1
|
Ranasinghe N, Huang YR, Wu WH, Lee SS, Ho CW, Lee TH, Hsiao KY. Environmental salinity differentiates responses to acute hypothermal stress in milkfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176643. [PMID: 39368505 DOI: 10.1016/j.scitotenv.2024.176643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Global warming has led to an increase in the frequency of cold extremes, causing significant economic losses in aquaculture, particularly in subtropical regions. Milkfish (Chanos chanos) holds significant importance in aquaculture within subtropical Asian regions. Despite milkfish's ability to tolerate varying salinity levels, frequent cold snaps associated with extreme weather events have caused substantial mortality. Understanding the molecular and cellular mechanisms underlying cold stress-induced cell death is crucial for developing effective strategies to mitigate such losses. Given the pivotal role of the liver in fish physiology, we established a primary milkfish hepatocyte culture demonstrating robust proliferation and expressing a unique marker leptin A. The molecular characterization of cold-treated hepatocytes at 18 °C showed that the mRNA levels of superoxide dismutase (sod1) and catalase (cat), responsible for neutralizing reactive oxygen species (ROS), were downregulated in freshwater (FW) conditions, while cat expression was upregulated in seawater (SW) conditions. This differential modulation of ROS signaling implies distinct responses in FW and SW, leading to higher ROS levels and increased cell death in FW condition compared to those in SW. Transcriptomic analysis of liver tissues from milkfish reared in FW or SW, with or without cold stress, revealed distinct gene expression patterns. Although cold stress affected a common set of genes in both FW and SW conditions, SW-specific cold responsive genes are associated with metabolic pathways while FW-specific genes were linked to cell proliferation pathways. Notably, gene set enrichment analysis highlighted the downregulation of cytochrome-related genes, a major source of ROS production, in response to cold stress in SW. In summary, our study unveils an insightful mechanism whereby the salinity of SW counteracts cold stress-induced ROS signaling, emphasizing the feasibility and practicality of preconditioning fish in SW as a preventive measure against cold stress-induced mortality.
Collapse
Affiliation(s)
- Naveen Ranasinghe
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Ren Huang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Wan-Hua Wu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shi-Shien Lee
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 700, Taiwan
| | - Chuan-Wen Ho
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Kuei-Yang Hsiao
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Bencheikh N, Elbouzidi A, Baraich A, Bouhrim M, Azeroual A, Addi M, Mothana RA, Al-Yousef HM, Eto B, Elachouri M. Ethnobotanical survey and scientific validation of liver-healing plants in northeastern Morocco. Front Pharmacol 2024; 15:1414190. [PMID: 39318777 PMCID: PMC11420034 DOI: 10.3389/fphar.2024.1414190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Liver diseases represent a significant global health challenge, with primary causes including excessive alcohol consumption, infections, chemotherapy, and autoimmune disorders. Medicinal plants, due to their natural bioactive compounds, hold promise for developing effective treatments and preventive measures against liver ailments. This study aimed to document the use of herbal remedies in northeastern Morocco for liver diseases and correlate these uses with scientific evidence through a bibliometric analysis. Methods An ethnobotanical survey was conducted in remote communities of northeastern Morocco from October 2020 to January 2022. A total of 189 informants were interviewed using semi-structured questionnaires to gather information on local medicinal plants used for liver ailments. The data were analyzed using four ethnobotanical quantitative indices: use value (UV), familial use value (FUV), informant consensus factor (ICF), and fidelity level (FL). Additionally, a bibliometric analysis was performed to evaluate the scientific support for the ethnopharmacological uses documented. Results The survey identified 45 plant species from 26 different families used in the treatment of liver diseases. The most frequently utilized species were Cuminum cyminum L. (UV = 0.1065), Allium sativum L. (UV = 0.1015), Salvia officinalis L. (UV = 0.0761), Asparagus officinalis L. (UV = 0.0558), and Ziziphus lotus (L.) Lam. (UV = 0.0457). The Apiaceae family showed the highest familial use value (FUV = 0.1066), followed by Alliaceae (FUV = 0.1015). Liver congestion had the highest informant consensus factor (ICF = 0.83), followed by hepatic colic (ICF = 0.80). Bibliometric analysis revealed that 61% of the plants identified had documented pharmacological effects related to liver health. Discussion The study demonstrates that traditional knowledge in northeastern Morocco encompasses a rich diversity of medicinal plants used to treat liver diseases. The high ICF values indicate a strong consensus among informants on the efficacy of these remedies. The correlation between ethnopharmacological use and scientific validation for a significant portion of these plants suggests their potential as reliable therapeutic agents for liver conditions. However, further scientific investigations are necessary to confirm their efficacy and safety in clinical settings. This research contributes valuable information for future studies on the therapeutic potential of these plants. Conclusion This ethnobotanical survey provides a comprehensive database of medicinal plants used in northeastern Morocco for liver diseases. The findings highlight the potential of these plants in developing novel treatments for hepatic conditions, although further research is essential to substantiate their therapeutic claims.
Collapse
Affiliation(s)
- Noureddine Bencheikh
- Agri-Food and Health Laboratory (AFHL), École Supérieure Normale, Hassan First University, Settat, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdellah Baraich
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, University Sultan Moulay Slimane Faculty of Sciences and Technology Beni Mellal, Meknes, Morocco
| | - Abdelhamid Azeroual
- Agri-Food and Health Laboratory (AFHL), École Supérieure Normale, Hassan First University, Settat, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bruno Eto
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, Lille, France
| | - Mostafa Elachouri
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| |
Collapse
|
3
|
Zhao Y, Li S, Lessing DJ, Chu W. The attenuating effects of synbiotic containing Cetobacterium somerae and Astragalus polysaccharide against trichlorfon-induced hepatotoxicity in crucian carp (Carassius carassius). JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132621. [PMID: 37748306 DOI: 10.1016/j.jhazmat.2023.132621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
This study aimed to investigate the hepatotoxic effects of trichlorfon on crucian carp (Carassius carassius) and the attenuating effects of a synbiotic combination of Cetobacterium somerae and Astragalus polysaccharide on hepatotoxicity. Results showed that trichlorfon did indeed induce hepatotoxicity in crucian carp and the synbiotic reversed this hepatotoxicity caused by trichlorfon. The synbiotic increased TC, TG, LDL-C, ALT and AST levels and decreased serum HDL-C levels caused by trichlorfon. H&E and Oil Red O staining demonstrated that the synbiotic ameliorated liver damage and abnormal lipid accumulation. The activity of antioxidant enzymes (T-SOD, CAT, GSH-Px) in the liver was also enhanced by the administration of the synbiotic. The supplementation of the synbiotic also increased the level of short-chain fatty acids in the intestine. In addition, the synbiotic balanced the gut microbial composition, leading to a reduction in the abundance of potentially pathogenic bacteria and an increase in the abundance of bacteria producing short-chain fatty acids. In conclusion, these findings indicate that trichlorfon can induce hepatotoxicity in crucian carp, whereas synbiotics can regulate gut microbiota, promote the growth of beneficial bacteria and increase the production of SCFAs, and alleviate trichlorfon-induced liver injury.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shipo Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Duncan James Lessing
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Cao L, Yin G, Du J, Jia R, Gao J, Shao N, Li Q, Zhu H, Zheng Y, Nie Z, Ding W, Xu G. Salvianolic Acid B Regulates Oxidative Stress, Autophagy and Apoptosis against Cyclophosphamide-Induced Hepatic Injury in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2023; 13:ani13030341. [PMID: 36766230 PMCID: PMC9913662 DOI: 10.3390/ani13030341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Salvianolic acid B (Sal B), as one of the main water-soluble components of Salvia miltiorrhizae, has significant pharmacological activities, including antioxidant, free radical elimination and biofilm protection actions. However, the protective effect of Sal B on Nile tilapia and the underlying mechanism are rarely reported. Therefore, the aim of this study was to evaluate the effects of Sal B on antioxidant stress, apoptosis and autophagy in Nile tilapia liver. In this experiment, Nile tilapia were fed diets containing sal B (0.25, 0.50 and 0.75 g·kg-1) for 60 days, and then the oxidative hepatic injury of the tilapia was induced via intrapleural injection of 50 g·kg-1 cyclophosphamide (CTX) three times. After the final exposure to CTX, the Nile tilapia were weighed and blood and liver samples were collected for the detection of growth and biochemical indicators, pathological observations and TUNEL detection, as well as the determination of mRNA expression levels. The results showed that after the CTX treatment, the liver was severely damaged, the antioxidant capacity of the Nile tilapia was significantly decreased and the hepatocyte autophagy and apoptosis levels were significantly increased. Meanwhile, dietary Sal B can not only significantly improve the growth performance of tilapia and effectively reduce CTX-induced liver morphological lesions, but can also alleviate CTX-induced hepatocyte autophagy and apoptosis. In addition, Sal B also significantly regulated the expression of genes related to antioxidative stress, autophagy and apoptosis pathways. This suggested that the hepatoprotective effect of Sal B may be achieved through various pathways, including scavenging free radicals and inhibiting hepatocyte apoptosis and autophagy.
