1
|
Dissinger A, Rimoldi S, Terova G, Kwasek K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS One 2024; 19:e0307967. [PMID: 39058733 PMCID: PMC11280532 DOI: 10.1371/journal.pone.0307967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Many organisms exhibit social behaviors and are part of some scheme of social structure. Zebrafish are highly social, shoaling fish and therefore, social isolation may have notable impacts on their physiology and behavior. The objective of this study was to evaluate the effects of social isolation on feed intake, monoaminergic system related gene expression, and intestinal health of juvenile zebrafish fed a high-inclusion soybean meal based diet. At 20 days post-fertilization zebrafish were randomly assigned to chronic isolation (1 fish per 1.5 L tank) or social housing (6 fish per 9 L tank) with 18 tanks per treatment group (n = 18). Dividers were placed between all tanks to prevent visual cues between fish. Zebrafish were fed a commercial fishmeal based diet until 35 days post-fertilization and then fed the experimental high-inclusion soybean meal based diet until 50 days post-fertilization. At the end of the experiment (51 days post-fertilization), the mean total length, weight, and weight gain were not significantly different between treatment groups. Feed intake and feed conversion ratio were significantly higher in chronic isolation fish than in social housing fish. Expression of monoaminergic and appetite-related genes were not significantly different between groups. The chronic isolation group showed higher expression of the inflammatory gene il-1b, however, average intestinal villi width was significantly smaller and average length-to-width ratio was significantly higher in chronic isolation fish, suggesting morphological signs of inflammation were not present at the time of sampling. These results indicate that chronic isolation positively affects feed intake of juvenile zebrafish and suggest that isolation may be useful in promoting feed intake of less-palatable diets such as those based on soybean meal.
Collapse
Affiliation(s)
- Aubrey Dissinger
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Karolina Kwasek
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
2
|
You H, Li J, Li Y, Wang W, Yu Z, Liu J, Liu X, Ding L. Absorption of egg white hydrolysate in the intestine: Clathrin-dependent endocytosis as the main transport route. Food Res Int 2023; 173:113480. [PMID: 37803802 DOI: 10.1016/j.foodres.2023.113480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
This paper aimed to investigate the in vivo absorption of egg white hydrolysate (EWH) in rats and the transport route across the intestinal epithelium. Results showed that the level of plasma peptide-bound amino acid (PAA) of the EWH-supplemented rats (EWH-R) was determined to be 2012.18 ± 300.98 μmol/L, 10.72% higher than that of the control group, and was significantly positively correlated to that of EWH. Thirty-three egg white-derived peptides were successfully identified from the plasma of EWH-R, and 20 of them were found in both EWH-R plasma and EWH, indicating that these peptides tend to be absorbed through the intestinal epithelium in intact forms into the blood circulation. In addition, 637 up-regulated and 577 down-regulated genes in Caco-2 cells incubated with EWH were detected by RNA-sequencing and the clathrin-dependent endocytosis was the most enriched pathway in KEGG analysis. EWH significantly increased the mRNA levels of the key genes involved in the clathrin-dependent endocytosis but these changes would be inhibited by the clathrin-dependent endocytosis inhibitor of chlorpromazine. Moreover, the transepithelial transport of EWH across Caco-2 cell monolayers was significantly reduced by chlorpromazine. This study provided molecular-level evidence for the first time that clathrin-dependent endocytosis might be the main transport route of EWH in the intestinal epithelium.
Collapse
Affiliation(s)
- Haixi You
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Juanrui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yiju Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Wei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Zhipeng Yu
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jingbo Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
3
|
Printzi A, Koumoundouros G, Fournier V, Madec L, Zambonino-Infante JL, Mazurais D. Effect of Early Peptide Diets on Zebrafish Skeletal Development. Biomolecules 2023; 13:biom13040659. [PMID: 37189406 DOI: 10.3390/biom13040659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Incorporation of dietary peptides has been correlated with decreased presence of skeletal abnormalities in marine larvae. In an attempt to clarify the effect of smaller protein fractions on fish larval and post-larval skeleton, we designed three isoenergetic diets with partial substitution of their protein content with 0% (C), 6% (P6) and 12% (P12) shrimp di- and tripeptides. Experimental diets were tested in zebrafish under two regimes, with inclusion (ADF-Artemia and dry feed) or lack (DF-dry feed only) of live food. Results at the end of metamorphosis highlight the beneficial effect of P12 on growth, survival and early skeletal quality when dry diets are provided from first feeding (DF). Exclusive feeding with P12 also increased the musculoskeletal resistance of the post-larval skeleton against the swimming challenge test (SCT). On the contrary, Artemia inclusion (ADF) overruled any peptide effect in total fish performance. Given the unknown species' larval nutrient requirements, a 12% dietary peptide incorporation is proposed for successful rearing without live food. A potential nutritional control of the larval and post-larval skeletal development even in aquaculture species is suggested. Limitations of the current molecular analysis are discussed to enable the future identification of the peptide-driven regulatory pathways.
Collapse
Affiliation(s)
- Alice Printzi
- Biology Department, University of Crete, 70013 Crete, Greece
- IFREMER, University of Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | | | - Lauriane Madec
- IFREMER, University of Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - David Mazurais
- IFREMER, University of Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
4
|
Pawlak P, Burren A, Seitz A, Pietsch C. Effects of different acute stressors on the regulation of appetite genes in the carp ( Cyprinus carpio L.) brain. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230040. [PMID: 36816841 PMCID: PMC9929511 DOI: 10.1098/rsos.230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Our understanding of the timing of stress responses and specific roles of different regulatory pathways that drive stress responses is incomplete. In particular, the regulation of appetite genes as a consequence of exposure to different stressors has not been studied in sufficient detail in fish. Therefore, a stress trial was conducted with koi carp, aiming at identifying typical effects of stress on regulation of appetite genes. The stressors tank manipulation, air exposure and feed rewarding were chosen. The responses to these stressors were evaluated 10, 30 and 60 min after the stressors were applied. Orexigenic and anorexigenic genes were investigated in four different brain regions (telencephalon, hypothalamus, optic tectum and rhombencephalon). The results show that, apart from the typical appetite regulation in the hypothalamus, the different brain regions also display pronounced responses of appetite genes to the different stressors. In addition, several genes in the serotonergic, dopaminergic and gaba-related pathways were investigated. These genes revealed that rearing in pairs of two and opening of the tank lid affected anorexigenic genes, such as cart and cck, which were not changed by air exposure or feed rewarding. Moreover, distress and eustress led to limited, but distinguishable gene expression pattern changes in the investigated brain regions.
