1
|
Shobier AH, Shabaka SH, El-Sayed AAM, Shreadah MA, Abdel Ghani SA. Assessment of persistent and emerging pollutants levels in marine bivalves in the Gulf of Suez, Egypt. MARINE POLLUTION BULLETIN 2024; 208:117000. [PMID: 39332337 DOI: 10.1016/j.marpolbul.2024.117000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Bivalves possess important ecological and economic values. They have been extensively used as bioindicators for both emerging and classical pollutants in the aquatic environment. This study investigates the levels of trace metals, polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs), alongside microplastic (MPs), in Tridacna maxima, Paphia textile, and Paratapes undulatus, collected from the Gulf of Suez. This work represents the first investigation of MPs in marine bivalves from the Gulf of Suez. MPs were detected in 72% of the specimens examined and four types of MPs were identified. The metal pollution index indicated that bivalves may have long-term toxic effects on human consumers. The results showed minimal hydrocarbon pollution. Diagnostic ratios indicated a combination of pyrolytic and petrogenic sources, with a notable influence from pyrolytic origins. The risk assessment reflected that the levels of certain trace metals, PAHs, and OCP contaminants could present a low risk to human health.
Collapse
Affiliation(s)
- Aida H Shobier
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Soha H Shabaka
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | | | | |
Collapse
|
2
|
Gandla V, Chiluka M, Gupta H, Sinha SN, Chakraborty P. Sediment-water partitioning and risk assessment of organochlorine pesticides along the urban, peri-urban and rural transects of Krishna River Basin, Peninsular India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162360. [PMID: 36822433 DOI: 10.1016/j.scitotenv.2023.162360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides (OCPs) were widely used in the past for pest control in agricultural lands and vector control programs in India. Due to their persistence and toxic impacts, we have quantified twenty OCPs in surface water, groundwater, and surface sediment samples along the Krishna River Basin (KRB), flowing through Peninsular India. Samples were collected along the urban, peri-urban, and rural transects of the KRB to understand the relation between the occurrence of pesticidal organochlorine pollutants based on the land use and land cover (LULC) and asses potential risk. Diagnostic ratios revealed ongoing Lindane usage in rural and peri-urban transects. On the contrary, the urban transect of the Musi River (MR) showed fresh inputs of technical HCH. The ratios of (p,p'-DDE+ p,p'-DDD)/ΣDDT >0.5 and α/β-Endosulfan < 2.33 for most of the sites across the three transects for surface water, groundwater, and sediment indicate past DDT and Endosulfan usage across KRB. Excluding p,p'-DDE, and heptachlor in most of the sites, the logKOC' was higher than logKOC for other OCPs in the urban transect. However, for all the OCPs, the logKOC' was lower than logKOC in the peri-urban and rural transects of KRB thereby indicating that riverine sediment is acting as a sink for OCPs. The Krishna River annually transport about 0.24 tons HCH, 0.11 tons of DDT and 0.1 tons of Endosulfan. Despite having low water discharge, the compound-specific fluxes of the Wyra river are higher than the other two tributaries. Ecotoxicological risk assessment based on the Hazard Quotient suggested DDT pose higher risks to scud (zooplankton) and dinoflagellate and diatom (phytoplankton) whereas Endosulfan poses a threat to Bluegill (fish).
Collapse
Affiliation(s)
| | - Mounika Chiluka
- Department of Applied Geochemistry, Osmania University, Hyderabad, India
| | - Harish Gupta
- Department of Civil Engineering, Osmania University, Hyderabad, India
| | | | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur, India.
