1
|
Qi X, Han Y, Che H, Zhou J, Peng C, Bao Z, Liu Y, Meng L, Zhang S, Yang F, Xue W, Lei Y, Wu W, Wu X, Yang J, Long X, Chen Y. Characteristics and health risks assessment of PM 2.5-bound heavy metals during winter in urban areas of northern China: A case study in Kaifeng. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177050. [PMID: 39447900 DOI: 10.1016/j.scitotenv.2024.177050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
The health impact of heavy metals in atmospheric PM2.5 has garnered increasingly widespread attention. We have collected PM2.5 samples in a typical city (Kaifeng) within the Central Plains Urban Agglomeration in China during winter and measured the mass concentration of PM2.5-bound heavy metals. The pollution of As and Cr in the urban atmosphere requires significant attention. As PM2.5 concentrations increased, the enrichment factors (EFs) of Mn, Cu, Zn, As, and Pb also rose, suggesting a growing contribution from anthropogenic emissions. The analysis showed that the hazard quotient (HQ) for the non-heating and heating periods (HQ < 1) did not result in a cumulative non-carcinogenic health risk to humans. Regarding carcinogenic effects, As and Cr exhibit significant carcinogenic impacts on both children and adults (ELCR>1 × 10-6), indicating that the carcinogenic risks posed by As and Cr under PM2.5 exposure in Kaifeng could not be overlooked. It was found that industrial and biomass combustion are the primary sources of carcinogenic risk in Kaifeng city. From the non-heating to the heating period, the industrial carcinogenic risk increased from 37.12 % to 43.39 %, while the contribution of biomass burning remained at 25 %. This result was strongly correlated with the high proportions of heavy metal elements such as As, Mn, Pb, and Ni from the metal refinery industry. The results of this study revealed the equally important source of heavy metals, compared to coal combustion in North China Plain. In addition to residential coal combustion, industrial emissions are a major source of PM2.5-bound heavy metals in Kaifeng, contributing significantly to overall air pollution and providing a useful reference to mitigating human health risks in the area.
Collapse
Affiliation(s)
- Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hanxiong Che
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiawei Zhou
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chao Peng
- Chongqing Academy Ecoenvironm Science, Chongqing 401147, China
| | - Zhier Bao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yiliang Liu
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lingshuo Meng
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Fumo Yang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Wenbo Xue
- Chinese Academy of Environmental Planning (CAEP), Beijing 100012, China
| | - Yu Lei
- Chinese Academy of Environmental Planning (CAEP), Beijing 100012, China
| | - Weiling Wu
- Chinese Academy of Environmental Planning (CAEP), Beijing 100012, China
| | - Xi Wu
- Southwest Institute of Technology and Engineering, Chongqing 400039, China
| | - Jinxin Yang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
2
|
Zeng HX, Man YB, Wong MH, Cheng Z. Hair Heavy Metals and Food Consumption in Residents of Chengdu: Factors, Food Contribution, and Health Risk Assessment. Biol Trace Elem Res 2024; 202:1503-1516. [PMID: 37491614 DOI: 10.1007/s12011-023-03785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Heavy metal pollution is one of the most pressing issues threatening food security and human health. This study assesses heavy metal (chromium, cadmium, copper, zinc, nickel, and lead) exposure via hair metal concentrations in Chengdu residents, reflecting metal intake from food consumption. From June 2020 to February 2021, a sampling survey was conducted on residents' hair (n=182) and food (n=301) in six main urban areas of Chengdu. The concentrations of heavy metals in hair and food were analyzed by inductively coupled plasma mass spectrometry, and the results showed that the residents of Chengdu City had high hair concentrations of Cd (0.17±0.03 mg kg-1) and Zn (293±21.3 mg kg-1). Gender significantly affected the hair Cr, Zn, and Ni concentrations. Based on the survey results obtained from Chengdu City residents, the habits and diet structure are assessed for the influence of six heavy metals in the hair of the residents. Adolescents' (13-18 years old) hair had significantly higher Pb concentrations than adults (19-59 years old). The concentration of Ni in hair was affected by perming and dyeing habits. For dietary exposure, cereals and meat were the main contributors to the residents' daily intake of heavy metals. The bioaccessibility of Cr, Cd, Cu, Zn, Ni, and Pb in food was 2.45-74.67%, 10.6-78.7%, 13.4-82.5%, 8.89-89.2%, 7.70-85.1%, and 15.4-86.2%, respectively. In health risk evaluation based on the bioaccessible fraction of six heavy metals, the hazard quotient of each heavy metal in food was less than 1, indicating no potential non-carcinogenic risk.
Collapse
Affiliation(s)
- Hong-Xin Zeng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
3
|
Jeon JI, Jung JY, Park SY, Lee HW, Lee JI, Lee CM. A Comparison of Health Risks from PM 2.5 and Heavy Metal Exposure in Industrial Complexes in Dangjin and Yeosu·Gwangyang. TOXICS 2024; 12:158. [PMID: 38393253 PMCID: PMC10893162 DOI: 10.3390/toxics12020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Particulate matter (PM) can cause illness, including respiratory diseases, and PM2.5 compositions are likely to vary according to the emission profiles of industrial complexes. This study analyzed and compared the concentrations and distributions of PM2.5 and heavy metals in two regions of Republic of Korea: Yeosu·Gwangyang, which houses a massive national industrial complex, and Dangjin, which houses power plants. Further, we conducted a health risk assessment on the residents of the areas near these industrial complexes. Measurements were taken at five different points in each setting over a two-year period from August 2020 to August 2022. We found differences in PM2.5 concentrations and heavy metal composition ratios across the sites. Specifically, PM2.5 concentrations exceeded the standard of 1 at all measurement sites, while the specific heavy metals exceeding the standard varied across the sites. Ultimately, we observed regional differences in PM2.5 composition across measurement sites across and within the two regions and variations in health risks and according health effects due to the absence of PM2.5 toxicity values, and compared the health risks of two industrial complexes with different characteristics. These findings underscore the importance of considering not only PM2.5 but also its composition in exposure and health risk assessments.
Collapse
Affiliation(s)
- Jeong-In Jeon
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea; (J.-I.J.); (J.-Y.J.); (S.-Y.P.)
| | - Ji-Yun Jung
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea; (J.-I.J.); (J.-Y.J.); (S.-Y.P.)
| | - Shin-Young Park
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea; (J.-I.J.); (J.-Y.J.); (S.-Y.P.)
| | - Hye-Won Lee
- Institute of Environment and Health, Seoul 02713, Republic of Korea;
| | - Jeong-Il Lee
- Department of Nano, Chemical and Biological Engineering, Seokyeong University, Seoul 02713, Republic of Korea;
| | - Cheol-Min Lee
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea; (J.-I.J.); (J.-Y.J.); (S.-Y.P.)
- Institute of Environment and Health, Seoul 02713, Republic of Korea;
- Department of Nano, Chemical and Biological Engineering, Seokyeong University, Seoul 02713, Republic of Korea;
| |
Collapse
|
4
|
Goodarzi B, Azimi Mohammadabadi M, Jafari AJ, Gholami M, Kermani M, Assarehzadegan MA, Shahsavani A. Investigating PM 2.5 toxicity in highly polluted urban and industrial areas in the Middle East: human health risk assessment and spatial distribution. Sci Rep 2023; 13:17858. [PMID: 37857811 PMCID: PMC10587072 DOI: 10.1038/s41598-023-45052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 μg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 μg/m3) and in the industrial area this parameter was (191.6 and 158.3 μg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 μg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.
Collapse
Affiliation(s)
- Babak Goodarzi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Maryam Azimi Mohammadabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chakraborty A, Gupta T, Mandaria A, Tripathi S. Trace elements in ambient aerosols and size-resolved fog droplets: Trends, enrichment, and risk assessment. Heliyon 2023; 9:e16400. [PMID: 37260893 PMCID: PMC10227332 DOI: 10.1016/j.heliyon.2023.e16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Ambient particulate matter (PM) is composed of inorganic and organic components. The contribution of each component is impacted by various factors such as emission sources, atmospheric aging process, and size of the PM or droplets. This study mainly focuses on the effect of the PM and droplet size on trace elemental concentrations, for which various size fractions of ambient PM (PM1, PM2.5) were collected on quartz filters along with fog water (FW) samples during winter. Simultaneous, online measurements of the mass concentrations of PM1 and PM2.5 were also carried out. At the time of the collection, the mass concentration of PM2.5 ranged from 19 to 890 μg/m3, and its mean value was 227 μg/m3. During the sampling period, 17 fog events occurred and caused a 27% reduction in the mean pre-fog PM2.5 concentration. All the PM and FW samples were analyzed for 12 trace elements: Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Zn, V. The concentrations of the various trace elements in the PM1, PM2.5, and FW samples encompassed a wide range: 10 (V)-2432 (Na) ng/m3, 34 (Mn)-13810 (Na) ng/m3, and 8 (Cr)-19870 (Ca) μg/l, respectively. The concentrations of the trace elements in the FW samples indicated a droplet-size-dependent trend: the small droplets (diameter <16 μm) had several times (3-10 times) higher concentrations than the coarser droplets (diameter >22 μm). The enrichment factor (EF) analysis revealed that the EF values for almost all the trace elements were an order of magnitude higher in the FW samples than in PM1 and PM2.5. Risk assessment based on toxic elements suggested a very high inhalation carcinogenic risk (231 per million) for the exposed population during foggy periods. This study will facilitate decision-making by policymakers regarding air quality and health concerns.
