1
|
Latif F, Iqbal R, Ambreen F, Kousar S, Ahmed T, Aziz S. Studies on bioaccumulation patterns, biochemical and genotoxic effects of copper on freshwater fish, Catla catla: an in vivo analysis. BRAZ J BIOL 2024; 84:e256905. [DOI: 10.1590/1519-6984.256905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract During present study, the copper (Cu) mediated oxidative stress was measured that induced DNA damage by concentrating in the tissues of fish, Catla catla (14.45±1.24g; 84.68±1.45mm) (Hamilton,1822). Fish fingerlings were retained in 5 groups for 14, 28, 42, 56, 70 and 84 days of the exposure period. They were treated with 2/3, 1/3, 1/4 and 1/5 (T1-T4) of 96h lethal concentration of copper. Controls were run along with all the treatments for the same durations. A significant (p < 0.05) dose and time dependent concentration of Cu was observed in the gills, liver, kidney, muscles, and brain of C. catla. Among organs, the liver showed a significantly higher concentration of Cu followed by gills, kidney, brain, and muscles. Copper accumulation in these organs caused a significant variation in the activities of enzymes viz. superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). The SOD activity varied significantly in response to the exposure time of Cu as 56 > 70 > 42 > 84 > 28 > 14 days while CAT activity exhibited an inverse relationship with the increase in Cu concentration. POD activity showed a significant rise with an increase in Cu exposure duration. Comet assay exhibited significant DNA damage in the peripheral erythrocytes of Cu exposed C. catla. Among four exposure concentrations, 2/3rd of LC50 (T1) caused significantly higher damage to the nuclei compared to control. Increased POD and SOD activity, as well as a decrease in CAT activity in response to Cu, demonstrates the involvement of a protective mechanism against reactive oxygen species (ROS), whereas increased ROS resulted in higher DNA damage. These above-mentioned molecular markers can be efficiently used for the biomonitoring of aquatic environments and conservation of edible fish fauna.
Collapse
Affiliation(s)
- F. Latif
- Bahauddin Zakariya University, Pakistan
| | - R. Iqbal
- Bahauddin Zakariya University, Pakistan
| | - F. Ambreen
- Government College Women University, Pakistan
| | - S. Kousar
- Government College Women University, Pakistan
| | - T. Ahmed
- Khwaja Fareed University of Engineering and Information Technology, Pakistan
| | - S. Aziz
- University of Agriculture, Pakistan
| |
Collapse
|
2
|
Babaei M, Tayemeh MB, Jo MS, Yu IJ, Johari SA. Trophic transfer and toxicity of silver nanoparticles along a phytoplankton-zooplankton-fish food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156807. [PMID: 35750161 DOI: 10.1016/j.scitotenv.2022.156807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the bioconcentration metrics, organ-specific distribution, and trophic consequences of silver nanoparticles along a Dunaliella salina-Artemia salina-Poecilia reticulata food chain. To this end, accumulation, tissue-specific distribution, bioconcentration and biomagnification factors, and trophic toxicity of AgNPs were quantitatively investigated along di- and tri-trophic food chains. Overall, silver accumulation increased markedly in intestine and liver tissues, carcass, and embryos of guppy fish with rising exposure concentrations and reducing trophic levels. Following trophic and waterborne exposure, AgNPs illustrated a regular tendency in following order: intestine > liver > embryos > carcass. BCF displayed values of 826, 131, and ≈ 1000 for microalgae, brine shrimp, and guppy fish, respectively. Moreover, BMF showed values <1.00 for 48-h post-hatched nauplii and guppy fish received AgNPs-exposed phytoplankton, yet >1.00 for the liver and whole body of guppy fish treated with AgNPs-exposed nauplii through algae and water, indicating that AgNPs could be biomagnified from the second to third trophic level, but not from the first to second or third levels. Furthermore, the waterborne and trophic exposure of AgNPs considerably induced oxidative stress and reproductive toxicity. Together, this study demonstrated that AgNPs could be biomagnified across trophic chain and consequently cause trophic toxicity.
