1
|
Jing M, Han G, Wan J, Zong W, Liu R. Differential eco-toxicological responses toward Eisenia fetida exposed to soil contaminated with naphthalene and typical metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44800-44814. [PMID: 38954347 DOI: 10.1007/s11356-024-34149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Naphthalene (NAP) was frequently detected in polycyclic aromatic hydrocarbons (PAHs)-contaminated soil, and its residues may pose an eco-toxicological threat to soil organisms. The toxic effects of NAP were closely tied to phenolic and quinone metabolites in biological metabolism. However, the present knowledge concerning the eco-toxicological impacts of NAP metabolites at the animal level is scanty. Here, we assessed the differences in the eco-toxicological responses of Eisenia fetida (E. fetida) in NAP, 1-naphthol (1-NAO) or 1,4-naphthoquinone (1,4-NQ) contaminated soils. NAP, 1-NAO, and 1,4-NQ exposure triggered the onset of oxidative stress as evidenced by the destruction of the antioxidant enzyme system. The lipid peroxidation and DNA oxidative damage levels induced by 1-NAO and 1,4-NQ were higher than those of NAP. The elevation of DNA damage varied considerably depending on differences in oxidative stress and the direct mode of action of NAP or its metabolites with DNA. All three toxicants induced different degrees of physiological damage to the body wall, but only 1, 4-NQ caused the shedding of intestinal epithelial cells. The integrated biomarker response for different exposure times illustrated that the comprehensive toxicity at the animal level was 1,4-NQ > 1-NAO > NAP, and the time-dependent trends of oxidative stress responses induced by the three toxicants were similar. At the initial stage, the antioxidant system of E. fetida responded positively to the provocation, but the ability of E. fetida to resist stimulation decreased with the prolongation of time resulting in provocation oxidative damage. This study would provide new insights into the toxicological effects and biohazard of PAHs on soil animals.
Collapse
Affiliation(s)
- Mingyang Jing
- Shandong Urban Construction Vocational College, 4657# Tourism Road, Jinan, Shandong, 250100, P.R. China
| | - Guangye Han
- Shandong Academy of Environmental Sciences Co., Ltd, Licheng, 12777# Zhenyuan Road, Jinan, Shandong, 250100, P.R. China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, Shandong, China
| | - Rutao Liu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China.
| |
Collapse
|
2
|
Odali EW, Iwegbue CMA, Egobueze FE, Nwajei GE, Martincigh BS. Distribution, sources, and risk of polycyclic aromatic hydrocarbons in soils from rural communities around gas flaring points in the Niger Delta of Nigeria. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:721-733. [PMID: 38421246 DOI: 10.1039/d3em00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This study investigates the concentrations, sources, and ecological and human health risks resulting from exposure to polycyclic aromatic hydrocarbons (PAHs) in soils of rural communities around gas flaring points in Delta State, Nigeria. PAHs were extracted from these soil samples with hexane/dichloromethane by ultra-sonication and the extracts were cleaned on a silica gel/alumina-packed column. The PAH concentrations in the extracts were quantified by gas chromatography-mass spectrometry (GC-MS). The Σ16 PAH concentrations in soils from these communities varied from 2370-134 000, 461-389 000, and 2130-34 900 μg kg-1 for Emu-Ebendo (EME), Otu-Jeremi (OTJ) and Ebedei (EBD), respectively. The estimated lifetime carcinogenic risk values recorded in this study were above the acceptable limit of 10-6, indicating a high potential carcinogenic risk resulting from human exposure to PAHs in these soils. The isomeric ratio and principal component analysis results suggest that emissions from high-temperature combustion, potentially gas flaring, vehicular emissions, burning of wood/biomass, and fossil fuel combustion are responsible for the high concentrations of PAHs in soils of these rural communities. This study recommends implementing remediation and source control measures to minimise the impact of PAHs in the affected soils on humans and the environment.
Collapse
Affiliation(s)
- Eze W Odali
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Delta State, Nigeria.
| | | | - Francis E Egobueze
- Department of Environment and Quality Control, Nigerian Agip Oil Company, Rumueme, Port Harcourt, Nigeria
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Delta State, Nigeria.