Collapse
Affiliation(s)
- Abhishek Chakraborty
- Department of Environmental Science and Engineering (ESED), Indian Institute of Technology Bombay, Mumbai, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
- Centre of Environmental Science and Engineering, CESE, IIT, Kanpur, India
| | - Anil Mandaria
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
- Centre of Environmental Science and Engineering, CESE, IIT, Kanpur, India
| | - Shruti Tripathi
- Department of Environmental Science and Engineering (ESED), Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
6
|
Xiao K, Wang Q, Lu S, Lin Y, Enyoh CE, Chowdhury T, Rabin MH, Islam MR, Guo Y, Wang W. Pollution levels and health risk assessment of potentially toxic metals of size-segregated particulate matter in rural residential areas of high lung cancer incidence in Fuyuan, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2869-2889. [PMID: 36088450 DOI: 10.1007/s10653-022-01374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
The highest incidence and mortality rate of lung cancer in rural area of Fuyuan has been a research hotspot, and the pathogenesis is still unclear. Therefore, atmospheric particulate matters (APMs) samples were collected between 18 February and 01 March 2017, exploring water-soluble potentially toxic metals (WSPTMs) and water-soluble inorganic ionic species (WSIIs) levels, size distribution, sources, acidity and alkalinity, and potential carcinogenic and non-carcinogenic risks, hoping to provide scientific basic data to solve this problem. In our study, the average ratio of nitrate ion (NO3-)/sulfate ion (SO42-) within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 were 0.22, 0.18, 0.15, 0.34 and 0.36, respectively, that revealed that combustion sources contributed to PM were more significant. The anions in equilibrium (ANE) / cations in equilibrium (CAE) < 1 for all samples within PM1.1, PM2.0-3.3, PM3.3-7.0 indicate that the APMs were alkaline, but PM1.1-2.0 particulate matter shows weak acidity. SO42- prefers to combine with NH4+ to form (NH4)2SO4, which hinders the formation of NH4NO3, the remaining SO42- and NO3- to neutralize the K+, KNO3 was formed at all particulate, however, K2SO4 can only be formed in PM<3.3. Arsenic (As) and Selenium (Se) were identified as the most enriched WSPTMs in all PM sizes, predominantly from anthropogenic emissions, were suggested that coal combustion is a significant source of PM-bound WSPTMs. Total WSPTMs exhibited high total carcinogenic risks (TCR) values (9.98 × 10-6, 1.06 × 10-5, and 1.19 × 10-5 for girls, boys and adults, respectively) in the smaller particles (< 1.1 μm). Se was considered as the major contributor (63.60%) to carcinogenic risk (CR) in PM2.0 and had an inverse relationship with PM size that should be of prime concern.
Collapse
Affiliation(s)
- Kai Xiao
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Senlin Lu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangdalu, Baoshan district, Shanghai city, 200-444, China
| | - Yichun Lin
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Christian Ebere Enyoh
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Tanzin Chowdhury
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Mominul Haque Rabin
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Md Rezwanul Islam
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Yue Guo
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| |
Collapse
|
7
|
Cui Q, Li L, Cao Y, Yang B, Liu L, Dong X, Cha Y, Ruan H, Tang S, Wang Q. Trends in elemental Pb concentrations within atmospheric PM 2.5 and associated risk to human health in major cities of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121036. [PMID: 36623789 DOI: 10.1016/j.envpol.2023.121036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
High concentrations of elemental lead (Pb) in the atmosphere pose a serious threat to human health. This study presents and summarizes data obtained from relevant literature on Pb concentrations within fine particulate matter (PM2.5) recorded in major cities in China from 2008 to 2019. An environmental health risk assessment model was then used to evaluate the health hazards of inhaling Pb among adults and children in China. Owing to the promulgation and implementation of a series of air pollution control measures, the Pb concentrations within PM2.5 measured in major cities in China showed a downward trend after peaking in 2013. The concentrations were higher in winter than in summer, and higher in northern cities than in southern cities. Although the Pb concentrations in most cities did not exceed the limit (500 ng/m3) set by China, they remained much higher than concentrations recorded in developed countries. The results of the environmental health risk analysis showed that the non-carcinogenic risk from atmospheric Pb exposure was higher in children than in adults (adult females > adult males), while the carcinogenic risk was higher in adults than in children. This study shows that even if the health risk of Pb in PM2.5 does not exceed the acceptable limit, stricter Pb pollution control measures are required to safeguard population health due to the dangers of Pb.
Collapse
Affiliation(s)
- Qian Cui
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of PR China, Guangzhou, 510655, China
| | - Yaqiang Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; School of Public Health Nanjing Medical University, Nanjing, 211166, China
| | - Bo Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Baotou Medical College, Baotou, 014040, China
| | - Lindou Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaoyan Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yu'e Cha
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Hongjie Ruan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Qiong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
8
|
Ahmad M, Manjantrarat T, Rattanawongsa W, Muensri P, Saenmuangchin R, Klamchuen A, Aueviriyavit S, Sukrak K, Kangwansupamonkon W, Panyametheekul S. Chemical Composition, Sources, and Health Risk Assessment of PM 2.5 and PM 10 in Urban Sites of Bangkok, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14281. [PMID: 36361157 PMCID: PMC9656051 DOI: 10.3390/ijerph192114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Of late, air pollution in Asia has increased, particularly in built-up areas due to rapid industrialization and urbanization. The present study sets out to examine the impact that pollution can have on the health of people living in the inner city of Bangkok, Thailand. Consequently, in 2021, fine particulate matter (PM2.5) and coarse particulate matter (PM10) chemical composition and sources are evaluated at three locations in Bangkok. To identify the possible sources of such particulates, therefore, the principal component analysis (PCA) technique is duly carried out. As determined via PCA, the major sources of air pollution in Bangkok are local emission sources and sea salt. The most significant local sources of PM2.5 and PM10 in Bangkok include primary combustion, such as vehicle emissions, coal combustion, biomass burning, secondary aerosol formation, industrial emissions, and dust sources. Except for the hazard quotient (HQ) of Ni and Mn of PM2.5 for adults, the HQ values of As, Cd, Cr, Mn, and Ni of both PM2.5 and PM10 were below the safe level (HQ = 1) for adults and children. This indicates that exposure to these metals would have non-carcinogenic health effects. Except for the carcinogenic risk (HI) value of Cr of PM2.5 and PM10, which can cause cancer in adults, at Bangna and Din Daeng, the HI values of Cd, Ni, As, and Pb of PM2.5 and PM10 are below the limit set by the U.S. Environmental Protection Agency (U.S. EPA). Ni and Mn pose non-carcinogenic risks, whereas Cr poses carcinogenic risks to adults via inhalation, a serious threat to the residents of Bangkok.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Thanaphum Manjantrarat
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wachiraya Rattanawongsa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Phitchaya Muensri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Rattaporn Saenmuangchin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wiyong Kangwansupamonkon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- AFRS(T) The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10300, Thailand
| | - Sirima Panyametheekul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit: HAUS IAQ, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Yang M, Jalava P, Wang XF, Bloom MS, Leskinen A, Hakkarainen H, Roponen M, Komppula M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu YJ, Dong GH. Winter and spring variation in sources, chemical components and toxicological responses of urban air particulate matter samples in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157382. [PMID: 35843314 DOI: 10.1016/j.scitotenv.2022.157382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The sources and chemical components of urban air particles exhibit seasonal variations that may affect their hazardousness to human health. Our aims were to investigate winter and spring variation in particulate matter (PM) sources, components and toxicological responses of different PM size fractions from samples collected in Guangzhou, China. Four size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, and PM0.2) were collected separately during winter (December 2017 and January 2018) and spring (March 2018). All PM samples were analyzed for chemical components and characterized by source. RAW 264.7 macrophages were exposed to four doses of PM samples for 24 h. Cytotoxicity, oxidation, cell cycle, genotoxicity and inflammatory parameters were tested. PM concentrations were higher in the winter samples and caused more severe cytotoxicity and oxidative damage than to PM in the spring samples. PM in winter and spring led to increases in cell cycle and genotoxicity. The trends of size-segregated PM components were consistent in winter and spring samples. Metallic elements and PAHs were found in the largest concentrations in winter PM, but ions were found in the largest concentrations in spring PM. metallic elements, PAHs and ions in size-segregated PM samples were associated with most toxicological endpoints. Soil dust and biomass burning were the main sources of PM in winter, whereas traffic exhaust and biomass burning was the main source with of spring PM. Our results suggest that the composition of PM samples from Guangzhou differed during winter and spring, which led to strong variations in toxicological responses. The results demonstrate the importance of examining a different particle sizes, compositions and sources across different seasons, for human risk assessment.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