| |
Collapse
|
3
|
Mohasin P, Chakraborty P, Anand N, Ray S. Risk assessment of persistent pesticide pollution: Development of an indicator integrating site-specific characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160555. [PMID: 36460110 DOI: 10.1016/j.scitotenv.2022.160555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Detection of high pesticide concentrations in sediments and water often leads to prioritizing a site as being 'at risk'. However, the risk does not depend on pesticide concentration alone, but on other site-specific characteristics also. We developed an indicator that identifies the 'Level of Concern' by integrating five such characteristics: (i) pesticide concentrations in surface and groundwater causing risks to ecological health (ii) impacts on human health, (iii) water scarcity, (iv) agricultural production, and (v) biodiversity richness. We applied this framework in an agricultural region of the Lower Ganges Basin in West Bengal, India. We measured concentrations of selected organochlorine pesticides (OCPs) in surface and groundwater within an 8 km2 area in 2019. Of 20 banned and restricted OCPs, 11 were detected as causing high risk to ecological health and 10 at concentrations above the Accepted Carcinogenic Risk Limit (ACRL) for humans. In the pre-monsoon, the mean concentrations of ΣOCPs in groundwater and surface water were 126.9 ng/L and 104 ng/L, in the monsoon they were 144.7 ng/L and 138 ng/L, and in the post-monsoon 122.1 ng/L and 147 ng/L respectively. In groundwater, no significant seasonal difference was observed in most pesticides. In the surface water, 7 pesticides were significantly higher in the monsoon and post-monsoon, which may be attributed to increased runoff as well as post monsoon application of OCPs. In September 2022 we again measured OCP concentrations in surface water and sediment. The mean concentration of 14 of the 20 measured OCPs were found to be significantly lower in the post-pandemic period compared to the pre-pandemic time. These lower pesticide concentrations may indicate a reduced use of OCPs in agricultural practices during the pandemic. This area was identified as being at the highest Level of Concern, even though the OCP concentrations alone conformed to general guidelines.
Collapse
Affiliation(s)
- Piya Mohasin
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India.
| | - Niharika Anand
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sujata Ray
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
4
|
Adeyinka GC, Afolabi F, Bakare BF. Evaluating the fate and potential health risks of organochlorine pesticides and triclosan in soil, sediment, and water from Asa Dam River, Ilorin Kwara State, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:189. [PMID: 36507963 DOI: 10.1007/s10661-022-10783-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The quest for safe water due to exponential population growth and climate change has stressed the existing available water source. It is crucial to establish the present pollution level of the Asa River and the health risk it may pose to the people. Samples were collected along the Asa River, Ilorin, Kwara State, Nigeria, and treated using standard methods as stipulated by United States Environmental Protection Agency. The treated samples were analyzed and quantified for dieldrin, endrin, dichlorodiphenyltrichloroethane metabolites, mirex, hexachlorocyclohexane, hexachlorobenzene, and triclosan using the gas chromatography-mass spectrometry. The result showed that the levels of organochlorine pesticides (OCPs) ranged from 0.0045-0.947 μg/kg, 0.0036-0.093 μg/kg, and 0.001-0.007 μg/L in sediment, soil, and water samples, respectively. While the mean concentration of triclosan is 3.78 μg/kg, 2.995 μg/kg, and 0.064 μg/L in sediment, soil, and water samples, respectively. The levels of OCPs were lower than the limits in drinking water as set by World Health Organization and European Union. Health risk assessment for both children and adults was evaluated using non-carcinogenic and carcinogenic risk with the hazard quotient (HQ) and was found to be greater than unity (> 1) in children for the targeted OCPs. Associated cancer risk for OCPs ranged from low cancer risk to moderate risk for humans. The adverse ecological effects of OCPs showed to be very rare to occur and frequent effects may not likely occur except for HCH.
Collapse
Affiliation(s)
- Gbadebo Clement Adeyinka
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban, 4031, South Africa.
