrading (15%) for the reduction of PAHs and SPAHs in the urban rivers.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Cao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yang Huo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dongqing Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Zhuorong Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| |
Collapse
|
23
|
Škrbić BD, Kadokami K, Antić I. Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment. ENVIRONMENTAL RESEARCH 2018; 166:130-140. [PMID: 29886389 DOI: 10.1016/j.envres.2018.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/06/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
This study demonstrates the occurrence of 940 organic micro-pollutants in surface water of four rivers, one irrigation canal system, and two lakes in Vojvodina Province, the northern part of Serbia, summing in total eighteen samples. The number of detected chemicals ranged from 22 to 84, with 127 micro-pollutants detected at least once, representing 13% of the studied substances. The targeted compounds include n-alkanes, sterols, polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides polychlorinated biphenyls, pesticides, pharmaceutical active compounds, industrial chemicals, plasticizers, etc. Among the analysed compounds, sterols were the most dominant with maximum quantified concentrations. The substances which were quantified with frequency over 50% were two PAHs (2-methylnaphthalene, benzo(ghi)perylene), five sterols (cholesterol, cholestanol, stigmasterol, fucosterol, beta-sitosterol), three pharmaceuticals and personal care products (L-menthol, diethyltoluamide, caffeine), and ten household chemicals (4-tert-octylphenol, dimethyl phthalate, methyl palmitate, phenylethyl alcohol, 1-nonanol, alpha-terpineol, 2-phenoxy-ethanol, methyl myristate, acetophenone, and 2-ethyl-1-hexanol). The list of priority substances under the European Union Directive 2013/39/EU includes 49 priority substances (PSs) out of which 34 were analysed. Among these, eleven PSs were quantified, and only two compounds (fluoranthene and benzo (a) pyrene) exceeded EU Environmental Quality Standards targeted values. The obtained results were compared with the previously published data that dealt with the same targeted number of micro-pollutants in sediment samples. This revealed connections between the same sampling locations. Environmental risk assessment showed the existence of potential ecological risk as 72% of the obtained values for the ecological hazard index (HI) at investigated locations were higher that the targeted value (HI > 1). Estimated values for hazard quotient (HQ) and hazard index (HI) for non-carcinogenic risk were lower than the targeted value, indicating no non-carcinogenic risk through dermal contact and non-intentional ingestion of water. Estimated values for cancer risk were all below 1 × 10-6, which is not considered to pose significant human health risk.
Collapse
Affiliation(s)
- Biljana D Škrbić
- University of Novi Sad, Faculty of Technology, Laboratory for Chemical Contaminants and Sustainable Development, 21000 Novi Sad, Serbia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Igor Antić
- University of Novi Sad, Faculty of Technology, Laboratory for Chemical Contaminants and Sustainable Development, 21000 Novi Sad, Serbia
| |
Collapse
|
24
|
Tang J, An T, Li G, Wei C. Spatial distributions, source apportionment and ecological risk of SVOCs in water and sediment from Xijiang River, Pearl River Delta. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1853-1865. [PMID: 28281139 DOI: 10.1007/s10653-017-9929-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Xijiang River is an important drinking water source in Guangxi Province, China. Along the Xijiang River and surrounding tributary, the pollution profile of three important groups of semi-volatile organic compounds, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and phthalate esters (PAEs), was analyzed. Relatively low levels of PAHs (64-3.7 × 102 ng L-1) and OCPs (16-70 ng L-1), but high levels of PAEs (7.9 × 102-6.8 × 103 ng L-1) occurred in the water. Comparatively, low levels of OCPs (39-1.8 × 102 ng g-1) and PAEs (21-81 ng g-1), but high levels of PAHs (41-1.1 × 103 ng g-1) were found in sediment. Principal component analyses for source identification indicated petroleum-derived residues or coal and biomass combustion, and vehicular emission was the main sources for PAHs. The OCPs sources of each category were almost independent, whereas the new input of HCHs and p,p'-DDTs probably existed in some areas. PAEs were mainly originated from personal care products of urban sewage, plastic and other industrial sources. Ecological risk through the risk quotient analysis indicated a small or significant potential adverse effect on fish, daphnia and green algae. Nevertheless, the integrated risk of all pollutants should be taken into account in future study.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