Li X, Zhou L, Zhang C, Li D, Wang Z, Sun D, Liao C, Zhang Q. Spatial distribution and risk assessment of fluorine and cadmium in rice, corn, and wheat grains in most karst regions of Guizhou province, China. Front Nutr 2022; 9:1014147. [PMID: 36337645 PMCID: PMC9626765 DOI: 10.3389/fnut.2022.1014147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
The pollution status of crops planted in Guizhou province of Southwestern China with high background values of Fluorine (F) and Cadmium (Cd) has attracted people’s concern. The present study aimed to investigate the spatial distributions of F and Cd in rice, corn and wheat grains, and further evaluate their health risks to residents in Guizhou province. The contents of F and Cd were measured by fluoride ion-selective electrode and inductively coupled plasma mass spectrometry (ICP-MS) methods, respectively. Additionally, the inverse distance weighted (IDW) technique was conducted to analyze spatial distribution, and the health risk was estimated by target hazard quotient (THQ) and hazardous index (HI). The results indicate that Cd contents in samples varied from 0.000 to 0.463 for rice, 0.000 to 0.307 for corn, and 0.012 to 0.537 (mg/kg) for wheat, while F contents ranged from 0.825 to 5.193 (rice), 0.946 to 8.485 (corn), and 0.271 to 9.143 (wheat) mg/kg. The Cd exceeding ratios were 11.600% for rice, 13.500% for corn, and 45.100% for wheat grains, respectively. In terms of spatial distribution, high levels of F and Cd in rice were found in the northern and central in Guizhou, while Cd in corn was distributed in the eastern and F in corn were distributed in the west area of Guizhou. Moreover, the high levels of F and Cd in wheat were distributed in the western and eastern areas. The mean carcinogenic risks (R) of Cd in rice, corn, and wheat in children were 4.150 × 10–4, 1.670 × 10–4 and 3.470 × 10–4, respectively, and that in adults were 3.430 × 10–4, 0.471 × 10–4, and 2.190 × 10–4, respectively. The HI for adults in rice, corn and wheat grains were 0.756, 0.154, and 0.514, respectively, and that for children were 0.913, 0.549, and 0.814, respectively. Collectively, the potential risks produced by F and Cd to the local residents should not be ignored.
Collapse
Affiliation(s)
- Xiangxiang Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Luoxiong Zhou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Cheng Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dasuan Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Zelan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chaoxuan Liao
- Guizhou Academy of Testing and Analysis, Guiyang, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- *Correspondence: Qinghai Zhang,
| |
Collapse
|
11
|
Gan L, Wang J, Xie M, Yang B. Ecological risk and health risk analysis of soil potentially toxic elements from oil production plants in central China. Sci Rep 2022; 12:17077. [PMID: 36224271 PMCID: PMC9556517 DOI: 10.1038/s41598-022-21629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, the enrichment factor (EF) and pollution load index (PLI) were used to evaluate the pollution of potential toxic elements (PTEs) in the soil near the oil production plants in central China, and the potential ecological risk (PER) and human health risk (HHR) assessment model were used to evaluate the PER and HHR caused by the soil PTEs in the study area. The mean EFs of all PTEs were greater than 1, PTEs have accumulated to varying degrees, especially Cr, Ni and Pb were the most serious. The average value of PLI was 2.62, indicating that the soil PTEs were seriously polluted. The average [Formula: see text] values of PTEs were Cr > Pb > Cd > Ni > As > Cu > Zn > Mn, of which Cr, Pb, Cd and Ni were at medium and above PER levels. Both adults and children in the study area suffered from varying degrees of non-carcinogenic and carcinogenic risks. The total hazard index (THI) values of children (7.31) and adults (1.03) were all > 1, and the total carcinogenic risk index (TCRI) of children (9.44E-04) and adults (5.75E-04) were also > 10-4. In particular, the hazardous quotient (HQ) of Cr and Pb for children under the oral intake route were 4.91 and 1.17, respectively, caused serious non-carcinogenic risk. And the carcinogenic risk index (CRI) values of the PTEs in adults and children under the three exposure routes were Cr > Ni > > As > Pb > > Cd. Among them, the CRI values of Cr and Ni in children and adults by oral intake were both greater than 10-4, showing a strong carcinogenic risk. The results will provide scientific basis for environmental protection and population health protection in this area.
Collapse
Affiliation(s)
- Lu Gan
- School of Urban Design, Wuhan University, Wuhan, 430072, Hubei, China
- College of Art, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Jiangping Wang
- School of Urban Design, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Mengyun Xie
- School of Urban Design, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Bokai Yang
- College of Art, Minnan Normal University, Zhangzhou, 363000, Fujian, China.
| |
Collapse
|
12
|
Meng Q, Wang J, Cui J, Li B, Wu S, Yun J, Aschner M, Wang C, Zhang L, Li X, Chen R. Prediction of COPD acute exacerbation in response to air pollution using exosomal circRNA profile and Machine learning. ENVIRONMENT INTERNATIONAL 2022; 168:107469. [PMID: 36041244 PMCID: PMC9939562 DOI: 10.1016/j.envint.2022.107469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 05/11/2023]
Abstract
Ambient fine particulate matter (PM2.5) is linked to an increased risk of chronic obstructive pulmonary disease (COPD) exacerbations, which significantly increase the risk of mortality in COPD patients. Identifying the subtype of COPD patients who are sensitive to environmental aggressions is necessary. Using in vitro and in vivo PM2.5 exposure models, we demonstrate that exosomal hsa_circ_0005045 is upregulated by PM2.5 and binds to the protein cargo peroxiredoxin2, which functionally aggravates hallmarks of COPD by recruiting neutrophil elastase and triggering in situ release of tumor necrosis factor (TNF)-α by inflammatory cells. The biological function of hsa_circ_0005045 associated with aggravation of COPD is validated using exosome-transplantation and conditional circRNA-knockdown murine models. By sorting the major components of PM2.5, we find that PM2.5-bound heavy metals, which are distinguishable from the components of cigarette smoke, trigger the elevation of exosomal hsa_circ_0005045. Finally, using machine learning models in a cohort with 327 COPD patients, the PM2.5 exposure-sensitive COPD patients are characterized by relatively high hsa_circ_0005045 expression, non-smoking, and group C (mMRC 0-1 (or CAT < 10) and ≥ 2 exacerbations (or ≥ 1 exacerbation leading to hospital admission) in the past year). Thus, our results suggest that environmental reduction in PM2.5 emission provides a targeted approach to protecting non-smoking COPD patients against air pollution-related disease exacerbation.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Jiajia Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Jian Cui
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87, Ding Jia Qiao Road, Nanjing 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Bin Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100005, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing China; Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100005, China.
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, PR China; School of Public Health, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, PR China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
13
|
Zhang J, Feng L, Zhao Y, Hou C, Gu Q. Health risks of PM 2.5-bound polycyclic aromatic hydrocarbon (PAH) and heavy metals (PPAH&HM) during the replacement of central heating with urban natural gas in Tianjin, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2495-2514. [PMID: 34291374 DOI: 10.1007/s10653-021-01040-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
To investigate the health effects of fine particulate matter (≤ 2.5 μm in aerodynamic diameter; PM2.5)-bound heavy metals and polycyclic aromatic hydrocarbons (PAHs) before and after the implementation of the Urban Natural Gas Heating Project (UNGHP), the lifetime cancer risks, hazard quotients (HQs) of heavy metals and PAHs were calculated. Seven kinds of heavy metals (Al, As, Cd, Cr, Mn, Ni and Se) and 12 kinds of PAHs including acenaphthylene (ANY), acenaphthene (ANA), fluoranthene (FLT), pyrene (PYR), chrysene (CHR), benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBA), benzo[ghi]perylene (BPE) and indeno[1,2,3-cd]pyrene (IPY) were analyzed and used for the health risk assessments. It was found that HQ of Mn fell from 1.09 in the coal-burning period to 0.72 in the gas-burning period in the suburban area. And lifetime cancer risks of PAHs fell from 35.7 × 10-6 in the coal-burning period to 17.22 × 10-6 in the gas-burning period in the urban area. It could be concluded that, during the gas-burning period, downward trends were observed for the lifetime cancer risks and HQs of most kinds of heavy metals and PAHs in all regions of Tianjin compared to those during the coal-burning period. The UNGHP was effective, and we should also take other measures to control the pollution.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Lihong Feng
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Yan Zhao
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Changchun Hou
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Qing Gu
- Department of Environment and Health, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China.