| | - Fatai Afolabi
- Department of Science Laboratory Technology, Osun State Polytechnic, Iree, Nigeria
| | - Babatunde Femi Bakare
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, Durban, 4031, South Africa
| |
Collapse
|
5
|
Vasseghian Y, Hosseinzadeh S, Khataee A, Dragoi EN. The concentration of persistent organic pollutants in water resources: A global systematic review, meta-analysis and probabilistic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149000. [PMID: 34273825 DOI: 10.1016/j.scitotenv.2021.149000] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 05/27/2023]
Abstract
The persistent organic pollutants (POPs) are environmentally stable and highly toxic chemicals that accumulate in living adipose tissue and have a very destructive effect on aquatic ecosystems. To analyze the evolution of the concentration and prevalence of POPs such as α-HCH, β-HCH, γ-HCH, ∑-HCH, Heptachlor, Aldrin, p,p'-DDE, p,p'-DDT, ∑-DDT, and ∑-OCP in water resources, a search between January 01, 1970, to February 10, 2020, was followed using a systematic review and meta-analysis prevalence. Among the 2306 explored articles in the reconnaissance step, 311 articles with 5315 exemplars, 56 countries, and 4 types of water were included in the meta-analysis study. Among all studied POPs, the concentration of p,p'-DDT in water resources was the highest, especially in drinking water resources. The overall rank order based on the concentration and prevalence of POPs were surface water > drinking water > seawater > groundwater. To identify POPs-contaminated areas, the distance from the mean relative to their distribution was considered. The most to the least polluted areas included: South Africa, India, Turkey, Pakistan, Canada, Hong Kong, and China. The highest carcinogenic risk was observed for β-HCH (Turkey and China), followed by α-HCH (Mexico). The highest non-carcinogenic risk was identified for Aldrin (all analyzed countries), followed by Dieldrin (Turkey) and γ-HCH (Mexico). The Monte Carlo analysis (under the assumption that γ-HCH has a normal distribution), the mean obtained was 8.22E-07 for children and 3.83E-07 for adults. This is in accordance with the standard risk assessment approach. In terms of percentiles, the Monte-Carlo approach indicates that 75% of child population is under the 1.07E-06 risk and 95% of adults under 7.35E-06.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Sevda Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania.
| |
Collapse
|
6
|
Berni I, Menouni A, El Ghazi I, Godderis L, Duca RC, Jaafari SE. Health and ecological risk assessment based on pesticide monitoring in Saïss plain (Morocco) groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116638. [PMID: 33618112 DOI: 10.1016/j.envpol.2021.116638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
In many countries, including Morocco, groundwater contamination with pesticides such as globally banned organochlorides (e.g., dichlorodiphenyltrichloroethane (DDT)) and some accredited organophosphates and pyrethroids poses ecological and human health risks. To assess these risks, we herein monitored pesticides in Saïss plain groundwater (Morocco) during the summer of 2017 and the winter of 2018 using polar organic chemical integrative samplers. The two types of passive samplers were deployed in 22 traditional wells for 14-20 days and subjected to solid-phase extraction. The extracts were analyzed by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry using a multiresidue method, and 27 pesticides were detected in total. In the summer campaign, 22 pesticides with individual concentrations ranging from <limit of quantitation (LOQ) to 243.1 ng L-1 were identified, whereas 17 compounds with concentrations ranging from <LOQ to 53.8 ng L-1 were detected in the winter campaign. In the summer period, the maximum individual concentrations of chlorothalonil, DDT, and α-hexachlorocyclohexane (α-HCH) equaled 111.7, 36.1, and 22.3 ng L-1, respectively, with the respective values for the winter period equaling 18.14, 16.62, and 22.2 ng L-1. Health risk assessment indicated that the carcinogenic α-HCH, β-HCH, DDT, and dichlorodiphenyldichloroethylene present in groundwater may also contaminate drinking water and thus pose a threat to human health, particularly to that of infants and children. Further analysis revealed that the Saïss aquifer presents a high ecological risk. Thus, the monitoring of pesticides in groundwater by passive sampling was effective and could be combined with human health and ecological risk assessment to develop ways of reducing human and environmental exposure to pesticides.
Collapse
Affiliation(s)
- Imane Berni
- Cluster of Competency "Health and Environment", Moulay Ismail University, Meknes, Morocco.