Collapse
|
5
|
Mobasher MA, Ahmed EI, Hakami NY, Germoush MO, Awad NS, Khodeer DM. The Combined Effect of Licorice Extract and Bone Marrow Mesenchymal Stem Cells on Cisplatin-Induced Hepatocellular Damage in Rats. Metabolites 2023; 13:metabo13010094. [PMID: 36677019 PMCID: PMC9861302 DOI: 10.3390/metabo13010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Drug-induced liver damage is a life-threatening disorder, and one major form of it is the hepatotoxicity induced by the drug cisplatin. In folk medicine, Licorice (Glycyrrhiza glabra (is used for detoxification and is believed to be a potent antioxidant. Currently, the magically self-renewable potential of bone marrow mesenchymal stem cells (BM-MSCs) has prompted us to explore their hepatoregenerative capability. The impact of G. glabra extract (GGE) and BM-MSCs alone and, in combination, on protecting against hepatotoxicity was tested on cisplatin-induced liver injury in rats. Hepatic damage, as revealed by liver histopathology and increased levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and malondialdehyde (MDA), was elevated in rats by received 7 mg/kg of cisplatin intraperitoneally. The combination of GGE and BM-MSCs returned the enzyme levels to near the normal range. It also improved levels of liver superoxide dismutase (SOD) and glutathione (GSH) and reduced MDA levels. Additionally, it was found that when GGE and BM-MSCs were used together, they significantly downregulated caspase9 (Casp9), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and interleukin-1β (IL-1β), which are involved in severe proinflammatory and apoptotic signaling cascades in the liver. Moreover, combining GGE and BM-MSCs led to the normal result of hepatocytes in several examined liver histological sections. Therefore, our findings suggest that GGE may have protective effects against oxidative liver damage and the promising regenerative potential of BM-MSCs.
Collapse
Affiliation(s)
- Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (M.A.M.); (D.M.K.)
| | - Eman Ibrahim Ahmed
- Pharmacology and Therapeutics Department, College of Medicine, Jouf University, Sakaka 72346, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Nora Y. Hakami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nabil S Awad
- Department of Genetics, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt
- College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (M.A.M.); (D.M.K.)
| |
Collapse
|
6
|
Cao L, Du J, Nie Z, Jia R, Yin G, Xu P, Ding W, Xu G. Alteration of endoplasmic reticulum stress, inflammation and anti-oxidative status in cyclophosphamide-damaged liver of Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109271. [PMID: 35033631 DOI: 10.1016/j.cbpc.2022.109271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 12/01/2022]
Abstract
Cyclophosphamide (CTX) is a common immunosuppressant, and it can also results in liver injury in human and animals. In this study, the CTX-induced liver injury mechanism in tilapia (Oreochromis niloticus) was investigated by studying alteration of endoplasmic reticulum stress (ERS), inflammation and anti-oxidative status. Tilapia was intraperitoneally injected CTX at the doses of 10, 25, 50, 75 and 100 mg·kg-1, and the blood and liver tissues were collected. The results showed that CTX administration had a significant cytotoxicity on hepatocytes, and increased the liver index. The extensive vacuolar degeneration, unclear cell outline and other histological lesions were also observed. CTX administration markedly decreased the antioxidant ability and enhanced lipid peroxidation in liver. Furthermore, qPCR data showed that CTX administration at 50-100 mg·kg-1 up-regulated gene expressions of cyp1a, cyp2k1 and cyp3a, and inflammatory response-related genes including rel, relb, nfκb1, il-6, il-8, il-10 and tnf-α. CTX significantly promoted the mRNA levels of ERS-related genes (eif2α, crt, parp1, grp78, ire1, xbp1s and chop) in a dose dependent manner. Additionally, CTX injection at 75-100 mg·kg-1 could down-regulate gene expressions of anti-oxidative status including nrf2, ucp2, ho-1, gpx3, gstα and cat. Overall results suggested CTX injection induced liver damage which was related to the cytotoxic effect on hepatocytes, decrease of antioxidant capacity, inflammatory response and ERS.
Collapse
Affiliation(s)
- Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Weidong Ding
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
7
|
Darvishi M, Shamsaie Mehrgan M, Khajehrahimi AE. Effect of Licorice (Glycyrrhiza glabra) Extract as an Immunostimulant on Serum and Skin Mucus Immune Parameters, Transcriptomic Responses of Immune-Related Gene, and Disease Resistance Against Yersinia ruckeri in Rainbow Trout (Oncorhynchus mykiss). Front Vet Sci 2022; 9:811684. [PMID: 35280148 PMCID: PMC8904569 DOI: 10.3389/fvets.2022.811684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
This study was designed to appraise the effect of licorice herbal supplement on the immune status of rainbow trout fingerlings. Accordingly, five diets were formulated with different levels of licorice extract (LE) including 0 (control), 0.5 g kg−1 (LE0.5), 1 g kg−1 (LE1), 2 g kg−1 (LE2), and 3 g kg−1 (LE3). The fingerlings (10.0 ± 0.1 g initial mean weight) received the diets in triplicates (30 fish in each replicate) for 56 days. The results showed that the white blood cells and their differential number (lymphocytes and monocytes) were remarkably increased by LE2 supplementation (P < 0.05). The oral administration of LE2 significantly increased the levels of serum immunoglobulin (Ig), lysozyme activity, and complement components (C3 and C4) compared with others. Meanwhile, the serum bactericidal activity against Yersinia ruckeri in LE2 and LE3 treatments was significantly higher than others except for LE1 (P < 0.05). In addition, serum alternative complement activity significantly improved in all treated groups except LE0.5 compared with the control group (P < 0.05). In terms of skin mucosal immunity, the fish fed with LE2 and LE3 diets exhibited notably higher lysozyme activity, alkaline phosphatase activity, and Ig value than other groups (P < 0.05). The highest skin mucus bactericidal activity against Y. ruckeri was obtained in LE2 treatment (P < 0.05). In addition, dietary LE2 significantly increased the relative expression of immune-associated genes including tumor necrosis factor-α, interleukin-1β, interleukin-8, and IgM and the former treatments showed higher values than the control group. The cumulative mortality of fish against Y. ruckeri infection was notably reduced from 53.6% in the control group to 29.0% in LE3 treatment. Overall, the dietary administration of LE at 2 g kg−1 had the best effects on immunocompetence in rainbow trout.
Collapse
Affiliation(s)
- Mostafa Darvishi
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Shamsaie Mehrgan
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
- *Correspondence: Mehdi Shamsaie Mehrgan ; orcid.org/0000-0002-2445-853X
| | - Amir Eghbal Khajehrahimi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Mubarik F, Noreen S, Farooq F, Khan M, Khan AU, Pane YS. Medicinal Uses of Licorice (Glycyrrhiza glabra L.): A Comprehensive Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Innumerable plants have been used widely as integral medicinal sources since the start of human civilization. The demand for herbal medicines is constantly increasing with time overtime. Licorice
(
Glycyrrhiza glabra
family Leguminosae) is one of the most used herbal plants in foods, in medicinal forms, and substantially researched on a worldwide scale. It was used as traditional and complementary medicine against innumerable ailments including allergies, liver toxicity, gastric ulcer, lung diseases, skin disorders, oral health problems including tooth decay, and inflammation. The constituents of licorice include various essential oils, sugars, inorganic salts, resins, amino acids, and nucleic acids. Biological activity has been observed to be portrayed by active compounds of licorice including triterpene, flavonoids, and saponins. In recent years, licorice has been widely researched to discover its benefits, constituents, and its mechanism of action. The review summarizes the therapeutic and pharmacological benefits of licorice and its uses in different health-related conditions along with its toxicity and maximum levels of licorice consumption.
Collapse
|
9
|
Heidari S, Mehri S, Hosseinzadeh H. The genus Glycyrrhiza (Fabaceae family) and its active constituents as protective agents against natural or chemical toxicities. Phytother Res 2021; 35:6552-6571. [PMID: 34414608 DOI: 10.1002/ptr.7238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Licorice is the dried roots and rhizomes of various species of the genus Glycyrrhiza (Fabaceae) that have been used in folk medicine from ancient times. Many important research projects have established several beneficial effects for this medicinal herb, including antiinflammatory, antimicrobial, antiviral, antiprotozoal, antioxidant, antihyperglycemic, antihyperlipidemic, hepatoprotective, and neuroprotective. Licorice contains important bioactive components, such as glycyrrhizin (glycyrrhizic, glycyrrhizinic acid), liquiritigenin, liquiritin, and glycyrrhetinic acid. The protective effects of licorice and its main chemical components against toxins and toxicants in several organs including the brain, heart, liver, kidney, and lung have been shown. In this comprehensive review article, the protective effects of these constituents against natural, industrial, environmental, and chemical toxicities with attention on the cellular and molecular mechanism are introduced. Also, it has been revealed that this plant and its main compounds can inhibit the toxicity of different toxins by the antioxidant, antiinflammatory, and anti-apoptotic properties as well as the modulation of Inhibitor of kappaB kinase (IKK), Extracellular signal-regulated protein kinase1/2 (ERK1/2), p38, inducible nitric oxide synthase, and nuclear factor-κB (NF-κB) signaling pathways. More high-quality investigations in both experimental and clinical studies need to firmly establish the efficacy of licorice and its main constituents against toxic agents.
