1
|
Zhang Y, Guo Z, Peng C, Li A. Random forest insights in prioritizing factors and risk areas of soil polycyclic aromatic hydrocarbons in an urban agglomeration area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177583. [PMID: 39566623 DOI: 10.1016/j.scitotenv.2024.177583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Changes in the soil environment due to urbanization pose a challenge to predict the health risks from soil PAHs on a regional scale. The sources and distributions of PAHs in the soil of the Changsha-Zhuzhou-Xiangtan Urban Agglomeration in China were analyzed using positive matrix factorization (PMF), GIS mapping, and the Random Forest (RF) model to estimate the spatiotemporal variations in health risks. The measured concentration of PAHs in the soil ranged from 20.1 to 15,233.1 μg/kg with a mean of 493.2 μg/kg. PMF and diagnostic ratios identified the primary sources of soil PAHs as transportation and coal combustion (59.1 %), soil-air exchange processes (20.5 %), and petroleum products (20.4 %). Transportation and industrial coal combustion contributed to 81.9 % and 81.7 % of the total health risks to children and adults, respectively. Locations of major point sources were identified by PMF and GIS mapping and were distributed at the congestive overpasses in urban areas and industrial enterprises carrying out large-scale coal combustion. The RF model suggested an increase, by 33.2 %, of areas with ILCRs exceeding the risk threshold if the population increases by 50.0 % in 2035. Areas with a PD > 500 p/km2, RD > 2 km/km2, and DNS < 15 km pose a high probability of health risks on local residents. The integrated approach enhanced the reliability of apportioning sources and risk assessment, serving as a reference for early warnings and a basis for soil surveys in urban areas.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, People's Republic of China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, People's Republic of China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, People's Republic of China.
| | - Aoxue Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
2
|
Fan Y, Lan J, Wang Y, Shi R, Li Y, Li X, Yang Y, Zhao Z. Spatiotemporal variations in soil pollution by polycyclic aromatic hydrocarbons over a 20-year economic boom in different districts of a heavy industrial city in North China. ENVIRONMENTAL RESEARCH 2024; 247:118134. [PMID: 38237755 DOI: 10.1016/j.envres.2024.118134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Urbanization-related human activities, such as population aggregation, rapid industrial expansion, and intensified traffic, are key factors that impact local polycyclic aromatic hydrocarbon emissions and their associated health risks. Consequently, regions with varying degrees of urbanization within a megacity may exhibit diverse spatiotemporal patterns in the presence and distribution of soil polycyclic aromatic hydrocarbons, resulting in different levels of ecological risks for local inhabitants following the same period of development. In this study, we measured the concentrations of 16 polycyclic aromatic hydrocarbons in soil samples collected from industrial district and rural district in Tianjin (China) in 2018, and compared with polycyclic aromatic hydrocarbon data in 2001 from a previous study to characterize these regional variations in occurrence, source, and human risk of polycyclic aromatic hydrocarbons induced by urbanization with time and space. The results indicate the 20-year rapid urbanization and industrialization has differentially affected the composition, distribution and sources of polycyclic aromatic hydrocarbons in soils from different economic functional zones in Tianjin. Additionally, its impact on health risks in rural district appeared to be more significant than that in industrial district.
Collapse
Affiliation(s)
- Ying Fan
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Rongguang Shi
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yanying Yang
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Wan X, Zhou R, Liu S, Xing W, Yuan Y. Seasonal Changes in the Soil Microbial Community Structure in Urban Forests. BIOLOGY 2024; 13:31. [PMID: 38248462 PMCID: PMC10813005 DOI: 10.3390/biology13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Urban forests play a crucial role in the overall health and stability of urban ecosystems. Soil microorganisms are vital to the functioning of urban forest ecosystems as they facilitate material cycling and contribute to environmental stability. This study utilized high-throughput sequencing technology to examine the structural characteristics of bacterial and fungal communities in the bulk soil of six different forest stands: Phyllostachys pubescens (ZL), Metasequoia glyptostroboides (SSL), Cornus officinalis (SZY), mixed broad-leaved shrub forest (ZKG), mixed pine and cypress forest (SBL), and mixed broad-leaved tree forest (ZKQ). Soil samples were collected from each forest stand, including the corners, center, and edges of each plot, and a combined sample was created from the first five samples. The results revealed that among the bacterial communities, ZKG exhibited the highest alpha diversity in spring, while ZL demonstrated the highest alpha diversity in both summer and autumn. Proteobacteria was the most abundant bacterial phylum in all six forest stand soils. The dominant fungal phylum across the six forest stands was identified as Ascomycota. Notably, the microbial community diversity of SBL bulk soil exhibited significant seasonal changes. Although ZL exhibited lower bacterial community diversity in spring, its fungal community diversity was the highest. The bulk soil microbial diversity of ZL and SSL surpassed that of the other forest stands, suggesting their importance in maintaining the stability of the urban forest ecosystem in the Zhuyu Bay Scenic Area. Furthermore, the diversity of the bulk soil microbial communities was higher in all six stands during spring compared to summer and autumn. Overall, this study provides valuable insights into the seasonal variations of bulk soil microbial communities in urban forests and identifies dominant tree species, offering guidance for tree species' selection and preservation in urban forest management.
Collapse
Affiliation(s)
- Xin Wan
- Jiangsu Academy of Forestry, Nanjing 211153, China;
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou 225006, China
| | - Runyang Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China (S.L.)
| | - Sian Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China (S.L.)
| | - Wei Xing
- Jiangsu Academy of Forestry, Nanjing 211153, China;
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China (S.L.)
