1
|
Łozowicka B, Kaczyński P, Iwaniuk P, Rutkowska E, Socha K, Orywal K, Farhan JA, Perkowski M. Nutritional compounds and risk assessment of mycotoxins in ecological and conventional nuts. Food Chem 2024; 458:140222. [PMID: 39002506 DOI: 10.1016/j.foodchem.2024.140222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
This comprehensive study aimed to determine the level of nutritional compounds (20 amino acids, 11 phenolic acids, and 8 vitamins) and hazard compounds (14 mycotoxins) in ten types of conventional and ecological nuts from 25 countries. Moreover, chronic and acute toxicological risk assessment of mycotoxins was performed. Examined constituents were determined using LC-MS/MS. Ecological pine nuts showed the highest level of amino acids (233.87 g kg-1) compared to conventional (207 g kg-1), pecans-phenolic acids (816.6 mg kg-1 in ecological and 761 mg kg-1 in conventional), while pistachios-vitamins (3471.4 mg kg-1 in ecological and 3098.4 mg kg-1 in conventional). Increased concentration of mycotoxins was determined in conventional peanuts (54 μg kg-1) and walnuts (49.9 μg kg-1). Children were the most exposed population to acute intoxication with HT-2 toxin in conventional pistachios (20.66% ARfD). The results confirmed the nutritional importance of ecological nuts and emphasized the need for continuous screening of mycotoxins.
Collapse
Affiliation(s)
- Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland.
| | - Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland.
| | - Ewa Rutkowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland
| | - Katarzyna Socha
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Bromatology, Mickiewicza 2D St., 15-222 Białystok, Poland
| | - Karolina Orywal
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Biochemical Diagnostics, Waszyngtona 15A St., 15-269 Białystok, Poland
| | - Jakub Ali Farhan
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213 Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213 Białystok, Poland
| |
Collapse
|
2
|
Kaczyński P, Iwaniuk P, Jankowska M, Orywal K, Socha K, Perkowski M, Farhan JA, Łozowicka B. Pesticide residues in common and herbal teas combined with risk assessment and transfer to the infusion. CHEMOSPHERE 2024; 367:143550. [PMID: 39426745 DOI: 10.1016/j.chemosphere.2024.143550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The use of pesticides is permitted in tea cultivation, but many of them are withdrawn in Europe. The aim of this study was a comprehensive assessment of pesticide occurrence in common teas (black, green, red, white, and black flavored) and herbal teas (lemon balm and mint) and their transfer to the infusion. Among 603 pesticides, 24 were detected, of which 9 were withdrawn in Europe. Of the 64 tea samples, 47% had pesticide residues and 2% exceeded the European Maximum Residue Level (EU MRL; 572% for linuron/mint). The highest mean concentrations of the most common pesticides were 336 ng g-1 (quizalofop-P-ethyl/mint), 108.4 ng g-1 (MCPA/lemon balm), and 92.4 ng g-1 (glyphosate/red tea). A short time of brewing (5 min) had a higher transfer factor (TF) of most pesticides to the infusion (TF = 0.85/thiacloprid), compared to 30 min brewing (TF = 0.75/thiacloprid). Moreover, the physicochemical properties of detected pesticides, mainly density and melting temperature had a crucial impact on their transfer to the infusion. Acute risk was the highest for linuron/mint/children (17% of Acute Reference Dose; ARfD). Despite the withdrawal of some pesticides in the EU, they are still detected in tea samples. The results are pivotal for human health and highlight the need for further legislative action for tea.