- School of Public Health, Tianjin Medical University, No.22 Qixiangtai Rd, Tianjin, China.
| |
Collapse
|
14
|
Wu H, Wang J, Guo J, Hu X, Bao H, Chen J. Record of heavy metals in Huguangyan Maar Lake sediments: Response to anthropogenic atmospheric pollution in Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154829. [PMID: 35346700 DOI: 10.1016/j.scitotenv.2022.154829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 05/16/2023]
Abstract
The historical atmospheric heavy metal pollution of southern China over the past 200 years was explored by analyzing radiometric dating, heavy metals, and Pb isotopes from a sediment core in Huguangyan Maar Lake. Zn, Cd, Sb, Tl, and Pb in the lake are closely related to anthropogenic activities, while Cr and Ni are mainly derived from the weathering of basalt surrounding the lake. Atmospheric Zn, Cd, Sb, and Tl increased rapidly after 1980, consistent with the local industrial development. The increase of atmospheric Pb in southern China occurred earlier than in other regions of China, with the increase after 1850. War and the use of leaded gasoline were the main causes for the rapid increase in atmospheric Pb during 1910-1950. From 1950 to 2000, the input of Pb from anthropogenic activities decreased gradually due to the stable social environment. After 2000, atmospheric Pb continued to rise due to continued industrial development. The three-end-member model of Pb isotopes indicates that coal combustion is the main source of current atmospheric Pb. The proportion of Pb derived from vehicle exhaust emissions reached a peak in the 1960s, then gradually decreased and further reduced with the ban on leaded gasoline after 2000. These results are important in identifying the sources of atmospheric heavy metal pollution and in formulating pollution control strategies.
Collapse
Affiliation(s)
- Hongchen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jianyang Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinping Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongyun Bao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Zhai X, Wang J, Sun J, Xin L. PM 2.5 induces inflammatory responses via oxidative stress-mediated mitophagy in human bronchial epithelial cells. Toxicol Res (Camb) 2022; 11:195-205. [PMID: 35237424 PMCID: PMC8882786 DOI: 10.1093/toxres/tfac001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) is a ubiquitous air pollutant, and it has been reported to be closely associated with lung inflammatory injury. In this study, the potential molecular mechanisms underlying PM2.5-induced cellular inflammation in human bronchial epithelial (BEAS-2B) cells were investigated. MATERIALS AND METHODS Ambient PM2.5 particulates from Suzhou, China, were collected and re-suspended in ultrapure water. Cellular damages, characterized by oxidative stress, mitochondrial injury, and inflammatory cytokine production, were determined in 24 h PM2.5-treated BEAS-2B cells with or without 3-methyladenine (3-MA; autophagy inhibitor) pretreatment. Biomarkers related to oxidative damage, inflammatory injury and autophagy signaling pathways were also measured. RESULTS Uptake of PM2.5 in BEAS-2B cells induced cellular oxidative damage, mitochondrial injury, and inflammatory responses as indicated by a significant decrease in GSH/GSSG ratio, increased MDA content, dilated mitochondria with loss and rupture of crista, and production of inflammatory cytokines. Activation of Nrf-2/TXNIP-mediated NF-κB and Bnip3L/NIX-dependent mitophagy signaling pathways, as well as accumulation of autophagosomes and autolysosomes, were also observed. A 6 h pretreatment of 3-MA increased PM2.5-induced oxidative damage and cellular inflammation as indicated by increasing protein levels of HO-1, TXNIP, Bnip3L/NIX and IL-8 gene expression. CONCLUSIONS PM2.5 induced cellular inflammatory injury by oxidative stress, mitochondrial dysfunction, and mitophagy initiation. Although induction of Bnip3L/NIX-mediated mitophagy in BEAS-2B cells appeared to confer protection in response to PM2.5, dysfunction of autophagic flux may be a critical contributor to defective mitophagy and cellular inflammatory response.
Collapse
Affiliation(s)
| | | | - Jiaojiao Sun
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Lili Xin
- Corresponding author: School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
16
|
Mehmood K, Bao Y, Abbas R, Petropoulos GP, Ahmad HR, Abrar MM, Mustafa A, Abdalla A, Lasaridi K, Fahad S. Pollution characteristics and human health risk assessments of toxic metals and particle pollutants via soil and air using geoinformation in urbanized city of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58206-58220. [PMID: 34110590 DOI: 10.1007/s11356-021-14436-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Toxic metals and particle pollutants in urbanized cities have significantly increased over the past few decades mainly due to rapid urbanization and unplanned infrastructure. This research aimed at estimating the concentration of toxic metals and particle pollutants and the associated risks to public health across different land-use settings including commercial area (CA), urban area (UA), residential area (RA), and industrial area (IA). A total of 47 samples for both soil and air were collected from different land-use settings of Faisalabad city in Pakistan. Mean concentrations of toxic metals such as Mn, Zn, Pb, Ni, Cr, Co, and Cd in all land-use settings were 92.68, 4.06, 1.34, 0.16, 0.07, 0.03, and 0.02 mg kg-1, respectively. Mean values of PM10, PM2.5, and Mn in all land-use settings were found 5.14, 1.34, and 1.9 times higher than the World Health Organization (WHO) guidelines. Mn was found as the most hazardous metal in terms of pollution load index (PLI) and contamination factor (CF) in the studied area. Health risk analysis for particle pollutants using air quality index (AQI) and geoinformation was found in the range between good to very critical for all the land-use settings. The hazard quotient (HQ) and hazard index (HI) were higher for children in comparison to adults, suggesting that children may be susceptible to potentially higher health risks. However, the cancer risk (CR) value for Pb ingestion (1.21 × 10-6) in children was lower than the permissible limit (1 × 10-4 to 1 × 10-6). Nonetheless, for Cr inhalation, CR value (1.09 × 10-8) was close to tolerable limits. Our findings can be of valuable assistance toward advancing our understanding of soil and air pollutions concerning public health in different land-use settings of the urbanized cities of Pakistan.
Collapse
Affiliation(s)
- Khalid Mehmood
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD) / CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, 210044, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yansong Bao
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD) / CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Roman Abbas
- Multan Medical and Dental College, Multan, Pakistan
| | - George P Petropoulos
- Department of Geography, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17671, Athens, Greece
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Mohsin Abrar
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Alwaseela Abdalla
- Agricultural Research Corporation, P.O. Box 126, 11111, Wad Medani, Sudan
| | - Katia Lasaridi
- Department of Geography, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17671, Athens, Greece
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
17
|
Shen M, Xu H, Liu S, Zhang Y, Zhang N, Zhou J, Chow JC, Watson JG, Cao J. Spatial distribution of PM 2.5-bound elements in eighteen cities over China: policy implication and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4771-4788. [PMID: 33978910 DOI: 10.1007/s10653-021-00913-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In this study, 30 elements in fine particulate matter (PM2.5) were measured in 18 Chinese cities in 2013. Elemental pollution in northern, southwest, and central China were severe, attributing to excessive coal and biomass combustion in these regions. The concentrations of S, Cl, and K in these areas were 8.21 ± 3.90, 4.03 ± 1.96, and 1.59 ± 0.613 μg/m3, respectively, which were 1.6-2.7 times higher than those in other regions of China. In addition, the industrial emissions in northeast and north China were large, leading to the elevated heavy metal concentration of 1.32 ± 1.17 μg/m3, especially Zn, Pb, Cr, Cd, and Br. Soil dust was the highest in northwest China among the five regions with the concentration of crustal elements of 6.37 ± 4.51 μg/m3. Moreover, although the levels of elemental concentration in east and southeast China were relatively acceptable, regulators must pay attention to elevated level of V (0.009 ± 0.006 μg/m3) in these areas. Compared with 2003, several elements have deteriorated in some cities. For example, As increased by 70%, 18%, and 155% in Changchun, Beijing, and Jinchang, respectively. However, ~ 77% measured elements, e.g., Ti, Fe, and Pb markedly reduced in 2013, with reduction rates of 13-81%. These indicate that the government's policies related to particle-bound elements have shown certain positive environmental effects. For the health risks from the heavy metals in 2013, the non-cancer risks of As and Cd must not be neglected. The cancer risks of As and Pb were much higher than the international safety limit (10-4). More prominent health risks were found in southwest, central, and northwest China. Therefore, the government should accelerate the shift to cleaner energy in underdeveloped areas of China to obtain more environmental and health benefits.