| |
Collapse
|
4
|
Wu J, Yang G, Chen H, Zhai Y, Teng Y, Li J, Chen R. Source apportionment and source specific health risk assessment of HMs and PAHs in soils with an integrated framework in a typical cold agricultural region in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167337. [PMID: 37748612 DOI: 10.1016/j.scitotenv.2023.167337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
A new innovative methodology system framework for source apportionment and source-specific risk assessment has been proposed and actively applied to identify the contamination characteristics, oriented sources and health risks associated with contamination levels of Heavy metals (HMs) and Polycyclic Aromatic Hydrocarbons (PAHs) in soils, a typical cold agricultural region in Northeastern China. To achieve this meaningful goal, a large-scale dataset including 1780 top soil samples, 10 HMs and 16 priority PAHs has been organized and collected from a typical study area in China. The total concentrations of the 10 selected HMs in study area range from 0.05 to 2147.40 mg/kg, with an average of 549.25 ± 541.37 mg/kg. The average concentrations of PAHs for (3-6)-rings are 16.60 ± 18.90, 26.40 ± 28.20, 9.51 ± 13.00 and 1.99 ± 5.30 ng/g, respectively. On the base of optimized literature source fingerprints for HM and PAH, a widely used receptor model, positive matrix factorization (PMF) has been applied to apportion the contamination sources HMs and PAHs in soils. Then source-specific health risk of soil HMs and PAHs have been assessed using the probabilistic incremental lifetime cancer risk model incorporated with source apportionment results data. Fertilizer residues/coke oven comprise the primary contamination source contributors of HMs and PAHs with corresponding contributions of 32.23 % and 27.93 % for HMs and 37.94 % for PAHs. Fertilizer/pesticide residues contributes most to the risks of soil HMs (28.8 %), followed by fossil fuel combustion (24.6 %), mining activities (20.2 %), traffic and vehicle emission (16.3 %) and electroplating/dyeing (14.1 %). Meanwhile, the ranking of health risks from the five identified contamination sources of soil PAHs are resident discharge, coal-fired boilers, coke oven emission, gasoline combustion and power plant, with the contribution of 27.1 %, 25.3 %, 17.3 %, 15.5 % and 14.8 %. And relatively, source-specific risk assessment demonstrates fossil fuel and coal combustion contribute the greatest impact to the total risk of HMs and PAHs (61.7 % and 56.1 %), respectively. This study provides a good example of how the source specific health risk assessment can be utilized to reduce the contamination in soils.
Collapse
Affiliation(s)
- Jin Wu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Gang Yang
- Development Research Center, Ministry of Water Resources, Beijing 100038, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jiao Li
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Ruihui Chen
- Beijing Water Science and Technology Institute, Beijing 100048, China.
| |
Collapse
|
5
|
Li B, Zhao L, Zhong S, An R, Ma R, Xu X, Chen Q. Occurrence, distribution and risk assessment of polycyclic aromatic hydrocarbons in soils around main water source areas of Beijing, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7569-7584. [PMID: 37391576 DOI: 10.1007/s10653-023-01673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in urban environments have been globally concerned due to their significant health impacts on residents. However, little is known about potential risks of PAHs from centralized water source areas. In the present study, 326 soils samples from the main water source areas of Beijing were collected and the occurrence, source appointment, and risks of PAHs were systematically investigated based on the monitoring results from high-performance liquid chromatography (HPLC). The total PAHs (∑16 PAHs) concentrations ranged from 5.70 to 1512 ng/g with median value of 44.2 ng/g, in which 4-ring and 5-ring groups were the major components. PAHs concentrations in the cultivated land were significantly higher than other areas, which could reflect significant impact of soil organic matter and total nitrogen contents on the spatial variations of PAHs. Further source identifications through positive matrix factorization model (PMF) revealed that biomass (22.5%), coal (21.4%), gasoline (17.6%) and diesel (16.4%) combustion were dominant sources of soil PAHs in the study area. Moreover, the risk assessment indicated that total ecological and health risk of PAHs were negligible, but individual PAH, including pyrene and benzo(b)fluoranthene, should be concerned due to their potential risks in several monitored stations located in the secondary protection area of four reservoirs. Our study provided new insights into environmental risks of soils in main water source areas from PAHs and could be helpful for organic micropollutant controlling and drinking water safety in rapidly urbanizing cities.
Collapse
Affiliation(s)
- Bin Li
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Liang Zhao
- Beijing Water Authority, Beijing, 100036, People's Republic of China
| | - Sining Zhong
- Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Rui An
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Ruoqi Ma
- General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing, 100120, People's Republic of China
| | - Xuming Xu
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Beijing, 100871, People's Republic of China.
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, People's Republic of China.
| |
Collapse
|
6
|
Li Y, Zhang Q, Guo D, Dang J. Characteristics and Risk Assessment of PAH Pollution in Soil of a Retired Coking Wastewater Treatment Plant in Taiyuan, Northern China. TOXICS 2023; 11:toxics11050415. [PMID: 37235231 DOI: 10.3390/toxics11050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
We analyzed the soil at the site of a former coking wastewater treatment plant on redeveloped land in Taiyuan, northern China, in an attempt to detect the presence of 16 types of priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency (US EPA) and evaluate the potential pollution risks. The results show that the total proportion of PAHs in the surface soil of the redeveloped land ranged from 0.3 to 1092.57 mg/kg, with an average value of 218.5 mg/kg, mainly consisting of high-ring (5-6 rings) components. Characteristic ratio analysis indicated that the pollution was mainly related to the combustion of petroleum, coal, and biomasses. The wastewater treatment units operated according to the following treatment train: advection oil separation tank, dissolved air flotation tank, aerobic tank, secondary sedimentation tank, and sludge concentration tank. Our study found that pollution resulting from low-ring PAHs mainly appeared in the advection oil separation tank during the pre-wastewater treatment stage, while medium-ring PAH contamination mainly occurred in the dissolved air floatation tank, aerobic tank, and secondary sedimentation tank during the middle stages of wastewater treatment. High-ring PAH contamination primarily appeared in the sludge concentration tank in the latter stage of wastewater treatment. Based on our assessment of the ecological risk using the Nemerow Comprehensive Pollution Index and the toxicity equivalent factor (TEF) method, we determined that individual PAHs in the study area exceeded acceptable levels and the total amount of pollution was potentially harmful to the ecological environment. In addition, the comprehensive lifetime cancer risk for different populations resulting from exposure to the soil in the study area was determined to be within acceptable limits based on the average PAH concentrations.