Collapse
Affiliation(s)
- Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| | - Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland.
| | - Magdalena Jankowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| | - Karolina Orywal
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Biochemical Diagnostics, Waszyngtona 15A St., 15-269, Białystok, Poland
| | - Katarzyna Socha
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Bromatology, Mickiewicza 2D St., 15-222, Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213, Białystok, Poland
| | - Jakub Ali Farhan
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213, Białystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195, Białystok, Poland
| |
Collapse
|
3
|
Bhuiya A, Yasmin S, Shaikh MAA, Mustafa MG, Kabir MH. Method development of multi pesticide residue analysis in country beans collected from Dhaka, Bangladesh, and their dietary risk assessment. Food Chem 2024; 445:138741. [PMID: 38364498 DOI: 10.1016/j.foodchem.2024.138741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
The aim of the study was to develop a modified QuEChERS method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of five multi-class pesticides in country beans collected from Dhaka, Bangladesh. Pesticides were extracted using ACN, and to minimize the co-extraction matrix, optimized d-SPE cleanup was done using sorbents (GCB, PSA, and C18). In the calibration range, the method showed excellent linearity with a correlation coefficient of R2 ≥ 0.9990 both in solvent- and matrix-matched calibration. For the selected pesticides, average recoveries (at four spiking levels (n = 5) of 10, 20, 100, and 200 µg/kg) of 70-100 % were achieved with relative standard deviations (RSDs) ≤ 9.5 %. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.3333 to 1.3333 μg/kg and 1.0 to 4.0 μg/kg, respectively. The dietary risk assessment, in terms of hazard quotient (HQ), was calculated to assess consumers' health risks.
Collapse
Affiliation(s)
- Ananya Bhuiya
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh; Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Sabina Yasmin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Md Aftab Ali Shaikh
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Golam Mustafa
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Humayun Kabir
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh.
| |
Collapse
|
4
|
Boushell SC, Hu M. Postinfection Application of Fenhexamid at Lower Doses in Conjunction with Captan Slowed Fungicide Resistance Selection in Botrytis cinerea on Detached Grape Berries. PHYTOPATHOLOGY 2024; 114:368-377. [PMID: 37606323 DOI: 10.1094/phyto-04-23-0141-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fungicide resistance is a limiting factor in sustainable crop production. General resistance management strategies such as rotation and mixtures of fungicides with different modes of action have been proven to be effective in many studies, but guidance on fungicide dose or application timing for resistance management remains unclear or debatable. In this study, Botrytis cinerea and the high-risk fungicide fenhexamid were used to determine the effects of fungicide dose, mixing partner, and application timing on resistance selection across varied frequencies of resistance via detached fruit assays. The results were largely consistent with the recent modeling studies that favored the use of the lowest effective fungicide dose for improved resistance management. In addition, even 10% resistant B. cinerea in the population led to about a 40% reduction of fenhexamid efficacy. Overall, our findings show that application of doses less than the fungicide label dose, mixture with the low-risk fungicide captan, and application postinfection seem to be the most effective management strategies in our controlled experimental settings. This somewhat contradicts the previous assumption that preventative sprays help resistance management.
Collapse
Affiliation(s)
- Stephen C Boushell
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| |
Collapse
|
5
|
Książek-Trela P, Bielak E, Węzka D, Szpyrka E. Effect of Three Commercial Formulations Containing Effective Microorganisms (EM) on Diflufenican and Flurochloridone Degradation in Soil. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144541. [PMID: 35889414 PMCID: PMC9319521 DOI: 10.3390/molecules27144541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine the influence of effective microorganisms (EM) present in biological formulations improving soil quality on degradation of two herbicides, diflufenican and flurochloridone. Three commercially available formulations containing EM were used: a formulation containing Bifidobacterium, Lactobacillus, Lactococcus, Streptococcus, Bacillus, and Rhodopseudomonas bacteria and the yeast Saccharomyces cerevisiae; a formulation containing Streptomyces, Pseudomonas, Bacillus, Rhodococcus, Cellulomonas, Arthrobacter, Paenibacillusa, and Pseudonocardia bacteria; and a formulation containing eight strains of Bacillus bacteria, B. megaterium, B. amyloliquefaciens, B. pumilus, B. licheniformis, B. coagulans, B. laterosporus, B. mucilaginosus, and B. polymyxa. It was demonstrated that those formulations influenced degradation of herbicides. All studied formulations containing EM reduced the diflufenican degradation level, from 35.5% to 38%, due to an increased acidity of the soil environment and increased durability of that substance at lower pH levels. In the case of flurochloridone, all studied EM formulations increased degradation of that active substance by 19.3% to 31.2% at the most. For control samples, equations describing kinetics of diflufenican and flurochloridone elimination were plotted, and a time of the half-life of these substances in laboratory conditions was calculated, amounting to 25.7 for diflufenican and 22.4 for flurochloridone.