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
3
|
Wang C, Wang W, Shao S, Deng W, Wang C, Liu X, Li H, Wen M, Zhang X, Li G, An T. Occurrence of BTX and PAHs in underground drinking water of coking contaminated sites: Linkage with altitude and health risk assessment by boiling-modified models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170407. [PMID: 38296073 DOI: 10.1016/j.scitotenv.2024.170407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
The safety of underground drinking water has received widespread attention. However, few studies have focused on the occurrence and health risks of pollutants in underground drinking water of coking contaminated sites. In this study, the distribution characteristics, sources, and human health risks of benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) in underground drinking water from a typical coking contaminated site in Shanxi of China were investigated. The average concentrations of BTX and PAHs in coking plant (CP) were 5.1 and 4.8 times higher than those in residential area (RA), respectively. Toluene and Benzene were the main BTX, while Acenaphthene, Fluorene, and Pyrene were the main PAHs. Concentrations of BTX/PAHs were negatively correlated with altitude, revealing altitude might be an important geological factor influencing spatial distribution of BTX/PAHs. PMF model demonstrated that the BTX/PAHs pollution in RA mainly originated from coking industrial activities. Health risk assessments were conducted by a modified US EPA-based model, in which environmental concentrations were replaced by residual concentrations after boiling. Residual ratios of different BTX/PAHs were determined by boiling experiments to be 9.4-93.8 %. The average total carcinogenic risks after boiling were decreased from 2.6 × 10-6 to 1.4 × 10-6 for adults, and from 4.3 × 10-6 to 2.1 × 10-6 for children, suggesting boiling was an effective strategy to reduce the carcinogenic risks from BTX/PAHs, especially for ingestion pathway. Monte Carlo simulation results matched well with the calculated results, suggesting the uncertainty was acceptable and the risk assessment results were reliable. This study provided useful information for revealing the spatial distribution of BTX/PAHs in underground drinking water of coking contaminated sites, understanding their linkage with altitude, and also helped to more accurately evaluate the health risks by using the newly established boiling-modified models.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shaobin Shao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiqiang Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Congqing Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyuan Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Li B, Zhao L, Zhong S, An R, Ma R, Xu X, Chen Q. Occurrence, distribution and risk assessment of polycyclic aromatic hydrocarbons in soils around main water source areas of Beijing, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7569-7584. [PMID: 37391576 DOI: 10.1007/s10653-023-01673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in urban environments have been globally concerned due to their significant health impacts on residents. However, little is known about potential risks of PAHs from centralized water source areas. In the present study, 326 soils samples from the main water source areas of Beijing were collected and the occurrence, source appointment, and risks of PAHs were systematically investigated based on the monitoring results from high-performance liquid chromatography (HPLC). The total PAHs (∑16 PAHs) concentrations ranged from 5.70 to 1512 ng/g with median value of 44.2 ng/g, in which 4-ring and 5-ring groups were the major components. PAHs concentrations in the cultivated land were significantly higher than other areas, which could reflect significant impact of soil organic matter and total nitrogen contents on the spatial variations of PAHs. Further source identifications through positive matrix factorization model (PMF) revealed that biomass (22.5%), coal (21.4%), gasoline (17.6%) and diesel (16.4%) combustion were dominant sources of soil PAHs in the study area. Moreover, the risk assessment indicated that total ecological and health risk of PAHs were negligible, but individual PAH, including pyrene and benzo(b)fluoranthene, should be concerned due to their potential risks in several monitored stations located in the secondary protection area of four reservoirs. Our study provided new insights into environmental risks of soils in main water source areas from PAHs and could be helpful for organic micropollutant controlling and drinking water safety in rapidly urbanizing cities.
Collapse
Affiliation(s)
- Bin Li
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Liang Zhao
- Beijing Water Authority, Beijing, 100036, People's Republic of China
| | - Sining Zhong
- Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Rui An
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Ruoqi Ma
- General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing, 100120, People's Republic of China
| | - Xuming Xu
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China.
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China.
| |
Collapse
|
5
|
Iwegbue CMA, Ogbuta AA, Tesi GO, Ossai CJ, Olisah C, Nwajei GE, Martincigh BS. Spatial distribution of polycyclic aromatic hydrocarbons in dust and soils from informal trade sites in southern Nigeria: Implications for risk and source analysis. CHEMOSPHERE 2023; 315:137624. [PMID: 36566793 DOI: 10.1016/j.chemosphere.2022.137624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of semi-volatile and persistent organic compounds considered priority pollutants because of their pervasive nature and high toxicity to the ecosystem and humans. Therefore, this study aimed to evaluate the PAH concentrations in dust and soils around informal trade sites (ITS) in Nigeria to determine the level of risk, sources, and significance of these activities to the PAH load of the environment. The 16 US EPA PAHs in dust and soils from ITS were determined by gas chromatography-mass spectrometry (GC-MS). The PAH concentrations in dust from these informal trade sites varied from 120 to 8790, 56 to 4780, and 102-1090 μg kg-1 for automobile mechanic workshops (AMW), car dismantling (CDS), and material recovery sites (MRS), respectively, whereas those of soils ranged from 3000 to 95,500, 554 to 14,700, and 966-25,200 μg kg-1 for AMW, CDS, and MRS respectively. The PAH profiles indicated that 3- to 5-ring PAHs were prominent in dust and soils around the ITS. The concentrations of the US EPA 16 PAHs in dust and soils from these ITS showed no correlation with organic matter, while the concentrations of PAH homologues in soils of these ITS showed no correlation with those of dust. Incremental lifetime cancer risk (ILCR) values in the magnitude of 10-4 to 101 were obtained for adult and childhood exposure to PAHs in dust and soils from these ITS. Exposure to PAHs in dust from these ITS gives rise to less risk than for soils. The results indicated that automobile mechanic workshops contribute more PAHs to the environment than car dismantling and material recovery activities. The source analysis showed that the PAH contamination of these sites arises from burning of biomass, plastic materials, and oils, and emissions from vehicles.