Collapse
Affiliation(s)
- Yuan Li
- Insitute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Quanxi Zhang
- Insitute of Environmental Science, Shanxi University, Taiyuan 030006, China
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Jinhua Dang
- Shanxi Province Ecological Environment Monitoring and Emergency Support Center (Shanxi Province Eco-Environmental Science Research Institute), Taiyuan 030001, China
| |
Collapse
|
7
|
Peng C, He Y, Zhang K, Zhang Y, Wan X, Wang M, Chen W. Estimating accumulation rates and health risks of PAHs in residential soils of metropolitan cities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115699. [PMID: 35841779 DOI: 10.1016/j.jenvman.2022.115699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Predicting temporal changes in PAH concentrations in urban soils and their corresponding health risk is essential for developing appropriate management measures to prevent those risks. Concentrations of PAHs in soils of residential areas with different building ages in three metropolitan cities were determined to estimate the accumulation rates of PAHs in soil. The mean concentrations of total PAHs (∑PAHs) were 1297 ng/g in Shanghai, 865 ng/g in Beijing, and 228 ng/g in Shenzhen. The primary sources of the PAHs were traffic and coal combustion for industrial activity and space heating. The high PAH concentrations in Shanghai were attributed to the relatively high average building age of the sampled residential areas and the low annual temperature in the city. The overall annual accumulation rates of PAHs in the soils were estimated from linear regressions between the PAH concentrations and building age of the residential areas. The annual accumulation rate of PAHs in the soils was 64.7 ng/g in Beijing, 24.2 ng/g in Shanghai, and 3.3 ng/g in Shenzhen. The higher rate in Beijing was due to the higher intensity of PAH emissions and the lower temperature. The regression estimations suggest that health risks posed by PAHs in residential soils of the metropolitan cities increase considerably with time.
Collapse
Affiliation(s)
- Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Yalei He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Kai Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Yan Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xinxing Wan
- Third Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| |
Collapse
|
8
|
Zhang H, Huang Q, Han P, Zhang Z, Jiang S, Yang W. Source identification and toxicity apportionment of polycyclic aromatic hydrocarbons in surface soils in Beijing and Tianjin using a PMF-TEQ method. PLoS One 2022; 17:e0268615. [PMID: 35771809 PMCID: PMC9246166 DOI: 10.1371/journal.pone.0268615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Beijing and Tianjin are two of the largest cities in northern China with high population densities and highly developed manufacturing industries. In the past decade, some authors have reported their PAH concentrations in surface soils, identified their sources and quantitatively reported their health risks. However, the contributions of different PAH sources to their toxicity have not been reported thus far. In this study, we reviewed the PAH concentrations, contributions of different sources to the toxicity, and cancer risks in soils from different land use types found within Beijing and Tianjin from data gathered by 41 studies. The total PAH concentration varied in the range of 175.7–1989.0 ng g-1 with a higher median PAH concentration detected in urban soils (789.7 ng g-1), followed by suburban soils (647.3 ng g-1) and rural soils (390.8 ng g-1). Source identification using diagnostic ratios and principal component analysis (PCA) suggested that the PAHs in all three land use types mainly originated from biomass and coal combustion, vehicular emissions, and petrogenic processes with contributions varying from 13% to 62%. Furthermore, results from a positive matrix factorization (PMF) model suggested that vehicular emissions and coal combustion in urban soils, and the vehicular emissions, coal combustion and biomass combustion in suburban and rural soils dominated the total PAH concentrations (>85%). These results were consistent with those of the PCA model. Results of the additional toxicity apportionment performed using the PMF model suggested that vehicular emissions and coal combustion contributed the most to the toxic equivalent quantity for Benzo(a)Pyrene (BaPTEQ) and, by extension, to the carcinogenic potencies. The incremental lifetime cancer risk (ILCR) values suggested a low risk level for adults exposed to PAHs in the different land use types found within Beijing and Tianjin.
Collapse
Affiliation(s)
- Huashuang Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, China
| | - Qi Huang
- College of Life Science, Taizhou University, Taizhou, Zhejiang, China
| | - Ping Han
- Shandong Urban Construction Vocational College, Jinan, Shandong, China
| | - Zhicheng Zhang
- College of Life Science, Taizhou University, Taizhou, Zhejiang, China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou, Zhejiang, China
- * E-mail: (SJ); (WY)
| | - Wei Yang
- Polar and Marine Research Institute, Jimei University, Xiamen, Fujian, China
- * E-mail: (SJ); (WY)
| |
Collapse
|
9
|
Peng C, Zhang K, Wang M, Wan X, Chen W. Estimation of the accumulation rates and health risks of heavy metals in residential soils of three metropolitan cities in China. J Environ Sci (China) 2022; 115:149-161. [PMID: 34969445 DOI: 10.1016/j.jes.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal concentrations in urban soils are likely to increase over time because of continuous urbanization and heavy metal emissions. To estimate the accumulation rates of heavy metals in urban soils, we collected soil samples from residential areas with different building ages in the metropolitan cities of Shanghai, Shenzhen, and Beijing, China. Heavy metal concentrations in the soils varied among the cities and were primarily affected by soil parent material and the intensity of anthropogenic sources. Regression analyses revealed that the accumulation rates of Cd and Cu in the soils ranged from 0.0034 to 0.0039 mg/(kg•year) and 0.343 to 0.391 mg/(kg•year), respectively, and were similar across the three cities, while accumulation rates of Zn and Pb in Shanghai were higher than those in Shenzhen and Beijing. The higher accumulation rates of Zn and Pb in Shanghai can be explained by differences in city history and industrial structures among the cities. Residential soils with high health risks posed by the heavy metals were mostly collected from old towns of Shanghai because of high Pb content in the areas. Although recent urbanization resulted in elevated concentrations of Cd, Cu, Zn, and Pb in the residential soils, the effect on the total health risks of residents exposed to the soils was negligible.