Collapse
Affiliation(s)
- Morteza Babaei
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mohammad Behzadi Tayemeh
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Mi Seong Jo
- Aerosol Toxicology Research Center, HCTm, Co., Icheon, Republic of Korea.
| | - Il Je Yu
- HCT, Co. Ltd, Icheon, Republic of Korea.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| |
Collapse
|
3
|
Zhang Y, Yang Z, Ni J, Ma Y, Xiong H, Jian W. Toxicity and modulation of silver nanoparticles synthesized using abalone viscera hydrolysates on bacterial community in aquatic environment. Front Microbiol 2022; 13:968650. [PMID: 36110292 PMCID: PMC9468672 DOI: 10.3389/fmicb.2022.968650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharide decorated silver nanoparticles (AgNPs) are a new type of antibacterial agent in aquaculture, but their effects on the bacterial community structure in aquaculture water are still unknown. In this study, the primary hydrolysate from abalone (Haliotis discus hannai) viscera (AVH) was used to biosynthesize AVH-AgNPs by in situ reduction, and the crystallinity nature, size, morphology, and chemical composition were analyzed by high-resolution characterization techniques such as Ultraviolet–visible spectroscopy (UV–vis), X-rays diffraction (XRD), Transmission Electron Microscope (TEM), Dynamic light scattering (DLS), Zeta potential, inductively coupled plasma-optical emission spectrometry (ICP-OES) and Turbiscan stability index (TSI) values. Furthermore, the acute toxicity of AVH-AgNPs to zebrafish (Danio rerio) and their effects on bacterial community structure in fish culture water at low concentrations were studied. The results showed that the spherical AVH-AgNPs with an average diameter of 54.57 ± 12.96 nm had good stability, low toxicity, and good in vitro antibacterial activity. Within the experimental concentration range, all AVH-AgNPs treatments had decreased the bacterial diversity in zebrafish culture water to varying degrees. The bacteria with significantly decreased abundances were pathogenic or potential pathogenic, such as Aeromonas veronii, Flavobacterium columnare, and genera Flectobacillus and Bosea. The abundance of Haliscomenobacter sp. JS224, which might cause sludge swelling, also decreased significantly. On the other hand, the relative abundance of some bacterial taxa could remove xenobiotics (e.g., Runella defluvii and Phenylobacterium), control water eutrophication (Sediminibacterium), and reduce toxic algae proliferation (Candidatus Intestinusbacter nucleariae and Candidatus Finniella), increased significantly. Thus, the application of AVH-AgNPs in aquaculture water at low concentrations is relatively safe and has positive significance for improving the aquaculture environment. Also, AVH-AgNPs have good prospects in aquaculture.
Collapse
Affiliation(s)
- Yue Zhang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Zhuan Yang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Jing Ni
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Ying Ma
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
- *Correspondence: Ying Ma,
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Hejian Xiong,
| | - Wenjie Jian
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Wenjie Jian,
| |
Collapse
|
4
|
Xiang QQ, Yan H, Luo XW, Kang YH, Hu JM, Chen LQ. Integration of transcriptomics and metabolomics reveals damage and recovery mechanisms of fish gills in response to nanosilver exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105895. [PMID: 34147820 DOI: 10.1016/j.aquatox.2021.105895] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Toxic effects of silver nanoparticles (AgNPs) on fish gills have been widely reported but the recoverability of AgNPs-induced fish gill injuries is still unknown. In this study, combined multiomics and conventional toxicological analytical methods were used to investigate the changes in the gills of common carp responses to AgNPs (0.1 mg/L) toxicity after 24 h exposure and 7-day recovery. Conventional toxicological results showed that AgNPs exposure significantly increased silver content in gills and caused epithelial hyperplasia and lamellar fusion. After the recovery period, the silver content in fish gills significantly decreased; accompanied by the disappearance of histopathological characteristics in fish gills. Multiomics results revealed that AgNPs exposure resulted in the differential expression of 687 genes and 96 metabolites in fish gills. These differentially expressed genes (DEGs) and metabolites mainly participate in amino acid, carbohydrate, and lipid metabolisms, and are significantly enriched in the tricarboxylic acid (TCA) cycle. After the recovery period, the number of DEGs and metabolites in gills decreased to 33 and 90, respectively. Moreover, DEGs and metabolites in the TCA cycle recovered to control levels. In summary, the present study found that AgNPs-induced fish gill toxicity showed potential recoverability at molecular and phenotype levels.