Collapse
Affiliation(s)
- Somaye Heidari
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Ruangchuay S, Wang QQ, Wang LY, Lin J, Wang YC, Zhong GH, Maneenoon K, Huang ZB, Chusri S. Antioxidant and antiaging effect of traditional Thai rejuvenation medicines in Caenorhabditis elegans. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:362-373. [PMID: 33789838 DOI: 10.1016/j.joim.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/19/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study explored the rejuvenation mechanisms of Thai polyherbal medicines using different approaches, including in vitro methods, as well as a well-defined nematode model, Caenorhabditis elegans. METHODS THP-R-SR012 decoction was selected from 23 polyherbal medicines, based on metal-chelating and chain-breaking antioxidant capacities. The influences of this extract on the survival and some stress biomarkers of C. elegans under paraquat-induced oxidative stress were evaluated. Furthermore, lifespan analysis and levels of lipofuscin accumulation were examined in senescent nematodes. The phytochemical profile of THP-R-SR012 was analyzed. RESULTS Supplementation with THP-R-SR012 decoction significantly increased the mean lifespan and reduced the oxidative damage to C. elegans under oxidative stress conditions. Further, THP-R-SR012 supplementation slightly influenced the lifespan and the level of lipofuscin accumulation during adulthood. Antioxidant-related phytochemical constituents of THP-R-SR012 decoction were rutin, naringenin, 3,4-dihydroxybenzoic acid, gallic acid, glycyrrhizic acid, demethoxycurcumin and 18α-glycyrrhetinic acid. CONCLUSION The antioxidant potential of THP-R-SR012 was due to its scavenging properties, its enhancement of antioxidant-related enzyme activities, and the presence of the antioxidant-related compound. These results support the traditional use of THP-R-SR012 decoction as a tonic for nourishing and strengthening the whole body.
Collapse
Affiliation(s)
- Sutticha Ruangchuay
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China
| | - Qiang-Qiang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China
| | - Liang-Yi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Jing Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Yong-Chao Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Guo-Huan Zhong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Katesarin Maneenoon
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ze-Bo Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong Province, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand.
| |
Collapse
|
11
|
Angela C, Wang W, Lyu H, Zhou Y, Huang X. The effect of dietary supplementation of Astragalus membranaceus and Bupleurum chinense on the growth performance, immune-related enzyme activities and genes expression in white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 107:379-384. [PMID: 33059009 DOI: 10.1016/j.fsi.2020.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
A 56-day feeding trial was conducted to investigate the effects of dietary supplementation of Astragalus membranaceus or/and Bupleurum chinense on the growth performance, immune enzymes, and related gene expression of Pacific white shrimp (Litopenaeus vanammei). Six experimental diets were formulated and supplemented with two levels (0.25% and 0.5%) of each herb and their combination. At the end of the trial, the specific growth rate and feed conversion ratio of shrimp were significantly (P < 0.05) improved by herbal diets. Besides, the activities of immune-related enzymes such as superoxide dismutase (SOD), alkaline phosphatase (AKP), and lysozyme in serum and hepatopancreas were significantly (P < 0.05) elevated in shrimp fed A. membranaceus or/and B. chinense. The high expression levels of immune deficiency (IMD), lysozyme, and Toll-like receptor mRNA directly or indirectly reflected the activation effect of innate immune in shrimp by dietary A. membranaceus or/and B. chinense. However, no significant difference (P > 0.05) among the herbal incorporated treatments was detected on the growth performance and immune response. In conclusion, the results suggest that A. membranaceus and B. chinense could be used as a beneficial feed additives and alternatives to antibiotics for white shrimp aquaculture.
Collapse
Affiliation(s)
- Cornel Angela
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Weilong Wang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Hongyu Lyu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Yue Zhou
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China.
| |
Collapse
|
12
|
Sun Z, Chen L, Liu Q, Mai K, Xu M, Zhou Y, Su N, Ye C. Effects of dietary Senecio scandens buch-ham extracts on growth performance, plasma biochemical, histology and the expression of immune-related genes in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2020; 98:681-690. [PMID: 31698071 DOI: 10.1016/j.fsi.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The study mainly aimed at the effects of dietary Senecio scandens buch-ham extract (SSBE) on the growth performance, body composition, plasma biochemical index, intestinal and liver histology and the expression of antioxidant, apoptosis and inflammatory related genes in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Basal diets supplemented with SSBE (10:1) 0%, 0.05%, 0.1%, 0.2% and 0.4% were fed hybrid grouper for 8 weeks. The results showed that WGR and SGR were significantly increased in the week 2 and week 4 in Diet 0.05% group (P < 0.05). The total protein, globulin and albumin significantly increased whereas alanine aminotransferase, triglyceride and alkaline phosphate in the plasma were significantly decreased in Diet 0.1% group (P < 0.05). The villi length, width, muscle thickness and the cross-sectional area of intestine were improved in Diet 0.05% and Diet 0.1% group. The expression levels of PPAR-α and CPT-1 in the liver of hybrid grouper were significantly increased following the supplementation of SSBE (P < 0.05). The expression levels of antioxidant related genes (CAT, GPX, GR and Keap1) and anti-inflammatory factor (IL-10) in liver, head kidney and spleen of hybrid grouper decreased significantly (P < 0.05). In addition, diets supplemented with 0.05%-0.1% SSBE had a good liver-protecting effect, but it would have a detrimental effect on hepatocytes when the content exceeds 0.2%. The above results indicated that the suitable additive amount of SSBE in hybrid grouper feed was 0.05%-0.1%.
Collapse
Affiliation(s)
- Zhenzhu Sun
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Leling Chen
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qingying Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Kangsen Mai
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Minglei Xu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuanyuan Zhou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ningning Su
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chaoxia Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
13
|
Wang Q, Shen J, Yan Z, Xiang X, Mu R, Zhu P, Yao Y, Zhu F, Chen K, Chi S, Zhang L, Yu Y, Ai T, Xu Z, Wang Q. Dietary Glycyrrhiza uralensis extracts supplementation elevated growth performance, immune responses and disease resistance against Flavobacterium columnare in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2020; 97:153-164. [PMID: 31857222 DOI: 10.1016/j.fsi.2019.12.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/11/2019] [Accepted: 12/14/2019] [Indexed: 05/28/2023]
Abstract
The present study was conducted to evaluate the influence of Glycyrrhiza uralensis (G. uralensis) extracts on the growth performance, histological structure, immune response and disease resistance against Flavobacterium columnare (F. columnare) of yellow catfish. Fish were fed with two different diets, i.e., basal diet as control group (CG) and diet containing G. uralensis extracts as experimental group (GG). After 60 days feeding, growth performance of GG fish was significantly improved, with increased WG and SGR but decreased FCR compared to CG fish. Fish were then challenged with F. columnare for two times, as fish showed rare mortality after the first infection. GG fish showed significantly lower cumulative mortality during F. cloumnare infection than CG fish after 21 days infection (dpi). Epithelial cell exfoliation and obvious cellular vacuolization in the skin and congestion of gill lamellae were detected in CG fish, while GG fish showed increased width of epidermis and mucous cells number in skin, and increased length of secondary lamina in gill. GG fish also exhibited higher enzyme activity of lysozyme in serum and mRNA expression of lysozyme in head kidney than CG fish at most time points post infection. G. uralensis extracts supplementation also induced earlier serum anti-oxidative responses, with increased superoxide dismutase activity and total antioxidant capacity in GG fish at 1 dpi. Compared to CG fish, GG fish showed increased expression level of genes involved in TLRs-NFκB signaling (TLR2, TLR3, TLR5, TLR9, Myd88, and p65NFκB), resulting in higher expression levels of pro-inflammatory cytokines (IL-1β and IL-8) in the head kidney post infection. However, these genes showed deviation in the gill of GG fish, which increased at some time points but decreased at other time points. Moreover, G. uralensis extracts supplementation also significantly unregulated the expression levels of IgM and IgD in head kidney, and the expression levels of IgM in the gill of yellow catfish, suggesting the elevated humoral immune response during F. columnare infection. All these results contributed to the elevated disease resistance ability against F. cloumnare infection of yellow catfish after dietary G. uralensis extracts supplementation.