Collapse
Affiliation(s)
- Minxia Shen
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Xu
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Suixin Liu
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yong Zhang
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Zhang
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jiamao Zhou
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Judith C Chow
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, 89512, USA
| | - John G Watson
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, 89512, USA
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| |
Collapse
|
18
|
Concentrations, Source Characteristics, and Health Risk Assessment of Toxic Heavy Metals in PM 2.5 in a Plateau City (Kunming) in Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111004. [PMID: 34769524 PMCID: PMC8583458 DOI: 10.3390/ijerph182111004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
To explore the mass concentration levels and health risks of heavy metals in the air in dense traffic environments, PM2.5 samples were collected at three sites in the city of Kunming in April and October 2013, and January and May 2014. Ten heavy metals––V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb––were analyzed by ICP–MS, and the results showed PM2.5 concentrations significantly higher in spring and winter than in summer and autumn, especially for Zn and Pb. The concentration of heavy metals on working days is significantly higher, indicating that vehicle emissions are significant contributors. An enrichment factor analysis showed that Cr, Mn, Ni, Cu, Zn, As, Cd and Pb come mainly from anthropogenic sources, while V and Co may be both anthropogenic and natural. The correlation and principal component analysis (PCA) showed that Ni, Cu, Zn, Cd and Pb mainly come from vehicles emissions and metallurgical industries; Cr and Mn, from vehicles emissions and road dust; and As, mainly from coal combustion. The health risk assessment shows that the non-carcinogenic risk thresholds of the heavy metals in PM2.5 to children and adult men and women are all less than 1. The carcinogenic risk of Cr for men and women in traffic-intensive areas exceeds 10−4, reaching 1.64 × 10−4 and 1.4 × 10−4, respectively.
Collapse
|
19
|
Fang B, Zeng H, Zhang L, Wang H, Liu J, Hao K, Zheng G, Wang M, Wang Q, Yang W. Toxic metals in outdoor/indoor airborne PM 2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116937. [PMID: 33756243 DOI: 10.1016/j.envpol.2021.116937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Outdoor and indoor PM2.5 samples were simultaneously collected over four seasons (2017-2018) in Caofeidian, China, and analyzed for 15 elements to investigate the characteristics, sources, and health risks of PM2.5-bound metals. Source-specific PM2.5-bound metals were analyzed using positive matrix factorization, combined with the conditional probability function and potential source contribution function model. The health risks were evaluated using the health risk assessment model, which included the exposure parameters of indoor and outdoor activities of Chinese residents. The annual median of PM2.5 concentrations (89.68 μg/m3) and total metals (2.67 μg/m3) from the outdoor samples significantly surpassed that of the indoor samples (51.56 μg/m3) and total metals (1.51 μg/m3) (P < 0.05). In addition, the indoor/outdoor concentration ratios indicated that most indoor metals mainly originated from outdoor emission sources. In the annual analysis of PM2.5-bound metal sources, this study identified five metal sources: coal combustion, resuspended dust, traffic emissions, fuel combustion sources, and industrial sources, among which industry sources (36.6%) contributed the most. The non-carcinogenic risks of metals for adults (2.81) and children (2.80) all exceed the acceptable non-carcinogenic risk level (1). The non-carcinogenic risk of Mn (1.46 for children, 1.48 for adults) was a key factor in the total non-carcinogenic risk. The total carcinogenic risk of metals for children (3.75 × 10-5) was above the acceptable level (1.0 × 10-6) but within the tolerant limit (1.0 × 10-4), and that for adults (1.48 × 10-4) was above the tolerant limit. The lifetime carcinogenic risk of Cr6+ had the highest proportion of the total carcinogenic risk for children (87.5%) and adults (87.8%). Our results revealed that both adults and children suffered carcinogenic and non-carcinogenic risks from the PM2.5-bound metals in Caofeidian. The corresponding emission control measures of metals in atmosphere should be considered.
Collapse
Affiliation(s)
- Bo Fang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Lei Zhang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hongwei Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Jiajia Liu
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Kelu Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Guoying Zheng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
| | - Wenqi Yang
- Affiliated Hospital, North China University of Science and Technology, Tangshan, 063000, China
| |
Collapse
|
20
|
Men C, Wang Y, Liu R, Wang Q, Miao Y, Jiao L, Shoaib M, Shen Z. Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018. CHEMOSPHERE 2021; 270:129434. [PMID: 33388498 DOI: 10.1016/j.chemosphere.2020.129434] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 05/15/2023]
Abstract
To analyze the temporal variations of heavy metals, health risk, and source-specific health risk, 24 road dust samples were collected from Beijing in each month in two years. The temporal variations of Hg, Pb, and Ni were higher than other heavy metals. Most heavy metals reached their highest concentrations either in winter or in spring, then the concentrations decreased and reached the lowest values in autumn. Human health risk assessment (HHRA) model showed that As, Cr, and Ni might pose cautionary carcinogenic risk (CR) to children (CR > 10-6). CR for adults were only 0.15 to 0.19 times of that for children. Four sources were identified based on positive matrix factorization model and HHRA model, they were traffic exhaust, fuel combustion, construction, and use of pesticides and fertilizers. Influenced by the difference of carcinogenicity of heavy metals, traffic exhaust contributed the largest to heavy metals (36.02%, over 42.24% higher than other sources), while contributions of fuel combustion to CR (36.95%) was similar to traffic exhaust (37.17%). Monte-Carlo simulation showed that the 95th percentile of probability density functions of CR posed by Cr and Ni from each source were 9.90 × 10-5 to 2.64 × 10-4, posing cautionary carcinogenic risk to children. The seasonal change of CR varied among different sources. CR from use of pesticides and fertilizers in spring was 35.06 times of that in winter, and that from fuel combustion in winter was 1.15-2.40 times of that in other seasons. CR from each source was sensitive to ingestion rate and skin adherence factor.
Collapse
Affiliation(s)
- Cong Men
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Qingrui Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yuexi Miao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Lijun Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Muhammad Shoaib
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
21
|
Mangal A, Satsangi A, Lakhani A, Kumari KM. Characterization of ambient PM 1 at a suburban site of Agra: chemical composition, sources, health risk and potential cytotoxicity. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:621-642. [PMID: 33094390 DOI: 10.1007/s10653-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted at a University campus of Agra to determine concentrations of crustal and trace elements in submicron mode (PM1) particles to reveal sources and detrimental effects of PM1-bound metals (Cr, Cd, Mn, Zn, As, Co, Pb, Cu and Ni) in samples collected in the foggy (1 December 2016-17 January 2017) and non-foggy periods (1 April 2016-30 June 2016). Samples were collected twice a week on preweighed quartz fibre filters (QM-A 47 mm) for 24 h using Envirotech APM 577 (flow rate 10 l min-1). Mass concentration of PM1 was 135.0 ± 28.2 and 54.0 ± 18.5 µg/m3 during foggy and non-foggy period, respectively; crustal and trace elements were 13 and 4% during foggy and 11 and 3% in the non-foggy period. Source identification by PCA (principal component analysis) suggested that biomass burning and coal combustion was the prominent sources in foggy period followed by resuspended soil dust, industrial and vehicular emission, whereas in non-foggy period resuspended soil dust was dominant followed by biomass burning and coal combustion, industrial and vehicular emissions. In both episodes, Mn has the highest Hq (hazard quotient) value and Cr has the highest IlcR (Incremental Lifetime Cancer Risk) value for both adults and children. In vitro cytotoxicity impact on macrophage (J774) cells was also tested using MTT assay which revealed decreasing cell viability with increasing particle mass.
Collapse
Affiliation(s)
- Ankita Mangal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - Aparna Satsangi
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - K Maharaj Kumari
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India.
| |
Collapse
|
22
|
Characterization, Pollution Sources, and Health Risk of Ionic and Elemental Constituents in PM2.5 of Wuhan, Central China. ATMOSPHERE 2020. [DOI: 10.3390/atmos11070760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atmospheric PM2.5 samples from Wuhan, China were collected during a winter period of February and a summer period of August in 2018. The average PM2.5 mass concentration in winter reached 112 μg/m3—about two-fold higher than that found in summer. Eight ionic species constituted 1/3 of PM2.5, whereas more than 85% represented secondary ionic aerosols (NO3−, SO42− and NH4+). Higher ratios of NO3−/SO42− (0.95–2.62) occurred in winter and lower ratios (0.11–0.42) occurred in summer showing the different contribution for mobile and stationary sources. Seventeen elemental species constituted about 10% of PM2.5, with over 95% Na, Mg, Al, Ca, Fe, K and Zn. Higher K-concentration occurred in winter indicating greater contribution from biomass and firework-burning. Carcinogenic risks by Cr, As, Cd, Ni and Pb in PM2.5 indicated that about 6.94 children and 46.5 adults among per million may risk getting cancer via inhalation during surrounding winter atmospheric sampling, while about 5.41 children and 36.6 adults have the same risk during summer. Enrichment factors (EFs) and elemental ratios showed that these hazardous elements were mainly from anthropogenic sources like coal and oil combustion, gasoline and diesel vehicles.