Collapse
|
6
|
Iwaniuk P, Lozowicka B. Biochemical compounds and stress markers in lettuce upon exposure to pathogenic Botrytis cinerea and fungicides inhibiting oxidative phosphorylation. PLANTA 2022; 255:61. [PMID: 35141769 PMCID: PMC8828598 DOI: 10.1007/s00425-022-03838-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 05/02/2023]
Abstract
MAIN CONCLUSION Botrytis cinerea and fungicides interacted and influenced selected biochemical compounds. DPPH and glutathione are the first line of defence against biotic/abiotic stress. Plant metabolites are correlated with fungicides level during dissipation. Botrytis cinerea is an etiological agent of gray mould in leafy vegetables and is combated by fungicides. Fluazinam and azoxystrobin are commonly used fungicides, which inhibit oxidative phosphorylation in fungi. In this study, lettuce was (i) inoculated with B. cinerea; (ii) sprayed with azoxystrobin or fluazinam; (iii) inoculated with B. cinerea and sprayed with fungicides. This investigation confirmed that B. cinerea and fungicides affected lettuce's biochemistry and stress status. B. cinerea influenced the behaviour of fungicides reflected by shortened dissipation of azoxystrobin compared to non-inoculated plants, while prolonged degradation of fluazinam. Stress caused by B. cinerea combined with fungicides reduced level of chlorophylls (53.46%) and carotenoids (75.42%), whereas increased phenolic compounds (81%), ascorbate concentrations (32.4%), and catalase activity (116.1%). Abiotic stress caused by fungicides contributed most to the induction of carotenoids (107.68 µg g-1 on dissipation day 3-1). Diphenyl picrylhydrazyl (DPPH) radical scavenging activity and glutathione concentration peaked from the first hour of fungicides dissipation. For the first time correlation between the status of plant metabolites and fungicides during their dissipation was observed. These results indicate that non-enzymatic antioxidants could be the first-line compounds against stress factors, whereas ascorbate and antioxidant enzymes tend to mitigate stress only secondarily. The findings of this study help better understand plant biochemistry under biotic/abiotic stress conditions.
Collapse
Affiliation(s)
- Piotr Iwaniuk
- Institute of Plant Protection-National Research Institute, Chelmonskiego 22 Street, 15-195, Bialystok, Poland.
| | - Bozena Lozowicka
- Institute of Plant Protection-National Research Institute, Chelmonskiego 22 Street, 15-195, Bialystok, Poland
| |
Collapse
|
7
|
Jankowska M, Kaczyński P, Łozowicka B. Dissipation kinetics and processing behavior of boscalid and pyraclostrobin in greenhouse dill plant (Anethum graveolens L.) and soil. PEST MANAGEMENT SCIENCE 2021; 77:3349-3357. [PMID: 33773022 DOI: 10.1002/ps.6379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Determining the environmental behavior and fate of chemical compounds during technological processing of plants is a task of great significance nowadays. However, the current knowledge is still incomplete for unique herbal matrices belonging to minor crops. The research in this article presents, for the first time, the dissipation kinetics and processing behavior of carboxamide boscalid (BOS) and stobilurin pyraclostrobin (PYR) fungicides during glasshouse dill (Anethum graveolens L.) cultivation. RESULTS The half-lives (t1/2 ) of BOS and PYR after application at the recommended and double dosage were in the range: 1.62-2.01 days in plant and 2.08-4.85 days in soil, respectively. The processing behavior in dill was estimated after washing, hot air drying and drying in sunlight without/with pretreatment. Processing factors (PFs) were above 1 after drying (PF = 1.24-1.39 hot air; PF = 1.15-1.28 sunlight) and below this value when the washing step was applied (PF = 0.31-0.42 hot air; PF = 0.21-0.34 sunlight), indicating the highest effectiveness of reduction, up to 73% BOS and 79% PYR. CONCLUSION BOS/PYR residues at pre-harvest intervals after both doses were below European Union (EU) maximum residue limits (MRLs). The highest effectiveness was noted for drying carried out with the washing step, which has a great influence on the concentration of residues in the final product. The findings can supplement PF databases not set for minor crops and can be used to establish MRLs and determine human exposures more accurately in risk assessment studies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Magdalena Jankowska