Collapse
Affiliation(s)
- Qi Wang
- Hubei Vocational College of Bio-Technology, Wuhan, Hubei, 430070, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinyu Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laborotary of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Zuting Yan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiyuan Xiang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pengfei Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongtie Yao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fangzheng Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kaiwei Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuyan Chi
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liqiang Zhang
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Yunzhen Yu
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Taoshan Ai
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
14
|
Zou C, Xu M, Chen L, Liu Q, Zhou Y, Sun Z, Ye H, Su N, Ye C, Wang A. Xiaochaihu Decoction reduces hepatic steatosis and improves D-GalN/LPS-induced liver injury in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2019; 91:293-305. [PMID: 31100441 DOI: 10.1016/j.fsi.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Excessive lipid accumulation and chemical abuse can induce fatty liver diseases in fish, but the underlying mechanism and therapies are unknown. The present study aims to evaluate the effects of Xiaochaihu Decoction (XCHD) on the growth performance, lipid metabolism and antioxidant function of hybrid grouper in vitro and in vivo, and provide evidence as to whether it can be potentially used as a medicine for liver diseases in aquaculture. In vitro, steatosis model of hybrid grouper primary hepatocytes were incubated for 48 h in control or lipid emulsion (LE)-containing medium with or without 24 h post-treatment with XCHD. XCHD treatment reversed the LE-induced intracellular lipid accumulation, cell viability and hepatocytes morphological structure. In vivo, a total of 300 hybrid grouper with an average initial weight of 25.43 ± 0.18 g were fed diets containing five graded levels of XCHD at 150-1200 mg/kg diet for 8 weeks. After that, a challenge trial was conducted by injection of D-GalN/LPS to induce liver injury. As a result, dietary supplementation with 150-300 mg/kg XCHD diets can significant improve growth performance and feed utilization (P < 0.05). Dietary XCHD down-regulated the expression of lipogenic-related genes (G6PD, DGAT2 and ME1) and up-regulated lipolysis-related genes (ATGL, PPARα and LPL) expression in the liver of hybrid grouper. Livers challenged with D-GalN/LPS exhibited extensive areas of vacuolization with the disappearance of nuclei and the loss of hepatic architecture. These pathological alterations were ameliorated by XCHD treatment. XCHD significantly down-regulated the D-GalN/LPS induced apoptosis-related genes caspase-3, caspase-9 and p53 mRNA expression and up-regulated the antioxidant-related genes CAT and MnSOD mRNA expression in dose dependent manner, respectively. XCHD potently reduced hepatic lipid accumulation and enhanced antioxidant capability in hybrid grouper and may be a potential fish-feed additive to prevent fatty liver diseases onset and progression.
Collapse
Affiliation(s)
- Cuiyun Zou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Minglei Xu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Leling Chen
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qingying Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuanyuan Zhou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhenzhu Sun
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Huaqun Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Ningning Su
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chaoxia Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Anli Wang
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
15
|
Conidi C, Fucà L, Drioli E, Cassano A. A Membrane-Based Process for the Recovery of Glycyrrhizin and Phenolic Compounds from Licorice Wastewaters. Molecules 2019; 24:molecules24122279. [PMID: 31248174 PMCID: PMC6631382 DOI: 10.3390/molecules24122279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/15/2023] Open
Abstract
In this work, the use of polymeric ultrafiltration and nanofiltration membranes was investigated in order to recover glycyrrhizin and phenolic compounds from licorice wastewaters. Filtration experiments were performed on a laboratory scale using four polyamide thin-film composite membranes (GK, GH, GE, and DK, from GE Osmonics) with different molecular weight cut-offs (from 150 to 3500 Da). The permeate flux and retention values of glycyrrhizin, the total polyphenols, the caffeic acid, the total carbohydrate, and the total antioxidant activity as a function of the transmembrane pressure (TMP) and weight reduction factor (WRF) were evaluated. In selected operating conditions, the membrane productivity decreased in the order of GK > DK > GH > GE, with a similar trend to that of water permeability. Glycyrrhizin was totally rejected by selected membranes, independently of TMP and WRF. For the other antioxidant compounds, the retention values increased by increasing both of the parameters. According to the experimental results, a combination of membranes in a sequential design was proposed as a viable approach to produce concentrated fractions enriched in bioactive compounds and purified water from licorice wastewater.
Collapse
Affiliation(s)
- Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via P. Bucci, 17/C, I-87036 Rende, Cosenza, Italy.
| | - Lidia Fucà
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via P. Bucci, 17/C, I-87036 Rende, Cosenza, Italy.
| | - Enrico Drioli
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via P. Bucci, 17/C, I-87036 Rende, Cosenza, Italy.
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via P. Bucci, 17/C, I-87036 Rende, Cosenza, Italy.
| |
Collapse
|
16
|
Goorani S, Morovvati H, Seydi N, Almasi M, Amiri-Paryan A, Nazari F, Zangeneh MM, Zangeneh A. Hepatoprotective and cytotoxicity properties of aqueous extract of Glycyrrhiza glabra in Wistar rats fed with high-fat diet. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-02939-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Glycyrrhizic acid as a multifunctional drug carrier - From physicochemical properties to biomedical applications: A modern insight on the ancient drug. Int J Pharm 2019; 559:271-279. [PMID: 30690130 PMCID: PMC7126914 DOI: 10.1016/j.ijpharm.2019.01.047] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Glycyrrhizic acid (GA), saponin of licorice shows wide range of biological activity. Mechanism of GA activity on the cell and molecular level is rarely discussed. GA activity could be caused by the cell membrane modification.
Glycyrrhizic acid is the main active component of Licorice root which has been known in traditional Chinese and Japanese medicine since ancient times. In these cultures glycyrrhizic acid (GA) is one of the most frequently used drugs. However, only in 21-st century a novel unusual property of the GA to enhance the activity of other drugs has been discovered. The review describes briefly the experimental evidences of wide spectrum of own biological activities of glycyrrhizic acid as well as discusses the possible mechanisms of the ability of GA to enhance the activity of other drugs. We have shown that due to its amphiphilic nature GA is able to form self-associates in aqueous and non-aqueous media, as well as water soluble complexes with a wide range of lipophilic drugs. The main purpose of our review is to focus reader's attention on physicochemical studies of the molecular mechanisms of GA activity as a drug delivery system (DDS). In our opinion, the most intriguing feature of glycyrrhizic acid which might be the key factor in its therapeutic activity is the ability of GA to incorporate into the lipid bilayer and to increase the membrane fluidity and permeability. The ability of biomolecules and their aggregates to change the properties of cell membranes is of great significance, from both fundamental and practical points of view.
Collapse
|
18
|
Zou C, Tan X, Ye H, Sun Z, Chen S, Liu Q, Xu M, Ye C, Wang A. The hepatoprotective effects of Radix Bupleuri extracts against D-galactosamine/lipopolysaccharide induced liver injury in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2018; 83:8-17. [PMID: 30145200 DOI: 10.1016/j.fsi.2018.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
The present study is aiming at evaluating the hepatoprotective of Radix Bupleuri extracts (RBE) on the d-galactosamine/lipopolysaccharide (D-GalN/LPS) induced liver injury of hybrid grouper in vitro and in vivo. In vitro, RBE (0, 200, 400 and 800 μg/ml) was added to the hybrid grouper primary hepatocytes before (pretreatment) the incubation of the hepatocytes with D-GalN (20 mM) plus LPS (1 μg/ml) in the culture medium. RBE at concentrations of 200, 400 and 800 μg/ml significantly improved cell viability and inhibited the elevation of TNF-α, IL-1β and IL-6 and significantly down-regulated the caspase-3, caspase-9 and P53 mRNA levels. In vivo administration of RBE at the doses of 0, 200, 400, 800 and 1600 mg/kg in the diet for 8 weeks prior to D-GalN (500 mg/kg) and LPS (20 μg/kg) intoxication. The study indicated that the RBE not only ameliorated liver injury, as evidenced by well-preserved liver architecture, but also significantly increased hepatic antioxidant enzymes activities in the D-GalN/LPS-induced liver injury animal model. Further demonstrating the protective effects of the RBE, we found that pretreatment with the RBE up-regulated the expression of antioxidant genes (GPx and MnSOD), while down-regulated apoptosis-related genes (caspase-3, caspase-9 and P53), immune related genes (MHC2 and TLR3) and pro-inflammatory cytokines (TOR and IKKα) mRNA expression in the liver of hybrid grouper. In brief, the present study showed that RBE can protect hepatocyte injury induced by D-GalN/LPS through elevating antioxidant enzyme activity and suppressing apoptosis and immune inflammatory responses. The results support the use of RBE as a hepatoprotective in fish.