Collapse
Affiliation(s)
- Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Kai Zhang
- State key laboratory of urban and regional ecology, Research center for eco-environmental sciences, Chinese academy of sciences, Beijing 100085, China
| | - Meie Wang
- State key laboratory of urban and regional ecology, Research center for eco-environmental sciences, Chinese academy of sciences, Beijing 100085, China
| | - Xinxing Wan
- Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Weiping Chen
- State key laboratory of urban and regional ecology, Research center for eco-environmental sciences, Chinese academy of sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Liu J, Liu Y, Dong W, Li J, Yu S, Wang J, Zuo R. Shifts in microbial community structure and function in polycyclic aromatic hydrocarbon contaminated soils at petrochemical landfill sites revealed by metagenomics. CHEMOSPHERE 2022; 293:133509. [PMID: 34995620 DOI: 10.1016/j.chemosphere.2021.133509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Investigations of the microbial community structures, potential functions and polycyclic aromatic hydrocarbon (PAH) degradation-related genes in PAH-polluted soils are useful for risk assessments, microbial monitoring, and the potential bioremediation of soils polluted by PAHs. In this study, five soil sampling sites were selected at a petrochemical landfill in Beijing, China, to analyze the contamination characteristics of PAHs and their impact on microorganisms. The concentrations of 16 PAHs were detected by gas chromatography-mass spectrometry. The total concentrations of the PAHs ranged from ND to 3166.52 μg/kg, while phenanthrene, pyrene, fluoranthene and benzo [ghi]perylene were the main components in the soil samples. According to the specific PAH ratios, the PAHs mostly originated from petrochemical wastes in the landfill. The levels of the total toxic benzo [a]pyrene equivalent (1.63-107.73 μg/kg) suggested that PAHs might result in adverse effects on soil ecosystems. The metagenomic analysis showed that the most abundant phyla in the soils were Proteobacteria and Actinobacteria, and Solirubrobacter was the most important genus. At the genus level, Bradyrhizobium, Mycobacterium and Anaeromyxobacter significantly increased under PAH stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, the most abundant category of functions that are involved in adapting to contaminant pressures was identified. Ten PAH degradation-related genes were significantly influenced by PAH pressure and showed correlations with PAH concentrations. All of the results suggested that the PAHs from the petrochemical landfill could be harmful to soil environments and impact the soil microbial community structures, while microorganisms would change their physiological functions to resist pollutant stress.
Collapse
Affiliation(s)
- Jiayou Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510655, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
11
|
Hui K, Kou B, Jiang Y, Wu Y, Xu Q, Tan W. Nitrogen addition increases the ecological and human health risks of PAHs in different fractions of soil in sewage-irrigated area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151420. [PMID: 34748843 DOI: 10.1016/j.scitotenv.2021.151420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) is one of the most important nutrients required by soil and crops. N addition improves soil quality and fertility. However, long-term N addition changes the soil environment, which may affect the adsorption and accumulation of organic pollutants in soil. The adsorption of pollutants by the light fractions (LF) and heavy fractions (HF) of soil, and their resulting risks, might differ. In addition, several organic pollutants, especially PAHs, accumulate in farmland soil under long-term sewage irrigation. However, few studies have examined the response of PAHs to N addition in soil in sewage-irrigated areas, including whether there is a difference in the response of the LF and HF of soil. Here, a long-term experiment was carried out in farmland soils in typical sewage-irrigated areas to reveal the adsorption and accumulation of PAHs in bulk soil, LF, and HF, and the human health and ecological environment risks posed by PAHs under different levels of N addition. Under long-term N addition, the concentration of PAHs in soil increased and fluctuated from 7598 μg kg-1 to 10,414 μg kg-1. Significant differences in the PAHs concentration in the LF (5048 μg kg-1 to 1889 μg kg-1) and HF (2536 μg kg-1 to 8521 μg kg-1) and the human health and ecological risks of soil with N addition in typical sewage-irrigated areas were observed. The HF of soil was characterized by low carcinogenic and ecological risks. The results of our research provide insight into possible management actions that could be taken to enhance the environmental protection and safety of agricultural production activities, such as sustainability fertilization.
Collapse
Affiliation(s)
- Kunlong Hui
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Shaanxi, Xi'an 710065, China
| | - Yonghai Jiang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuman Wu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Shaanxi, Xi'an 710065, China
| | - Qigong Xu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Rhizosphere effect on removal and bioavailability of PAHs in contaminated agricultural soil. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00716-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe rhizosphere effect of ryegrass (Lolium perenne L.) on polycyclic aromatic hydrocarbons (PAHs) dissipation, bioavailability and the structure change of microbial community was investigated using a compartmented device-rhizobox. The PAHs removal efficiency, bioavailability and the change in structure of the microbial community were ascertained using HPLC, Tenax-TA extraction and PCR-DGGE, respectively. The results showed that in the root area (R1) and bulk soil (CK), the removal of 3-ring PAHs were 97.72 ± 0.34% and 95.51 ± 0.75%, 4-ring PAHs were 89.01 ± 1.61% and 78.65 ± 0.47%, 5-ring PAHs were 77.64 ± 4.05% and 48.63 ± 3.19%, 6-ring PAHs were 68.69 ± 3.68% and 36.09 ± 1.78%, respectively. The average removal efficiency of the total PAHs after 80 days followed the order: R1M (91.1%) > CKM (84.9%) > CK (77.6%), indicating that planted soil with inoculation of Mycobacterium sp. as well as non-planted soil inoculated with Mycobacterium sp. could both significantly accelerate the removal of PAHs compared to control soil. The bioavailability ratio of PAHs with 3 and 4 rings tended to decrease (from 59.9% to 14.8% for 3-ring and 7.61% to 5.08% for 4-ring, respectively in R1) while those with 5 rings increased significantly (from 2.41% to 33.78% in R1) during the last 40 days, indicating that bioavailability alteration varies with the number of rings in the PAHs. In addition, PAH bioavailability generally did not show a significant difference between treated soil and control soil. These results suggest that ryegrass rhizosphere effect as well as inoculation of Mycobacterium sp. can accelerate PAH removal in polluted soil. The bacteria community structure demonstrated a complex interplay of soil, bacteria and ryegrass root, and potential PAH degraders were present in abundance. This study provides the exploring data of rhizosphere and bioaugmentation effect on PAH dissipation in agricultural soil, as well as the change of bioavailability and microbial composition thereof.
Collapse
|
13
|
Klimkowicz-Pawlas A, Debaene G. Screening Risk Assessment of Agricultural Areas under a High Level of Anthropopressure Based on Chemical Indexes and VIS-NIR Spectroscopy. Molecules 2020; 25:molecules25143151. [PMID: 32660157 PMCID: PMC7397210 DOI: 10.3390/molecules25143151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Intensive anthropogenic activity may result in uncontrolled release of various pollutants that ultimately accumulate in soils and may adversely affect ecosystems and human health. Hazard screening, prioritisation and subsequent risk assessment are usually performed on a chemical-by-chemical basis and need expensive and time-consuming methods. Therefore, there is a need to look for fast and reliable methods of risk assessment and contamination prediction in soils. One promising technique in this regard is visible and near infrared (VIS-NIR) spectroscopy. The aim of the study was to evaluate potential environmental risk in soils subjected to high level of anthropopressure using VIS-NIR spectroscopy and to calculate several risk indexes for both individual polycyclic aromatic hydrocarbons (PAHs) and their mixture. Results showed that regarding 16PAH concentration, 78% of soil samples were contaminated. Risk assessment using the most conservative approach based on hazard quotients (HQ) for 10 individual PAHs allowed to conclude that 62% of the study area needs further action. Application of concentration addition or response addition models for 16PAHs mixture gave a more realistic assessment and indicates unacceptable risk in 23% and 55% of soils according to toxic units (TUm) and toxic pressure (TPm) approach. Toxic equivalency quotients (TEQ) were below the safe limit for human health protection in 88% of samples from study region. We present here the first attempt at predicting risk indexes using VIS-NIR spectroscopy. The best results were obtained with binary models. The accuracy of binary model can be ordered as follows: TPm (71.6%) < HI (85.1%) < TUm (87.9%) and TEQ (94.6%). Both chemical indexes and VIS-NIR can be successfully applied for first-tier risk assessment.