25
|
Sharma BM, Melymuk L, Bharat GK, Přibylová P, Sáňka O, Klánová J, Nizzetto L. Spatial gradients of polycyclic aromatic hydrocarbons (PAHs) in air, atmospheric deposition, and surface water of the Ganges River basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1495-1504. [PMID: 30857111 DOI: 10.1016/j.scitotenv.2018.01.262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous semi-volatile organic pollutants. Their environmental occurrence is of global concern as some of them are carcinogens, mutagens, and teratogens. In this study, concentrations and distributions of 16 priority PAHs (∑PAHs) were measured in air, atmospheric deposition, and surface water at various locations in Himalayan, Middle, and Lower Reaches of the Ganges River, covering a spatial transect of 2500km, during two seasons (pre-monsoon and monsoon). The concentration of ∑PAHs ranged between 2.2 and 182.2ngm-3 in air, between 186 and 8810ngm-2day-1 in atmospheric deposition, and between 0.05 and 65.9ngL-1 in surface water. Air concentrations were strongly correlated with human population density. In the Middle and Lower Reaches of the Ganges River, atmospheric PAHs were mainly attributed to fossil fuel combustion sources. In the Himalayan Reach the influence of forest fire or biomass combustion was evident during the dry pre-monsoon season. Seasonality in concentrations of PAHs in river water was evident in the Himalayan Reach of the river, as a probable consequence of climate-modulated secondary source intensity (i.e. releases from glacier melting). Seasonality faded in the Middle and Lower Reaches of the Ganges where water contamination is expected to mainly reflect anthropogenic primary sources. Ambient air concentrations were used to calculate the probabilistic incremental lifetime cancer risk (ILCR). It was expectedly found to be higher in the Middle and Lower Reaches compared to the Himalayan Reach. The strong correlation between population density and air concentrations suggests population density may be used as a surrogate variable to assess human health risk in data-sparse regions such as the Ganges River basin.
Collapse
Affiliation(s)
- Brij Mohan Sharma
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic
| | - Lisa Melymuk
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic.
| | - Girija K Bharat
- Mu Gamma Consultants Pvt. Ltd., Sector-50, Gurgaon, Haryana 122018, India; The Energy and Resources Institute (TERI), Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Petra Přibylová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic
| | - Ondřej Sáňka
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic
| | - Jana Klánová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic
| | - Luca Nizzetto
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno 62500, Czech Republic; Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, Oslo 0349, Norway
| |
Collapse
|
26
|
Dong W, Liu B, Song Y, Zhang H, Li J, Cui X. Occurrence and Partition of Perfluorinated Compounds (PFCs) in Water and Sediment from the Songhua River, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:492-501. [PMID: 29150771 DOI: 10.1007/s00244-017-0474-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
This study provided the first evidence that perfluorinated compounds (PFCs) were widely detected in the Songhua River, China. Seventeen surface water and sediment samples were collected and analyzed for the determination of 14 PFCs. The total concentrations of PFCs (Σ PFCs) ranged from 0.143 to 1.41 ng L-1 in water samples. Perfluorooctanoic acid (PFOA) was detected with the highest detection frequency (%) ranging from below LOQ to 0.678 ng L-1. Σ PFCs were relatively low in sediments, and only four individual homologues were detected. Perfluorooctane sulfonate (PFOS) and PFOA were detected with the lowest levels in this study compared with other PFCs detected in all the rivers of China in previous studies. The concentrations of PFCs were highly influenced by distribution of wastewater treatment plants (WWTPs). The effluents from WWTPs, which are discharged into the Songhua River, are regarded as the main contamination sources of PFCs in this study. Even though low risk for the concentrations of PFOS and PFOA to aquatic ecosystem of the Songhua River was found in the analysis of potential adverse effect, further experimental studies on occurrence of PFCs and their potential adverse effects to wildlife and humans should be conducted continuously in the Songhua River basin because of the increasing discharge. The mean partition coefficients (log K oc) of PFOS between sediment and water was 4.49 cm3 g-1, which was probably influenced by the sediment characteristics and hydrodynamic parameters. PFCs tend to accumulate in water compared with other persistent organic pollutants.