Collapse
Affiliation(s)
- Cuiyun Zou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaohong Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Huaqun Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Zhenzhu Sun
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Shu Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qingying Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Minglei Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chaoxia Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Anli Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
19
|
Liang X, Zhang J, Guo F, Wei L, Zhou Q. Oxidative stress and inflammatory responses in the liver of swamp eel (Monopterus albus) exposed to carbon tetrachloride. AQUACULTURE 2018; 496:232-238. [DOI: 10.1016/j.aquaculture.2018.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Yu Z, Wu F, Tian J, Guo X, An R. Protective effects of compound ammonium glycyrrhizin, L‑arginine, silymarin and glucurolactone against liver damage induced by ochratoxin A in primary chicken hepatocytes. Mol Med Rep 2018; 18:2551-2560. [PMID: 30015927 PMCID: PMC6102706 DOI: 10.3892/mmr.2018.9285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is produced by fungi in improperly stored food and animal feed. It exhibits nephrotoxic, hepatotoxic, embryotoxic, teratogenic, neurotoxic, immunotoxic and carcinogenic effects in laboratory and farm animals. In the present study, the hepatotoxicity of OPA was investigated in chicken primary hepatocytes. On this basis, the cytoprotective effects of compound ammonium glycyrrhizin (CAG), L‑arginine (L‑Arg), silymarin (Sil) and glucurolactone (GA) were investigated in vitro. Hepatocytes were treated with OTA, which resulted in a significant decrease in cell viability and increases in serum aspartate transaminase and alanine transaminase activities, as determined by an MTT assay and commercial kits, respectively. Furthermore, following OTA treatment, the levels of hepatic antioxidants, such as superoxide dismutase and glutathione, were decreased, and the lipid peroxidation product malondialdehyde was increased, compared with the control group. However, pretreatment with CAG, L‑Arg, Sil and GA significantly ameliorated these alterations and Sil exerted the optimum hepatoprotective effect. The apoptotic rates were measured by flow cytometry and the results revealed that OTA increased cell apoptosis. The four types of hepatoprotective compounds employed in the present study decreased the apoptosis rate and significantly reversed OTA‑induced increases in the mRNA expression levels of caspase‑3, which was determined by reverse transcription‑quantitative polymerase chain reaction. Furthermore, B‑cell lymphoma‑2 (Bcl‑2) mRNA expression was increased in OTA‑treated cells when pretreated with CAG, L‑Arg, Sil and GA. However, no alterations in the mRNA expression of Bcl‑2‑associated X were observed in the L‑Arg and GA groups, compared with the OTA‑only group. These results indicate that OTA may exhibit hepatotoxicity in chickens and that CAG, L‑Arg, Sil and GA may protect the liver against this via anti‑oxidative and antiapoptosis mechanisms. In addition, CAG and GA are likely to mediate their effects through the mitochondrion‑dependent apoptosis pathway; however, the exact hepatoprotective mechanism of L‑Arg and GA require further investigation. Therefore, CAG, L‑Arg, Sil and GA are potential candidates for the prevention and treatment of chicken liver injury.
Collapse
Affiliation(s)
- Zugong Yu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Feng Wu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jing Tian
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xuewen Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Ran An
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
21
|
Alam MA, Sagor AT, Tabassum N, Ulla A, Shill MC, Rahman GMS, Hossain H, Reza HM. Caffeic acid rich Citrus macroptera peel powder supplementation prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0074-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Na-Phatthalung P, Teles M, Voravuthikunchai SP, Tort L, Fierro-Castro C. Immunomodulatory effects of Rhodomyrtus tomentosa leaf extract and its derivative compound, rhodomyrtone, on head kidney macrophages of rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:543-555. [PMID: 29238889 DOI: 10.1007/s10695-017-0452-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Rhodomyrtus tomentosa is a medicinal plant that shows biological effects including immunomodulatory activity on human and other mammals but not in fish. In this study, we evaluated the in vitro immunomodulatory effects of R. tomentosa leaf extract and its active compound, rhodomyrtone, on the immune responses, using rainbow trout (Oncorhynchus mykiss) head kidney (HK) macrophages as a model. The tested immune functions included the expression of genes involved in innate immune and inflammatory responses and the production of reactive oxygen species (ROS). Gene expression was evaluated after exposure to 10 μg mL-1 of R. tomentosa and 1 μg mL-1 of rhodomyrtone for 4 and 24 h. R. tomentosa and rhodomyrtone induced changes in the expression of pro-inflammatory cytokines (il1β, il8, and tnfα), anti-inflammatory cytokines (il10 and tgfβ), inducible enzymes (inos, cox2, and arginase), and an antioxidant enzyme (gpx1). Co-exposure of R. tomentosa with LPS resulted in a prominent reduction in the expression of genes related to an inflammatory process (il1β, il8, tnfα, inos, saa, hepcidin, and gpx1), suggesting anti-inflammatory effects. Similarly, co-exposure of rhodomyrtone with LPS led to a downregulation of inflammation-related genes (il1β, inos, saa, and hepcidin). In addition, exposure to both natural plant products caused a reduction in cellular ROS levels by HK macrophages. The present results indicate that R. tomentosa and rhodomyrtone exerted immunostimulatory and anti-inflammatory effects on fish macrophages, thus opening up the possibility of using these natural products to further develop immunostimulants for health management in aquaculture.
Collapse
Affiliation(s)
- Pinanong Na-Phatthalung
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Lluís Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Reduction of the Oxidative Stress Status Using Steviol Glycosides in a Fish Model (Cyprinus carpio). BIOMED RESEARCH INTERNATIONAL 2018; 2017:2352594. [PMID: 28691017 PMCID: PMC5485310 DOI: 10.1155/2017/2352594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
Steviol glycosides are sweetening compounds from the Stevia rebaudiana Bertoni plant. This product is considered safe for human consumption and was approved as a food additive by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA). Its effects on the ecosystem have not been studied in depth; therefore, it is necessary to carry out ecotoxicological studies in organisms such as Cyprinus carpio. The present study aimed to evaluate the antioxidant activity by SGs on diverse tissues in C. carpio using oxidative stress (OS) biomarkers. To test the antioxidant activity, carps were exposed to four systems: (1) SGs free control, (2) CCl4 0.5 mL/kg, (3) SGs 1 g/L, and (4) CCl4 0.5 mL/kg + SGs 1 g/L at 96 h. The following biomarkers were analyzed: lipoperoxidation (LPX), hydroperoxide content (HPC), and protein carbonyl content (PCC), as well as antioxidant activity of superoxide dismutase (SOD) and catalase (CAT). It was found that both (3 and 4) systems' exposure decreases LPX, CHP, PCC, SOD, and CAT with respect to the CCl4 system. The results of this study demonstrate that the concentrations of SGs used are not capable of generating oxidative stress and, on the contrary, would appear to induce an antioxidant effect.
Collapse
|
24
|
Liu Y, Zhang C, Du J, Jia R, Cao L, Jeney G, Teraoka H, Xu P, Yin G. Protective effect of Ganoderma lucidum polysaccharide against carbon tetrachloride-induced hepatic damage in precision-cut carp liver slices. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1209-1221. [PMID: 28681206 DOI: 10.1007/s10695-016-0333-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 12/18/2016] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to investigate the protective effects of Ganoderma lucidum polysaccharide (GLPS) against carbon tetrachloride (CCl4)-induced hepatotoxicity in vitro in common carp. Precision-cut liver slices (PCLSs), which closely resemble the organ from which they are derived, were employed as an in vitro model system. GLPS (0.1, 0.3, and 0.6 mg/ml) was added to PCLS culture system before the exposure to 12 mM CCl4. The supernatants and slices were collected to detect molecular and biochemical responses to CCl4 and PCLS treatments. The levels of CYP1A, CYP3A, and CYP2E1 were measured by ELISA; the mRNA expressions of TNF-α, IL-1β, IL-6, and iNOS were determined by RT-PCR; and the relative protein expressions of c-Rel and p65 were analyzed by western blotting. Results showed that GLPS inhibited the elevations of the marker enzymes (GOT, GPT, LDH) and MDA induced by CCl4; it also enhanced the suppressed activity of antioxidant enzymes (SOD, CAT, GSH-Px, T-AOC). The treatment with GLPS resulted in significant downregulation of NF-κB and inflammatory cytokine mRNA levels and significant decreases in the hepatic protein levels of CYP1A, CYP3A, and CYP2E1. These results suggest that GLPS can protect CCl4-induced PCLS injury through inhibiting lipid peroxidation, elevating antioxidant enzyme activity, and suppressing immune inflammatory response.