Collapse
Affiliation(s)
| | - Anthony A Ogbuta
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria; Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Chijioke Olisah
- Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
6
|
Zhang L, Li H, Liu D, Wang L, Dong D, Guo Z. Antibiotics in a seasonal ice-sealed reservoir: Occurrence, temporal variation, prioritization, and source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159469. [PMID: 36265615 DOI: 10.1016/j.scitotenv.2022.159469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are prevalent in the aquatic environment as emerging contaminants. Their knowledge of seasonal ice-sealed reservoirs, however, is limited. The occurrence, temporal variation, and prioritization of twenty-three antibiotics in Shitoukoumen Reservoir during its ice-free and ice-sealed periods, as well as the source apportionment of the high-priority antibiotics, were investigated in this study. The results showed that florfenicol was the dominant antibiotic in Shitoukoumen Reservoir, with different median concentrations of 75.0 ± 6.5 ng L-1 and 7.0 ± 1.7 ng kg-1 in the water and ice, respectively. The concentrations of florfenicol, sulfaguanidine, and sulfamonomethoxine in the water of the reservoir water varied over time, but their monthly mass loads from inflow rivers were similar during ice-free and ice-sealed periods. This indicated that other factors, such as aquacultural practice, non-point source rain runoff, and the blocking effect of ice, determined the temporal variations of the three antibiotics and resulted in their relatively high concentrations during the ice-free period. High-priority antibiotics included erythromycin, florfenicol, ofloxacin, sarafloxacin, sulfaquinoxaline, thiamphenicol, and tylosin. Aquaculture was the primary source of high-priority antibiotics, accounting for 67.3 % and 59.4 % of the total high-priority antibiotic concentrations during ice-free and ice-sealed periods, respectively. The findings suggest that aquaculture, rain runoff, and ice blocking should all be considered as factors influencing antibiotic variations in a seasonal ice-sealed reservoir.
Collapse
Affiliation(s)
- Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; Zibo Ecological Environment Bureau Zhoucun Branch, Zibo 255300, China
| | - Deping Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Zhang B, Wei W, Zhu H, Liu X, Lv L, Chen H. Polycyclic aromatic hydrocarbons in soils of Central Plains Urban Agglomeration, China: The bidirectional effects of urbanization and anthropogenic activities. ENVIRONMENTAL RESEARCH 2022; 214:113930. [PMID: 35868582 DOI: 10.1016/j.envres.2022.113930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
To investigate the variations in environmental behavior (levels, distribution, sources, and soil toxicity) of polycyclic aromatic hydrocarbons (PAHs) under the impact of anthropogenic activities during the urbanization process, we collected soil samples from 195 sites in the Central Plains Urban Agglomeration (CPUA), North China, and analyzed 16 U.S. Environmental Protection Agency (EPA) PAH priority pollutants. We divided the sampling sites into three groups (urban area, industrial area, and farmland) and collected soil samples (0-20 cm surface layer). ∑16PAHs concentrations in the soils of the urban area, industrial area, and farmland ranged from 24.2 to 4400 ng/g, 12.3-8780 ng/g, and 20.9-852 ng/g (the average value of 349, 634, and 186 ng/g), respectively. The 4 to 5 ring PAHs were dominant compounds in three soil types, accounting for 65-80% of the ∑16PAHs. The results of the source analysis showed that the PAHs in the soils of CPUA were mainly from energy consumption. PAH levels in urban and industrial soils had a potential low cancer risk. The impact of urbanization on PAHs in the soil was bidirectional. On the one hand, the level of PAHs in the farmland soil might increase due to burning coal and agricultural machinery, which releases diesel or petrol fumes. On the other hand, in the urbanization process, the PAH content in urban soil and industrial soil showed a downward trend due to the implementation of environmental protection policies in China, which have reduced the atmospheric input of PAHs into the soil.