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Bialystok, Poland
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Bialystok, Poland
| |
Collapse
|
8
|
Podbielska M, Książek P, Szpyrka E. Dissipation kinetics and biological degradation by yeast and dietary risk assessment of fluxapyroxad in apples. Sci Rep 2020; 10:21212. [PMID: 33273693 PMCID: PMC7713434 DOI: 10.1038/s41598-020-78177-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the dissipation kinetics of fluxapyroxad in apples, the influence of biological treatment with yeast, and the estimation of dietary exposure for consumers, both adults and children. The gas chromatography technique with the electron capture detector was used to analyse the fluxapyroxad residues. Samples of apples were prepared by the quick, easy, cheap, effective, rugged and safe (QuEChERS) method. The average fluxapyroxad recoveries in apple samples ranged from 107.9 to 118.4%, the relative standard deviations ranged from 4.2 to 4.7%, and the limit of quantification was 0.005 mg/kg. The dissipation half-lives in Gala and Idared varieties were 8.9 and 9.0 days, respectively. Degradation levels of the tested active substance after application of yeast included in a biological preparation Myco-Sin were 59.9% for Gala and 43.8% for Idared. The estimated dietary risk for fluxapyroxad in apples was on the acceptable safety level (below 9.8% for children and 1.9% for adults) and does not pose a danger to the health of consumers.
Collapse
Affiliation(s)
- Magdalena Podbielska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland.
| | - Paulina Książek
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Ewa Szpyrka
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| |
Collapse
|
9
|
Chen Y, Lu Y, Nie E, Akhtar K, Zhang S, Ye Q, Wang H. Uptake, translocation and accumulation of the fungicide benzene kresoxim-methyl in Chinese flowering cabbage (Brassica campastris var. parachinensis) and water spinach (Ipomoea aquatica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114815. [PMID: 32559858 DOI: 10.1016/j.envpol.2020.114815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Benzene kresoxim-methyl (BKM) is an important methoxyacrylate-based strobilurin fungicide widely used against various phytopathogenic fungi in crops. Uptake, translocation and accumulation of BKM in vegetables remain unknown. This study was designed to investigate uptake, translocation, and accumulation of 14C-BKM and/or its potential metabolites in Chinese flowering cabbage and water spinach. 14C-BKM can be gradually taken up to reach a maximum of 44.4% of the applied amount by Chinese flowering cabbage and 34.6% by water spinach at 32 d after application. The 14CO2 fractions released from the hydroponic plant system reached 37.8% for cabbage and 45.8% for water spinach, respectively. Concentrations of 14C in leaves, stems and roots all gradually increased as vegetables growing, with relative 44.9% (cabbage) and 26.8% (water spinach) of translocated from roots to edible leaves. In addition, 14C in leaves was mainly accumulated in the bottom leaves, which was visualized by quantitative radioautographic imaging. The bioconcentration factor of 14C ranged from 7.1 to 38.2 mL g-1 for the cabbage and from 8.6 to 24.6 mL g-1 for the water spinach. The translocation factor of BKM ranged from 0.10 to 2.04 for the cabbage and 0.10-0.46 for the water spinach throughout the whole cultivation period, indicating that the cabbage is easier to translocate BKM from roots to leaves and stems than water spinach. In addition, the daily human exposure values of BKM in both vegetables were much lower than the limited dose of 0.15 mg day-1. The results help assess potential accumulation of BMK in vegetables and potential risk.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yuhui Lu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Enguang Nie
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Jabłońska-Trypuć A, Krętowski R, Świderski G, Cechowska-Pasko M, Lewandowski W. Cichoric acid attenuates the toxicity of mesotrione. Effect on in vitro skin cell model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103375. [PMID: 32279013 DOI: 10.1016/j.etap.2020.103375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