Collapse
Affiliation(s)
- Paulina Pawlak
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, CH-3032, Hinterkappelen, Bern, Switzerland
| | - Alexander Burren
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| | - Andreas Seitz
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Zürich CH-8820, Switzerland
| | - Constanze Pietsch
- Agronomy, Bern University of Applied Sciences, Zollikofen, Bern CH-2052, Switzerland
| |
Collapse
|
5
|
Martins N, Castro C, Oliva-Teles A, Peres H. The Interplay between Central and Peripheral Systems in Feed Intake Regulation in European Seabass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2022; 12:ani12233287. [PMID: 36496811 PMCID: PMC9739057 DOI: 10.3390/ani12233287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate the effects of feeding or feed deprivation on the orexigenic and anorexigenic responses at the central (whole brain) and peripheral (anterior and posterior intestine, stomach, and liver) system levels in European seabass. For this purpose, a group of fish (208 g) was fed a single meal daily for 8 days (fed group) and another group was feed-deprived for 8 days (unfed group). Compared to the fed group, in the whole brain, feed deprivation did not induce changes in npy, agrp1, and cart2 expression, but increased agrp2 and pomc1 expression. In the anterior intestine, feed deprivation increased cck expression, while in the posterior intestine, the npy expression increased and pyyb decreased. In the stomach, the ghr expression decreased regardless of the feeding status. The hepatic lep expression increased in the unfed fish. The present results suggest a feed intake regulation mechanism in European seabass similar to that observed in other teleosts.
Collapse
Affiliation(s)
- Nicole Martins
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
- Correspondence:
| | - Carolina Castro
- FLATLANTIC—Atividades Piscícolas, S.A., Rua do Aceiros s/n, 3070-732 Praia de Mira, Portugal
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| |
Collapse
|
6
|
An Integrated Bioinformatics Approach to Identify Network-Derived Hub Genes in Starving Zebrafish. Animals (Basel) 2022; 12:ani12192724. [PMID: 36230465 PMCID: PMC9559487 DOI: 10.3390/ani12192724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The present study was aimed at identifying causative hub genes within modules formed by co-expression and protein-protein interaction (PPI) networks, followed by Bayesian network (BN) construction in the liver transcriptome of starved zebrafish. To this end, the GSE11107 and GSE112272 datasets from the GEO databases were downloaded and meta-analyzed using the MetaDE package, an add-on R package. Differentially expressed genes (DEGs) were identified based upon expression intensity N(µ = 0.2, σ2 = 0.4). Reconstruction of BNs was performed by the bnlearn R package on genes within modules using STRINGdb and CEMiTool. ndufs5 (shared among PPI, BN and COEX), rps26, rpl10, sdhc (shared between PPI and BN), ndufa6, ndufa10, ndufb8 (shared between PPI and COEX), skp1, atp5h, ndufb10, rpl5b, zgc:193613, zgc:123327, zgc:123178, wu:fc58f10, zgc:111986, wu:fc37b12, taldo1, wu:fb62f08, zgc:64133 and acp5a (shared between COEX and BN) were identified as causative hub genes affecting gene expression in the liver of starving zebrafish. Future work will shed light on using integrative analyses of miRNA and DNA microarrays simultaneously, and performing in silico and experimental validation of these hub-causative (CST) genes affecting starvation in zebrafish.
Collapse
|
7
|
Appetite regulating genes in zebrafish gut; a gene expression study. PLoS One 2022; 17:e0255201. [PMID: 35853004 PMCID: PMC9295983 DOI: 10.1371/journal.pone.0255201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
The underlying molecular pathophysiology of feeding disorders, particularly in peripheral organs, is still largely unknown. A range of molecular factors encoded by appetite-regulating genes are already described to control feeding behaviour in the brain. However, the important role of the gastrointestinal tract in the regulation of appetite and feeding in connection to the brain has gained more attention in the recent years. An example of such inter-organ connection can be the signals mediated by leptin, a key regulator of body weight, food intake and metabolism, with conserved anorexigenic effects in vertebrates. Leptin signals functions through its receptor (lepr) in multiple organs, including the brain and the gastrointestinal tract. So far, the regulatory connections between leptin signal and other appetite-regulating genes remain unclear, particularly in the gastrointestinal system. In this study, we used a zebrafish mutant with impaired function of leptin receptor to explore gut expression patterns of appetite-regulating genes, under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). We provide evidence that most appetite-regulating genes are expressed in the zebrafish gut. On one hand, we did not observed significant differences in the expression of orexigenic genes (except for hcrt) after changes in the feeding condition. On the other hand, we found 8 anorexigenic genes in wild-types (cart2, cart3, dbi, oxt, nmu, nucb2a, pacap and pomc), as well as 4 genes in lepr mutants (cart3, kiss1, kiss1r and nucb2a), to be differentially expressed in the zebrafish gut after changes in feeding conditions. Most of these genes also showed significant differences in their expression between wild-type and lepr mutant. Finally, we observed that impaired leptin signalling influences potential regulatory connections between anorexigenic genes in zebrafish gut. Altogether, these transcriptional changes propose a potential role of leptin signal in the regulation of feeding through changes in expression of certain anorexigenic genes in the gastrointestinal tract of zebrafish.
Collapse
|
8
|
Alba G, Carrillo S, Sánchez‐Vázquez FJ, López‐Olmeda JF. Combined blue light and daily thermocycles enhance zebrafish growth and development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART A: ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:501-515. [PMID: 35189038 PMCID: PMC9303188 DOI: 10.1002/jez.2584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Gonzalo Alba
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum” University of Murcia Murcia Spain
| | - Sherezade Carrillo
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum” University of Murcia Murcia Spain
| | - Francisco Javier Sánchez‐Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum” University of Murcia Murcia Spain
| | - José Fernando López‐Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum” University of Murcia Murcia Spain
| |
Collapse
|
9
|
Meirelles MG, Nornberg BF, da Silveira TLR, Kütter MT, Castro CG, Ramirez JRB, Pedrosa V, Romano LA, Marins LF. Growth Hormone Overexpression Induces Hyperphagia and Intestinal Morphophysiological Adaptations to Improve Nutrient Uptake in Zebrafish. Front Physiol 2021; 12:723853. [PMID: 34539447 PMCID: PMC8442846 DOI: 10.3389/fphys.2021.723853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
The excess of circulating growth hormone (GH) in most transgenic animals implies mandatory growth resulting in higher metabolic demand. Considering that the intestine is the main organ responsible for the digestion, absorption, and direction of dietary nutrients to other tissues, this study aimed to investigate the mechanisms by which gh overexpression modulates the intestine to support higher growth. For this purpose, we designed an 8-weeks feeding trial to evaluate growth parameters, feed intake, and intestinal morphometric indices in the adult gh-transgenic zebrafish (Danio rerio) model. To access the sensitivity of the intestine to the excess of circulating GH, the messenger RNA (mRNA) expression of intestine GH receptors (GHRs) (ghra and ghrb) was analyzed. In addition, the expression of insulin-like growth factor 1a (igf1a) and genes encoding for di and tripeptide transporters (pept1a and pept1b) were assessed. Gh-transgenic zebrafish had better growth performance and higher feed intake compared to non-transgenic sibling controls. Chronic excess of GH upregulates the expression of its cognate receptor (ghrb) and the main growth factor related to trophic effects in the intestine (igf1a). Moreover, transgenic zebrafish showed an increased intestinal absorptive area and higher expression of crucial genes related to the absorption of products from meal protein degradation. These results reinforce the ability of GH to modulate intestinal morphology and the mechanisms of assimilation of nutrients to sustain the energy demand for the continuous growth induced by the excess of circulating GH.