Collapse
Affiliation(s)
- Yingjuan Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Chunyun Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Galina Jeney
- Research Institute for Fisheries, Aquaculture and Irrigation, Anna Light 8, Szarvas, 4440, Hungary
| | - Hiroki Teraoka
- Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
25
|
Li K, Ji S, Song W, Kuang Y, Lin Y, Tang S, Cui Z, Qiao X, Yu S, Ye M. Glycybridins A-K, Bioactive Phenolic Compounds from Glycyrrhiza glabra. JOURNAL OF NATURAL PRODUCTS 2017; 80:334-346. [PMID: 28140583 DOI: 10.1021/acs.jnatprod.6b00783] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In an attempt to discover bioactive agents from the herbal medicine Glycyrrhiza glabra (widely known as licorice), 11 new phenolic compounds, glycybridins A-K (1-11), along with 47 known phenolics (12-58) were isolated. Their structures were elucidated on the basis of extensive NMR and MS analyses as well as experimental and computed ECD data. According to the clinical therapeutic effects of licorice, enzyme or cell-based bioactivity screenings of 1-58 were conducted. A number of compounds significantly activate Nrf2, inhibit tyrosinase or PTP1B, inhibit LPS-induced NO production and NF-κB transcription, and inhibit the proliferation of human cancer cells (HepG2, SW480, A549, MCF7). Glycybridin D (4) showed moderate cytotoxic activities against the four cancer cell lines, with IC50 values ranging from 4.6 to 6.6 μM. Further studies indicated that 4 (10 mg/kg, ip) decreased tumor mass by 39.7% on an A549 human lung carcinoma xenograft mice model, but showed little toxicity.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Wei Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Yan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Shunan Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Zexu Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , 38 Xueyuan Road, Beijing 100191, People's Republic of China
| |
Collapse
|
26
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
27
|
Ulla A, Rahman MT, Habib ZF, Rahman MM, Subhan N, Sikder B, Reza HM, Hossain MH, Alam MA. Mango
peel powder supplementation prevents oxidative stress, inflammation, and fibrosis in carbon tetrachloride induced hepatic dysfunction in rats. J Food Biochem 2016. [DOI: 10.1111/jfbc.12344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anayt Ulla
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Md Tariqur Rahman
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Zaki Farhad Habib
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Md Moshfequr Rahman
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Biswajit Sikder
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Md Hemayet Hossain
- BCSIR Laboratories Bangladesh Council of Scientific and Industrial Research (BCSIR); Dhaka Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| |
Collapse
|
28
|
Elabd H, Wang HP, Shaheen A, Yao H, Abbass A. Feeding Glycyrrhiza glabra (liquorice) and Astragalus membranaceus (AM) alters innate immune and physiological responses in yellow perch (Perca flavescens). FISH & SHELLFISH IMMUNOLOGY 2016; 54:374-84. [PMID: 27129627 DOI: 10.1016/j.fsi.2016.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 05/12/2023]
Abstract
The current work assessed the potential immunomodulatory and growth-promoting effects of Astragalus membranaceus (AM) and Glycyrrhiza glabra (liquorice) in Yellow perch (Perca flavescens). In this regard, fish with an average weight of 31 ± 1.0 g were divided into five groups, and fed daily with an additive-free basal diet (control); 1, 2, and 3% (w/w) Glycyrrhiza glabra, and the fifth diet was incorporated with a combination of 1% G. glabra-AM for a four-week period. Immunological, biochemical and growth parameters were measured; and sub-groups of fish were exposed to 1-week starvation. The results showed that incorporating AM and liquorice in the diet significantly improved Immunological [superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Lipid peroxidase (LPx) and lysozyme activities], biochemical [Aspartate Aminotransferase (AST) and Alanine Transaminase (ALT) activities; and glucose and cortisol concentrations] and growth performance parameters [body mass gain (BMG), specific growth rate (SGR), length, condition factor (K) and feed conversion ratio (FCR)]. In addition, markedly up-regulated the expression of related genes [Insulin-Like Growth Factor-1 (IGF-1), Serum amyloid A (SAA), Complement Component C3 (CCC3), Alpha 2 Macroglobulin (A2M), SOD and GPx] in treated fish groups compared to the control. Conclusively, feeding AM and liquorice diets significantly increased (P < 0.05) growth performance, antioxidant and immune response profiles throughout the entire experiment, suggesting their beneficial rule as natural anti-stress agents.
Collapse
Affiliation(s)
- Hiam Elabd
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA; Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA.
| | - Adel Shaheen
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Hong Yao
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA.
| | - Amany Abbass
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| |
Collapse
|
29
|
Karaoğul E, Parlar P, Parlar H, Alma MH. Enrichment of the Glycyrrhizic Acid from Licorice Roots (Glycyrrhiza glabra L.) by Isoelectric Focused Adsorptive Bubble Chromatography. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:7201740. [PMID: 26949562 PMCID: PMC4753350 DOI: 10.1155/2016/7201740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
The main aim of this study was to enrich glycyrrhizic acid ammonium salt known as one of the main compounds of licorice roots (Glycyrrhiza glabra L.) by isoelectric focused adsorptive bubble separation technique with different foaming agents. In the experiments, four bubble separation parameters were used with β-lactoglobulin, albumin bovine, and starch (soluble) preferred as foaming agents and without additives. The enrichment of glycyrrhizic acid ammonium salt into the foam was influenced by different additive substances. The results showed that highest enrichment values were obtained from β-lactoglobulin as much as 368.3 times. The lowest enrichment values (5.9 times) were determined for the application without additive. After enrichment, each experiment of glycyrrhizic acid ammonium salt confirmed that these substances could be quantitatively enriched into the collection vessel with isoelectric focused adsorptive bubble separation technique. The transfer of glycyrrhizic acid ammonium salt into the foam from standard solution in the presence of additive was more efficient than aqueous licorice extract.
Collapse
Affiliation(s)
- Eyyüp Karaoğul
- Department of Forest Industry Engineering, Faculty of Forestry, Kahramanmaraş Sutcu Imam University, Kahramanmaraş, Turkey
| | - Perihan Parlar
- Faculty of Health Sciences, Istanbul Esenyurt University, Esenyurt, 34510 Istanbul, Turkey
| | - Harun Parlar
- Department of Chemical-Technical Analysis and Chemical Food Technology, Technical University of Munich, Munich, Germany
| | - M. Hakkı Alma
- Department of Forest Industry Engineering, Faculty of Forestry, Kahramanmaraş Sutcu Imam University, Kahramanmaraş, Turkey
| |
Collapse
|
30
|
Protective action of the phyllanthin against carbon tetrachloride-induced hepatocyte damage in Cyprinus carpio. In Vitro Cell Dev Biol Anim 2015; 52:1-9. [DOI: 10.1007/s11626-015-9946-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022]
|
31
|
Hosseinzadeh H, Nassiri-Asl M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother Res 2015; 29:1868-86. [PMID: 26462981 DOI: 10.1002/ptr.5487] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/25/2015] [Accepted: 09/15/2015] [Indexed: 01/26/2023]
Abstract
The roots and rhizomes of various species of the perennial herb licorice (Glycyrrhiza) are used in traditional medicine for the treatment of several diseases. In experimental and clinical studies, licorice has been shown to have several pharmacological properties including antiinflammatory, antiviral, antimicrobial, antioxidative, antidiabetic, antiasthma, and anticancer activities as well as immunomodulatory, gastroprotective, hepatoprotective, neuroprotective, and cardioprotective effects. In recent years, several of the biochemical, molecular, and cellular mechanisms of licorice and its active components have also been demonstrated in experimental studies. In this review, we summarized the new phytochemical, pharmacological, and toxicological data from recent experimental and clinical studies of licorice and its bioactive constituents after our previous published review.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, P.O. Box: 341197-5981, Qazvin, Iran
| |
Collapse
|
32
|
Yan S, Chen L, Dou X, Qi M, Du Q, He Q, Nan M, Chang Z, Nan P. Toxicity of 8-Hydroxyquinoline in Cryprinus carpio Using the Acute Toxicity Test, Hepatase Activity Analysis and the Comet Assay. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:171-176. [PMID: 26067700 DOI: 10.1007/s00128-015-1566-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
To evaluate the environmental toxicity of 8-hydroxyquinoline (8-HOQ), an important industrial raw material found in China's major ornamental fish, Cryprinus carpio, using the acute toxicity test, hepatase activity analysis and the comet assay. The results indicated that 8-HOQ had significant acute toxicity in adult C. carpio with a 96 h-LC50 of 1.15 and 0.22 mg L(-1) hepatic quinoline residues as assessed by HPLC. 8-HOQ also induced genotoxicity in the form of strand breaks in the DNA of hepatic cells as shown by the comet assay. With regard to physiological toxicity, 8-HOQ induced a decrease in the activities of hepatic GOT and GPT with increased exposure concentration and time. These data suggest that 8-HOQ may be toxic to the health of aquatic organisms when accidentally released into aquatic ecosystems. The data also suggest that the comet assay may be used in biomonitoring to determine 8-HOQ genotoxicity and hepatic GPT and GOT activities may be potential biomarkers of physiological toxicity.
Collapse
Affiliation(s)
- Shuaiguo Yan
- College of Life Science, Henan Normal University, No. 46, East Jianshe Road, Xinxiang City, 453007, Henan, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang S, Zhu F. Dietary antioxidant synergy in chemical and biological systems. Crit Rev Food Sci Nutr 2015; 57:2343-2357. [DOI: 10.1080/10408398.2015.1046546] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, Niagara-on-the-Lake, Ontario, Canada
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Yi RK, Song JL, Lim YI, Kim YK, Park KY. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice. Prev Nutr Food Sci 2015; 20:52-9. [PMID: 25866750 PMCID: PMC4391541 DOI: 10.3746/pnf.2015.20.1.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/12/2015] [Indexed: 11/14/2022] Open
Abstract
This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in mice administered APAP (P<0.05). TMC (500 mg/kg BW) reduced hepatic mRNA levels of TNF-α, IL-1β, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (P<0.05). Furthermore, histological observations suggested TMC pretreatment dose-dependently prevented APAP-induced hepatocyte damage. These results suggest that TMC could be used as a functional health drink to prevent hepatic damage.