Collapse
|
14
|
Cai T, Ding Y, Zhang Z, Wang X, Wang T, Ren Y, Dong Y. Effects of total organic carbon content and leaching water volume on migration behavior of polycyclic aromatic hydrocarbons in soils by column leaching tests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112981. [PMID: 31394343 DOI: 10.1016/j.envpol.2019.112981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The risk of soils transferring polycyclic aromatic hydrocarbons (PAHs) into groundwater has caused widespread concern. Research on the leaching behavior of PAHs in soil profiles is very important for assessing this risk. Column leaching tests were carried out to provide insight into the effect of TOC and leaching water volume on leaching behavior of PAHs. Four groups were leached intermittently by deionized water under the same leaching rate for 10 d, 30 d, 90 d and 120 d. These four leaching periods are equivalent to 1 yr, 3 yr, 9 yr and 12 yr of rainfall time under natural conditions, respectively. The results showed that residual concentrations of PAHs on the surface of soil (0-5 cm) in three columns after 30 d of leaching were 37.9 μg/g, 18.5 μg/g and 3.7 μg/g, respectively, which was consistent with their TOC contents. According to the correlation analysis, both residual concentrations of ∑16PAHs and PAHs with different ring numbers were significantly correlated with the TOC content at depths of 5-100 cm after 30 d of leaching. With increased leaching water volume, PAH migration rates significantly decreased (from 3.13 μg/g/d to 0.005 μg/g/d) from 10 d to 120 d, which indicates that the initial period of the leaching process has a stronger effect on PAH vertical migration than the later stages of the process. Under long-term leaching, PAHs that were not leached previously were capable of migrating deeper into the soil profile. Therefore, it has the risk of PAH-contaminated soils transferring PAHs into groundwater.
Collapse
Affiliation(s)
- Ting Cai
- College of Geosciences, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Yue Ding
- College of Geosciences, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Zhihuan Zhang
- College of Geosciences, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
| | - Xinwei Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Tieguan Wang
- College of Geosciences, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Yuanyuan Ren
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Yibo Dong
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
15
|
Zhang Y, Peng C, Guo Z, Xiao X, Xiao R. Polycyclic aromatic hydrocarbons in urban soils of China: Distribution, influencing factors, health risk and regression prediction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112930. [PMID: 31374490 DOI: 10.1016/j.envpol.2019.07.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in urban soils are a risk to the health of residents. To predict those risks, the distribution and the factors influencing the concentration of PAHs were studied by collecting 1120 records of soil PAHs published during 2006-2017 from 26 cities. The mean concentrations of 16 PAHs (∑PAHs) in soil varied from 123 μg/kg to 5568 μg/kg, with a mean value of 1083 μg/kg, suggesting that a few cities were polluted. The distribution of ∑PAHs in the cities followed two gradients, namely from northern China through eastern China to southern China and from industrial cities through developed cities to cities that are main tourist attractions. The concentrations were significantly correlated to annual temperature, the efficiency of energy use, and to such measures of air quality as PM10 and NO2 concentrations. A regression equation developed to predict the concentration of ∑PAHs in soil and the corresponding health risks to residents of 35 major Chinese cities of China showed that the risks to adults and children were slight in most cities but those in a few industrial cities were of concern, and field investigations are recommended to assess the risk in greater detail. The method offers a useful tool for predicting such risks in other cities even when data on soils PAHs are not available.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
16
|
You R, Domínguez C, Matamoros V, Bayona JM, Díez S. Chemical characterization and phytotoxicity assessment of peri-urban soils using seed germination and root elongation tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34401-34411. [PMID: 31637617 DOI: 10.1007/s11356-019-06574-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The peri-urban soil is exposed to pollutants because of its proximity to the city, which may influence the quality of agricultural products. In this study, the occurrence of 16 trace elements (TEs), 16 polycyclic aromatic hydrocarbons (PAHs), and 33 contaminants of emerging concern (CECs) was analyzed in two soil sites of the peri-urban area of Barcelona (Spain) (S2 and S3) and a pristine site (S1). Levels of Pb (S2 164 and S3 150 mg kg-1) are around 2.5 times higher than the guideline values. Values for Cu (178 mg kg-1) in S2 are 1.8-fold higher, whereas for Zn, levels are slightly above the threshold in S2 (208 mg kg-1) and S3 (217 mg kg-1). The total concentrations of PAHs are significantly below the limits: 24 ng g-1 dw (S1), 38 ng g-1 dw (S2), 49 ng g-1 dw (S3), whereas only some CECs are detected with low concentrations. We also developed a simple and rapid method to assess soil pollution. Here, we use two plant growth indexes (seed germination rate and root elongation at the initial stage) of three seeds (lettuce, tomato, and cauliflower) to assess soil chemical contamination on agriculture. In the peri-urban soil, the concentration of Pb was 2.5 times higher than the guideline values, whereas for Cu and Zn, values were slightly above their limits, while only few PAHs and CECs were detected. Results for principal component analysis suggest that root elongation is a more sensitive measurement endpoint than germination rate, especially for lettuce. The germination rate of tomato relied on the nitrate in the soil and decreased sharply in the site with pollution of Cu and As. Under the specific conditions of this study, cauliflower should not be recommended to assess environmental pollution due to its low sensitivity to pollutants. In conclusion, this is a low-cost, simple, and rapid method for evaluating the effects of chemical pollution of agriculture soils on seed growth.