Collapse
Affiliation(s)
- Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Wenhao Wei
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Xiaolong Liu
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Lina Lv
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
8
|
Contamination level, sources, and health risk of polycyclic aromatic hydrocarbons in suburban vegetable field soils of Changchun, Northeast China. Sci Rep 2022; 12:11301. [PMID: 35788640 PMCID: PMC9253016 DOI: 10.1038/s41598-022-15285-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants. With the expansion of the city, the suburban environment is being increasingly polluted by PAHs, which pose a huge potential risk for suburban agriculture. Therefore, we conducted a survey focusing on the pollution level, sources, and risk of PAHs in Changchun suburban vegetable soils, Northeast China. The total concentrations of 16 PAHs (Σ16PAHs) in soils were between 2338.2 and 15,200 ng g−1 (mean 6778.1 ng g−1), which were significantly higher than those in most other cities. High molecular weight PAHs were the major components, which occupied over 85.63% of all PAHs. Seven potential carcinogenic PAHs accounted for 56.96% of the Σ16PAHs. Source apportionment results based on the ratio of PAH isomers and principal components analysis showed that PAHs were primarily derived from pyrolysis sources, such as biomass/coal combustion, traffic emissions, and petroleum. Ecological risk values of PAHs were between effects range-low (ERL) and effects range-median (ERM), which might cause occasionally ecological risks in the suburbs. According to the incremental lifetime cancer risk assessment results, the health risks to the exposed population were in the acceptable level, with dermal contact and ingestion being the predominant exposure pathway.
Collapse
|
9
|
Zhang L, Du S, Liu D, Dong D, Zhang W, Guo Z. Antibiotics in fish caught from ice-sealed waters: Spatial and species variations, tissue distribution, bioaccumulation, and human health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153354. [PMID: 35085643 DOI: 10.1016/j.scitotenv.2022.153354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are increasingly detected in fish caught in ice-free waters, but information on fish caught in ice-sealed waters is insufficient. The concentrations of 23 antibiotics in the gills, muscles, kidneys, livers, biles, and brains of Cyprinus carpio and Hypophthalmichthys nobilis caught during winter fish-hunting activities in Chagan Lake, Haernao Reservoir, and Shitoukoumen Reservoir were systematically studied to ascertain the variations among fish species and fishing regions, tissue distribution, and bioaccumulation, as well as the potential risk to humans via the consumption of contaminated fish. The results indicated that the individual antibiotic concentration in tissues ranged from undetectable to 35.0 ng/g ww. The total antibiotic concentration in fish muscles from Shitoukoumen Reservoir was lower than that from Chagan Lake and Haernao Reservoir, but showed no significant difference between Cyprinus carpio and Hypophthalmichthys nobilis. Chloramphenicols had a high proportion in most fish tissues ranging from 28.3% to 44.0%, and the antibiotics were mainly distributed in the livers with a total concentration of 54.8 ± 9.9 ng/g ww. The mean values of bioaccumulation factors (BAF) of antibiotics in tissues ranged from 79.4 to 1000 L/kg, with the higher values found in the fish livers. The hazard quotient and hazard index value of antibiotics in the muscles of fish from ice-sealed were less than 1, indicating a negligible risk to human health via the consumption of fish muscles. This study revealed that the total antibiotic concentration in muscles showed spatial variations but not fish species-dependence. The antibiotics mainly accumulated in the livers. In addition, the target antibiotic concentrations in the muscles of fish from ice-sealed waters met the safe for consumption criteria.