Collapse
Affiliation(s)
- Weihua Dong
- College of Urban and Environmental Science, Changchun Normal University, Changchun, 130032, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| | - Yang Song
- College of Urban and Environmental Science, Changchun Normal University, Changchun, 130032, China
| | - Hong Zhang
- College of Physical Science and Technology, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyu Cui
- College of Physical Science and Technology, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
27
|
Santos E, Souza MRR, Vilela Junior AR, Soares LS, Frena M, Alexandre MR. Polycyclic aromatic hydrocarbons (PAH) in superficial water from a tropical estuarine system: Distribution, seasonal variations, sources and ecological risk assessment. MARINE POLLUTION BULLETIN 2018; 127:352-358. [PMID: 29475671 DOI: 10.1016/j.marpolbul.2017.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
This study aimed to evaluate the PAH distribution, sources, seasonal variations and ecological risk assessment in superficial water from the Japaratuba River, Brazil. PAH concentrations ranged from 4 to 119ngL-1. It was observed that the PAH total concentrations and profiles showed significant differences when comparing the dry season (summer) with the rainy season (winter). Furthermore, most of the PAH originated from pyrogenic sources in the winter, whereas a mixture of sources was observed in the summer. PAH concentration levels found in this study were considered lower than those obtained in other estuarine systems. Ecological risk assessment was determined for individual PAH, based on the risk quotient (RQ) to evaluate the risk of aquatic biota's exposure to PAH. Results suggested that the Japaratuba River has achieved a moderate degree of ecological risk for high molecular weight, showing the importance of identifying these carcinogenic and mutagenic compounds in aquatic systems.
Collapse
Affiliation(s)
- Ewerton Santos
- Universidade Federal de Sergipe, Departamento de Química, Jardim Rosa Elze, São Cristóvão, SE 449100-000, Brazil
| | - Michel R R Souza
- Universidade Federal de Sergipe, Departamento de Química, Jardim Rosa Elze, São Cristóvão, SE 449100-000, Brazil
| | - Antônio R Vilela Junior
- Universidade Federal de Sergipe, Departamento de Química, Jardim Rosa Elze, São Cristóvão, SE 449100-000, Brazil
| | - Laiane S Soares
- Universidade Federal de Sergipe, Departamento de Química, Jardim Rosa Elze, São Cristóvão, SE 449100-000, Brazil
| | - Morgana Frena
- Universidade Federal de Santa Catarina, Departamento de Química, Campus Universitário Trindade, Florianópolis, SC 88040-900, Brazil
| | - Marcelo R Alexandre
- Universidade Federal de Sergipe, Departamento de Química, Jardim Rosa Elze, São Cristóvão, SE 449100-000, Brazil.