Collapse
Affiliation(s)
- Qian-Qian Xiang
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, China
| | - Hui Yan
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, China
| | - Xin-Wen Luo
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, China
| | - Yu-Hang Kang
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, China
| | - Jin-Ming Hu
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, China.
| | - Li-Qiang Chen
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
Ale A, Galdopórpora JM, Mora MC, de la Torre FR, Desimone MF, Cazenave J. Mitigation of silver nanoparticle toxicity by humic acids in gills of Piaractus mesopotamicus fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31659-31669. [PMID: 33608791 DOI: 10.1007/s11356-021-12590-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most produced nanoproducts due to their unique biocide properties. The natural organic matter has an important impact on nanoparticle's dispersion as it may alter their fate and transport, as well as their bioavailability and toxicity. Therefore, this study aimed to evaluate the mitigatory effect of humic acids (HAs) on AgNP toxicity. For this purpose, we carried out an ex vivo exposure of gill of Piaractus mesopotamicus fish to 100 μg L-1 of AgNPs or AgNO3, alone and in combination with 10 mg L-1 of HAs. In parallel, a complete AgNP characterization in the media, including the presence of HAs, was provided, and the Ag+ release was measured. We analyzed Ag bioaccumulation, antioxidant enzymes activities, lipid peroxidation, antioxidant capacity against peroxyl radicals, and reduced glutathione levels in fish tissue. Our results indicated the Ag+ release from AgNPs decreased 28% when the HAs were present in the media. The Ag accumulation in gill tissue exposed to AgNPs alone was higher than the AgNO3 exposure, and sixfold higher than the treatment with the HA addition. Moreover, after both Ag forms, the catalase enzyme augmented its activity. However, those responses were mitigated when the HAs were present in the media. Then, our results suggested the mitigation by HAs under the exposure to both Ag forms, providing valuable information about the fate and behavior of this emergent pollutant.
Collapse
Affiliation(s)
- Analía Ale
- Laboratorio de Ictiología, Instituto Nacional de Limnología, UNL, CONICET, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - Juan M Galdopórpora
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), CONICET, Buenos Aires, Argentina
| | - María C Mora
- Laboratorio de Ictiología, Instituto Nacional de Limnología, UNL, CONICET, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
| | - Fernando R de la Torre
- GECAP, Departamento de Ciencias Básicas e INEDES, Universidad Nacional de Luján, CONICET, Luján, Argentina
| | - Martín F Desimone
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), CONICET, Buenos Aires, Argentina
| | - Jimena Cazenave
- Laboratorio de Ictiología, Instituto Nacional de Limnología, UNL, CONICET, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina.
- Facultad de Humanidades y Ciencias, UNL, Santa Fe, Argentina.
| |
Collapse
|
6
|
Tayemeh MB, Kalbassi MR, Paknejad H, Joo HS. Dietary nanoencapsulated quercetin homeostated transcription of redox-status orchestrating genes in zebrafish (Danio rerio) exposed to silver nanoparticles. ENVIRONMENTAL RESEARCH 2020; 185:109477. [PMID: 32276170 DOI: 10.1016/j.envres.2020.109477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The present study assessed the protective effect of chitosan-nanoencapsulated quercetin (Qu-ChiNPs) against oxidative stress caused by silver nanoparticles (AgNPs). To this end, the transcription of prime genes regulating hepatic Keap1-Nrf2 pathway as well as downstream antioxidant enzymes were monitored prior to and after oxidative stress by AgNPs. Zebrafish (Danio rerio; n = 225) was assigned into five experimental groups based on feeding with diets supplemented with different additives as follows: negative and positive control groups, without additive; ChiNPs, 400 mg nanochitosan per kg diet; Quercetin, 400 mg free quercetin per kg diet; and Qu-ChiNPs, 400 mg Qu-ChiNPs per kg diet. At the end of the feeding trial (40 days), the experimental groups, except the negative control, were exposed to sublethal concentration of AgNPs (0.15 mg L-1) for 96h. Before exposure to AgNPs, free quercetin-treated diet significantly upregulated Keap1, Nrf2, Cat, SOD, GPx, and GST genes in the liver tissue when compared with the control diet, whereas Qu-Chi.NPs downregulated their transcription to the lowest levels. After exposure to AgNPs, all genes exhibited different responses in the AgNPs-exposed groups. The highest transcription of Nrf2, Cat, SOD, GPx, and GST was observed in the positive group, with being upregulated about 8, 10, 8, 8, and 7 times, respectively, when compared to the respective ones in the negative control. However, Keap1 showed a reverse response with being transcripted 12 times lower. The quercetin treatments, especially Qu-Chi.NPs, significantly reduced the transcription of Nrf2, Cat, SOD, GPx, and GST genes, yet enhanced Keap1 expression. Qu-Chi.NPs reduced the expression of Nrf2, SOD, Cat, GPx, and GST about 11, 10, 15, 10, and 10 times, respectively, yet increased that of Keap1 about 12 times. Taken together, nanoencapsulation can improve the antioxidant efficacy of quercetin against AgNPs toxicity and might reduce involvement of the cellular antioxidant system through tuning redox status. More broadly, it would be interesting to assess the effects of Qu-Chi.NPs against other metallic and organic oxidative stressors or pollutants.