Collapse
Affiliation(s)
- Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siying Du
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; State Grid Sichuan Economic Research Institute, Chengdu 610041, China
| | - Deping Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Yang B, Shi Y, Xu S, Wang Y, Kong S, Cai Z, Wang J. Polycyclic aromatic hydrocarbon occurrence in forest soils in response to fires: a summary across sites. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:32-41. [PMID: 34982084 DOI: 10.1039/d1em00377a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Forest fires are important sources of polycyclic aromatic hydrocarbons (PAHs) in soils. However, factors controlling PAH production in soils subjected to fires in different sites are poorly understood. Here, we analyzed 143 sets of previously published data to evaluate the concentrations and composition profiles of PAHs in ash and soils associated with forest fires and to assess the impacts of soil depth, fire intensity, post-fire duration, and vegetation type on their occurrence. Compared to unburned soils, the total PAH concentrations increased by 205% (95% confidential interval of 152-269%; n = 136) in soils associated with fires. This increase surpassed that of PAH toxic equivalents (73%) because fires produce dominantly low-ring PAHs with relatively low toxicity. PAH concentrations in fire-impacted sites increased by 684%, 258%, and 155% in the ash, 0-5 cm soil depth interval, and >5 cm soil depth interval, respectively. The increases in PAH concentrations associated with mild-intensity fires (412%) exceeded those associated with moderate-intensity (163%) and high-intensity (168%) fires, which is possibly due to pyromineralization or volatilization of organic matters at high burning temperatures. These increases were highest within a month after the fire (280%), gradually decreasing over time, and showed no significant difference compared to the reference sites after 24 months. The concentration increases exhibit no major difference between various vegetation types (broad-leaved forest vs. coniferous forest vs. shrub). Assessments reveal that exposure to post-fire soil PAHs involves no serious human health risk. However, potential adverse effects of soil PAHs on other organisms (e.g., microbes and plants) and ecosystems should be further examined. The present study highlights the strong impacts of soil depth, fire intensity, and post-fire duration, and the relatively weak impact of the vegetation type on PAH concentrations in soils associated with fires in different areas.
Collapse
Affiliation(s)
- Biwei Yang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Yameng Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Shan Xu
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yinghui Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Sifang Kong
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Junjian Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Škrbić BD, Antić I, Živančev J, Vágvölgyi C. Comprehensive characterization of PAHs profile in Serbian soils for conventional and organic production: potential sources and risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4201-4218. [PMID: 33818683 DOI: 10.1007/s10653-021-00884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
This study presents a comprehensive characterization of occurrence and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in arable soils used for conventional and organic production in northern and central part of Serbia as well as cross-border region with Hungary. Furthermore, this study includes a characterization of PAH sources and carcinogenic/non-carcinogenic human health risk for PAHs accumulated in analysed arable soils. The total concentration of 16 PAHs varied between 55 and 4584 µg kg-1 in agricultural soil used for conventional production and between 90 and 523 µg kg-1 in agricultural soil used for organic production. High molecular weight (HMW) PAHs were dominant compounds with similar contribution in both soil types (86% and 80% in conventional and in organic soil, respectively). Principal component analysis and diagnostic ratios of selected PAHs were used for identification of PAH sources in the analysed soils. Additionally, positive matrix factorization was applied for quantitative assessment. The results indicated that the major sources of PAHs were vehicle emissions, biomass and wood combustion, accounting for ~ 93% of PAHs. Exposure of farmers assessed through carcinogenic (TCR) and non-carcinogenic (THQ) risk did not exceed the acceptable threshold (TCR < 10-6 and THQ < 1). Oral ingestion was the main exposure route which accounted for 57% of TCR and 80% of THQ. It was followed by dermal contact. This investigation gives a valuable data insight into the PAHs presence in arable soils and reveals the absence of environmental and health risk. It also acknowledges the importance of comprehensive monitoring of these persistent pollutants.
Collapse
Affiliation(s)
- Biljana D Škrbić
- Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, University of Novi Sad, Novi Sad, Serbia.
| | - Igor Antić
- Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Živančev
- Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, University of Novi Sad, Novi Sad, Serbia
| | - Csaba Vágvölgyi
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Zhang Y, Chen H, Liu C, Chen R, Wang Y, Teng Y. Developing an integrated framework for source apportionment and source-specific health risk assessment of PAHs in soils: Application to a typical cold region in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125730. [PMID: 34088198 DOI: 10.1016/j.jhazmat.2021.125730] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 05/16/2023]
Abstract
Here, a new integrated methodology framework has been proposed for source apportionment and source-oriented risk evaluation, and applied to identify the characteristics, sources and health risks of PAHs in the soils of a typical cold region in Northeastern China. To this end, a large-scale data set containing 1780 soil samples and 16 priority PAHs has been collected from the study area. Two advanced receptor models, positive matrix factorization (PMF) and multivariate curve resolution-weighted alternating least-squares (MCR-WALS), have been comparatively employed to apportion the pollution sources of soil PAHs, with the help of a set of modified literature PAH source fingerprints. Further, the apportionment results have been incorporated into a probabilistic incremental lifetime cancer risk model for assessing the source-specific health risk of soil PAHs. Notably, the PMF and MCR-WALS models have apportioned essentially same results. The coal combustion and gasoline engine are identified as the main contributors of soil PAHs, with contributions of 57.9-58.1% and 25.2-22.2%, respectively. The health risks posed by PAHs in the soils are negligible for both adult and children; relatively, source-oriented risk assessment shows coal combustions make the largest contribution to the total risk of PAHs (56.1%), followed by gasoline engine (22.5%) and coke oven (21.4%).