| |
Collapse
|
28
|
Tang J, An T, Xiong J, Li G. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:1487-1499. [PMID: 28315117 DOI: 10.1007/s10653-017-9936-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Three important groups of semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), organic chlorinated pesticides (OCPs) and phthalate esters (PAEs), were produced by various human activities and entered the water body. In this study, the pollution profiles of three species including 16 PAHs, 20 OCPs and 15 PAEs in water along the Beijiang River, China were investigated. The concentrations of Σ16PAHs in the dissolved and particulate phases were obtained as 69-1.5 × 102 ng L-1 and 2.3 × 103-8.6 × 104 ng g-1, respectively. The levels of Σ20OCPs were 23-66 ng L-1 (dissolved phase) and 19-1.7 × 103 ng g-1 (particulate phase). Nevertheless, higher levels of PAEs were found both in the dissolved and particulate phases due to abuse use of plastic products. Furthermore, non-cancer and cancer risks caused by these SVOCs through the ingestion absorption and dermal absorption were also assessed. There was no non-cancer risk existed through two kinds of exposure of them at current levels, whereas certain cancer risk existed through dermal absorption of PAHs in the particulate phase in some sampling sites. The results will show scientific insights into the evaluation of the status of combined pollution in river basins, and the determination of strategies for incident control and pollutant remediation.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Gdara I, Zrafi I, Balducci C, Cecinato A, Ghrabi A. Seasonal Distribution, Source Identification, and Toxicological Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Sediments from Wadi El Bey Watershed in Tunisia. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:488-510. [PMID: 28801706 DOI: 10.1007/s00244-017-0440-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Surface sediments were collected from the Watershed of Wadi El Bey in Tunisia to evaluate the degree of polycyclic aromatic hydrocarbons (PAHs) contamination. Sediments were collected during different seasons in 14 sites that received wastes from domestic effluent, industrial discharge, and agricultural drainage wastes. Twenty-six individual PAHs were analyzed. The total PAH contents (Σ PAHs) in surface sediments showed wide variability, ranging from 6.89 ± 0.05 to 340 ± 0.1 ng g-1. The 4-, 5-, and 6-ring compounds were the most abundant PAHs detected at the majority of sites. Diagnostic concentration ratios between pairs of PAHs and molecular indices, calculated with the purpose of drawing information about pollution sources, indicated that PAHs were of both petrogenic and pyrolytic origins. Toxic contaminants concentrations were determined according to the numerical effect-based sediment quality guidelines (SQGs). PAH levels did not exceed the SQGs, indicating that PAHs seem to pose low and occasional toxicity risks. Total carcinogenicity and mutagenicity (TEQBaP and MEQBaP) ranged from 0.08 to 65 ng and from 0.02 to 135.0 ng g-1 of dry weight, respectively. Among the seven carcinogenic PAHs, BaP accounted for the majority of the potency and could potentially be used as a unique indicator of PAH toxicity. This study provides a baseline to promote environmental protection programs and pollution monitoring/control in Watershed and coastal areas.
Collapse
Affiliation(s)
- Imen Gdara
- Water Researches and Technologies Center Borj-Cedria Technopark, BP 273-8020, Soliman, Tunisia.
- Faculty of Science of Bizerte, 7021, Zarzouna, Bizerte, Tunisia.
| | - Ines Zrafi
- Water Researches and Technologies Center Borj-Cedria Technopark, BP 273-8020, Soliman, Tunisia
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29.3, P.O. Box 1000015, Monterotondo, Rome, Italy
| | - Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria km 29.3, P.O. Box 1000015, Monterotondo, Rome, Italy
| | - Ahmed Ghrabi
- Water Researches and Technologies Center Borj-Cedria Technopark, BP 273-8020, Soliman, Tunisia
| |
Collapse
|
30
|
Qian X, Liang B, Liu X, Liu X, Wang J, Liu F, Cui B. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the Haihe River, a typical polluted urban river in Northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17153-17165. [PMID: 28585014 DOI: 10.1007/s11356-017-9378-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
The distribution, sources, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments from the Haihe River. Total PAH concentrations varied from 171.4 to 9511.2 ng g-1 with an average of 2125.4 ng g-1, suggesting serious pollution of the Haihe River in comparison with other reported rivers worldwide. PAH contaminants differed significantly among 17 sampling locations with high values occurring in industrial areas and densely populated areas. The composition of PAHs was characterized by high abundance of 4-ring and 5-ring PAHs, and benzo[a]anthracene, chrysene, and benzo[a]pyrene were the predominant components. Molecular diagnostic ratios have confirmed that PAHs in Haihe River sediments resulted from mixed sources, primarily including various combustion processes. Ecological risk assessment using the Sediments Quality Guidelines indicated that PAHs in sediments could cause certain negative effects on aquatic organisms in most survey regions.