Collapse
Affiliation(s)
- Marcela G Meirelles
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Bruna F Nornberg
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Tony L R da Silveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Mateus T Kütter
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Caroline G Castro
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Juan Rafael B Ramirez
- Laboratório de Bioquímica Funcional de Organismos Aquáticos, Instituto de Oceanografia, Estação Marinha de Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Virgínia Pedrosa
- Laboratório de Imunologia e Patologia de Organismos Aquáticos, Instituto de Oceanografia, Estação Marinha de Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Luis Alberto Romano
- Laboratório de Imunologia e Patologia de Organismos Aquáticos, Instituto de Oceanografia, Estação Marinha de Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| |
Collapse
|
10
|
Del Vecchio G, Lai F, Gomes AS, Verri T, Kalananthan T, Barca A, Handeland S, Rønnestad I. Effects of Short-Term Fasting on mRNA Expression of Ghrelin and the Peptide Transporters PepT1 and 2 in Atlantic Salmon ( Salmo salar). Front Physiol 2021; 12:666670. [PMID: 34234687 PMCID: PMC8255630 DOI: 10.3389/fphys.2021.666670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 01/20/2023] Open
Abstract
Food intake is a vital process that supplies necessary energy and essential nutrients to the body. Information regarding luminal composition in the gastrointestinal tract (GIT) collected through mechanical and nutrient sensing mechanisms are generally conveyed, in both mammals and fish, to the hypothalamic neurocircuits. In this context, ghrelin, the only known hormone with an orexigenic action, and the intestinal peptide transporters 1 and 2, involved in absorption of dietary di- and tripeptides, exert important and also integrated roles for the nutrient uptake. Together, both are potentially involved in signaling pathways that control food intake originating from different segments of the GIT. However, little is known about the role of different paralogs and their response to fasting. Therefore, after 3 weeks of acclimatization, 12 Atlantic salmon (Salmo salar) post-smolt were fasted for 4 days to explore the gastrointestinal response in comparison with fed control (n = 12). The analysis covered morphometric (weight, length, condition factor, and wet content/weight fish %), molecular (gene expression variations), and correlation analyses. Such short-term fasting is a common and recommended practice used prior to any handling in commercial culture of the species. There were no statistical differences in length and weight but a significant lower condition factor in the fasted group. Transcriptional analysis along the gastrointestinal segments revealed a tendency of downregulation for both paralogous genes slc15a1a and slc15a1b and with significant lowered levels in the pyloric ceca for slc15a1a and in the pyloric ceca and midgut for slc15a1b. No differences were found for slc15a2a and slc15a2b (except a higher expression of the fasted group in the anterior midgut), supporting different roles for slc15 paralogs. This represents the first report on the effects of fasting on slc15a2 expressed in GIT in teleosts. Transcriptional analysis of ghrelin splicing variants (ghrl-1 and ghrl-2) showed no difference between treatments. However, correlation analysis showed that the mRNA expression for all genes (restricted to segment with the highest levels) were affected by the residual luminal content. Overall, the results show minimal effects of 4 days of induced fasting in Atlantic salmon, suggesting that more time is needed to initiate a large GIT response.
Collapse
Affiliation(s)
- Gianmarco Del Vecchio
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | - Amilcare Barca
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sigurd Handeland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Petro-Sakuma C, Celino-Brady FT, Breves JP, Seale AP. Growth hormone regulates intestinal gene expression of nutrient transporters in tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2020; 292:113464. [PMID: 32171745 PMCID: PMC7253219 DOI: 10.1016/j.ygcen.2020.113464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Among the various ways that growth hormone (GH) underlies the growth physiology of teleost fishes, GH stimulates transport pathways that facilitate the absorption of nutrients across intestinal epithelia. The current study investigated the effects of GH on the gene expression of nutrient transporters in an omnivorous teleost, the Mozambique tilapia (Oreochromis mossambicus). We employed pituitary gland removal (hypophysectomy) and hormone replacement to assess whether GH directs the gene expression of the GH receptor (ghr2), the peptide transporters, pept1a, pept1b and pept2, the amino acid transporter, slc7a9, the Na+/glucose cotransporter, sglt1, the glucose transporter, glut2, and the myo-inositol transporter, smit2, in anterior, middle, and posterior intestine. ghr2 was predominantly expressed in posterior intestine, while pept1a, pept1b, slc7a9, sglt1, glut2, and smit2 exhibited the highest mRNA levels in anterior and/or middle intestine. While hypophysectomized tilapia exhibited diminished expression of ghr2, pept1a, pept1b, slc7a9, and glut2 compared with intact and sham-operated controls, only ghr2, pept1a, pept1b and glut2 levels were restored by GH replacement. Our findings indicate that GH supports growth, at least in part, by stimulating the gene expression of its cognate receptor and key nutrient transporters in the intestine.
Collapse
Affiliation(s)
- Cody Petro-Sakuma
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA.
| |
Collapse
|
12
|
Kwasek K, Wojno M, Iannini F, McCracken VJ, Molinari GS, Terova G. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS One 2020; 15:e0225917. [PMID: 32142555 PMCID: PMC7059923 DOI: 10.1371/journal.pone.0225917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Nutritional Programming (NP) has been shown to counteract the negative effects of dietary plant protein (PP) by introducing PP at an early age towards enhancement of PP utilization during later life stages. This study explored the effect of NP and its induction time on growth, expression of appetite-stimulating hormones, and any morphological changes in the gut possibly responsible for improved dietary PP utilization. At 3 days post-hatch (dph) zebrafish were distributed into 12 (3 L) tanks, 100 larvae per tank. This study included four groups: 1) The control (NP-FM) group received fishmeal (FM)-based diet from 13–36 dph and was challenged with PP-based diet during 36–66 dph; 2) The NP-PP group received NP with dietary PP in larval stage via live food enrichment during 3–13 dph followed by FM diet during 13–36 dph and PP diet during 36–66 dph; 3) The T-NP group received NP between 13–23 dph through PP diet followed by FM diet during 23–36 dph and PP diet during 36–66 dph; and 4) The PP group received PP diet from 13–66 dph. During the PP challenge the T-NP group achieved the highest weight gain compared to control and PP. Ghrelin expression in the brain was higher in T-NP compared to NP-FM and NP-PP, while in the gut it was reduced in both NP-PP and T-NP groups. Cholecystokinin expression showed an opposite trend to ghrelin. The brain neuropeptide Y expression was lower in NP-PP compared to PP but not different with NP-FM and T-NP groups. The highest villus length to width ratio in the middle intestine was found in T-NP compared to all other groups. The study suggests that NP induced during juvenile stages improves zebrafish growth and affects digestive hormone regulation and morphology of the intestinal lining–possible mechanisms behind the improved PP utilization in pre-adult zebrafish stages.