Collapse
Affiliation(s)
- Rui You
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Carmen Domínguez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Victor Matamoros
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Josep M Bayona
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
17
|
Qi H, Chen X, Du YE, Niu X, Guo F, Li W. Cancer risk assessment of soils contaminated by polycyclic aromatic hydrocarbons in Shanxi, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109381. [PMID: 31260917 DOI: 10.1016/j.ecoenv.2019.109381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
To assess the human cancer risk exposed to soil contaminated by polycyclic aromatic hydrocarbons (PAHs) in Shanxi province, China, the total 33 samples in the surface soil were collected from 11 cities, and the priority 15 PAHs were analyzed using gas chromatography-mass spectrometry after the soxhlet extraction and silica-alumina column purification. As a result, the levels of ∑15PAH in soil varied from 66.2 to 2633 ng/g dry weight (dw) with a mean of 732 ng/g dw, and seven carcinogenic PAHs made up 42-69% of the total priority PAHs and had an average value of 367 (in the range of 33.2 to 1181) ng/g dw. Accordingly, the total concentrations of benzo[a]pyrene equivalents (BaPeq) for 15 PAHs ranged from 10.3 to 358 (average 98.3) ng/g dw, and the seven carcinogenic BaPeq accounted for above 90%. Subsequently, the possible sources of PAHs in soil were identified by isomer ratios, demonstrating that the combustion contributed to the main source. Finally, the incremental lifetime cancer risks (ILCR) of soil contaminated by 15 priority PAHs were estimated using the targeted chemical-specific approach. ILCR values were considered to be greater than 1 × 10-6 in 16 of 33 sites and followed a decreasing trend of adulthood > childhood > adolescence. Subsequently, the analysis of variance was performed by average ILCR value among the 11 cities (n = 3, p < 0.01), which indicated that the potential low cancer risk significantly increased for nearby residents in two areas, including Datong and Xinzhou, with the ILCR values of 4.61 ± 1.93 and 3.92 ± 2.54 per million, respectively. Therefore, the consumption of traditional coal should be controlled and partially replaced with the alternative energy sources. And the rigorous monitoring should be termly warranted to avoid the cancer risk for human being in agricultural area of Shanxi, China.
Collapse
Affiliation(s)
- Hongxue Qi
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Xiuling Chen
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Yi-En Du
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Xianjun Niu
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China
| | - Wanxi Li
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
18
|
Galal TM, Shedeed ZA, Hassan LM. Hazards assessment of the intake of trace metals by common mallow ( Malva parviflora K.) growing in polluted soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1397-1406. [PMID: 31648539 DOI: 10.1080/15226514.2018.1524842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human risks increase by consuming plants growing in trace/heavy metals contaminated soil irrigated with polluted water. The present study aims to assess the ability of common mallow to accumulate trace/heavy metals from polluted soils at South Greater Cairo, Egypt; and their hazardous effects on consumer's health. Five quadrats were used to collect soil and plant samples from three sites of un-polluted and polluted fields for chemical analysis and measurement of growth variables, as well as for assessing the daily intake of metals (DIM) and hazard quotient (HQ). Irrigation water analysis showed elevated concentrations of the investigated metals and mineral salts in the polluted area compared with the un-polluted one. Plant samples showed reduction in their growth parameters; as well as pigments and nutrient content in the metal-contaminated soil. In addition, Pb, Cd, Cu, Ni, Fe, Mn, Zn, and Co concentrations in the shoots and roots of plants grown in polluted fields were higher compared with plants grown in un-polluted site. The bioaccumulation and translocation factors of most investigated metals indicated the great ability of common mallow to accumulate such metals, which would increase the human intake of metals in their daily diets compared to their reference values (RfD). The hazard quotient (HQ) of Pb, Cr, Fe, Mn and Zn for children and Pb, Cd, Fe and Mn for adults was >1, indicating health hazards for the consumers of common mallow cultivated in the polluted area.
Collapse
Affiliation(s)
- Tarek M Galal
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Zeinab A Shedeed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Loutfy M Hassan
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
19
|
Lécrivain N, Frossard V, Naffrechoux E, Clément B. Looking at Organic Pollutants (OPs) Signatures in Littoral Sediments to Assess the Influence of a Local Urban Source at the Whole Lake Scale. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1631195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nathalie Lécrivain
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Vaulx-en-Velin, France
| | - Victor Frossard
- Université Savoie Mont-Blanc, UMR 42 CARRTEL, Le Bourget du Lac, France
| | | | - Bernard Clément
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Vaulx-en-Velin, France
| |
Collapse
|
20
|
Chen Y, Zhang J, Zhang F, Li F, Zhou M. Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China: occurrence, sources and potential human health risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:791-802. [PMID: 28965296 DOI: 10.1007/s10653-017-0024-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Study on the occurrence, sources and potential human health risk of polycyclic aromatic hydrocarbons in farmland soils around reservoirs is of great significance for the people drinking water security. In the present study, representative farmland soil samples around main reservoirs of Jilin Province, China, were investigated for 16 PAHs. The total concentrations of 16 priority PAHs in 32 farmland soil samples ranged from 602.12 to 1271.87 ng/g, with an arithmetic average of 877.23 ng/g, and the sum of seven carcinogenic PAH concentrations ranged from 30.07 to 710.02 ng/g, with a mean value of 229.04 ng/g. The 3-ring and 4-ring PAHs were major exist and account for 45.78 and 32.03%, respectively. Non-cancer and cancer risk of pollutants were calculated, and the results indicate that the complex PAHs in farmland soils were not considered to pose significant health effects. The isomer ratios Fla/(Fla + Pyr) and BaA/(BaA + Chr) show that the PAHs in soils were generally derived from biomass and coal combustion.