Collapse
Affiliation(s)
- Xiao Qian
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Baocui Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xuan Liu
- Département Génie Mathématique, Institut National des Sciences Appliquées de Rouen, Normandie, France
| | - Xinhui Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Juan Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Fei Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Baoshan Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
31
|
Zhang D, Wang JJ, Ni HG, Zeng H. Spatial-temporal and multi-media variations of polycyclic aromatic hydrocarbons in a highly urbanized river from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:621-628. [PMID: 28077210 DOI: 10.1016/j.scitotenv.2016.12.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/21/2016] [Accepted: 12/25/2016] [Indexed: 06/06/2023]
Abstract
Comprehensive studies on polycyclic aromatic hydrocarbons (PAHs) within an urban river are urgently needed to carry out strategies to limit their contamination and dispersal. Here, we analyzed 16 PAH occurrences in water, suspended particulate matter (SPM), and sediment monthly for a year in the Maozhou River mainstream (Shenzhen, South China). Monthly rainfall positively correlated with both total PAH concentrations in filtered water (water PAHs) and SPM. Sediment PAH concentration increased from the river source to estuary. Compared to the earlier record, the sediment PAHs decreased at almost all sites due to the high-molecular-weight PAH (≥4 rings; especially the 4-ring PAH) degradation, except the estuary site that accumulated more low-molecular-weight PAHs (<4 rings). Results suggest that the water and SPM PAHs had similar and recent sources (e.g., rainfall and storm runoff) and actively exchanged with each other. The sediment PAHs had relatively different and complicated sources (fossil fuel combustion: 44.0%; oil pollution: 28.4%; biomass burning: 27.6%), and showed a long-term accumulation effect and increasingly weaker source-sink relation with both water and SPM PAHs from river source to estuary. This study highlights a disconnection in the source and migration mechanism between the water body (including water and SPM) and sediment PAHs.
Collapse
Affiliation(s)
- Di Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jun-Jian Wang
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Hong-Gang Ni
- Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hui Zeng
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
32
|
Source and Ecological Risk Characteristics of PAHs in Sediments from Qinhuai River and Xuanwu Lake, Nanjing, China. J CHEM-NY 2017. [DOI: 10.1155/2017/3510796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to investigate the residual characteristics, sources, and ecological risk of PAHs in sediment from urban rivers, the sediments of 15 typical sites from Qinhuai River and Xuanwu Lake, which are typical urban rivers and lake, were collected from October 2015 to July 2016; the sources of PAHs in sediment were also identified by several methods. Results showed that ∑PAHs concentration in sediment ranged from 796.2 ng/g to 10,470 ng/g with an average of 2,713.8 ng/g. High molecular weight PAHs with 4-5 rings were most prominent in the sediment during all four seasons. Source characterization studies based on the analysis of diagnostic ratio (triangular plot method), cluster analysis, and positive factor matrix analysis suggested that the PAHs of Qinhuai River Basin were mainly from pyrogenic origin (biomass and coal combustion and vehicular emission), and the petroleum source also cannot be ignored (specially in summer). Most individual PAHs occasionally affect the aquatic organisms. The highest benzo[a]pyrene-equivalent doses (BaPeq dose) appear at the sites of sewage discharge and heavy traffic. So, the PAHs pollution sources of urban water body have obvious seasonal-dependent and human activities-dependent characteristics.