Collapse
Affiliation(s)
- Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
- * E-mail:
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Federica Iannini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Vance J. McCracken
- Department of Biological Sciences, Southern Illinois University-Edwardsville, Edwardsville, Illinois, United States of America
| | - Giovanni S. Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
13
|
Vacca F, Barca A, Gomes AS, Mazzei A, Piccinni B, Cinquetti R, Del Vecchio G, Romano A, Rønnestad I, Bossi E, Verri T. The peptide transporter 1a of the zebrafish Danio rerio, an emerging model in nutrigenomics and nutrition research: molecular characterization, functional properties, and expression analysis. GENES AND NUTRITION 2019; 14:33. [PMID: 31890051 PMCID: PMC6923934 DOI: 10.1186/s12263-019-0657-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Background Peptide transporter 1 (PepT1, alias Slc15a1) mediates the uptake of dietary di/tripeptides in all vertebrates. However, in teleost fish, more than one PepT1-type transporter might function, due to specific whole genome duplication event(s) that occurred during their evolution leading to a more complex paralogue gene repertoire than in higher vertebrates (tetrapods). Results Here, we describe a novel di/tripeptide transporter in the zebrafish (Danio rerio), i.e., the zebrafish peptide transporter 1a (PepT1a; also known as Solute carrier family 15 member a1, Slc15a1a), which is a paralogue (78% similarity, 62% identity at the amino acid level) of the previously described zebrafish peptide transporter 1b (PepT1b, alias PepT1; also known as Solute carrier family 15 member 1b, Slc15a1b). Also, we report a basic analysis of the pept1a (slc15a1a) mRNA expression levels in zebrafish adult tissues/organs and embryonic/early larval developmental stages. As assessed by expression in Xenopus laevis oocytes and two-electrode voltage clamp measurements, zebrafish PepT1a, as PepT1b, is electrogenic, Na+-independent, and pH-dependent and functions as a low-affinity system, with K0.5 values for Gly-Gln at − 60 mV of 6.92 mmol/L at pH 7.6 and 0.24 mmol/L at pH 6.5 and at − 120 mV of 3.61 mmol/L at pH 7.6 and 0.45 mmol/L at pH 6.5. Zebrafish pept1a mRNA is highly expressed in the intestine and ovary of the adult fish, while its expression in early development undergoes a complex trend over time, with pept1a mRNA being detected 1 and 2 days post-fertilization (dpf), possibly due to its occurrence in the RNA maternal pool, decreasing at 3 dpf (~ 0.5-fold) and increasing above the 1–2 dpf levels at 4 to 7 dpf, with a peak (~ 7-fold) at 6 dpf. Conclusions We show that the zebrafish PepT1a-type transporter is functional and co-expressed with pept1b (slc15a1b) in the adult fish intestine. Its expression is also confirmed during the early phases of development when the yolk syncytial layer is present and yolk protein resorption processes are active. While completing the missing information on PepT1-type transporters function in the zebrafish, these results open to future investigations on the similar/differential role(s) of PepT1a/PepT1b in zebrafish and teleost fish physiology.
Collapse
Affiliation(s)
- Francesca Vacca
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Amilcare Barca
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Ana S Gomes
- 3Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Aurora Mazzei
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Barbara Piccinni
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy.,Present address: Physiopathology of Reproduction and IVF Unit, Nardò Hospital, Nardò Health and Social Care District, Lecce Local Health Agency, I-73048 Nardò, Lecce Italy
| | - Raffaella Cinquetti
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Gianmarco Del Vecchio
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Alessandro Romano
- 5Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, I-20132 Milan, Italy
| | - Ivar Rønnestad
- 3Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Elena Bossi
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Tiziano Verri
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
14
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
15
|
Con P, Nitzan T, Slosman T, Harpaz S, Cnaani A. Peptide Transporters in the Primary Gastrointestinal Tract of Pre-Feeding Mozambique Tilapia Larva. Front Physiol 2019; 10:808. [PMID: 31333482 PMCID: PMC6624445 DOI: 10.3389/fphys.2019.00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/06/2019] [Indexed: 01/19/2023] Open
Abstract
Fish larvae differ greatly from the adult form in their morphology and organ functionality. The functionality of the gastrointestinal tract depends on the expression of various pumps, transporters, and channels responsible for feed digestion and nutrients absorption. During the larval period, the gastrointestinal tract develops from a simple closed tube, into its complex form with differentiated segments, crypts and villi, as found in the adult. In this study, we characterized the expression of three peptide transporters (PepT1a, PepT1b, and PepT2) in the gastrointestinal tract of Mozambique tilapia (Oreochromis mossambicus) larvae along 12 days of development, from pre-hatching to the completion of yolk sac absorption. Gene expression analysis revealed differential and complimentary time-dependent expression of the PepT1 variants and PepT2 along the larval development period. Immunofluorescence analysis showed differential protein localization of the three peptide transporters (PepTs) along the gastrointestinal tract, in a similar pattern to the adult. In addition, PepT1a was localized in mucosal cells in the larvae esophagus, in much higher abundance than in the adults. The results of this study demonstrate specialization of intestinal sections and absorbance potential of the enterocytes prior to the onset of active exogenous feeding, thus pointing to an uncharacterized function and role of the gastrointestinal tract and its transporters during the larval period.
Collapse
Affiliation(s)
- Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeZion, Israel.,Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Nitzan
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tatiana Slosman
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Sheenan Harpaz
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
16
|
The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019; 134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives.
Collapse
|
17
|
Navarro-Guillén C, Dias J, Rocha F, Castanheira M, Martins CI, Laizé V, Gavaia PJ, Engrola S. Does a ghrelin stimulus during zebrafish embryonic stage modulate its performance on the long-term? Comp Biochem Physiol A Mol Integr Physiol 2019; 228:1-8. [DOI: 10.1016/j.cbpa.2018.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
|
18
|
Opazo R, Plaza-Parrochia F, Cardoso dos Santos GR, Carneiro GRA, Sardela VF, Romero J, Valladares L. Fasting Upregulates npy, agrp, and ghsr Without Increasing Ghrelin Levels in Zebrafish ( Danio rerio) Larvae. Front Physiol 2019; 9:1901. [PMID: 30733682 PMCID: PMC6353792 DOI: 10.3389/fphys.2018.01901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Food intake in fish and mammals is orchestrated by hypothalamic crosstalk between orexigenic (food intake stimulation) and anorexigenic (food intake inhibition) signals. Some of these signals are released by peripheral tissues that are associated with energy homeostasis or nutrient availability. During the fish larva stage, orexigenic stimulation plays a critical role in individual viability. The goal of this study was to assess the mRNA levels of the main neuropeptides involved in food intake regulation (npy, agrp, carppt, and pomc), in concert with the mRNA levels and peptide levels of ghrelin, under a fasting intervention at the larval stage in zebrafish (Danio rerio). Prior to the fasting intervention, the zebrafish larva cohort was reared for 20 days post fertilization (dpf) and then randomly divided into two groups of 20 individuals. One group was subjected to a fasting intervention for 5 days (fasted group), and the other group was fed normally (fed group); this experimental protocol was performed twice independently. At the end of the fasting period, individuals from each experimental group were divided into different analysis groups, for evaluations such as relative gene expression, immunohistochemistry, and liquid chromatography coupled to nano high-resolution mass spectrometry (nLC-HRMS) analyses. The relative expression levels of the following genes were assessed: neuropeptide Y (npy), agouti-related peptide (agrp), proopiomelanocortin (pomc), cocaine and