Collapse
Affiliation(s)
- Yuxin Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruihui Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yeyao Wang
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
13
|
Zou Y, Liu J, Liu X, Jia J. Health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the soil around thermal power plants in southwest China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:786-796. [PMID: 34187311 DOI: 10.1080/10934529.2021.1927597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the PAH contamination levels and to assess the health risk of PAH in soils of two typical thermal power plants. The PAH content was detected using gas chromatography-mass spectrometry (GC-MS). The carcinogenic risk and the hazard quotient were assessed for health risk using the "Chinese Technical Guidelines for Risk Assessment of Contaminated Sites HJ 25.3-2014." The results showed that the average concentration of Σ16PAHs in the soils around thermal power plants A and B are 7436 μg/kg and 8975 μg/kg, respectively indicating heavily pollution. The comprehensive carcinogenic risk of PAHs in thermal power plants A and B ranged from 0.26 × 10-6 to 4.16 × 10-6. Forty percent of the sampling sites exceeded the acceptable risk level (10-6), which is a potential carcinogenic risk to the workers. Among the seven kinds of carcinogens, Bap (39.91%) and DBA (36.10%) had the highest carcinogenic risk. Oral ingestion (57.22%) and skin contact (42.49%) were the major exposure pathways that could be blocked by wearing masks, gloves, and protective clothing. The control values for oral ingestion (0.32717 mg/kg) of DBA and Bap with the highest contribution rate of the carcinogenic risk and the lowest control value were selected as reference safety thresholds for PAHs in thermal power plants.
Collapse
Affiliation(s)
- Yiping Zou
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, PR China
| | - Jialin Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, PR China
| | - Xingchen Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, PR China
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, PR China
| |
Collapse
|
14
|
Ehigbor MJ, Iwegbue CMA, Eguavoen OI, Tesi GO, Martincigh BS. Occurrence, sources and ecological and human health risks of polycyclic aromatic hydrocarbons in soils from some functional areas of the Nigerian megacity, Lagos. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2895-2923. [PMID: 32424788 DOI: 10.1007/s10653-020-00528-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/21/2020] [Indexed: 06/11/2023]
Abstract
The study investigated the levels of the USEPA 16 PAHs in soils collected from selected functional areas (cemetery, commercial, industrial and residential areas) of the Nigerian megacity, Lagos. The soil samples were subjected to ultrasonic-assisted extraction in a 1:1 (v/v) mixture of dichloromethane/hexane, and the PAHs in the resulting extracts were determined by gas chromatography-mass spectrometry. The Σ16 PAHs in soils of these functional areas varied between 890-4675, 485-4513, 111-15,577 and 509-2047 μg kg-1 for cemetery, industrial, commercial and residential areas, respectively. The benzo(a)pyrene carcinogenic (BaPTEQ) and mutagenic equivalency (BaPMEQ) values of PAHs in these soils spanned from 523 to 1046 and 446 to 1129 µg kg-1, respectively. The hazard index values suggested that there are adverse (non-carcinogenic) health effects for a child's exposure to PAHs in soils of commercial areas. The cancer risk values resulting from an adult's and a child's exposure to PAHs in these urban soils via dermal contact and oral ingestion surpassed the target value of 10-6 which suggested that there is a considerable cancer risk relating to human exposure to PAHs in these urban soils. An ecological risk assessment making use of soil quality guidelines and risk quotients suggested a low ecological risk to organisms in soils of these functional areas except for those from commercial areas. PAH isomeric ratios and principal component analysis indicated that PAHs in these soils arise from petrogenic inputs, such as occasional spills of liquid petroleum fuels and discharges from automobile workshops and generator houses, as well as pyrogenic processes including traffic emissions and combustion of fossil fuels and biomass.