Collapse
|
33
|
Zhang A, Zhao S, Wang L, Yang X, Zhao Q, Fan J, Yuan X. Polycyclic aromatic hydrocarbons (PAHs) in seawater and sediments from the northern Liaodong Bay, China. MARINE POLLUTION BULLETIN 2016; 113:592-599. [PMID: 27622925 DOI: 10.1016/j.marpolbul.2016.09.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Levels, sources, and potential ecological risks of polycyclic aromatic hydrocarbons (PAHs) in surface seawater and sediments from the northern Liaodong Bay of China were seasonally investigated. Total concentrations of 16 PAHs varied from 145.96ng/L to 896.58ng/L in seawater, and from 191.99ng/g to 624.44ng/g in sediments. PAH concentrations in seawater differed significantly, whereas those in sediments exhibited a relatively stable pattern across seasons. PAHs with low molecular weight were predominant in seawater, but PAHs with high molecular weight were abundant in sediments. Crop straw and coal combustion were the main PAH pollution sources. The current levels of PAHs in the northern Liaodong Bay are relatively moderate compared with those in other bays and estuaries. Sediment from all sampling sites is characterized by low to medium ecotoxicological risk. No highly negative toxic effect could occur on the organisms and ecosystems in the northern Liaodong Bay.
Collapse
Affiliation(s)
- Anguo Zhang
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shilan Zhao
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China
| | - Lili Wang
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China
| | - Xiaolong Yang
- Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Qian Zhao
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China
| | - Xiutang Yuan
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian 116023, China.
| |
Collapse
|
34
|
Montuori P, Aurino S, Garzonio F, Sarnacchiaro P, Nardone A, Triassi M. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1254-1267. [PMID: 27265739 DOI: 10.1016/j.scitotenv.2016.05.183] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 05/27/2023]
Abstract
The concentration, source and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in the Tiber River and its environmental impact on the Tyrrhenian Sea (Central Mediterranean Sea) were estimated. The 16 priority PAHs were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments collected from 21 sites in four different seasons. Total concentrations of PAHs ranged from 10.3 to 951.6ngL(-1) and from 36.2 to 545.6ngg(-1) in water (sum of DP and SPM) and in sediment samples, respectively. The compositions of PAHs showed that 2- to 4-ring PAHs were abundant in DP, 4- to 6-ring PAHs were predominant in SPM samples, and 4- to 5-ring PAHs were abundant in sediments. The diagnostic ratio analysis indicated that the PAHs mainly had a pyrolytic source. The toxic equivalent concentration of carcinogenic PAHs was 45.3ngTEQg(-1), suggesting low carcinogenic risk for Tiber River. Total PAHs loads into the sea were calculated in about 3161.7kgyear(-1) showing that this river is one of the main contribution sources of these contaminants to the Tyrrhenian Sea.
Collapse
Affiliation(s)
- Paolo Montuori
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy.
| | - Sara Aurino
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Fatima Garzonio
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Pasquale Sarnacchiaro
- Department of Economics, University Unitelma Sapienza, Viale Regina Elena no 295, 00161 Rome, Italy
| | - Antonio Nardone
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| | - Maria Triassi
- Department of Public Health, University Federico II, Via Sergio Pansini no 5, 80131 Naples, Italy
| |
Collapse
|
35
|
Sediment-Water Exchange, Spatial Variations, and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Songhua River, China. WATER 2016. [DOI: 10.3390/w8080334] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
He Y, Meng W, Xu J, Zhang Y, Guo C. Spatial distribution and potential toxicity of polycyclic aromatic hydrocarbons in sediments from Liaohe River Basin, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:193. [PMID: 26915741 DOI: 10.1007/s10661-016-5201-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
The distribution and potential toxicity of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Liaohe River Basin were investigated in this study. Total concentrations of 16 PAHs (∑PAH16) ranged from 82.5 to 25374.4 μg/kg averaging 3149.2 μg/kg. Three predominant PAHs were fluoranthene, phenanthrene, and pyrene. In Liao River, two-to-three-ring PAHs were dominant taking up 67.2-92.5% of ∑PAH16, whereas sediments in Daliao River system mainly contained four-to-six-ring PAHs ranging from 47.8 to 83.7%. Both petrogenic and pyrogenic sources contributed to the PAH pollution based on diagnostic ratios. The empirical and mechanistic sediment quality guidelines were used to estimate the toxicity risk of PAHs to benthic organisms. The ∑PAH16 in all sediments were significantly lower than probable effect concentrations (PEC), while ∑PAH16 at nine sites of the Daliao River system were between threshold effect concentrations (TEC) and PEC, suggesting that adverse effects were possible at the nine sites. The only individual PAH was acenaphthene whose concentrations were above PEC at some sites, indicating its potential toxicity. Based upon equilibrium partitioning theory and narcosis model, the obtained toxic units for PAH mixtures at all sites were far less than one, implying that the levels of PAH mixtures were acceptable for the protection of benthic fauna. The two evaluation methods lead to the consistent results that benthic organisms inhabiting in the sediments of Liaohe River Basin have no or low risk of adverse effects resulting from exposure to PAHs.