| | - Aziza Menouni
- Cluster of Competency "Health and Environment", Moulay Ismail University, Meknes, Morocco; Environment and Health Unit, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ibrahim El Ghazi
- Cluster of Competency "Health and Environment", Moulay Ismail University, Meknes, Morocco
| | - Lode Godderis
- Environment and Health Unit, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Radu-Corneliu Duca
- Environment and Health Unit, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium; Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg
| | - Samir El Jaafari
- Cluster of Competency "Health and Environment", Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
7
|
Dörter M, Sağırlı E, Karakaş D, Yenisoy-Karakaş S. Investigation of Washing Mechanisms in Volume-Based Fractional Rain Samples in High Altitude Semirural Site by Determining Polycyclic Aromatic Hydrocarbons, Elemental Carbon, and Organic Carbon. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1545134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Melike Dörter
- Department of Chemistry, Faculty of Arts and Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Eda Sağırlı
- Department of Chemistry, Faculty of Arts and Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Duran Karakaş
- Environmental Engineering Department, Faculty of Engineering and Architecture, Abant Izzet Baysal University, Bolu, Turkey
| | - Serpil Yenisoy-Karakaş
- Department of Chemistry, Faculty of Arts and Science, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
8
|
Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. A review on environmental monitoring of water organic pollutants identified by EU guidelines. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:146-162. [PMID: 29674092 DOI: 10.1016/j.jhazmat.2017.09.058] [Citation(s) in RCA: 385] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 09/30/2017] [Indexed: 05/12/2023]
Abstract
The contamination of fresh water is a global concern. The huge impact of natural and anthropogenic organic substances that are constantly released into the environment, demands a better knowledge of the chemical status of Earth's surface water. Water quality monitoring studies have been performed targeting different substances and/or classes of substances, in different regions of the world, using different types of sampling strategies and campaigns. This review article aims to gather the available dispersed information regarding the occurrence of priority substances (PSs) and contaminants of emerging concern (CECs) that must be monitored in Europe in surface water, according to the European Union Directive 2013/39/EU and the Watch List of Decision 2015/495/EU, respectively. Other specific organic pollutants not considered in these EU documents as substances of high concern, but with reported elevated frequency of detection at high concentrations, are also discussed. The search comprised worldwide publications from 2012, considering at least one of the following criteria: 4 sampling campaigns per year, wet and dry seasons, temporal and/or spatial monitoring of surface (river, estuarine, lake and/or coastal waters) and ground waters. The highest concentrations were found for: (i) the PSs atrazine, alachlor, trifluralin, heptachlor, hexachlorocyclohexane, polycyclic aromatic hydrocarbons and di(2-ethylhexyl)phthalate; (ii) the CECs azithromycin, clarithromycin, erythromycin, diclofenac, 17α-ethinylestradiol, imidacloprid and 2-ethylhexyl 4-methoxycinnamate; and (iii) other unregulated organic compounds (caffeine, naproxen, metolachlor, estriol, dimethoate, terbuthylazine, acetaminophen, ibuprofen, trimethoprim, ciprofloxacin, ketoprofen, atenolol, Bisphenol A, metoprolol, carbofuran, malathion, sulfamethoxazole, carbamazepine and ofloxacin). Most frequent substances as well as those found at highest concentrations in different seasons and regions, together with available risk assessment data, may be useful to identify possible future PS candidates.
Collapse
Affiliation(s)
- João C G Sousa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana R Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Marta O Barbosa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Zeng H, Fu X, Liang Y, Qin L, Mo L. Risk assessment of an organochlorine pesticide mixture in the surface waters of Qingshitan Reservoir in Southwest China. RSC Adv 2018; 8:17797-17805. [PMID: 35542086 PMCID: PMC9080468 DOI: 10.1039/c8ra01881b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/07/2018] [Indexed: 11/21/2022] Open
Abstract