Collapse
|
23
|
Wang Q, Wang W. Size characteristics and health risks of inorganic species in PM 1.1 and PM 2.0 of Shanghai, China, in spring, 2017. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14690-14701. [PMID: 32052323 DOI: 10.1007/s11356-020-07932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Ambient particulates of Shanghai with 5-stage particle sizes were firstly determined in spring, 2017. The particles' mass concentrations were mainly observed in fine particle matter (PM1.1) and coarse particles (diameter > 7.0 μm). Water-soluble ionic contents were also more distributed in PM1.1 with the great contents of secondary particles (NO3-, SO42-, and NH4+). Higher ratios of NO2/SO2 and NO3-/SO42- indicated that the vehicle emissions might be made more greater contribution rather than coal combustions to the fine particles. Crustal enrichment factors (EFcs) of trace elements (V, Cr, Ni, Zn, As, Se, Rb, Cd, Pb, and Bi) in PM1.1 in that called slight air pollution events were always higher than those in that called severe air pollution events and EFcs of Se were up to 2.5 × 104, while EFcs of Pb, Bi, and Cd were over 100. Based on kinds of elemental ratios in PM1.1 and PM1.1-2.0, atmospheric pollutants in Shanghai might be mainly from coal and oil combustions, diesel, and gasoline vehicles. Air masses backward trajectories also showed that the air masses from the northern part of China were one important air pollutant origins, but other ones might be the local sources, such as traffic and industries. Based on carcinogenic risk analysis of PM2.0, it was considerable that 12-60 children and 37-87 adults among millions of people living in Shanghai might be attacked by cancer during their lifetime. Moreover, the great carcinogenic risk was also observed according to the high concentrations of elemental Cr and As in PM1.1.
Collapse
Affiliation(s)
- Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| |
Collapse
|
24
|
Mahfouz MM, Yigiterhan O, Elnaiem AE, Hassan HM, Alfoldy B. Elemental compositions of particulate matter retained on air condition unit's filters at Greater Doha, Qatar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2533-2548. [PMID: 31054073 PMCID: PMC6856027 DOI: 10.1007/s10653-019-00304-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/22/2019] [Indexed: 05/28/2023]
Abstract
Elemental composition of airborne dust samples retained by internal filters of air condition units (ACUs) was determined at 12 locations of Doha city, state of Qatar. Twenty-four elements: Al, Ca, Mg, Fe, Na, K, Ti, Zn, P, Sr, Mn, Ba, Cu, Cr, Ni, Pb, V, Mo, Li, Co, Sb, As, Cd, Be, were analysed by ICP-OES technique after acid digestion of the samples. The analysed components reflect 20.6% of the total sample mass. Similar or lower concentration values have been found for As, Cd, Cr, Cu, Mn, Ni, Pb, V, Zn, Al, and Fe compared to the international context of upper crust concentrations, NIST SRM (urban dust), published local dust information of outdoor, and surface terrestrial deposit (STD) counted for 7.2, 0.7, 91.8, 192.8, 369.7, 68.6, 65.3, 52.1, 824.3, 19,791, 20,508 mg/kg, respectively. The coefficient of correlation (p ≤ 0.05) showed significant association of ACUs dust elemental compositions with the main components of the local earth crust and surface deposits, ranging from the lowest 0.77 (Mg-Fe) to the highest 0.98 (Al-Fe), while Ni and V, typical anthropogenic pollutants, are also strongly correlated (0.86). These strong correlation relationships can be interpreted as the contribution of outdoor particulate to the indoor dust. Dendrogram of metal/Al ratios, based on Euclidean distance calculation and average linkage clustering method, distinguished three typical groups. Studying the enrichment factors of the three groups indicated elevated levels of Zn (131), Pb (49), Cu (32), Cd (8) and Ni (5) found indoors compared to the background composition of STD especially at locations in the industrial zone. The major elemental composition of the samples reflects the typical mineral composition of the local dust, while the trace composition demonstrates the influence of indoor sources. The collected ACU filter dust samples show significant contribution of outdoor mineral particles, non-exhaust traffic emission, industrial sources, as well as the influence of indoor activity such as smoking.
Collapse
Affiliation(s)
- Mohamed M Mahfouz
- Environmental Science Center (ESC), Qatar University, H10-Zone 3-B113, P.O. Box 2713, Doha, Qatar.
| | - Oguz Yigiterhan
- Environmental Science Center (ESC), Qatar University, H10-Zone 3-B113, P.O. Box 2713, Doha, Qatar
| | - A E Elnaiem
- Environmental Science Center (ESC), Qatar University, H10-Zone 3-B113, P.O. Box 2713, Doha, Qatar
| | - Hassan M Hassan
- Environmental Science Center (ESC), Qatar University, H10-Zone 3-B113, P.O. Box 2713, Doha, Qatar
| | - Balint Alfoldy
- Environmental Science Center (ESC), Qatar University, H10-Zone 3-B113, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
25
|
Ahmadipour F, Esmaeili Sari A, Bahramifar N. Characterization, concentration and risk assessment of airborne particles using car engine air filter (case study: Tehran metropolis). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2649-2663. [PMID: 31098950 DOI: 10.1007/s10653-019-00319-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric elements released into the atmosphere can enter the human body through inhalation, ingestion and dermal contact and are then deposited in the body. Trace elements have potential risks to human health. For this purpose, the particulate matter accumulated by car air filters (CAFs) was studied. The morphology and distribution of particle size were examined using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The concentration of elements in CAFs and CAF-estimated air for 30 elements in Tehran, Iran, was analyzed in winter and summer, from February to July 2017. Samples were determined by inductively coupled mass plasma spectrometry. The most abundantly detected elements in both CAFs and air in both seasons were Ca, Mg, Na and Fe. The shape of the particles was mostly irregular and spherical. Most of the particles were between 0.5 and 1.0 µm. The carcinogenic risks of inhalation exposure to Cr and Co in winter and summer were higher than the acceptable level (< 1 × 10-4) for children and adults. The carcinogenic risks of As and Cr in both seasons were higher than 1 × 10-4 for children and adults via dermal contact. Also, the carcinogenic risks of Cr in both seasons of ingestion exposure were higher than 1.00E-04 for children and adults. The integrated noncarcinogenic risks of all trace elements were higher than the safe level (= 1) for children and adults in both seasons.
Collapse
Affiliation(s)
- Fatemeh Ahmadipour
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Abbas Esmaeili Sari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Nader Bahramifar
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| |
Collapse
|
26
|
Jena S, Perwez A, Singh G. Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2731-2747. [PMID: 31161408 DOI: 10.1007/s10653-019-00329-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Samples of PM2.5 were collected on PTFE filters at 11 monitoring stations in Dhanbad, India, from March, 2014, to February, 2015, for the quantification of 10 PM2.5-bound trace elements by using ICP-OES, source apportionment by using principal component analysis and health risks posed by PM2.5-bound trace elements by using health risk assessment model developed by US EPA. The average annual PM2.5 concentration (149 ± 66 µg/m3) exceeded the national ambient air quality standards by factor of 3.7, US EPA national ambient air quality standards by factor of 10 and WHO air quality guidelines by factor of 15. The sum total of average annual concentration of all PM2.5-bound trace elements was found to be 3.206 µg/m3 with maximum concentrations of Fe (61%), Zn (21%) and Pb (11%). Coal mining, coal combustion, vehicular emission, tyre and brake wear and re-suspension of road dust were identified as dominant sources of PM2.5-bound trace elements from the results of correlation and chemometric analysis. The significantly high HQ values posed by PM2.5-bound Co and Ni and intensification of HI values (15.7, 10.8 and 8.54 in mining area, transportation routes and institutional area, respectively) for multielemental exposure indicate high potential of non-carcinogenic health risk associated with inhalation exposure. The carcinogenic health risk due to multielemental exposure in mining area (2.27 × 10-4) and transportation routes (1.57 × 10-4) for adults were significantly higher than threshold value indicating the vulnerability of adults toward inhalation-induced carcinogenic risk posed by PM2.5-bound trace elements.