Collapse
Affiliation(s)
| | | | - Hamed Paknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Hamid Salari Joo
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran.
| |
Collapse
|
7
|
Banan A, Kalbassi MR, Bahmani M, Sotoudeh E, Johari SA, Ali JM, Kolok AS. Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10658-10671. [PMID: 31939027 DOI: 10.1007/s11356-020-07687-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The objective of this study was to evaluate the effect of salinity on the acute and sub-chronic toxicity of silver nanoparticles (AgNPs) in Persian sturgeon. This was evaluated by exposing Persian sturgeon to AgNPs in three salinities: freshwater (F: 0.4 ppt), brackish water 1 (B1: 6 ± 0.2 ppt), and brackish water 2 (B2: 12 ± 0.3 ppt) for 14 days, which was followed by analysis of alterations in plasma chemistry and histopathology of the gills, liver, and intestine. Values of 96-h median lethal concentration (LC50) were calculated as 0.89 mg/L in F, 2.07 mg/L in B1, and 1.59 mg/L in B2. After sub-chronic exposures, plasma cortisol, glucose, potassium, and sodium levels illustrated no significant changes within each salinity level. In F, 0.2 mg/L AgNP caused the highest levels of alkaline phosphatase and osmolality levels. In B1, 0.6 mg/L AgNP induced the highest level of alkaline phosphatase and elevated plasma osmolality was recorded in all AgNP-exposed treatments in comparison with the controls. The B2 treatment combined with 0.6 mg/L AgNP significantly reduced plasma chloride level. The results showed elevating salinity significantly increased osmolality, chloride, sodium, and potassium levels of plasma in the fish exposed to AgNPs. The abundance of the tissue lesions was AgNP concentration-dependent, where the highest number of damages was observed in the gills, followed by liver and intestine, respectively. The histopathological study also confirmed alterations such as degeneration of lamella, lifting of lamellar epithelium, hepatic vacuolation, pyknotic nuclei, and cellular infiltration of the lamina propria elicited by AgNPs in the gills, liver, and intestine of Persian sturgeon. In conclusion, the stability of AgNPs in aquatic environments can be regulated by changing the salinity, noting that AgNPs are more stable in low salinity waters.
Collapse
Affiliation(s)
- Ashkan Banan
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Lorestan University, 68151, Khorramabad, Iran.
| | - Mohammad Reza Kalbassi
- Department of Aquaculture, School of Marine Sciences, Tarbiat Modares University, 46414, Tehran, Iran.