Risk assessment of single pollutants has been extensively studied. However, the co-exposure of pollutants in a real environment may pose a greater risk than single chemicals. In this study, concentration addition-based risk quotients were applied to the risk assessment of the 15 organochlorine pesticides (OCPs) mixtures (α-hexachlorocyclohexane (HCH), β-HCH, γ-HCH, δ-HCH, heptachlor, aldrin, heptachlor epoxide, chlordane, α-endosulfan, p,p′-dichloro-diphenyl-dichloroethylene, endrin, β-endosulfan, p,p′-dichloro-diphenyl-dichloroethane, p,p′-dichloro-diphenyl-trichloroethane, and methoxychlor) detected in the surface water (reservoirs, ponds, and streams) of Qingshitan Reservoir in Southwest China from 2014 to 2016 by summing up the toxic units (RQSTU) of the toxicity data from the individual chemicals. The RQSTU of the OCPs mixture exceeded 1 in 45.23% of the 283 surface water samples based on acute data and an assessment factor of 100, indicating a potential risk for the aquatic environment (fish). Methoxychlor and γ-HCH contributed the most toxicities in the pesticide mixtures toward Daphnia and fish and provided at least 50% of the mixture toxicity in all samples with RQSTU larger than 1. The most sensitive organism to realistic OCPs mixtures in the surface waters of Qingshitan Reservoir was fish, followed by Daphnia and algae. The values of the maximum cumulative ratio for all samples indicated that the risk assessment based on single chemicals underestimated the pesticide mixture toxicities, which shows that special consideration should be made for the ecological risk of pesticide mixtures in the aquatic environment. Risk assessment of single pollutants has been extensively studied.![]()
Collapse
Affiliation(s)
- Honghu Zeng
- College of Environmental Science and Engineering
- Guilin University of Technology
- Guilin 541004
- China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology
| | - Xin Fu
- College of Environmental Science and Engineering
- Guilin University of Technology
- Guilin 541004
- China
| | - Yanpeng Liang
- College of Environmental Science and Engineering
- Guilin University of Technology
- Guilin 541004
- China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology
| | - Litang Qin
- College of Environmental Science and Engineering
- Guilin University of Technology
- Guilin 541004
- China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology
| | - Lingyun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology
- Guilin University of Technology
- Guilin 541004
- China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area
| |
Collapse
|
10
|
Moeder M, Carranza-Diaz O, López-Angulo G, Vega-Aviña R, Chávez-Durán FA, Jomaa S, Winkler U, Schrader S, Reemtsma T, Delgado-Vargas F. Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: A case study in Sinaloa (Mexico). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:1106-1115. [PMID: 28482458 DOI: 10.1016/j.scitotenv.2017.04.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
This case study presents the fate of selected organic, priority and emerging pollutants along a 3.6km sector of a vegetated, agricultural ditch situated in Sinaloa (Mexico). The ditch receives runoff of agriculture and domestic wastewater from an adjacent community. During 2013, the occurrence of 38 organic pollutants (pesticides, polycyclic aromatic hydrocarbons (PAHs), artificial sweeteners and pharmaceutical residues) was monitored monthly at five selected points in the ditch water. Additionally, sediment and Typha domingensis (cattail) plants were collected in March, June, and September 2013 and investigated concerning their ability to absorb and accumulate pollutants. The concentrations of the selected pollutants in the ditch water ranged from sub ngL-1 (metolachlor, atrazine) to μgL-1 (metalaxyl, acesulfame). The metabolites endosulfan sulfate and endosulfan lactone exceeded mostly the concentration of the precursor insecticide endosulfan. Sorption on sediments was of minor relevance for accumulation of pollutants in the ditch system. Concentrations in the sediments varied seasonally and ranged from 0.2 to 12,432μgkg-1 dry weight (d.w.). T. domingensis accumulated ten of the studied pollutants mainly in roots (5-1065μgkg-1 d.w.). Overall, the monitoring results of the ditch compartments indicated that downstream the concentrations of the target pollutants decreased. Under no-flow conditions in the hot season, the ditch revealed a noticeable potential to mitigate pollutants. Among the high microbial activity in the water and the subtropical climate conditions, the ditch vegetation contributed to natural attenuation of the selected pollutants.