Collapse
Affiliation(s)
- Yanan Chen
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun City, 130024, People's Republic of China
| | - Jiquan Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun City, 130024, People's Republic of China.
| | - Feng Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun City, 130024, People's Republic of China
| | - Fengxu Li
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun City, 130024, People's Republic of China
| | - Mo Zhou
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun City, 130024, People's Republic of China
| |
Collapse
|
21
|
Sun J, Pan L, Tsang DCW, Zhan Y, Zhu L, Li X. Organic contamination and remediation in the agricultural soils of China: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:724-740. [PMID: 29017123 DOI: 10.1016/j.scitotenv.2017.09.271] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
22
|
Wang C, Zhou S, Song J, Wu S. Human health risks of polycyclic aromatic hydrocarbons in the urban soils of Nanjing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:750-757. [PMID: 28866402 DOI: 10.1016/j.scitotenv.2017.08.269] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/27/2017] [Accepted: 08/27/2017] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a major group of toxic pollutants in urban areas. We calculated the critical concentrations of PAHs in the urban soils of Nanjing, China based on a human health risk assessment. In the study area, the risk was divided into four levels and toxic equivalent values of benzo[a]pyrene (BaPeq) corresponded to <70ngg-1, 70-700ngg-1, 700-7000ngg-1, and >7000ngg-1. By this standard, most urban areas in Nanjing fall under level II (potentially low risk), while older urban districts, commercial centers, and transportation centers exceed the critical concentration (level III) at present. Additionally, the correlations between PAH concentrations, factors associated with urbanization, and soil properties were analyzed. Population density and black carbon content were determined to be the key factors involved. Multiple linear regression models and the scenario simulation method were used to predict PAH levels in urban soils through 2030. The results indicated that the future distribution characteristics of soil BaPeq under various scenarios were different than at present, but PAH concentrations remained stable only under the low‑carbon scenario. Therefore, the consumption of traditional fossil fuels should be controlled and replaced with alternative energy sources. In addition, the growth of traffic land use should be controlled in the southern and southwestern parts of the urban area.
Collapse
Affiliation(s)
- Chunhui Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shenglu Zhou
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Jing Song
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shaohua Wu
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
23
|
Zhang P, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:1011-1020. [PMID: 28693106 DOI: 10.1016/j.scitotenv.2017.06.247] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 05/27/2023]
Abstract
This paper reviews the concentration, distribution, source, and potential risk of polycyclic aromatic hydrocarbons (PAHs) in surface soils of China through analysis of data from >6000 surface soil samples in nearly 100 references. The mean value of total 16 PAHs was 730ng·g-1 in surface soil in China, a relatively lower or moderate level than other countries. Based on the Maliszewska-Kordybach classification criteria, the proportions of heavily contaminated, contaminated, weakly contaminated, and non-contaminated soil samples were 21.4%, 11.9%, 49.5%, and 17.2%, respectively. There was a clear geographical distribution, with concentrations of the total 16 PAHs descending in the following order: Northeast China (1467ng·g-1)>North China (911ng·g-1)>East China (737ng·g-1)>South China (349ng·g-1)>West China (209ng·g-1). Moreover, it was found that the PAH concentrations in surface soil in China descended along the urban-suburban-rural gradient. The concentration and distribution of PAHs were mainly related to the degree of economic development, population density, climatic conditions, and soil organic matter, and the divergence of regional economic patterns and climatic conditions was the main reason for the observed PAH distribution in the soils. Traffic emissions, coal and biomass combustion mainly contributed to the PAH contamination of surface soil in China during the process of urbanization and industrialization, and the average Benzo(a)pyrene equivalent concentration of ∑PAH7c (seven carcinogenic PAHs) was 99ng·g-1, which indicated the soil samples had a small potential carcinogenic risk. Despite soil pollution being generally low, PAH concentrations in some areas were relatively high, therefore it is necessary to produce strategies, such as establishing effective guidelines and developing environmental-friendly technology to reduce PAH emissions, and prevent further contamination.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
24
|
Okere UV, Schuster JK, Ogbonnaya UO, Jones KC, Semple KT. Indigenous 14C-phenanthrene biodegradation in "pristine" woodland and grassland soils from Norway and the United Kingdom. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1437-1444. [PMID: 29083422 DOI: 10.1039/c7em00242d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the indigenous microbial mineralisation of 14C-phenanthrene in seven background soils (four from Norwegian woodland and three from the UK (two grasslands and one woodland)) was investigated. ∑PAHs ranged from 16.39 to 285.54 ng g-1 dw soil. Lag phases (time before 14C-phenanthrene mineralisation reached 5%) were longer in all of the Norwegian soils and correlated positively with TOC, but negatively with ∑PAHs and phenanthrene degraders for all soils. 14C-phenanthrene mineralisation in the soils varied due to physicochemical properties. The results show that indigenous microorganisms can adapt to 14C-phenanthrene mineralisation following diffuse PAH contamination. Considering the potential of soil as a secondary PAH source, these findings highlight the important role of indigenous microflora in the processing of PAHs in the environment.
Collapse
|
25
|
Li J, Li F, Liu Q. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry. CHEMOSPHERE 2017; 178:143-153. [PMID: 28324836 DOI: 10.1016/j.chemosphere.2017.03.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/02/2017] [Accepted: 03/12/2017] [Indexed: 05/22/2023]
Abstract
Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ18O and δ2H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ18O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fadong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Qiang Liu
- Sichuan Province Environmental Monitoring Station, Chengdu, 610091, China
| |
Collapse
|
26
|
Klimkowicz-Pawlas A, Smreczak B, Ukalska-Jaruga A. The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10955-10965. [PMID: 27068894 DOI: 10.1007/s11356-016-6610-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2016] [Indexed: 05/21/2023]
Abstract
The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 μg kg-1 for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (Corg) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg-1), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/Corg or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.
Collapse
Affiliation(s)
- Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Str., 24-100, Puławy, Poland.