There is an important need to increase knowledge regarding the interactions between environmental contaminants and other compounds. Pesticides are an important group of food contaminants. By contrast, cichoric acid (CA) belongs to the category of desirable food ingredients with antioxidant and cytotoxic effects. The aim of the presented study was to test if CA may constitute a food ingredient, which eliminate stimulatory effect of pesticides on skin cancer cells and toxic effect of herbicides on fibroblasts. Therefore, we conducted cytotoxicity studies of environmentally relevant pesticide concentrations and the mixture of both compounds in melanoma and fibroblasts cells. We studied if CA combined with mesotrione change the oxidative stress parameters and apoptotic activity in treated cells. Obtained results indicate that CA exhibits cytotoxic activity against mesotrione-induced skin cancer development by influencing oxidative stress parameters and apoptosis. On the other hand CA inhibits prooxidative and proapoptotic activity of mesotrione in fibroblasts. Presented methods and obtained results could be a useful tool in the analysis of environmental contaminants toxicity and possible preventive activity of antioxidative plant- origin compounds.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Białystok, 15-222, Poland.
| | - Grzegorz Świderski
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Białystok, 15-222, Poland.
| | - Włodzimierz Lewandowski
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| |
Collapse
|
11
|
Szpyrka E, Podbielska M, Zwolak A, Piechowicz B, Siebielec G, Słowik-Borowiec M. Influence of a Commercial Biological Fungicide containing Trichoderma harzianum Rifai T-22 on Dissipation Kinetics and Degradation of Five Herbicides in Two Types of Soil. Molecules 2020; 25:E1391. [PMID: 32197525 PMCID: PMC7144550 DOI: 10.3390/molecules25061391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
Biological crop protection is recommended to be applied alternately or together with chemical one, to protect human health from the excessive use of toxic pesticides. Presence of microorganisms can influence the concentration of chemical pollutants in soil. The aim of this study is to estimate the influence of a commercial biological fungicide containing Trichoderma harzianum Rifai T-22 on dissipation kinetics and degradation of five herbicides belonging to different chemical classes: clomazone, fluazifop-P-butyl, metribuzin, pendimethalin, and propyzamide, in two types of soil. Results of the study revealed that T. harzianum T-22 influences pesticide degradation and dissipation kinetics of the non-persistent herbicides: clomazone, fluazifop-P-butyl, and metribuzin. In soil with a higher content of nitrogen, phosphorus, and organic matter, degradation increased by up to 24.2%, 24.8%, and 23.5% for clomazone, fluazifop-P-butyl, and metribuzin, respectively. In soil with lower organic content, degradation was on a low level, of 16.1%, 17.7%, and 16.3% for clomazone, fluazifop-P-butyl, and metribuzin, respectively. In our study, the addition of the biological preparation shortened herbicide dissipation half-lives, from 0.3 days (2.9%) for fluazifop-P-butyl, to 18.4 days (25.1%) for clomazone. During the degradation study, no significant differences were noticed for pendimethalin, belonging to persistent substances. Biological protection of crops can modify pesticide concentrations and dissipation rates. On one hand, this may result in the reduced effectiveness of herbicide treatments, while on the other, it can become a tool for achieving cleaner environment.
Collapse
Affiliation(s)
- Ewa Szpyrka
- University of Rzeszow, Institute of Biology and Biotechnology, 1 Pigonia St., 35-310 Rzeszów, Poland; (M.P.); (A.Z.); (B.P.); (M.S.-B.)
| | - Magdalena Podbielska
- University of Rzeszow, Institute of Biology and Biotechnology, 1 Pigonia St., 35-310 Rzeszów, Poland; (M.P.); (A.Z.); (B.P.); (M.S.-B.)
| | - Aneta Zwolak
- University of Rzeszow, Institute of Biology and Biotechnology, 1 Pigonia St., 35-310 Rzeszów, Poland; (M.P.); (A.Z.); (B.P.); (M.S.-B.)