Collapse
Affiliation(s)
- Monika Moeder
- UFZ-Helmholtz Center for Environmental Research, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Otoniel Carranza-Diaz
- Marine Sciences Faculty, Autonomous University of Sinaloa, Paseo Claussen S/N, Col. Centro, CP 82000 Mazatlán, Sinaloa, Mexico
| | - Gabriela López-Angulo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, CP 80010 Culiacán, Sinaloa, Mexico
| | - Rito Vega-Aviña
- Facultad de Agronomía, UAS, Carretera Culiacán-El Dorado km 17.5, CP 80000 Culiacán, Sinaloa, Mexico
| | - Francisco Armando Chávez-Durán
- Comisión Nacional del Agua, Organismo de Cuenca Pacífico Norte, Dirección de Infraestructura Hidroagrícola, Ingeniería de Riego y Drenaje Distrito de Riego 010 Culiacán-Humaya, Mexico
| | - Seifeddine Jomaa
- UFZ-Helmholtz Center for Environmental Research, Department of Aquatic Ecosystem Analysis and Management, Brueckstrasse 3a, 39114 Magdeburg, Germany
| | - Ursula Winkler
- UFZ-Helmholtz Center for Environmental Research, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Steffi Schrader
- UFZ-Helmholtz Center for Environmental Research, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- UFZ-Helmholtz Center for Environmental Research, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Francisco Delgado-Vargas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, CP 80010 Culiacán, Sinaloa, Mexico
| |
Collapse
|
11
|
Ge J, Cui K, Yan H, Li Y, Chai Y, Liu X, Cheng J, Yu X. Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:479-485. [PMID: 28454637 DOI: 10.1016/j.envpol.2017.04.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Uptake and translocation of imidacloprid (IMI), thiamethoxam (THX) and difenoconazole (DFZ) in rice plants (Oryza sativa L.) were investigated with a soil-treated experiment at two application rates: field rate (FR) and 10*FR under laboratory conditions. The dissipation of the three compounds in soil followed the first-order kinetics and DFZ showed greater half-lives than IMI and THX. Detection of the three compounds in rice tissues indicated that rice plants could take up and accumulate these pesticides. The concentrations of IMI and THX detected in leaves (IMI, 10.0 and 410 mg/kg dw; THX, 23.0 and 265 mg/kg dw) were much greater than those in roots (IMI, 1.37 and 69.3 mg/kg dw; THX, 3.19 and 30.6 mg/kg dw), which differed from DFZ. The DFZ concentrations in roots (15.6 and 79.1 mg/kg dw) were much greater than those in leaves (0.23 and 3.4 mg/kg dw). The bioconcentration factor (BCF), representing the capability of rice to accumulate contaminants from soil into plant tissues, ranged from 1.9 to 224.3 for IMI, from 2.0 to 72.3 for THX, and from 0.4 to 3.2 for DFZ at different treated concentrations. Much higher BCFs were found for IMI and THX at 10*FR treatment than those at FR treatment, however, the BCFs of DFZ at both treatments were similar. The translocation factors (TFs), evaluating the capability of rice to translocate contaminants from the roots to the aboveground parts, ranged from 0.02 to 0.2 for stems and from 0.02 to 9.0 for leaves. The tested compounds were poorly translocated from roots to stems, with a TF below 1. However, IMI and THX were well translocated from roots to leaves. Clothianidin (CLO), the main metabolite of THX, was detected at the concentrations from 0.02 to 0.5 mg kg-1 in soil and from 0.07 to 7.0 mg kg-1 in plants. Concentrations of CLO in leaves were almost 14 times greater than those in roots at 10*FR treatment.
Collapse
Affiliation(s)
- Jing Ge
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Kai Cui
- Department of Biotechnology, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Huangqian Yan
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China
| | - Yong Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yangyang Chai
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xianjin Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China
| | - Jiangfeng Cheng
- Department of Biotechnology, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiangyang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014, China; Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
12
|
Levels and Distribution of Pollutants in the Waters of an Aquatic Ecosystem in Northern Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050456. [PMID: 28441345 PMCID: PMC5451907 DOI: 10.3390/ijerph14050456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/08/2017] [Accepted: 04/19/2017] [Indexed: 12/02/2022]
Abstract
The availability of good quality water resources is essential to ensure healthy crops and livestock. The objective of this study was to evaluate the level of pollution in Bustillos Lagoon in northern Mexico. Physical-chemical parameters like sodium, chloride, sulfate, electrical conductivity, nitrates, and the pesticide dichlorodiphenyltrichloroethane (DDT) were analyzed to determine the water quality available in the lagoon. Although DDT has been banned in several countries, it is still used for agricultural purposes in Mexico and its presence in this area had not been analyzed previously. Bustillos Lagoon was divided into three zones for the evaluation: (1) industrial; (2) communal lands; and (3) agricultural. The highest concentrations of sodium (2360 mg/L) and SAR (41 meq/L) reported in the industrial zone are values exceeding the United Nations Food and Agricultural Organization (FAO) irrigation water quality guidelines. DDT and its metabolites were detected in all of the 21 sites analyzed, in the agricultural zone ∑DDTs = 2804 ng/mL, this level is much higher than those reported for other water bodies in Mexico and around the world where DDT has been used heavily. The water in the communal zone is the least contaminated, but can only be recommended for irrigation of plants with high stress tolerance and not for crops.