amphetamine-regulated transcript (cartpt), ghrelin (ghrl), ghrelin O-acyltransferase (mboat4), growth hormone secretagogue receptor (ghsr), and glucokinase (gck). In the fasted group, significant upregulation of orexigenic peptides (npy - agrp) and ghsr was observed, which was associated with significant downregulation of gck. The anorexigenic peptides (pomc and cartpt) did not show any significant modulation between the groups, similar to mboat4. Contrary to what was expected, the relative mRNA upregulation of the orexigenic peptides observed in the fasted experimental group could not be associated with significant ghrelin modulation as assessed by three different approaches: qPCR (relative gene expression of ghrelin), nLC-HRMS (des-acyl-ghrelin levels), and immunohistochemistry (integrated optical density of prepropeptides in intestinal and hepatopancreas tissues). Our results demonstrate that zebrafish larvae at 25 dpf exhibit suitable modulation of the relative mRNA levels of orexigenic peptides (npy and agrp) in response to fasting intervention; nevertheless, ghrelin was not coregulated by fasting. Therefore, it can be suggested that ghrelin is not an essential peptide for an increase in appetite in the zebrafish larva stage. These results give rise to new questions about food intake regulation factors in the early stages of fish.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Francisca Plaza-Parrochia
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Gustavo R. Cardoso dos Santos
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R. A. Carneiro
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius F. Sardela
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime Romero
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Luis Valladares
- Laboratorio de Hormonas y Receptores INTA, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Bertucci JI, Blanco AM, Sundarrajan L, Rajeswari JJ, Velasco C, Unniappan S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front Endocrinol (Lausanne) 2019; 10:83. [PMID: 30873115 PMCID: PMC6403160 DOI: 10.3389/fendo.2019.00083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endocrine factors regulate food intake and growth, two interlinked physiological processes critical for the proper development of organisms. Somatic growth is mainly regulated by growth hormone (GH) and insulin-like growth factors I and II (IGF-I and IGF-II) that act on target tissues, including muscle, and bones. Peptidyl hormones produced from the brain and peripheral tissues regulate feeding to meet metabolic demands. The GH-IGF system and hormones regulating appetite are regulated by both internal (indicating the metabolic status of the organism) and external (environmental) signals. Among the external signals, the most notable are diet availability and diet composition. Macronutrients and micronutrients act on several hormone-producing tissues to regulate the synthesis and secretion of appetite-regulating hormones and hormones of the GH-IGF system, eventually modulating growth and food intake. A comprehensive understanding of how nutrients regulate hormones is essential to design diet formulations that better modulate endogenous factors for the benefit of aquaculture to increase yield. This review will discuss the current knowledge on nutritional regulation of hormones modulating growth and food intake in fish.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
20
|
Lo Cascio P, Calabrò C, Bertuccio C, Iaria C, Marino F, Denaro MG. Immunohistochemical Characterization of PepT1 and Ghrelin in Gastrointestinal Tract of Zebrafish: Effects of Spirulina Vegetarian Diet on the Neuroendocrine System Cells After Alimentary Stress. Front Physiol 2018; 9:614. [PMID: 29881359 PMCID: PMC5976732 DOI: 10.3389/fphys.2018.00614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
Abstract
Gastrointestinal function in vertebrates is influenced by stressors, such as fasting and refeeding, different types of diet and hormonal factors. The aim of this paper was to analyze the effect of a Spirulina (Arthrospira platensis) diet, a microalga known for its nutraceutical properties, on the gastrointestinal tract of zebrafish (Danio rerio) regarding expression of oligopeptide transporter 1 (PepT1) and ghrelin (GHR). Food deprivation and refeeding was investigated to elucidate expression of PepT1 and GHR at a gastrointestinal level and the zebrafish compensatory mechanism. PepT1 is responsible for absorbing di- and tripeptides through a brush border membrane of intestinal mucosa. GHR is a brain-gut peptide in fish and mammals, stimulating growth hormone secretion and regulating appetite. Samples were taken after 2 and 5 days of specimen fasting, and 2 and 5 days of refeeding with Sera Spirulina tabs, in which the major constituent is Spirulina sp. (50.2% protein). Morphological and immunohistochemical analysis of PepT1 and GHR were carried out. Control specimen intestinal tract showed normal morphology of the digestive tract. Fasting caused fold structural changes and intestinal lumen constriction. Immunohistochemical analysis showed a PepT1 level reduction after fasting and an increase after refeeding, reaching very high levels after 5 days, compared to controls. GHR levels increased after food deprivation and gradually decreased after refeeding. Increased expression of PepT1 in refeeding fish suggests a compensatory physiological mechanism, as does the increase in GHR levels in fasting fish followed by a reduction after refeeding. A compensatory mechanism may be induced by fasting and refeeding and by a higher protein Spirulina diet. The microalga, for its nutraceutical properties, is an excellent candidate for animal breeding and human diet.
Collapse
Affiliation(s)
- Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Clara Bertuccio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabio Marino
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria G Denaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
21
|
Spanier B, Rohm F. Proton Coupled Oligopeptide Transporter 1 (PepT1) Function, Regulation, and Influence on the Intestinal Homeostasis. Compr Physiol 2018; 8:843-869. [DOI: 10.1002/cphy.c170038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Orozco ZGA, Soma S, Kaneko T, Watanabe S. Spatial mRNA Expression and Response to Fasting and Refeeding of Neutral Amino Acid Transporters slc6a18 and slc6a19a in the Intestinal Epithelium of Mozambique tilapia. Front Physiol 2018; 9:212. [PMID: 29593569 PMCID: PMC5859172 DOI: 10.3389/fphys.2018.00212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The mRNA expressions of the epithelial neutral amino acid transporters slc6a18 and slc6a19a in the five segments (HL, PMC, GL, DMC, and TS) of the intestine of Mozambique tilapia, and their responses to fasting and refeeding were investigated for a better understanding of the functional and nutritional characteristics of slc6a18 and slc6a19a. Although both slc6a18 and slc6a19a were expressed mainly in the intestine, these genes showed opposing spatial distributions along the intestine. The slc6a18 was mainly expressed in the middle (GL) and posterior (DMC and TS) intestines, while slc6a19a was specifically expressed in the anterior intestine (HL and PMC). Large decreases of amino acid concentrations from the HL to GL imply that amino acids are mainly absorbed before reaching the GL, suggesting an important role of slc6a19a in the absorption. Moreover, substantial amounts of some neutral amino acids with the isoelectric point close to 6 remain in the GL. These are most likely the remaining unabsorbed amino acids or those from of amino acid antiporters which release neutral amino acids in exchange for uptake of its substrates. These amino acids were diminished in the TS, suggesting active absorption in the posterior intestine. This suggests that slc6a18 is essential to complete the absorption of neutral amino acids. At fasting, significant downregulation of slc6a19a expression was observed from the initial up to day 2 and became stable from day 4 to day 14 in the HL and PMC suggesting that slc6a19a expression reflects nutritional condition in the intestinal lumen. Refeeding stimulates slc6a19a expression, although expressions did not exceed the initial level within 3 days after refeeding. The slc6a18 expression was decreased during fasting in the GL but no significant change was observed in the DMC. Only a transient decrease was observed at day 2 in the TS. Refeeding did not stimulate slc6a18 expression. Results in this study suggest that Slc6a18 and Slc6a19 have different roles in the intestine, and that both of these contribute to establish the efficient neutral amino acid absorption system in the tilapia.