| | - Bartosz Piechowicz
- University of Rzeszow, Institute of Biology and Biotechnology, 1 Pigonia St., 35-310 Rzeszów, Poland; (M.P.); (A.Z.); (B.P.); (M.S.-B.)
| | - Grzegorz Siebielec
- The Institute of Soil Science and Plant Cultivation, Department of Soil Erosion and Land Conservation, 8 Czartoryskich St., 24-100 Puławy, Poland;
| | - Magdalena Słowik-Borowiec
- University of Rzeszow, Institute of Biology and Biotechnology, 1 Pigonia St., 35-310 Rzeszów, Poland; (M.P.); (A.Z.); (B.P.); (M.S.-B.)
| |
Collapse
|
12
|
He Y, Meng M, Yohannes WK, Khan M, Wang M, Abd El-Aty AM, Hacımüftüoğlu F, He Y, Gao L, She Y. Dissipation pattern and residual levels of boscalid in cucumber and soil using liquid chromatography-tandem mass spectrometry. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:388-395. [PMID: 31868560 DOI: 10.1080/03601234.2019.1706374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To stipulate the rationale of spraying doses and to determine the safe interval period of boscalid suspension concentrate (SC), the degradation dynamics and residual levels were investigated in cucumber and soil using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Field trials were conducted according to Chinese Guideline on pesticide residue trials. Following application, the degradation kinetics was best ascribed to first-order kinetic models with half-life of 2.67-9.90 d in cucumber. Spraying boscalid SC at 1.5-fold the recommended dosage yield terminal residues, which are clearly lower than the maximum residue limit (MRL) established by China (MRL =5 mg.kg-1) in cucumber. At variance, the dissipation dynamics in soil did not fit to first-order kinetics and the half-life was more than 17 days, the finding which denotes that the degradation behavior of boscalid in soil proceeds slowly. It has therefore been shown that boscalid is safe for use on cucumbers under the recommended dosage.
Collapse
Affiliation(s)
- Yahui He
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, P.R. China
| | - Man Meng
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | | | - Majid Khan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, P.R. China
| | - Mengqiang Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fazil Hacımüftüoğlu
- Department of Soil Sciences and Plant Nutrition, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Yongjuan He
- College of Health and Environment, Beijing Union University, Beijing, P.R. China
| | - Liping Gao
- College of Health and Environment, Beijing Union University, Beijing, P.R. China
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
13
|
Podbielska M, Szpyrka E, Piechowicz B, Sadło S, Sudoł M. Assessment of boscalid and pyraclostrobin disappearance and behavior following application of effective microorganisms on apples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:652-660. [PMID: 30024824 DOI: 10.1080/03601234.2018.1474554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study is to assess the disappearance of boscalid (IUPAC name: 2-chloro-N-[2-(4-chlorophenyl)phenyl]pyridine-3-carboxamide) and pyraclostrobin (IUPAC name: methyl N-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-N-methoxycarbamate) residues in apple fruit, and to verify whether an organic fertilizer enriched with strains of antagonistic microorganisms can reduce pesticide residue levels. Field trials were conducted in a commercial orchard on apples of the Gloster variety, during 21 days after the treatment with Bellis 38 WG and the subsequent application of Zumba Plant formulation containing Bacillus spp., Trichoderma spp. and Glomus spp. In control samples, the decrease rate of boscalid and pyraclostrobin residue levels followed an exponential function, described by formulae Rt = 0.2824e-0.071t and Rt = 0.1176e-0.060t, with the coefficient of determination of r2 = 0.8692 and r2 = 0.9268, respectively. These levels dropped to half (t1/2) of their initial values after 9.8 and 11.5 days, respectively. The treatment with Zumba Plant resulted in a reduction in boscalid and pyraclostrobin residue levels by 52% and 41%, respectively. The results of this study are of importance for horticulture sciences and for producers of apples using plant protection products (PPPs).