Collapse
|
13
|
Montuori P, Aurino S, Garzonio F, Triassi M. Polychlorinated biphenyls and organochlorine pesticides in Tiber River and Estuary: Occurrence, distribution and ecological risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1001-1016. [PMID: 27450954 DOI: 10.1016/j.scitotenv.2016.07.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
The polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) pollution in the Tiber River and its environmental impact on the Tyrrhenian Sea (Central Mediterranean Sea) were estimated. 32 PCBs and 17 OCPs (aldrin, α-BHC, β-BHC, δ-BHC, lindane, p,p'-DDD, p,p'-DDE, p,p'-DDT, dieldrin, endosulfan I, endosulfan II, endosulfan sulfate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide, methoxychlor) were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediment samples. Total concentrations of PCBs ranged from 0.54 to 74.75ngL(-1) in water (sum of DP and SPM) and from 3.73 to 79.30ngg(-1) dry weigh in sediment samples; while the concentrations of total OCPs collected in water (sum of DP and SPM) ranged from 0.07 to 7.04ngL(-1) and from 0.66 to 10.02ngg(-1) dry weigh in sediment samples. Contaminant discharges into the sea were calculated in about 227.08kgyear(-1) for PCBs and 24.91kgyear(-1) for OCPs, showing that this river should account as one of the main contribution sources of PCBs and OCPs to the Tyrrhenian Sea. The ∑TEQPCB from the sediment samples ranged from 0.0006 to 0.37ngg(-1) with an average level of 0.13ngg(-1). Based on Sediments Quality Guidelines, biological adverse effects on aquatic ecosystem were rare to occasional for PCB and OCP levels in Tiber water system.
Collapse
Affiliation(s)
- Paolo Montuori
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy.
| | - Sara Aurino
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Fatima Garzonio
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini n° 5, 80131 Naples, Italy
| |
Collapse
|
14
|
Cheng Z, Dong F, Xu J, Liu X, Wu X, Chen Z, Pan X, Zheng Y. Atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for simultaneous determination of fifteen organochlorine pesticides in soil and water. J Chromatogr A 2016; 1435:115-24. [PMID: 26830635 DOI: 10.1016/j.chroma.2016.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/24/2015] [Accepted: 01/11/2016] [Indexed: 02/08/2023]
Abstract
In this study, the application of atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry (APGC-QTOF-MS) has been investigated for simultaneous determination of fifteen organochlorine pesticides in soil and water. Soft ionization of atmospheric pressure gas chromatography was evaluated by comparing with traditional more energetic electron impact ionization (EI). APGC-QTOF-MS showed a sensitivity enhancement by approximately 7-305 times. The QuEChERs (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was used to pretreat the soil samples and solid phase extraction (SPE) cleanup was used for water samples. Precision, accuracy and stability experiments were undertaken to evaluate the feasibility of the method. The results showed that the mean recoveries for all the pesticides from the soil samples were 70.3-118.9% with 0.4-18.3% intra-day relative standard deviations (RSD) and 1.0-15.6% inter-day RSD at 10, 50 and 500 μg/L levels, while the mean recoveries of water samples were 70.0-118.0% with 1.1-17.8% intra-day RSD and 0.5-12.2% inter-day RSD at 0.1, 0.5 and 1.0 μg/L levels. Excellent linearity (0.9931 ≦ r(2)≤ 0.9999) was obtained for each pesticides in the soil and water matrix calibration curves within the range of 0.01-1.0mg/L. The limits of detection (LOD) for each of the 15 pesticides was less than 3.00 μg/L, while the limit of quantification (LOQ) was less than 9.99 μg/L in soil and water. Furthermore, the developed method was successfully applied to monitor the targeted pesticides in real soil and water samples.
Collapse
Affiliation(s)
- Zhipeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Zenglong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| |
Collapse
|