Collapse
Affiliation(s)
- Monday J Ehigbor
- Department of Chemistry, Ambrose Alli University, P.M.B. 14, Ekpoma, Edo State, Nigeria
| | | | - Osayanmo I Eguavoen
- Department of Chemistry, Ambrose Alli University, P.M.B. 14, Ekpoma, Edo State, Nigeria
| | - Godswill O Tesi
- Department of Chemical Science, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
15
|
Han J, Liang Y, Zhao B, Wang Y, Xing F, Qin L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:312-327. [PMID: 31091495 DOI: 10.1016/j.envpol.2019.05.022] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
In China, the huge amounts of energy consumption caused severe carcinogenic polycyclic aromatic hydrocarbon (PAHs) concentration in the soil and ambient air. This paper summarized that the references published in 2008-2018 and suggested that biomass, coal and vehicular emissions were categorized as major sources of PAHs in China. In 2016, the emitted PAHs in China due to the incomplete combustion of fuel was about 32720 tonnes, and the contribution of the emission sources was the sequence: biomass combustion > residential coal combustion > vehicle > coke production > refine oil > power plant > natural gas combustion. The total amount of PAHs emission in China at 2016 was significantly decreased due to the decrease of the proportion of crop resides burning (indoor and open burning). The geographical distribution of PAHs concentration demonstrated that PAHs concentration in the urban soil is 0.092-4.733 μg/g. At 2008-2012, the serious PAHs concentration in the urban soil occurred in the eastern China, which was shifted to western China after 2012. The concentration of particulate and gaseous PAHs in China is 1-151 ng/m3 and 1.08-217 ng/m3, respectively. The concentration of particle-bound PAHs in the southwest and eastern region are lower than that in north and central region of China. The incremental lifetime cancer risk (ILCR) analysis demonstrates that ILCR in the soil and ambient air in China is below the acceptable cancer risk level of 10-6 recommended by US Environmental Protection Agency (EPA), which mean that there is a low potential PAHs carcinogenic risk for the soil and ambient air in China.
Collapse
Affiliation(s)
- Jun Han
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China; Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Yangshuo Liang
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Bo Zhao
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| | - Yu Wang
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Futang Xing
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Linbo Qin
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| |
Collapse
|
16
|
Hu E, He Z, Nan X, Yuan Z, Li X. Removal of phenanthrene and pyrene from contaminated sandy soil using hydrogen peroxide oxidation catalyzed by basic oxygen furnace slag. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9281-9292. [PMID: 30721429 DOI: 10.1007/s11356-019-04308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Soil contamination with polycyclic aromatic hydrocarbons (PAHs) is a serious problem in Northeast China, especially in the steel industrial area. The objective of this study was to evaluate the feasibility of using basic oxygen furnace (BOF) slag to activate the Fenton-like remediation of PAH-contaminated soil to achieve the objectives of "waste control by waste" and "resource recycling" in Chinese steel industry. The effects of BOF slag dosages, H2O2 concentrations, and exothermicity-driven evaporation were evaluated with respect to the removal efficiencies of phenanthrene (Phe) and pyrene (Pyr). Results indicated that PAH oxidation was proportional to the BOF slag dosages and was increased exponentially with H2O2 concentrations. Evaporation due to increasing temperature caused by exothermic reaction played an important role in total soil PAH losses. The sequential Fenton-like oxidation with a 3-times application of 15% H2O2 and the same BOF slag repeatedly used were able to remove 65.87% of Phe and 58.33% of Pyr, respectively. Soluble iron oxides containing in BOF slag were reduced, while amorphous iron oxide concentration remained stable during the repeated Fenton-like process. Column study mimics real field applications showing high removal efficiencies of Phe (36.05-83.20%) and Pyr (21.79-68.06%) in 30-cm depth of soil profile. The tests on soluble heavy metal concentrations after the reactions with high slag dosage or high H2O2 concentration confirmed that BOF slag would not cause heavy metal contamination. Consequently, BOF slag may provide an efficient way for enhancing the Fenton-like based remediation of heavily PAH-polluted soil with little risk on collateral heavy metal contamination. However, an external gas collection and purification equipment would be essential to eliminate the evaporated PAHs.
Collapse
Affiliation(s)
- Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Zan He
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Xiangli Nan
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Zaijian Yuan
- Guangdong Key Laboratory of Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Xiaojun Li
- Institute of Applied Ecology, Chinese Academy of Sciences, P.O. Box 417, No. 72 Wenhua Rd., Shenhe Dist, Shenyang, 110016, China.
| |
Collapse
|
17
|
Wang Q, Xu X, Cong X, Zeng Z, Xu L, Huo X. Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:191-210. [PMID: 30293161 DOI: 10.1007/s10653-018-0201-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 09/29/2018] [Indexed: 02/05/2023]
Abstract
Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene-environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment-gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma-work as risk factors; (2) the possible mechanisms involved in PAH-related asthma-through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma-enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people's vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public's concern on PAH control and develop strategies for individual asthma primary prevention.