Collapse
Affiliation(s)
- Magdalena Podbielska
- a Department of Analytical Chemistry, Faculty of Biotechnology , University of Rzeszów , Pigonia 1 St, Rzeszów , Poland
| | - Ewa Szpyrka
- a Department of Analytical Chemistry, Faculty of Biotechnology , University of Rzeszów , Pigonia 1 St, Rzeszów , Poland
- b Laboratory of Pesticide Residue Analysis, Regional Experimental Station in Rzeszow , Institute of Plant Protection-National Research , Langiewicza 28 St, Rzeszow , Poland
| | - Bartosz Piechowicz
- a Department of Analytical Chemistry, Faculty of Biotechnology , University of Rzeszów , Pigonia 1 St, Rzeszów , Poland
| | - Stanisław Sadło
- a Department of Analytical Chemistry, Faculty of Biotechnology , University of Rzeszów , Pigonia 1 St, Rzeszów , Poland
| | - Mateusz Sudoł
- a Department of Analytical Chemistry, Faculty of Biotechnology , University of Rzeszów , Pigonia 1 St, Rzeszów , Poland
| |
Collapse
|
14
|
Farha W, Abd El-Aty AM, Rahman MM, Jeong JH, Shin HC, Wang J, Shin SS, Shim JH. Analytical approach, dissipation pattern and risk assessment of pesticide residue in green leafy vegetables: A comprehensive review. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Waziha Farha
- Natural Products Chemistry Laboratory, College of Agriculture and Life Sciences; Chonnam National University; Gwangju Republic of Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine; Cairo University; Giza Egypt
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
| | - Md. Musfiqur Rahman
- Natural Products Chemistry Laboratory, College of Agriculture and Life Sciences; Chonnam National University; Gwangju Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine; Chung-Ang University; Dongjak-gu Seoul Republic of Korea
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety; Ministry of Agriculture; Beijing People's Republic of China
| | - Sung Shik Shin
- Laboratory of Parasitology, College of Veterinary Medicine; Chonnam National University; Gwangju Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, College of Agriculture and Life Sciences; Chonnam National University; Gwangju Republic of Korea
| |
Collapse
|
15
|
Liao M, Shi Y, Cao H, Hua R, Tang F, Wu X, Tang J. Dissipation behavior of octachlorodipropyl ether residues during tea planting and brewing process. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 188:551. [PMID: 27604890 PMCID: PMC5014881 DOI: 10.1007/s10661-016-5573-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/31/2016] [Indexed: 05/22/2023]
Abstract
The dissipation behavior of octachlorodipropyl ether (OCDPE) residues in fresh tea shoots and in tea prepared under field conditions was investigated, and the transfer of residues from brewed tea to tea infusion was determined. OCDPE levels in tea shoots, prepared tea, tea infusion, and spent tea leaves were determined using a sensitive and simple method. The dissipation of OCDPE is fairly slow in tea shoots and prepared tea, with half-life values of 5.10 and 5.46 days, respectively. The degradation rates of OCDPE residues in tea processing were 23.9-43.1 %. The terminal residues of OCDPE in tea shoots and prepared tea samples after 20 and 30 days of OCDPE application were higher than 0.01 mg/kg. However, OCDPE's transfer rates from brewed tea to tea infusion were only 6.0-14.8 %. Further studies on risk assessment of OCDPE residue in tea on the basis of the relationship of OCDPE in prepared tea and infusion are warranted.
Collapse
Affiliation(s)
- Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Yanhong Shi
- Provincial Key Laboratory for Agri-Food Safety, Hefei, 230036, Anhui, China
- School of Resource & Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
- Provincial Key Laboratory for Agri-Food Safety, Hefei, 230036, Anhui, China.
| | - Rimao Hua
- Provincial Key Laboratory for Agri-Food Safety, Hefei, 230036, Anhui, China
- School of Resource & Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Feng Tang
- School of Resource & Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangwei Wu
- Provincial Key Laboratory for Agri-Food Safety, Hefei, 230036, Anhui, China
- School of Resource & Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Tang
- Provincial Key Laboratory for Agri-Food Safety, Hefei, 230036, Anhui, China
- School of Resource & Environment, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|