Collapse
Affiliation(s)
- Ruo-Kun Yi
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Jia-Le Song
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea ; Kimchi Research Institute, Pusan National University, Busan 609-735, Korea
| | - Yaung-Iee Lim
- Department of Food and Nutrition, Sungshin Women's University, Seoul 142-732, Korea
| | | | - Kun-Young Park
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea ; Kimchi Research Institute, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
35
|
Cao L, Ding W, Du J, Jia R, Liu Y, Zhao C, Shen Y, Yin G. Effects of curcumin on antioxidative activities and cytokine production in Jian carp (Cyprinus carpio var. Jian) with CCl4-induced liver damage. FISH & SHELLFISH IMMUNOLOGY 2015; 43:150-157. [PMID: 25549934 DOI: 10.1016/j.fsi.2014.12.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
We investigated the protective effects of curcumin on liver-damaged Cyprinus carpio var. Jian (Jian carp). The carp were fed 0.1%, 0.5%, or 1.0% curcumin for 60 days, then injected intraperitoneally with 30% carbon tetrachloride solution. Liver and blood samples were collected to measure the liver index, serum- and liver-associated enzymes, liver histology, nuclear factor-κB (NF-κB)/c-Rel, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-12 mRNA expression, and the level of NF-κB/c-Rel protein in the liver, and for a comet assay. We found that 0.5% and 1.0% curcumin significantly reduced the CCl(4)-induced increase in the liver index. The comet assay showed that the tail moment, olive tail moment, tail length, and tail DNA% improved in fish pretreated with 0.5 or 1.0% curcumin. CCl(4)-induced histological changes, including extensive hepatocyte degeneration, indistinct cell borders, nuclear condensation, and karyolysis were clearly reduced after treatment with 0.5% and 1.0% curcumin. Moreover, 0.5% and 1.0% curcumin significantly inhibited the CCl(4)-induced increase in serum glutamic oxaloacetic transaminase and promoted the restoration of superoxide dismutase in the liver; 1.0% curcumin significantly reduced serum glutamic pyruvic transaminase and lactate dehydrogenase and hepatic malondialdehyde, but significantly increased the total antioxidant capacity and glutathione levels in the liver. The CCl(4)-induced upregulation of NF-κB/c-Rel, IL-1β, and TNF-α mRNAs and NF-κB/c-Rel protein levels was inhibited by 0.5% and 1.0% curcumin, and IL-12 mRNA was reduced by all three doses of curcumin. The effects of curcumin on the liver index, enzymes, histological changes, and cytokines were dose-dependent. Our results indicate that curcumin reduces CCl(4)-induced liver damage in Jian carp by upregulating antioxidative activities and inhibiting NF-κB, IL-1β, TNF-α, and IL-12 expression.
Collapse
Affiliation(s)
- Liping Cao
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Weidong Ding
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jingliang Du
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yingjuan Liu
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Caiyuan Zhao
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yujin Shen
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guojun Yin
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
36
|
LI C, EOM T, JEONG Y. Glycyrrhiza glabra L. Extract Inhibits LPS-Induced Inflammation in RAW Macrophages. J Nutr Sci Vitaminol (Tokyo) 2015; 61:375-81. [DOI: 10.3177/jnsv.61.375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chunmei LI
- Department of Food Science and Nutrition, Dankook University
| | - Taekil EOM
- Department of Food Science and Nutrition, Dankook University
| | - Yoonhwa JEONG
- Department of Food Science and Nutrition, Dankook University
| |
Collapse
|
37
|
A Review of Biotechnological Approaches to Conservation and Sustainable Utilization of Medicinal Lianas in India. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14592-1_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Zhang F, Wang X, Qiu X, Wang J, Fang H, Wang Z, Sun Y, Xia Z. The protective effect of Esculentoside A on experimental acute liver injury in mice. PLoS One 2014; 9:e113107. [PMID: 25405982 PMCID: PMC4236201 DOI: 10.1371/journal.pone.0113107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/15/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammatory response and oxidative stress are considered to play an important role in the development of acute liver injury induced by carbon tetrachloride (CCl4) and galactosamine (GalN)/lipopolysaccharides (LPS). Esculentoside A (EsA), isolated from the Chinese herb phytolacca esculenta, has the effect of modulating immune response, cell proliferation and apoptosis as well as anti-inflammatory effects. The present study is to evaluate the protective effect of EsA on CCl4 and GalN/LPS-induced acute liver injury. In vitro, CCK-8 assays showed that EsA had no cytotoxicity, while it significantly reduced levels of TNF-α and cell death rate challenged by CCl4. Moreover, EsA treatment up-regulated PPAR-γ expression of LO2 cells and reduced levels of reactive oxygen species (ROS) challenged by CCl4. In vivo, EsA prevented mice from CCl4-induced liver histopathological damage. In addition, levels of AST and ALT were significantly decreased by EsA treatment. Furthermore, the mice treated with EsA had a lower level of TNF-α, Interleukin (IL)-1β and IL-6 in mRNA expression. EsA prevented MDA release and increased GSH-Px activity in liver tissues. Immunohistochemical staining showed that over-expression of F4/80 and CD11b were markedly inhibited by EsA. The western bolt results showed that EsA significantly inhibited CCl4-induced phosphonated IkBalpha (P-IκB) and ERK. Furthermore, EsA treatment also alleviated GalN/LPS-induced acute liver injury on liver enzyme and histopathological damage. Unfortunately, our results exhibited that EsA had no effects on CCl4-induced hepatocyte apoptosis which were showed by TUNEL staining and Bax, Caspase-3 and cleaved Caspase-3 expression. Our results proved that EsA treatment attenuated CCl4 and GalN/LPS-induced acute liver injury in mice and its protective effects might be involved in inhibiting inflammatory response and oxidative stress, but not apoptosis with its underlying mechanism associated with PPAR-γ, NF-κB and ERK signal pathways.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
- Number 73901 Troop of PLA, Shanghai, China
| | - Xingtong Wang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Xiaochen Qiu
- Department of General Surgery, 309th Hospital of PLA, Beijing, China
| | - Junjie Wang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - He Fang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Zhihong Wang
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Yu Sun
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
| | - Zhaofan Xia
- Department of Burn Surgery, the Second Military Medical University affiliated Changhai Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Borlak J, Chougule A, Singh PK. How useful are clinical liver function tests in in vitro human hepatotoxicity assays? Toxicol In Vitro 2014; 28:784-95. [PMID: 24685772 DOI: 10.1016/j.tiv.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
|
40
|
Alok S, Jain SK, Verma A, Kumar M, Mahor A, Sabharwal M. Herbal antioxidant in clinical practice: a review. Asian Pac J Trop Biomed 2014; 4:78-84. [PMID: 24144136 DOI: 10.1016/s2221-1691(14)60213-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/11/2013] [Accepted: 12/20/2013] [Indexed: 01/21/2023] Open
Abstract
Antioxidant-the word itself is magic. Using the antioxidant concept as a spearhead in proposed mechanisms for staving off so-called "free-radical" reactions, the rush is on to mine claims for the latest and most effective combination of free-radical scavenging compounds. We must acknowledge that such "radicals" have definitively been shown to damage all biochemical components such as DNA/RNA, carbohydrates, unsaturated lipids, proteins, and micronutrients such as carotenoids (alpha and beta carotene, lycopene), vitamins A, B6, B12, and folate. Defense strategies against such aggressive radical species include enzymes, antioxidants that occur naturally in the body (glutathione, uric acid, ubiquinol-10, and others) and radical scavenging nutrients, such as vitamins A, C, and E, and carotenoids. This paper will present a brief discussion of some well- and little-known herbs that may add to the optimization of antioxidant status and therefore offer added preventive values for overall health. It is important to state at the outset that antioxidants vary widely in their free-radical quenching effects and each may be individually attracted to specific cell sites. Further evidence of the specialized nature of the carotenoids is demonstrated by the appearance of two carotenoids in the macula region of the retina where beta-carotene is totally absent.
Collapse
Affiliation(s)
- Shashi Alok
- Institute Of Pharmacy, Bundelkhand University, Jhansi (U.P.), India; Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences-Deemed University, Allahabad, U.P. India.
| | | | | | | | | | | |
Collapse
|
41
|
Jia R, Cao LP, Du JL, Wang JH, Liu YJ, Jeney G, Xu P, Yin GJ. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:11-19. [PMID: 24721155 DOI: 10.1016/j.aquatox.2014.02.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
In the present study, the cellular and molecular mechanism of carbon tetrachloride (CCl4)-induced hepatotoxicity in fish was investigated by studying the effects of CCl4 on the oxidative stress, inflammatory response and hepatocyte apoptosis. Common carp were given an intraperitoneal injection of 30% CCl4 in arachis oil (0.5ml/kg body weight). At 72h post-injection, blood were collected to measure glutamate pyruvate transaminase (GPT), glutamate oxalate transaminase (GOT), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) and malondialdehyde (MDA), liver samples were taken to analyze toll-like receptor 4 (TLR4), cytochrome P450 2E1 (CYP2E1) and gene expressions of inflammatory cytokines and nuclear factor-κB (NF-κB/cREL). Cell viability and apoptosis were analyzed after treatment of the primary hepatocytes with CCl4 at 8mM. The results showed that CCl4 significantly increased the levels of GPT, GOT, MDA, TLR4 and CYP2E1, reduced the levels of SOD, GPx, CAT, GSH and T-AOC, and up-regulated the gene expressions of NF-κB/cREL and inflammatory cytokines including tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), IL-1β, IL-6 and IL-12. In vitro, CCl4 caused a dramatic loss in cell viability and induced hepatocyte apoptosis. Overall results suggest that oxidative stress lipid peroxidation, and TNF-α/NF-κB and TRL4/NF-κB signaling pathways play important roles in CCl4-induced hepatotoxicity in fish.