Collapse
Affiliation(s)
- Zenith Gaye A Orozco
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Soma
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
|
24
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
25
|
Lo Cascio P, Calabrò C, Bertuccio C, Paterniti I, Palombieri D, Calò M, Albergamo A, Salvo A, Gabriella Denaro M. Effects of fasting and refeeding on the digestive tract of zebrafish (Danio rerio) fed with Spirulina (Arthrospira platensis), a high protein feed source. Nat Prod Res 2017; 31:1478-1485. [DOI: 10.1080/14786419.2016.1274893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Clara Bertuccio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Palombieri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Margherita Calò
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life S.r.l., An Academic Spin-Off of the University of Messina, Messina, Italy
| | - Andrea Salvo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life S.r.l., An Academic Spin-Off of the University of Messina, Messina, Italy
| | - Maria Gabriella Denaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Quinlivan VH, Farber SA. Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish. Front Endocrinol (Lausanne) 2017; 8:319. [PMID: 29209275 PMCID: PMC5701920 DOI: 10.3389/fendo.2017.00319] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023] Open
Abstract
The developing zebrafish is a well-established model system for studies of energy metabolism, and is amenable to genetic, physiological, and biochemical approaches. For the first 5 days of life, nutrients are absorbed from its endogenous maternally deposited yolk. At 5 days post-fertilization, the yolk is exhausted and the larva has a functional digestive system including intestine, liver, gallbladder, pancreas, and intestinal microbiota. The transparency of the larval zebrafish, and the genetic and physiological similarity of its digestive system to that of mammals make it a promising system in which to address questions of energy homeostasis relevant to human health. For example, apolipoprotein expression and function is similar in zebrafish and mammals, and transgenic animals may be used to examine both the transport of lipid from yolk to body in the embryo, and the trafficking of dietary lipids in the larva. Additionally, despite the identification of many fatty acid and lipid transport proteins expressed by vertebrates, the cell biological processes that mediate the transport of dietary lipids from the intestinal lumen to the interior of enterocytes remain to be elucidated. Genetic tractability and amenability to live imaging and a range of biochemical methods make the larval zebrafish an ideal model in which to address open questions in the field of lipid transport, energy homeostasis, and nutrient metabolism.
Collapse
Affiliation(s)
- Vanessa H. Quinlivan
- Carnegie Institution for Science (CIS), Baltimore, MD, United States
- The Johns Hopkins University, Baltimore, MD, United States
| | - Steven A. Farber
- Carnegie Institution for Science (CIS), Baltimore, MD, United States
- The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Steven A. Farber,
| |
Collapse
|
27
|
Orozco ZGA, Soma S, Kaneko T, Watanabe S. Effects of fasting and refeeding on gene expression of slc15a1a, a gene encoding an oligopeptide transporter (PepT1), in the intestine of Mozambique tilapia. Comp Biochem Physiol B Biochem Mol Biol 2017; 203:76-83. [DOI: 10.1016/j.cbpb.2016.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/17/2023]
|
28
|
Babaei S, Sáez A, Caballero-Solares A, Fernández F, Baanante IV, Metón I. Effect of dietary macronutrients on the expression of cholecystokinin, leptin, ghrelin and neuropeptide Y in gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2017; 240:121-128. [PMID: 27725144 DOI: 10.1016/j.ygcen.2016.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/27/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Endocrine factors released from the central nervous system, gastrointestinal tract, adipose tissue and other peripheral organs mediate the regulation of food intake. Although many studies have evaluated the effect of fed-to-starved transition on the expression of appetite-related genes, little is known about how the expression of appetite-regulating peptides is regulated by the macronutrient composition of the diet. The aim of the present study was to examine the effect of diet composition and nutritional status on the expression of four peptides involved in food intake control in gilthead sea bream (Sparus aurata): neuropeptide Y (NPY), ghrelin, cholecystokinin (CCK) and leptin. Quantitative real-time RT-PCR showed that high protein/low carbohydrate diets stimulated the expression of CCK and ghrelin in the intestine and leptin in the adipose tissue, while downregulation of ghrelin and NPY mRNA levels was observed in the brain. Opposite effects were found for the expression of the four genes in fish fed low protein/high carbohydrate diets or after long-term starvation. Our findings indicate that the expression pattern of appetite-regulating peptides, particularly CCK and ghrelin, is modulated by the nutritional status and diet composition in S. aurata.
Collapse
Affiliation(s)
- Sedigheh Babaei
- Fisheries Departament, Faculty of Marine Sciences, Tarbiat Modares University (TMU), Noor 46417-76488, Iran
| | - Alberto Sáez
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Isabel V Baanante
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
29
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
30
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
31
|
Periprandial changes and effects of short- and long-term fasting on ghrelin, GOAT, and ghrelin receptors in goldfish (Carassius auratus). J Comp Physiol B 2016; 186:727-38. [DOI: 10.1007/s00360-016-0986-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
|
32
|
Dalmolin C, Almeida DV, Figueiredo MA, Marins LF. Food intake and appetite control in a GH-transgenic zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1131-1141. [PMID: 25990920 DOI: 10.1007/s10695-015-0074-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
The biological actions of growth hormone (GH) are pleiotropic, including growth promotion, energy mobilization, gonadal development, appetite, and social behavior. The regulatory network for GH is complex and includes many central and peripheral endocrine factors as well as that from the environment. It is known that GH transgenesis results in increased growth, food intake, and consequent metabolic rates in fishes. However, the manner in which GH transgenesis alters the energetic metabolism in fishes has not been well explored. In order to elucidate these consequences, we examined the effect of GH overexpression on appetite control mechanisms in a transgenic zebrafish (Danio rerio) model. To this, we analyzed feeding behavior and the expression of the main appetite-related genes in two different feeding periods (fed and fasting) in non-transgenic (NT) and transgenic (T) zebrafish as well as glycaemic parameters of them. Our initial results have shown that NT males and females present the same feeding behavior and expression of main appetite-controlling genes; therefore, the data of both sexes were properly grouped. Following grouped data analyses, we compared the same parameters in NT and T animals. Feeding behavior results have shown that T animals eat significantly more and faster than NT siblings. Gene expression results pointed out that gastrointestinal (GT) cholecystokinin has a substantial contribution to the communication between peripheral and central control of food intake. Brain genes expression analyses revealed that T animals have a down-regulation of two strong and opposite peptides related to food intake: the anorexigenic proopiomelanocortin (pomc) and the orexigenic neuropeptide Y (npy). The down-regulation of pomc in T when compared with NT is an expected result, since the decrease in an anorexigenic factor might keep the transgenic fish hungry. The down-regulation of npy seemed to be contradictory at first, but if we consider the GH's capacity to elevate blood glucose, and that NPY is able to respond to humoral factors like glucose, this down-regulation makes sense. In fact, our last experiment showed that transgenics presented elevated blood glucose levels, confirming that npy might responded to this humoral factor. In conclusion, we have shown that GT responds to feeding status without interference of transgenesis, whereas brain responds to GH transgenesis without any effect of treatment. It is clear that transgenic zebrafish eat more and faster, and it seems that it occurs due to pomc down-regulation, since npy might be under regulation of the humoral factor glucose.