| | - Bozena Smreczak
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Str., 24-100, Puławy, Poland
| | - Aleksandra Ukalska-Jaruga
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Str., 24-100, Puławy, Poland
| |
Collapse
|
27
|
Li J, Li F. Polycyclic aromatic hydrocarbons in the Yellow River estuary: Levels, sources and toxic potency assessment. MARINE POLLUTION BULLETIN 2017; 116:479-487. [PMID: 28034495 DOI: 10.1016/j.marpolbul.2016.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/02/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
This paper presents a systematic but preliminary study on the levels, sources and risk of exposure to polycyclic aromatic hydrocarbons (PAHs) in the Yellow River estuary by examining 16 priority PAHs listed by the U.S. EPA in four main environmental media (soil, surface water, groundwater and sediment). The concentration of individual PAHs in each medium in the study area was compared with the reported PAH values in China and abroad and to related environmental quality standards. The pollution levels of PAHs were found to be moderate in the soil and sediment, and low in the surface water and groundwater. Wood, coal combustion and petroleum inputs are the main PAH sources in soil and sediment, while petroleum inputs and petroleum combustion are the main PAH sources in surface water and groundwater. This indicates that PAH input caused by the high-speed inflow of external water over a long time has made a definite contribution to the occurrence of PAHs in surface water and groundwater in the study area. Furthermore, the mean value of the sum of the Excess Lifetime Cancer Risk (∑ELCR) exposure to PAHs in all media exceeded the generally acceptable risk level of 1.0E-06 recommended by the USEPA for carcinogenic chemicals, and the relative proportion contributed by DBA to the ∑ELCR was the greatest.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Fadong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
28
|
Ma Y, Liu A, Egodawatta P, McGree J, Goonetilleke A. Assessment and management of human health risk from toxic metals and polycyclic aromatic hydrocarbons in urban stormwater arising from anthropogenic activities and traffic congestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:202-211. [PMID: 27847187 DOI: 10.1016/j.scitotenv.2016.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Toxic metals (TMs) and polycyclic aromatic hydrocarbons (PAHs) in urban stormwater pose risk to human health, thereby constraining its reuse potential. Based on the hypothesis that stormwater quality is primarily influenced by anthropogenic activities and traffic congestion, the primary focus of the research study was to analyse the impacts on human health risk from TMs and PAHs in urban stormwater and thereby develop a quantitative risk assessment model. The study found that anthropogenic activities and traffic congestion exert influence on the risk posed by TMs and PAHs in stormwater from commercial and residential areas. Motor vehicle related businesses (FVS) and traffic congestion (TC) were identified as two parameters which need to be included as independent variables to improve the model. Based on the study outcomes, approaches for mitigating the risk associated with TMs and PAHs in urban stormwater are discussed. Additionally, a roadmap is presented for the assessment and management of the risk arising from these pollutants. The study outcomes are expected to contribute to reducing the human health risk associated urban stormwater pollution and thereby enhance its reuse potential.
Collapse
Affiliation(s)
- Yukun Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| | - An Liu
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia; College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China.
| | - Prasanna Egodawatta
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| | - James McGree
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| | - Ashantha Goonetilleke
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| |
Collapse
|
29
|
Ma Y, Liu A, Egodawatta P, McGree J, Goonetilleke A. Quantitative assessment of human health risk posed by polycyclic aromatic hydrocarbons in urban road dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:895-904. [PMID: 27666473 DOI: 10.1016/j.scitotenv.2016.09.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Among the numerous pollutants present in urban road dust, polycyclic aromatic hydrocarbons (PAHs) are among the most toxic chemical pollutants and can pose cancer risk to humans. The primary aim of the study was to develop a quantitative model to assess the cancer risk from PAHs in urban road dust based on traffic and land use factors and thereby to characterise the risk posed by PAHs in fine (<150μm) and coarse (>150μm) particles. The risk posed by PAHs was quantified as incremental lifetime cancer risk (ILCR), which was modelled as a function of traffic volume and percentages of different urban land uses. The study outcomes highlighted the fact that cancer risk from PAHs in urban road dust is primarily influenced by PAHs associated with fine solids. Heavy PAHs with 5 to 6 benzene rings, especially dibenzo[a,h]anthracene (D[a]A) and benzo[a]pyrene (B[a]P) in the mixture contribute most to the risk. The quantitative model developed based on traffic and land use factors will contribute to informed decision making in relation to the management of risk posed by PAHs in urban road dust.
Collapse
Affiliation(s)
- Yukun Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia
| | - An Liu
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia; College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China.
| | - Prasanna Egodawatta
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia
| | - James McGree
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia
| | - Ashantha Goonetilleke
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane 4001, Queensland, Australia
| |
Collapse
|
30
|
Spatial Analysis of PAHs in Soils along an Urban-Suburban-Rural Gradient: scale effect, distribution patterns, diffusion and influencing factors. Sci Rep 2016; 6:37185. [PMID: 27853179 PMCID: PMC5112551 DOI: 10.1038/srep37185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/26/2016] [Indexed: 11/08/2022] Open
Abstract
Spatial statistical methods including Cokriging interpolation, Morans I analysis, and geographically weighted regression (GWR) were used for studying the spatial characteristics of polycyclic aromatic hydrocarbon (PAH) accumulation in urban, suburban, and rural soils of Beijing. The concentrations of PAHs decreased spatially as the level of urbanization decreased. Generally, PAHs in soil showed two spatial patterns on the regional scale: (1) regional baseline depositions with a radius of 16.5 km related to the level of urbanization and (2) isolated pockets of soil contaminated with PAHs were found up to around 3.5 km from industrial point sources. In the urban areas, soil PAHs showed high spatial heterogeneity on the block scale, which was probably related to vegetation cover, land use, and physical soil disturbance. The distribution of total PAHs in urban blocks was unrelated to the indicators of the intensity of anthropogenic activity, namely population density, light intensity at night, and road density, but was significantly related to the same indicators in the suburban and rural areas. The moving averages of molecular ratios suggested that PAHs in the suburban and rural soils were a mix of local emissions and diffusion from urban areas.
Collapse
|
31
|
Peng C, Cai Y, Wang T, Xiao R, Chen W. Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area. Sci Rep 2016; 6:37084. [PMID: 27845404 PMCID: PMC5109259 DOI: 10.1038/srep37084] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/20/2016] [Indexed: 11/28/2022] Open
Abstract
In this study, we proposed a Regional Probabilistic Risk Assessment (RPRA) to estimate the health risks of exposing residents to heavy metals in different environmental media and land uses. The mean and ranges of heavy metal concentrations were measured in water, sediments, soil profiles and surface soils under four land uses along the Shunde Waterway, a drinking water supply area in China. Hazard quotients (HQs) were estimated for various exposure routes and heavy metal species. Riverbank vegetable plots and private vegetable plots had 95th percentiles of total HQs greater than 3 and 1, respectively, indicating high risks of cultivation on the flooded riverbank. Vegetable uptake and leaching to groundwater were the two transfer routes of soil metals causing high health risks. Exposure risks during outdoor recreation, farming and swimming along the Shunde Waterway are theoretically safe. Arsenic and cadmium were identified as the priority pollutants that contribute the most risk among the heavy metals. Sensitivity analysis showed that the exposure route, variations in exposure parameters, mobility of heavy metals in soil, and metal concentrations all influenced the risk estimates.
Collapse
Affiliation(s)
- Chi Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People’s Republic of China
| | - Yimin Cai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People’s Republic of China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People’s Republic of China
| | - Rongbo Xiao
- Guangdong Provincial Academy of Environmental Science, Guangdong, 510045, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People’s Republic of China
| |
Collapse
|