Collapse
Affiliation(s)
- Yan He
- College of Water Sciences, Beijing Normal University, Beijing, 100012, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
37
|
Masood N, Zakaria MP, Halimoon N, Aris AZ, Magam SM, Kannan N, Mustafa S, Ali MM, Keshavarzifard M, Vaezzadeh V, Alkhadher SAA, Al-Odaini NA. Anthropogenic waste indicators (AWIs), particularly PAHs and LABs, in Malaysian sediments: Application of aquatic environment for identifying anthropogenic pollution. MARINE POLLUTION BULLETIN 2016; 102:160-175. [PMID: 26616745 DOI: 10.1016/j.marpolbul.2015.11.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs) were used as anthropogenic markers of organic chemical pollution of sediments in the Selangor River, Peninsular Malaysia. This study was conducted on sediment samples from the beginning of the estuary to the upstream river during dry and rainy seasons. The concentrations of ƩPAHs and ƩLABs ranged from 203 to 964 and from 23 to 113 ng g(-1) dry weight (dw), respectively. In particular, the Selangor River was found to have higher sedimentary levels of PAHs and LABs during the wet season than in the dry season, which was primarily associated with the intensity of domestic wastewater discharge and high amounts of urban runoff washing the pollutants from the surrounding area. The concentrations of the toxic contaminants were determined according to the Sediment Quality Guidelines (SQGs). The PAH levels in the Selangor River did not exceed the SQGs, for example, the effects range low (ERL) value, indicating that they cannot exert adverse biological effects.
Collapse
Affiliation(s)
- Najat Masood
- Environmental Forensics Research Center (ENFORCE), Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohamad Pauzi Zakaria
- Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia.
| | - Normala Halimoon
- Environmental Forensics Research Center (ENFORCE), Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Environmental Forensics Research Center (ENFORCE), Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sami M Magam
- Environmental Forensics Research Center (ENFORCE), Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Narayanan Kannan
- Environmental Forensics Research Center (ENFORCE), Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, 4300 UPM Serdang, Selangor, Malaysia
| | - Masni Mohd Ali
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mehrzad Keshavarzifard
- Environmental Forensics Research Center (ENFORCE), Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Vahab Vaezzadeh
- Environmental Forensics Research Center (ENFORCE), Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sadeq Abdullah Abdo Alkhadher
- Environmental Forensics Research Center (ENFORCE), Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | |
Collapse
|
38
|
Polycyclic Aromatic Hydrocarbons Concentrations in Drinking Water in Villages along the Huai River in China and Their Association with High Cancer Incidence in Local Population. BIOMED RESEARCH INTERNATIONAL 2015; 2015:762832. [PMID: 26688818 PMCID: PMC4672361 DOI: 10.1155/2015/762832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022]
Abstract
This study aims to evaluate the carcinogenic risk of PAHs in the drinking water of counties along the Huai River in China and study their associations with high cancer incidence in local population. We investigated 20 villages with high cancer incidence rates as the risk group and 20 villages with low rates as the control group. Water samples from each village were collected in the winter and summer seasons to analyze the concentrations of 16 PAHs. The carcinogenic risks of the PAHs were calculated for each village using a health risk assessment approach. Results showed that PAHs concentrations in 27.2% of the water samples were higher than the allowable values in China. However, no significant difference in water PAHs concentrations was observed between the risk and control groups (P > 0.05), and no correlation was found between water PAHs concentrations and cancer incidence in these villages. The average upper bound carcinogenic risks were less than 1 × 10−4 in both groups. In conclusion, PAHs were present in the drinking water of the studied villages, but their carcinogenic risks remained within acceptable limits. PAHs in local drinking water might not be the major environmental cause of the high cancer incidences.