Collapse
Affiliation(s)
- Sridevi Jena
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India.
| | - Atahar Perwez
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India
| | - Gurdeep Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India
| |
Collapse
|
27
|
Shang L, Huang L, Yang W, Qi C, Yang L, Xin J, Wang S, Li D, Wang B, Zeng L, Chung MC. Maternal exposure to PM 2.5 may increase the risk of congenital hypothyroidism in the offspring: a national database based study in China. BMC Public Health 2019; 19:1412. [PMID: 31739791 PMCID: PMC6862828 DOI: 10.1186/s12889-019-7790-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/16/2019] [Indexed: 12/05/2022] Open
Abstract
Background Maternal exposure to air pollution is related to fetal dysplasia. However, the association between maternal exposure to air pollution and the risk of congenital hypothyroidism (CH) in the offspring is largely unknown. Methods We conducted a national database based study in China to explore the association between these two parameters. The incidence of CH was collected from October 1, 2014 to October 1, 2015 from the Chinese Maternal and Child Health Surveillance Network. Considering that total period of pregnancy and consequently the total period of particle exposure is approximately 10 months, average exposure levels of PM2.5, PM10 and Air Quality Index (AQI) were collected from January 1, 2014 to January 1, 2015. Generalized additive model was used to evaluate the association between air pollution and the incidence of CH, and constructing receiver operating characteristic (ROC) curve was used to calculate the cut-off value. Results The overall incidence of CH was 4.31 per 10,000 screened newborns in China from October 1, 2014 to October 1, 2015. For every increase of 1 μg/m3 in the PM2.5 exposure during gestation could increase the risk of CH (adjusted OR = 1.016 per 1 μg/m3 change, 95% CI, 1.001–1.031). But no significant associations were found with regard to PM10 (adjusted OR = 1.009, 95% CI, 0.996–1.018) or AQI (adjusted OR = 1.012, 95% CI,0.998–1.026) and the risk of CH in the offspring. The cut-off value of prenatal PM2.5 exposure for predicting the risk of CH in the offspring was 61.165 μg/m3. Conclusions The present study suggested that maternal exposure to PM2.5 may exhibit a positive association with increased risk of CH in the offspring. We also proposed a cut-off value of PM2.5 exposure that might determine reduction in the risk of CH in the offspring in highly polluted areas.
Collapse
Affiliation(s)
- Li Shang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Liyan Huang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China. .,Department of Public Health and Community Medicine, Tufts University School of Medicine, Massachusetts Boston, USA.
| | - Cuifang Qi
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Juan Xin
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Shanshan Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Danyang Li
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,Department of Women's and Children's Health, Karolinska Institute, Solna, Stockholm, Sweden
| | - Baozhu Wang
- Northwest Women's and Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Lingxia Zeng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Mei Chun Chung
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,Department of Public Health and Community Medicine, Tufts University School of Medicine, Massachusetts Boston, USA
| |
Collapse
|
28
|
Xu X, Huo Q, Dong Y, Zhang S, Yang Z, Xian J, Yang Y, Cheng Z. Bioaccumulation and health risk assessment of trace metals in fish from freshwater polyculture ponds in Chengdu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33466-33477. [PMID: 31522399 DOI: 10.1007/s11356-019-06412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The freshwater polyculture pond culturing occupied an important position in the aquaculture industry. Accumulation of trace metals was investigated in water, sediments, and fish (Carassius auratus, Cyprinus carpio, Ctenopharyngodon idellus) from typical polyculture ponds in Chengdu, China. The results showed most of the pond water in Chengdu were safe for fish cultivation. The Cd and Cr concentrations in sediment samples from sites S3, S4, and S9 which were near the industrial park and road with a high traffic volume were higher than those of the other sites. Cu, Cr, Fe, Zn, Mn, Ni, and Pb in sediments were unpolluted, while Cd was unpolluted to moderately polluted due to anthropogenic activities. Cu, Cd, and Pb in fish pond sediment of Chengdu had higher potential mobility under normal environmental circumstances. The trace metal concentrations in liver of three fish species were all higher than those in muscle tissues. The order of bioaccumulation factor (BAF) values for trace metals was Cr > Cu > Pb > Zn > Cd > Ni > 20. The concentrations of Cu, Cd, Pb, Zn, and Cr in the muscle of three fish species were all below the local and international maximum permissible levels. The target hazard quotient (THQ) and hazard index (HI) of trace metals in aquaculture fish ponds in Chengdu were lower than 1, which indicated that the consumption of grass, crucian, and common carp cultivated in the aquaculture ponds of Chengdu pose no health risk to the residents.
Collapse
Affiliation(s)
- Xiaoxun Xu
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Huo
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan Dong
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shirong Zhang
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhanbiao Yang
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junren Xian
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiang Yang
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
29
|
Motesaddi Zarandi S, Shahsavani A, Khodagholi F, Fakhri Y. Concentration, sources and human health risk of heavy metals and polycyclic aromatic hydrocarbons bound PM 2.5 ambient air, Tehran, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1473-1487. [PMID: 30552597 DOI: 10.1007/s10653-018-0229-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) bound to particulate matter 2.5 (PM2.5) ambient air can result in some adverse health effect. In the current study, PM2.5 ambient air of Tehran metropolitan, Iran, was characterized by the aid of scanning electron microscope and energy-dispersive X-ray techniques. Also, the human health risk of heavy metals and PAHs bound PM2.5 for adults and children was assessed using the Monte Carlo simulation method. According to our findings, a size range of 0.97-2.46 μm with an average diameter of 1.56 μm for PM2.5 was noted. The average concentration of PM2.5 in ambient air (8.29E+04 ± 2.94E+04 ng m-3) significantly (p < 0.05) was suppressed the national (2.50E+04 ng m-3), World Health Organization (2.50E+04 ng m-3) and Environmental Protection Agency (3.50E+04 ng m-3) standard limits. The rank order of heavy metals bound PM2.5 was determined as Al > Cu > Cd > Cr > Pb > Ni > Fe > Mn. The maximum concentration among 16 PAHs compounds investigated was correlated with Phenanthrene. Considering the principal component analysis, the main source of heavy metals (Ni, Pb and Cr) is vehicle combustion. Moreover, the rank order of exposure pathways based on their health risk was ingestion > inhalation > dermal contact. Moreover, the significant health risks for Tehran residents due to heavy metals bound PM2.5 [target hazard quotient > 1; carcinogenic risk > 1.00E-06)] were noted based on the health risk assessment. Excessive carcinogenic risk (ECR) of PAHs bound PM2.5 was 4.16E-07 that demonstrated that there is no considerable risk (ECR < 1.00E-06).
Collapse
Affiliation(s)
- Saeed Motesaddi Zarandi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Chen Y, Luo XS, Zhao Z, Chen Q, Wu D, Sun X, Wu L, Jin L. Summer-winter differences of PM 2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:505-509. [PMID: 30223162 DOI: 10.1016/j.ecoenv.2018.09.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/12/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Atmospheric fine particulate matters (PM2.5) induce adverse human health effects through inhalation, and the harmful effects of PM2.5 are determined not only by its air concentrations, but also by the particle components varied temporally. To investigate seasonal differences of the aerosol toxicity effects including cell viability and membrane damage, cell oxidative stress and responses of inflammatory cytokines, the human lung epithelial cells (A549) were exposed to PM2.5 samples collected in both summer and winter by the in vitro toxicity bioassays. Toxicological results showed that, the PM2.5 led to the cell viability decrease, cell membrane injury, oxidative stress level increase and inflammatory responses in a dose-dependent manner. Temporally, the cytotoxicity of winter PM2.5 was higher than summer of this studied industrial area of Nanjing, China. According to the different contents of heavy metals accumulated in PM2.5, the transition metals such as Cu might be an important contributor to the aerosol cell toxicity.
Collapse
Affiliation(s)
- Yan Chen
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Zhen Zhao
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qi Chen
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Di Wu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Sun
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lichun Wu
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
31
|
Soleimani M, Amini N, Sadeghian B, Wang D, Fang L. Heavy metals and their source identification in particulate matter (PM 2.5) in Isfahan City, Iran. J Environ Sci (China) 2018; 72:166-175. [PMID: 30244743 DOI: 10.1016/j.jes.2018.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
The presence of heavy metals (HMs) in particulate matters (PMs) particularly fine particles such as PM2.5 poses potential risk to the health of human being. The purpose of this study was to analyze the contents of HMs in PM2.5 in the atmospheric monitoring stations in Isfahan city, Iran, in different seasons between March 2014 and March 2015 and their source identification using principle component analysis (PCA). The samples of PM2.5 were taken using a high volume sampler in 7 monitoring stations located throughout the city and industrial zones since March 2014 to March 2015. The HMs content of the samples was measured using ICP-MS. The results showed that the concentrations of As, Cd and Ni were in a range of 23-36, 1-12, and 5-76ng/m3 at all the stations which exceeded the US-EPA standards. Furthermore, the concentrations of Cr and Cu reached to 153 and 167ng/m3 in some stations which were also higher than the standard levels. Depending on the potential sources of HMs, their concentration in PM2.5 through the various seasons was different. PCA illustrated that the different potential sources of HMs in the atmosphere, showing that the most important sources of HMs originated from fossil fuel combustion, abrasion of vehicle tires, industrial activities (e.g., iron and steel industries) and dust storms. Management and control of air pollution of industrial plants and vehicles are suggested for decreasing the risk of the HMs in the region.