Collapse
Affiliation(s)
- Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
18
|
Ping L, Luo Y. Phenanthrene adsorption on soils from the Yangtze River Delta region under different pH and temperature conditions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:267-274. [PMID: 30073447 DOI: 10.1007/s10653-018-0165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The phenanthrene (PHE) adsorption on soils from the Yangtze River Delta region under different pH and temperature conditions was studied in the laboratory. Results showed that the sorption of PHE on all soils was nonlinear and fitted to the Freundlich isotherm. The PHE adsorption on the soils is related to the content of organic carbons and the environmental conditions. There was a positive correlation (the correlation coefficient was 0.956) between the PHE adsorption and the soil organic carbon content. Adsorption on the soils at 15 °C ambient temperature was higher than at 25 °C, which was related to PHE solubility enthalpy. Adsorption on the soils in background solution at pH 5.0 was higher than in those at pH 6.2 and 7.5, which may be related to alteration of the hydrophobic character of humic substances. This study showed that intrinsic organic carbons influenced the adsorption of PHE, which was affected by environmental conditions, such as pH and temperature. Therefore, the characteristics of soil organic carbon should be considered first for implementing effective schemes for the remediation of contaminated soils and in the formulation of soil environmental quality standards.
Collapse
Affiliation(s)
- Lifeng Ping
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China.
- Soil and Environment Bioremediation Research Centre, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Yongming Luo
- Soil and Environment Bioremediation Research Centre, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
19
|
Concentration and Potential Ecological Risk of PAHs in Different Layers of Soil in the Petroleum-Contaminated Areas of the Loess Plateau, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081785. [PMID: 30127267 PMCID: PMC6121320 DOI: 10.3390/ijerph15081785] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
The three most representative areas of petroleum pollution on the Loess Plateau are the research subjects of this study. In this study, 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined by the QuEChERS method combined with gas chromatography-tandem mass spectrometry (GC-MS/MS). The total concentrations of ∑16PAHs in top layer soils (0–10 cm), middle layer soils (10–30 cm), and bottom layer soils (30–50 cm) ranged from 1010.67 to 18,068.80, 495.85 to 9868.56 and 213.16 to 12,552.53 μg/kg, with an average of 5502.44, 2296.94 and 2203.88 μg/kg, respectively. The 3-ring and 4-ring PAHs were the most prominent components in all soil samples. Meanwhile, the average value of ∑16PAHs decreased with the depth, from 5502.44 μg/kg (0–10 cm) to 2203.88 μg/kg (30–50 cm). The PAHs levels in the studied soils were heavily polluted (over 1000 μg/kg) according to the Soils Quality Guidelines and 95% of PAHs come from petroleum sources. Moreover, the total of PAHs in petroleum-contaminated soils was assigned a high ecological risk level. Toxic equivalency quantities (TEQs) indicated that PAHs in petroleum-contaminated soils presented relatively high toxicity.
Collapse
|
20
|
Chen Y, Zhang J, Zhang F, Liu X, Zhou M. Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:383-390. [PMID: 29579669 DOI: 10.1016/j.ecoenv.2018.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 05/27/2023]
Abstract
The concentration, composition, sources and incremental lifetime cancer risk of farmland soil polycyclic aromatic hydrocarbons (PAHs) of the Yinma River Basin were analyzed. In 2016, the total concentration of 16 PAHs ranged from 491.65 to 1007.73 ng/g in May, from 427.31 to 781.38 ng/g in August and from 580.40 to 999.40 ng/g in November, respectively. Levels of seven potentially carcinogenic PAHs generally accounted for 33-36.7% of total 16 PAHs in three seasons, and the PAHs contained two to six rings, mainly Fla, Pyr, and Chr. The correlation analysis suggested that the soil organic matter (SOM) was no correlation with PAHs except for August, and there were no significant relationship between the pH and total PAHs. Isomer ratios indicated that the soil PAHs in the farmland of the Yinma River Basin was determined to be the combustion of coal, biomass, and petroleum. The toxic equivalent (BaPeq) concentrations ranged from 15.2 to 133 ng BaPeq g-1 in three seasons. The 95th percentiles of incremental lifetime cancer risk (ILCR) due to human exposure to farmland soil PAHs of the Yinma River Basin was (1.36 × 10-6) in May, (1.00 × 10-6) in August, and (1.18 × 10-6) in November for children, (1.10 × 10-6) in May, (8.15 × 10-7) in August, and (9.58 × 10-7) in November for adolescence and (1.61 × 10-6) in May, (4.22 × 10-6) in August and (1.40 × 10-6) in November for adulthood. The result indicated a moderate carcinogenic risk and the risk of exposure to farmland soil PAHs was pervasive for residents. This investigation might provide useful information on human exposure to PAHs in soil of the Yinma River Basin, and is valuable for policy makers and scientists.
Collapse
Affiliation(s)
- Yanan Chen
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Jiquan Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China.
| | - Feng Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Xingpeng Liu
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| | - Mo Zhou
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
| |
Collapse
|