Collapse
|
39
|
Wang C, Cyterski M, Feng Y, Gao P, Sun Q. Spatiotemporal characteristics of organic contaminant concentrations and ecological risk assessment in the Songhua River, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1967-1975. [PMID: 26442573 DOI: 10.1039/c5em00375j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To control source pollution and improve water quality, an understanding of the spatiotemporal characteristics of organic contaminant concentrations in affected receiving waters is necessary. The Songhua River in northeast China is the country's third-largest domestic river and loadings of organic contaminants along an industrialized section have made it the focal point of a national pollution reduction plan. In addition to water quality issues, management of the Songhua River basin must also address local economic development, aquatic ecosystem sustainability and political relationships with Russia. In three periods spanning 2006 to 2010, eight polycyclic aromatic hydrocarbons (PAHs) and eight phenols were measured in surface waters at ten monitoring sites along the river. A generalized linear model (GLM) was used to characterize water quality at different sites and time periods. Chemical concentrations of the organic compounds showed significant sinusoidal seasonal patterns and the concentrations declined significantly from 2006 to 2010, possibly due to management practices designed to control water pollution. A critical body residue analysis showed that water concentrations measured during the winter of 2007 across all monitoring sites, but especially at S1-Shaokou and S2-Songhuajiangcun, presented a high risk for fish species. The spatiotemporal characteristics of water quality and estimated ecological risks shown here add to the body of knowledge to develop policies on industrial output and pollution management strategies for the Songhua River basin.
Collapse
Affiliation(s)
- Ce Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China.
| | - Mike Cyterski
- Ecosystems Research Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, USA.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Peng Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Qingfang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| |
Collapse
|
40
|
Li Y, Li P, Ma W, Song Q, Zhou H, Han Q, Diao X. Spatial and temporal distribution and risk assessment of polycyclic aromatic hydrocarbons in surface seawater from the Haikou Bay, China. MARINE POLLUTION BULLETIN 2015; 92:244-251. [PMID: 25656242 DOI: 10.1016/j.marpolbul.2014.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/29/2014] [Accepted: 12/03/2014] [Indexed: 05/27/2023]
Abstract
Spatial and temporal distributions of 14 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface waters of Haikou Bay, China from October 2013 to September 2014. The total PAHs concentrations ranged from 420.2 to 2539.1 ng L(-1) with the average value of 1016.3±455.8 ng L(-1), which were predominated by low molecular weight PAHs (2- and 3-ring PAHs). Moreover, PAHs displayed spatial and temporal variations in the concentration and composition pattern. Source analysis based on isomer ratios indicated that the PAHs mostly originated from petroleum and combustion processes. An eco-toxicological risk assessment showed that the potential risk of individual PAHs had reached moderate to high levels and the total concentrations of PAHs had also reached a relatively high level compared with previous studies. This study offers important information on the pollution levels of 14 PAHs in the surface waters of Haikou Bay and recommends that prevention and control of PAHs pollution should be implemented in the region.
Collapse
Affiliation(s)
- Yuhu Li
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China
| | - Ping Li
- Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China; College of Plant Protection and Environment, Hainan University, Haikou 570228, China
| | - Wandong Ma
- Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China
| | - Qingqing Song
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| | - Qian Han
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| |
Collapse
|