Collapse
Affiliation(s)
- Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Li-Ping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jin-Liang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jia-Hao Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ying-Juan Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Galina Jeney
- National Agricultural Research Center, Research Institute for Fisherie and, Aquaculture, Anna Light 8, Szarvas 5440, Hungary
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guo-Jun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
42
|
Han J, Gao C, Yang S, Wang J, Tan D. Betanin attenuates carbon tetrachloride (CCl4)-induced liver injury in common carp (Cyprinus carpio L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:865-874. [PMID: 24271879 DOI: 10.1007/s10695-013-9892-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/15/2013] [Indexed: 06/02/2023]
Abstract
This study investigates the protective effect of betanin against liver injury induced by carbon tetrachloride (CCl4) in common carp (Cyprinus carpio L.). The fish were treated with 1, 2, and 4 % betanin in fodder throughout the experiment. After 20 days of treatment, the fish were intraperitoneally injected with 20 % (v/v in peanut oil) CCl4 at a volume of 0.5 mL/kg body weight. The fish were killed 3 days after CCl4 intoxication, and then, histological and biochemical assays were performed. Results showed that CCl4-induced liver CYP2E1 activity, oxidative stress, and injury, as indicated by the depleted glycogen storage, increased serum aspartate aminotransferase (AST)/alanine aminotransferase (ALT) activities and liver histological damage. Compared with the CCl4 control group, the betanin-treated groups exhibited reduced CYP2E1 activity, decreased malondialdehyde level, increased liver antioxidative capacity (increased glutathione level and superoxide dismutase and catalase activities), increased liver glycogen storage, and reduced serum AST/ALT activities, with significant differences in the 2 and 4 % groups (p < 0.05). Histological assay further confirmed the protective effect of betanin. In conclusion, betanin attenuates CCl4-induced liver damage in common carp. Moreover, the inhibition of CYP2E1 activity and oxidative stress may have significant roles in the protective effect of betanin.
Collapse
Affiliation(s)
- Junyan Han
- College of Biological and Environmental Engineering, Shenyang University, Shenyang, 110044, China,
| | | | | | | | | |
Collapse
|
43
|
Chen HJ, Kang SP, Lee IJ, Lin YL. Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:618-625. [PMID: 24386942 DOI: 10.1021/jf405352g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a crucial inflammatory cytokine when hepatocytes are damaged. Glycyrrhiza uralensis Fisch. (Chinese licorice) has been widely used in Chinese herbal prescriptions for the treatment of liver diseases and as a food additive. Nuclear factor-kappa B (NF-κB) reporter gene assay in TNF-α-induced HepG2 was used as a screening platform. IκBα phosphorylation and p65 translocation were measured by Western blotting, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression were further confirmed in rat primary hepatocytes. Results showed that TNF-α enhanced NF-κB activity was significantly attenuated by glycyrrhetinic acid in a concentration-dependent manner in the NF-κB reporter gene assay. Glycyrrhetinic acid decreased the gene expression of iNOS through inhibited IκBα phosphorylation and p65 translocation in protein level. Furthermore, NO production and iNOS expression were reduced by glycyrrhetinic acid in TNF-α-induced rat primary hepatocytes. These results suggest that glycyrrhetinic acid may provide hepatoprotection against chronic liver inflammation through attenuating NF-κB activation to alleviate the inflammation.
Collapse
Affiliation(s)
- Hong-Jhang Chen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare , Taipei, Taiwan
| | | | | | | |
Collapse
|
44
|
The protective effect of silymarin on the carbon tetrachloride (CCl4)-induced liver injury in common carp (Cyprinus carpio). In Vitro Cell Dev Biol Anim 2013; 49:155-61. [DOI: 10.1007/s11626-013-9587-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/30/2013] [Indexed: 01/27/2023]
|
45
|
Nan P, Yan S, Li L, Chen J, Du Q, Chang Z. Toxicity effect of dichlorvos on loach (Misgurnus anguillicaudatus) assessed by micronucleus test, hepatase activity analysis and comet assay. Toxicol Ind Health 2013; 31:566-75. [DOI: 10.1177/0748233713475512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pesticides and other chemicals at environmental concentrations often have detrimental effects. Many aquatic species are particularly threatened because of their susceptibility and also because water environment are often polluted. This study preliminarily evaluated the toxicity effect of dichlorvos (DDVP) on loach ( Misgurnus anguillicaudatus) using the methods of micronucleus (MN) test, hepatase activity and comet assay. The tested results showed that indeed very little DDVP had strong toxicity effect on loach and its 50% lethal concentration (LC50) at 24 h, 48 h and 96 h was 8.38 μg l−1, 7.168 μg l−1 and 6.411 μg l−1, respectively; The glutamic-pyruvic transaminase (GPT) and glutamic–oxalacetic transaminase (GOT) activity of loach liver decreased; meanwhile, the GPT and GOT activity of loach serum, the MN rate (‰) and three comet parameters of tested fish increased with the increase in the treatment concentration and treatment time of DDVP, and there was significant difference between control group and each treatment group ( p < 0.05). These results suggested that DDVP residues might become toxic chemical contaminant in environment and would threaten aquatic and other organisms.
Collapse
Affiliation(s)
- Ping Nan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Shuaiguo Yan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Li Li
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Jianjun Chen
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Qiyan Du
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, People’s Republic of China
| |
Collapse
|
46
|
Investigation of the Hepatoprotective Effects of Sesame (Sesamum indicum L.) in Carbon Tetrachloride-Induced Liver Toxicity. J Membr Biol 2012; 246:1-6. [DOI: 10.1007/s00232-012-9494-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 07/28/2012] [Indexed: 10/28/2022]
|
47
|
Jia R, Cao L, Xu P, Jeney G, Yin G. In vitro and in vivo hepatoprotective and antioxidant effects of Astragalus polysaccharides against carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:871-881. [PMID: 22089693 DOI: 10.1007/s10695-011-9575-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
The present study is aiming at evaluating the hepatoprotective and antioxidant effects of Astragalus polysaccharide (APS) on the carbon tetrachloride (CCl(4))-induced hepatocyte and liver injury in common carp in vitro and in vivo. In vitro, APS (200, 400 and 800 μg/ml) was added to the carp primary hepatocytes before (pre-treatment), after (post-treatment) and both before and after (pre- and post-treatment) the incubation of the hepatocytes with CCl(4) at 8 mM in the culture medium. APS at concentrations of 200, 400 and 800 μg/ml significantly improved cell viability and inhibited the elevation of glutamate pyruvate transaminase (GPT), glutamate oxalate transaminase (GOT), lactate dehydrogenase (LDH) and malondialdehyde (MDA) and significantly increased the reduced level of superoxide dismutase (SOD). In vivo administration of APS at the doses of 1.5 and 3 g/kg in the diet for 60 days prior to CCl(4) intoxication significantly reduced the elevated activities of GPT, GOT and LDH and increased the reduced levels of total protein and albumin in the serum; meanwhile, the reduced levels of SOD, glutathione and total antioxidant capacity (T-AOC) were markedly increased and the MDA formation was significantly inhibited in liver tissue. Overall results proved the hepatoprotective action of APS, which is likely related to its antioxidant activity. The results support the use of APS as a hepatoprotective and antioxidant agent in fish.
Collapse
Affiliation(s)
- Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | | | | | | | | |
Collapse
|
48
|
Hepatoprotective and antioxidant effects of licorice extract against CCl₄-induced oxidative damage in rats. Int J Mol Sci 2011; 12:6529-43. [PMID: 22072903 PMCID: PMC3210994 DOI: 10.3390/ijms12106529] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/04/2011] [Accepted: 09/26/2011] [Indexed: 12/28/2022] Open
Abstract
Licorice has been used in Chinese folk medicine for the treatment of various disorders. Licorice has the biological capabilities of detoxication, antioxidation, and antiinfection. In this study, we evaluated the antihepatotoxic effect of licorice aqueous extract (LE) on the carbon tetrachloride (CCl4)-induced liver injury in a rat model. Hepatic damage, as reveled by histology and the increased activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) activities, and decreased levels of serum total protein (TP), albumin (Alb) and globulin (G) were induced in rats by an administration of CCl4 at 3 mL/kg b.w. (1:1 in groundnut oil). Licorice extract significantly inhibited the elevated AST, ALP and ALT activities and the decreased TP, Alb and G levels caused by CCl4 intoxication. It also enhanced liver super oxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), Glutathione S-transferase (GST) activities and glutathione (GSH) level, reduced malondialdehyde (MDA) level. Licorice extract still markedly reverses the increased liver hydroxyproline and serum TNF-α levels induced by CCl4 intoxication. The data of this study support a chemopreventive potential of licorice extract against liver oxidative injury.
Collapse
|