Collapse
Affiliation(s)
- Camila Dalmolin
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Daniela Volcan Almeida
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Marcio Azevedo Figueiredo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
33
|
Bisesi JH, Ngo T, Ponnavolu S, Liu K, Lavelle CM, Afrooz ARMN, Saleh NB, Ferguson PL, Denslow ND, Sabo-Attwood T. Examination of Single-Walled Carbon Nanotubes Uptake and Toxicity from Dietary Exposure: Tracking Movement and Impacts in the Gastrointestinal System. NANOMATERIALS 2015; 5:1066-1086. [PMID: 28347052 PMCID: PMC5312889 DOI: 10.3390/nano5021066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 01/23/2023]
Abstract
Previous studies indicate that exposure of fish to pristine single-walled carbon nanotubes (SWCNTs) by oral gavage, causes no overt toxicity, and no appreciable absorption has been observed. However, in the environment, SWCNTs are likely to be present in dietary sources, which may result in differential impacts on uptake and biological effects. Additionally, the potential of these materials to sorb nutrients (proteins, carbohydrates, and lipids) while present in the gastrointestinal (GI) tract may lead to nutrient depletion conditions that impact processes such as growth and reproduction. To test this phenomenon, fathead minnows were fed a commercial diet either with or without SWCNTs for 96 h. Tracking and quantification of SWCNTs using near-infrared fluorescence (NIRF) imaging during feeding studies showed the presence of food does not facilitate transport of SWCNTs across the intestinal epithelia. Targeting genes shown to be responsive to nutrient depletion (peptide transporters, peptide hormones, and lipases) indicated that pept2, a peptide transporter, and cck, a peptide hormone, showed differential mRNA expression by 96 h, a response that may be indicative of nutrient limitation. The results of the current study increase our understanding of the movement of SWCNTs through the GI tract, while the changes in nutrient processing genes highlight a novel mechanism of sublethal toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Joseph H Bisesi
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Thuy Ngo
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Satvika Ponnavolu
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Keira Liu
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Candice M Lavelle
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - A R M Nabiul Afrooz
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas Austin, Austin, TX 78712, USA.
| | - Navid B Saleh
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas Austin, Austin, TX 78712, USA.
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
34
|
Tian J, He G, Mai K, Liu C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:773-787. [PMID: 25805459 DOI: 10.1007/s10695-015-0045-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The goal of this study was to systematically evaluate the molecular activities of endocrine-, amino acid and peptide transporters-, and metabolic enzyme-related genes in 35-day-old mixed-sex zebrafish (Danio rerio) after feeding . Zebrafish with initial body weights ranging from 9 to 11 mg were fasted for 384 h in a controlled indoor environment. Fish were sampled at 0, 3, 6, 12, 24, 48, 96, 192, and 384 h after fed. Overall, the present study results show that the regulatory mechanism that insulin-like growth factor I negative feedback regulated growth hormone is conserved in zebrafish, as it is in mammals, but that regulation of growth hormone receptors is highly intricate. Leptin and cholecystokinin are time-dependent negative feedback signals, and neuropeptide Y may be an important positive neuropeptide for food intake in zebrafish. The amino acid/carnitine transporters B(0,+) (ATB(0,+)) and broad neutral (0) amino acid transporter 1(B(0)AT1) mRNA levels measured in our study suggest that protein may be utilized during 24-96 h of fasting in zebrafish. Glutamine synthetase mRNA levels were downregulated, and glutamate dehydrogenase, alanine aminotransferase, aspartate transaminase, and trypsin mRNA levels were upregulated after longtime fasting in this study. The mRNA expression levels of fatty acid synthetase decreased significantly (P < 0.05), whereas those of lipoprotein lipase rapidly increased after 96 h of fasting. Fasting activated the expression of glucose synthesis genes when fasting for short periods of time; when fasting is prolonged, the mRNA levels of glucose breakdown enzymes and pentose phosphate shunt genes decreased.
Collapse
Affiliation(s)
- Juan Tian
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, No. 5 Yushan Rd., Qingdao, 266003, People's Republic of China,
| | | | | | | |
Collapse
|
35
|
Herget U, Wolf A, Wullimann MF, Ryu S. Molecular neuroanatomy and chemoarchitecture of the neurosecretory preoptic-hypothalamic area in zebrafish larvae. J Comp Neurol 2014; 522:1542-64. [PMID: 24127437 DOI: 10.1002/cne.23480] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/31/2013] [Accepted: 09/30/2013] [Indexed: 12/16/2022]
Abstract
The paraventricular nucleus (PVN) in mammals is the main hypothalamic nucleus controlling hormone release in the pituitary and plays pivotal roles in homeostasis. While the location of a PVN-homologous region has been described in adult fish as the neurosecretory preoptic area (NPO), this region has not been clearly defined in larval zebrafish due to the difficulty in defining cytoarchitectonic nuclear boundaries in the larval brain. Here we identify the precise location of the larval zebrafish NPO using conserved transcription factor and neuropeptide gene expressions. Our results identify the dorsal half of the preoptic-hypothalamic orthopedia a (otpa) domain as the larval NPO and the homologous region to the mammalian PVN. Further, by reconstructing the locations of cells producing zebrafish neuropeptides found in the mammalian PVN (CCK, CRH, ENK, NTS, SS, VIP, OXT, AVP), we provide the first 3D arrangement map of NPO neuropeptides in the larval zebrafish brain. Our results show striking conservation of transcription factor expression (otp, arx, dlx5a, isl1) in and around the NPO/PVN together with neuropeptide expression within it. Finally, we describe the exact anatomical location of cells producing Oxt and Avp in the adult zebrafish. Thus, our results identify the definitive borders and extent of the PVN homologous region in larval zebrafish and serve as an important basis for cross-species comparisons of PVN/NPO structure and function.
Collapse
Affiliation(s)
- Ulrich Herget
- Max Planck Institute for Medical Research, Developmental Genetics of the Nervous System, 69120, Heidelberg, Germany; The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
36
|
Cortés R, Agulleiro MJ, Navarro S, Guillot R, Sánchez E, Cerdá-Reverter JM. Melanocortin receptor accessory protein 2 (MRAP2) interplays with the zebrafish melanocortin 1 receptor (MC1R) but has no effect on its pharmacological profile. Gen Comp Endocrinol 2014; 201:30-6. [PMID: 24709359 DOI: 10.1016/j.ygcen.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022]
Abstract
The melanocortin system is probably one of the most complex hormonal systems since it integrates agonist, encoded in the proopiomelanocortin precursor, endogenous antagonist, agouti signaling protein and agouti-related protein, five different G-protein coupled receptors and two accessory proteins. These accessory proteins interact with melanocortin receptors to allow traffic to the plasma membrane or to regulate the pharmacological profile. The MC1R fill the extension locus, which is primarily responsible for the regulation of pigmentation. In zebrafish, both MC1R and MRAP2 system are expressed in the skin. We demonstrate that zebrafish MC1R physically, or closely, interacts with the MRAP2 system, although this interaction did not result in modification of the studied pharmacological profile. However, progressive fasting induced skin darkening but also an upregulation of the MRAP2 expression in the skin, suggesting an unknown role for MRAP2a that could involve receptor desensitization processes. We also demonstrate that crowding stress induces skin darkening and a downregulation of MC1R expression in the skin.