| | - Mahmoud Bahmani
- Iranian Fisheries Science and Research Institute, 15745, Tehran, Iran
| | - Ebrahim Sotoudeh
- Department of Fisheries, Faculty of Marine Science and Technology, Persian Gulf University, 75169, Bushehr, Iran
| | - Seyed Ali Johari
- Fisheries Department, Natural Resources Faculty, University of Kurdistan, 66177, Sanandaj, Iran
| | - Jonathan M Ali
- Permitting and Environmental Health Bureau, New Hampshire Department of Environmental Services, 03302, Concord, USA
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, 83844, Moscow, USA
| |
Collapse
|
8
|
Kini S, Badekila AK, Barh D, Sharma A. Cellular and Organismal Toxicity of Nanoparticles and Its Associated Health Concerns. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
9
|
Campbell LA, Gormley PT, Bennett JC, Murimboh JD, MacCormack TJ. Functionalized silver nanoparticles depress aerobic metabolism in the absence of overt toxicity in brackish water killifish, Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105221. [PMID: 31207537 DOI: 10.1016/j.aquatox.2019.105221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Engineered nanomaterials (ENMs) tend to precipitate in saline waters so the majority of aquatic toxicity studies have focused on freshwaters, where bioavailability is presumed to be higher. Recent studies have illustrated that some ENM formulations are bioavailable and bioactive in salt water and that their effects are more pronounced at the physiological than biochemical level. These findings raise concerns regarding the effects of ENMs on marine organisms. Therefore, our goal was to characterize the effects of polyvinylpyrolidone-functionalized silver ENMs (nAg) on aerobic performance in the killifish (Fundulus heteroclitus), a common euryhaline teleost. Fish were exposed to 80 μg L-1 of 5 nm nAg for 48 h in brackish water (12 ppt) and routine (ṀO2min) and maximum (ṀO2max) rates of oxygen consumption were quantified. Silver dissolution was minimal and nAg remained well dispersed in brackish water, with a hydrodynamic diameter of 21.0 nm, compared to 19.3 in freshwater. Both ṀO2min and ṀO2max were significantly lower (by 53 and 30%, respectively) in killifish exposed to nAg and a reduction in ṀO2 variability suggested spontaneous activity was suppressed. Neither gill Na+/K+-ATPase activity, nor various other biochemical markers were affected by nAg exposure. The results illustrate that a common ENM formulation is bioactive in salt water and, as in previous studies on functionalized copper ENMs, that effects are more pronounced at the whole animal than the biochemical level.
Collapse
Affiliation(s)
- L A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - P T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J D Murimboh
- Department Chemistry, Acadia University, Wolfville, NS, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
10
|
Shobana C, Rangasamy B, Poopal RK, Renuka S, Ramesh M. Green synthesis of silver nanoparticles using Piper nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11812-11832. [PMID: 29446018 DOI: 10.1007/s11356-018-1454-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present investigation is to assess the sublethal toxicity of biologically synthesized silver nanoparticles (Ag NPs) in Indian major carp Labeo rohita. Ag NPs used in the study were synthesized by using AgNO3 with aqueous leaf extract of Piper nigrum. Median lethal concentration (LC50) of synthesized Ag NPs was determined for 96 h (25 μg/L); 2.5 μg/L (1/10th LC50) and 5 μg/L (1/5th LC50) were taken as sublethal concentrations to evaluate the toxicity for 35 days. The results of the TEM, SEM, and EDX analyses revealed that Ag NPs were considerably accumulated in the gill, liver, and kidney of fish at both concentrations (2.5 and 5 μg/L). Consequently, the activity of the antioxidant enzymes, SOD and CAT, was significantly (P < 0.05) decreased in the gill, liver, and kidney when compared to the control group during the study period. However, lipid peroxidase (LPO) activity in the gill, liver, and kidney was significantly (P < 0.05) increased, and the result concluded a possible sign of free radical-induced oxidative stress in Ag NP-exposed fish than the sham-exposed individuals. The histopathological study also confirmed the alterations such as degeneration of lamella, lifting of lamellar epithelium, hepatic necrosis, pyknotic nuclei, increased intracellular space, and shrinkage of glomerulus elicited by Ag NPs in the gill, liver, and kidney of Labeo rohita with two different concentrations. The findings of the present study revealed that green synthesis of Ag NPs from Piper nigrum at sublethal concentrations leads to accumulation of Ag, oxidative stress, and histopathological alterations in the target organs of the fish, Labeo rohita.
Collapse
Affiliation(s)
- Chellappan Shobana
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Rama Krishnan Poopal
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
- Environmental Toxicology and Toxicogenomics Laboratory, Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Sivashankar Renuka
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|