Collapse
Affiliation(s)
- Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Nasibeh Amini
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Babak Sadeghian
- Isfahan's Department of Environment, Division of Environmental Monitoring, Iran
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liping Fang
- Faculty of Material Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Wuhan 430074, China.
| |
Collapse
|
32
|
Jan R, Roy R, Yadav S, Satsangi PG. Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:255-270. [PMID: 27889850 DOI: 10.1007/s10653-016-9900-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
The present study deals with the assessment of sequential extraction of particulate matter (PM)-bound metals and the potential health risks associated with them in a growing metropolitan city (Pune) of India. The average mass concentration of both PM2.5-10 and PM2.5 exceeded the National Ambient Air Quality Standards. Significant seasonal variation in mass concentration was found for both size fractions of PM with higher values in winter season and lower in monsoon. Chemical species of the studied trace metals in PM exhibited significant differences, due to difference in sources of pollution. Metals such as Cd, Pb, and Cr in both size fractions and Zn and Co in fine fraction were more efficiently extracted in mobile fractions showing their mobile nature while Ni and Fe showed reduced mobility. Fe showed the highest concentrations among all the analyzed elements in both coarse (PM2.5-10) and fine (PM2.5) PM, while Cd showed least concentration in both size fractions. PCA identified industrial emissions, vehicular activity, coal combustion, diesel exhaust, waste incineration, electronic waste processing, constructional activities, soil, and road dust as probable contributors responsible for the metallic fraction of PM. All the metals showed varying contamination in PM samples. The contamination was higher for fine particles than coarse ones. The average global contamination factor was found to be 27.0-34.3 in coarse and fine PM, respectively. The hazard quotient (HQ) estimated for Cd, Co, and Ni (both total and easily accessible concentrations) exceeded the safe level (HQ = 1), indicating that these metals would result in non-carcinogenic health effects to the exposed population. The HQ ranged from 9.1 × 10-5 for Cu (coarse) to 8.3 for Ni (fine) PM. The cancer risk for Cd, Ni, and Cr in both sized PM were much higher than the acceptable limits of USEPA.
Collapse
Affiliation(s)
- Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411 007, India
| | - Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411 007, India
| | - Suman Yadav
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411 007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411 007, India.
| |
Collapse
|
33
|
Huang H, Jiang Y, Xu X, Cao X. In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:546-554. [PMID: 28822338 DOI: 10.1016/j.scitotenv.2017.08.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The bioaccessibility and human health risks of heavy metals in PM2.5 and PM10 samples from three functional areas of Shanghai, China including a commercial area (CA), a residential area (RA), and an industrial area (IA), were investigated. Gamble's solution and physiologically based extraction test were employed to simulate human respiratory and digestive system, respectively. Both PM2.5 and PM10 concentration in the three areas exceeded the guideline of WHO, and followed the order of IA>CA≈RA. Zinc and Pb were the most abundant metals with a concentration range of 0.19-0.44 and 0.05-0.42μgm-3, respectively. In respiratory system, heavy metal bioaccessibility for PM2.5 and PM10 varied within the range of 5.3%-71.4% and 4.8%-51.5%, respectively. Heavy metals in RA showed higher bioaccessibility than those in CA and IA in the respiratory system. In digestive system, heavy metal bioaccessibility for PM2.5 and PM10 reached 24.6%-90.9% and 28.5%-88.9% in the gastric phase and was reduced to 8.7%-85.5% and 8.5%-81.8% in the intestinal phase, respectively. The bioaccessibility of heavy metals in CA was highest among three areas in the digestive system. Based on the bioaccessibility analysis, the hazard quotient values of heavy metals in PMs via inhalation exposure were far below 1, the safe level, for both adults and children. However, potential risks via ingestion exposure resulted from Pb existed for children of three areas and for adults of RA as their hazard quotient values could reach up to 11. The obtained results indicated that the air quality in Shanghai need to be improved and the health risks to humans via ingestion exposure to atmospheric Pb must be considered.
Collapse
Affiliation(s)
- Huang Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
34
|
Chen R, Cheng J, Lv J, Wu L, Wu J. Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:913-921. [PMID: 27502202 DOI: 10.1007/s10653-016-9862-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust-haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ([Formula: see text], [Formula: see text], F-, Cl-, Na+, K+, Mg2+, Ca2+ and [Formula: see text]) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84-32.05 % differently to the summer and winter air pollution in 2014.
Collapse
Affiliation(s)
- Rui Chen
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jing Cheng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jungang Lv
- Procuratoral Technology and Information Research Center, Supreme People's Procuratorate, Beijing, 100040, China.
| | - Lijun Wu
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jing Wu
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
35
|
Zhang L, Jin X, Johnson AC, Giesy JP. Hazard posed by metals and As in PM2.5 in air of five megacities in the Beijing-Tianjin-Hebei region of China during APEC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17603-17612. [PMID: 27234836 DOI: 10.1007/s11356-016-6863-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Airborne fine particulate matter (PM2.5) from five megacities including Beijing, Tianjin, Shijiazhuang, Baoding, and Jinan were collected during November 2014 and compared with similar periods in 2012 and 2013. The November 2014 period coincided with the Asia Pacific Economic Cooperation (APEC) Leaders Meeting during which measures to control pollution of the air were introduced. Concentrations of 11 elements in PM2.5 were quantified by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave-assisted digestion. Potential effects of five toxic trace metals including Mn, Ni, Cu, Zn, Pb, and the metalloid As on health were assessed. In 2014, concentrations of PM2.5 were significantly less than during the same period in 2012 and 2013. Mean concentrations of six elements ranked in decreasing order, Zn > Pb > Cu ≈ Mn > As > Ni, and spatial concentrations ranked in decreasing order, Shijiazhuang > Baoding > Tianjin > Jinan > Beijing. Risks of the five metals and the metalloid As to health of humans were small, except for Mn in Shijiazhuang. Risks to health posed by other elements were less during the period of study. Risks posed by the five metals and As in Beijing were greater to varying degrees after the APEC meeting. Risks to health of humans during the APEC were overall lesser than the same period in 2012 and 2013, mostly due to lesser emissions due to the short-term control measures.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Analytical Technique, China National Environmental Monitoring Center, Anwai Dayangfang No. 8, Chaoyang District, Beijing, 100012, China
| | - Xiaowei Jin
- Department of Analytical Technique, China National Environmental Monitoring Center, Anwai Dayangfang No. 8, Chaoyang District, Beijing, 100012, China.
| | | | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
36
|
A Longitudinal Study of Association between Heavy Metals and Itchy Eyes, Coughing in Chronic Cough Patients: Related with Non-Immunoglobulin E Mediated Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13010110. [PMID: 26751467 PMCID: PMC4730501 DOI: 10.3390/ijerph13010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022]
Abstract
The association between heavy metals exposure and respiratory diseases or allergic sensitization showing high serum immunoglobulin E (IgE) has been suggested. However, previous findings have been inconsistent and the mechanisms responsible remain unclear. We evaluated heavy metal exposure and its association with coughing, itchy eyes in chronic cough patients with different IgE levels. Ninety outpatients in Kanazawa University Hospital were recruited between January-June 2011. Subjects whose total IgE measured by radioimmunosorbent test were asked to record their daily symptoms. We collected daily total suspended particles (TSP) from which concentrations of calcium (Ca), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and lead (Pb) were determined then divided into high and low level groups. Generalized estimating equations were applied to compute the relationship between concentrations of these metals and symptoms. All metals at high levels were significantly associated with itchy eyes compared with low levels, with exception of Ca, the six others were significant in patients with IgE < 250 IU/mL. Cd, Fe, Mn had association with coughing (odds ratio-OR (95% confidence interval-CI): 1.13 (1.03, 1.24), 1.22 (1.05, 1.42), and 1.13 (1.01, 1.27), respectively), this relationship remained significant for Cd (OR (95% CI): 1.14 (1.03, 1.27)) and Mn (OR (95% CI): 1.15 (1.00, 1.31)) in patients with lower IgE. Our findings demonstrate the relationship between aerial heavy metals and itchy eyes, coughing in chronic cough patients, suggesting these symptoms may be due to a non-IgE mediated mechanism.
Collapse
|