Collapse
Affiliation(s)
- Raúl Cortés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Sandra Navarro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raúl Guillot
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Elisa Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
37
|
Penney CC, Volkoff H. Peripheral injections of cholecystokinin, apelin, ghrelin and orexin in cavefish (Astyanax fasciatus mexicanus): effects on feeding and on the brain expression levels of tyrosine hydroxylase, mechanistic target of rapamycin and appetite-related hormones. Gen Comp Endocrinol 2014; 196:34-40. [PMID: 24287340 DOI: 10.1016/j.ygcen.2013.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022]
Abstract
The effects of intraperitoneal injections of cholecystokinin (CCK), apelin, ghrelin, and orexin on food intake were examined in the blind cavefish Astyanax fasciatus mexicanus. CCK (50ng/g) induced a decrease in food intake whereas apelin (100ng/g), orexin (100ng/g), and ghrelin (100ng/g) induced an increase in food intake as compared to saline-injected control fish. In order to better understand the central mechanism by which these hormones act, we examined the effects of injections on the brain mRNA expression of two metabolic enzymes, tyrosine hydroxylase (TH), and mechanistic target of rapamycin (mTOR), and of appetite-regulating peptides, CCK, orexin, apelin and cocaine and amphetamine regulated transcript (CART). CCK injections induced a decrease in brain apelin injections, apelin injections induced an increase in TH, mTOR, and orexin brain expressions, orexin treatment increased brain TH expression and ghrelin injections induced an increase in mTOR and orexin brain expressions. CART expression was not affected by any of the injection treatments. Our results suggest that the enzymes TH and mTOR and the hormones CCK, apelin, orexin, and ghrelin all regulate food intake in cavefish through a complex network of interactions.
Collapse
Affiliation(s)
- Carla C Penney
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
38
|
Romano A, Barca A, Storelli C, Verri T. Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+-oligopeptide transporter as a case study. J Physiol 2013; 592:881-97. [PMID: 23981715 DOI: 10.1113/jphysiol.2013.259622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human genes for passive, ion-coupled transporters and exchangers are included in the so-called solute carrier (SLC) gene series, to date consisting of 52 families and 398 genes. Teleost fish genes for SLC proteins have also been described in the last two decades, and catalogued in preliminary SLC-like form in 50 families and at least 338 genes after systematic GenBank database mining (December 2010-March 2011). When the kinetic properties of the expressed proteins are studied in detail, teleost fish SLC transporters always reveal extraordinary 'molecular diversity' with respect to the mammalian counterparts, which reflects peculiar adaptation of the protein to the physiology of the species and/or to the environment where the species lives. In the case of the H+ -oligopeptide transporter PEPT1(SLC15A1), comparative analysis of diverse teleost fish orthologs has shown that the protein may exhibit very eccentric properties in terms of pH dependence (e.g., the adaptation of zebrafish PEPT1 to alkaline pH), temperature dependence (e.g., the adaptation of icefish PEPT1 to sub-zero temperatures) and/or substrate specificity (e.g., the species-specificity of PEPT1 for the uptake of l-lysine-containing peptides). The revelation of such peculiarities is providing new contributions to the discussion on PEPT1 in both basic (e.g., molecular structure-function analyses) and applied research (e.g., optimizing diets to enhance growth of commercially valuable fish).
Collapse
Affiliation(s)
- Alessandro Romano
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy.
| | | | | | | |
Collapse
|
39
|
Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK, Stewart AM, Kalueff AV. Developing 'integrative' zebrafish models of behavioral and metabolic disorders. Behav Brain Res 2013; 256:172-87. [PMID: 23948218 DOI: 10.1016/j.bbr.2013.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 02/09/2023]
Abstract
Recently, the pathophysiological overlap between metabolic and mental disorders has received increased recognition. Zebrafish (Danio rerio) are rapidly becoming a popular model organism for translational biomedical research due to their genetic tractability, low cost, quick reproductive cycle, and ease of behavioral, pharmacological or genetic manipulation. High homology to mammalian physiology and the availability of well-developed assays also make the zebrafish an attractive organism for studying human disorders. Zebrafish neurobehavioral and endocrine phenotypes show promise for the use of zebrafish in studies of stress, obesity and related behavioral and metabolic disorders. Here, we discuss the parallels between zebrafish and other model species in stress and obesity physiology, as well as outline the available zebrafish models of weight gain, metabolic deficits, feeding, stress, anxiety and related behavioral disorders. Overall, zebrafish demonstrate a strong potential for modeling human behavioral and metabolic disorders, and their comorbidity.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA; Thomas Jefferson High School for Science and Technology, 6560 Braddock Road, Alexandria, VA 22312, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Babichuk NA, Volkoff H. Changes in expression of appetite-regulating hormones in the cunner (Tautogolabrus adspersus) during short-term fasting and winter torpor. Physiol Behav 2013; 120:54-63. [PMID: 23831740 DOI: 10.1016/j.physbeh.2013.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/26/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Feeding in vertebrates is controlled by a number of appetite stimulating (orexigenic, e.g., orexin and neuropeptide Y, NPY) and appetite suppressing (anorexigenic, e.g., cholecystokinin, CCK and cocaine- and amphetamine-regulated transcript, CART) hormones. Cunners (Tautogolabrus adspersus) survive the winter in shallow coastal waters by entering a torpor-like state, during which they forgo feeding. In order to better understand the mechanisms regulating appetite/fasting in these fish, quantitative real-time PCR was used to measure transcript expression levels of four appetite-regulating hormones: NPY, CART, orexin and CCK in the forebrain (hypothalamus and telencephalon) and CCK in the gut of fed, short-term summer fasted, and natural winter torpor cunners. Summer fasting induced a decrease in hypothalamic orexin levels and telencephalon NPY, CART and CCK mRNA levels. All brain hormone mRNA levels decreased during natural torpor as compared to fed summer fish. In the gut, CCK expression levels decreased during summer fasting. These results indicate that, in cunner, orexin, NPY, CART and CCK may play a role in appetite regulation and might mediate different physiological responses to short-term summer fasting and torpor-induced long-term fasting.
Collapse
Affiliation(s)
- Nicole A Babichuk
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | | |
Collapse
|
41
|
Evidence for an ontogenetic change from pre-programmed to meal-responsive cck production in Atlantic herring, Clupea harengus L. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:17-20. [PMID: 23063626 DOI: 10.1016/j.cbpa.2012.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
The effects of up to three days of food deprivation on the cholecystokinin (CCK)-producing cells in the Atlantic herring gut were assessed by quantifying the number of cells detected by in situ hybridization at three ontogenetic stages. In feeding larvae that still possessed yolk-sacs (2 and 8days after hatch, DAH), intestinal cck expression appeared to be maintained regardless of external nutritional conditions. In 30 DAH-old herring larvae with well-established exogenous feeding only, very few CCK-producing cells could be identified, indicating that cck production in the gut had shut down after three days of starvation. This suggests that cck transcription is pre-programmed by a local timer in the midgut during the yolk-sac stage, regardless of the nutritional status and presence of nutrients in the gut lumen; however, it becomes strongly influenced by the external nutritional conditions after the yolk has been completely absorbed. Our results suggest that CCK-producing cells in the gut develop "meal-responsiveness" later in post-hatch development.
Collapse
|