1
|
Fatehi Hassanabad A, Zarzycki AN, Patel VB, Fedak PWM. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc Pathol 2024; 73:107673. [PMID: 38996851 DOI: 10.1016/j.carpath.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac fibrosis is a significant driver of congestive heart failure, a syndrome that continues to affect a growing patient population globally. Cardiac fibrosis results from a constellation of complex processes at the transcription, receptor, and signaling axes levels. Various mediators and signaling cascades, such as the transformation growth factor-beta pathway, have been implicated in the pathophysiology of cardiac tissue fibrosis. Our understanding of these markers and pathways has improved in recent years as more advanced technologies and assays have been developed, allowing for better delineation of the crosstalk between specific factors. There is mounting evidence suggesting that epigenetic modulation plays a pivotal role in the progression of cardiac fibrosis. Transcriptional regulation of key pro- and antifibrotic pathways can accentuate or blunt the rate and extent of fibrosis at the tissue level. Exosomes, micro-RNAs, and long noncoding RNAs all belong to factors that can impact the epigenetic signature in cardiac fibrosis. Herein, we comprehensively review the latest literature about exosomes, their contents, and cardiac fibrosis. In doing so, we highlight the specific transcriptional factors with pro- or antifibrotic properties. We also assimilate the data supporting these mediators' potential utility as diagnostic or prognostic biomarkers. Finally, we offer insight into where further work can be done to fill existing gaps to translate preclinical findings better and improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Zhu Y, Zhang P, Huo X, Ling Y, Lv X, Lin S, Song H. Single-cell and spatial transcriptomics reveal apelin/APJ pathway's role in microvessel formation and tumour progression in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e70152. [PMID: 39434201 PMCID: PMC11493554 DOI: 10.1111/jcmm.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The apelin receptor (APJ) is a key player in tumour angiogenesis, but its role in hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of the apelin/APJ pathway in HCC using a multi-omics approach and identify potential therapeutic biomarkers. Differentially expressed genes related to the apelin/APJ axis were identified from bulk transcriptomics to reveal HCC-associated disparities. Single-cell and spatial transcriptomics were used to localize and analyse the function of these genes. Machine learning models were constructed to predict outcomes based on apelin/APJ expression, and experimental validation was conducted to explore the pathway's impact on HCC angiogenesis. Single cell analysis revealed an overexpression of APJ/Aplin in the endothelium. The stemness of endothelial cell (EC) with high apelin/APJ was enhanced, as well as the expression of TGFb, oxidative stresses and PI3K/AKT pathway genes. Spatial transcriptomics confirmed that EC populations with high APJ scores were enriched within the tumour. Machine learning models showed high prognostic accuracy. High APJ expression was linked to worse outcomes (p = 0.001), and AUC values were high (1 year, 3 year, 5 year) (0.95, 0.97, 0.98). Immune suppression and non-responsiveness of immune therapy were also seen in high-risk groups. The experimental validation showed that silencing apelin reduced angiogenesis (p < 0.05), endothelial proliferation, decreased expression of ANG2, KLF2, VEGFA and lower ERK1/2 phosphorylation. Apelin may serve as a potential therapeutic target in HCC, given its role in promoting tumour angiogenesis and poor patient outcomes.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood supply
- Humans
- Apelin Receptors/metabolism
- Apelin Receptors/genetics
- Apelin/genetics
- Apelin/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Gene Expression Regulation, Neoplastic
- Transcriptome
- Single-Cell Analysis
- Signal Transduction
- Microvessels/pathology
- Microvessels/metabolism
- Gene Expression Profiling
- Disease Progression
- Prognosis
- Cell Line, Tumor
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Male
Collapse
Affiliation(s)
- Yongfu Zhu
- The First Department of OncologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Department of Dr. Hu Guojun Specialist ClinicThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Pengcheng Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zheiiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research DepartmentThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yi Ling
- The First Clinical Medical CollegeAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Xiang Lv
- Department of OncologyShanghai Traditional Chinese Medicine HospitalShanghaiChina
| | - Shengyou Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zheiiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Hang Song
- School of Integrated Chinese and Western MedicineAnhui University of Chinese MedicineHefeiChina
| |
Collapse
|
3
|
Matusik K, Kamińska K, Sobiborowicz-Sadowska A, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. The significance of the apelinergic system in doxorubicin-induced cardiotoxicity. Heart Fail Rev 2024; 29:969-988. [PMID: 38990214 PMCID: PMC11306362 DOI: 10.1007/s10741-024-10414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cancer is the leading cause of death worldwide, and the number of cancer-related deaths is expected to increase. Common types of cancer include skin, breast, lung, prostate, and colorectal cancers. While clinical research has improved cancer therapies, these treatments often come with significant side effects such as chronic fatigue, hair loss, and nausea. In addition, cancer treatments can cause long-term cardiovascular complications. Doxorubicin (DOX) therapy is one example, which can lead to decreased left ventricle (LV) echocardiography (ECHO) parameters, increased oxidative stress in cellular level, and even cardiac fibrosis. The apelinergic system, specifically apelin and its receptor, together, has shown properties that could potentially protect the heart and mitigate the damages caused by DOX anti-cancer treatment. Studies have suggested that stimulating the apelinergic system may have therapeutic benefits for heart damage induced by DOX. Further research in chronic preclinical models is needed to confirm this hypothesis and understand the mechanism of action for the apelinergic system. This review aims to collect and present data on the effects of the apelinergic system on doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Katarzyna Matusik
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kamińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Aleksandra Sobiborowicz-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Hubert Borzuta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kasper Buczma
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Hu S, Wang D, Liu W, Wang Y, Chen J, Cai X. Apelin receptor dimer: Classification, future prospects, and pathophysiological perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167257. [PMID: 38795836 DOI: 10.1016/j.bbadis.2024.167257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Yixiang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China.
| |
Collapse
|
5
|
Xu D, Fu J, Liu X, Hong Y, Chen X, Li S, Hou J, Zhang K, Zhou C, Zeng C, Zheng G, Wu H, Wang T. ELABELA-APJ Axis Enhances Mesenchymal Stem Cell Proliferation and Migration via the METTL3/PI3K/AKT Pathway. Acta Naturae 2024; 16:111-118. [PMID: 38698964 PMCID: PMC11062101 DOI: 10.32607/actanaturae.17863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/13/2024] [Indexed: 05/05/2024] Open
Abstract
Mesenchymal stem cells (MSCs) possess a strong therapeutic potential in regenerative medicine. ELABELA (ELA) is a 32 amino acid peptide that binds to the apelin peptide jejunum receptor (APJ) to regulate cell proliferation and migration. The aim of this study was to investigate the function of ELA vis-a-vis the MSC proliferation and migration, and further explore the underlying mechanism. We demonstrated that the exogenous supplement of ELA boosts the proliferation and migration ability of MSCs, alongside improved in vitro cell viability. These capabilities were rendered moot upon APJ knockdown. In addition, ELA (5-20 μM) was shown to upregulate the expression of METTL3 in a concentrationdependent pattern, a capacity which was suppressed by APJ reduction, whereas the downregulation of METTL3 expression blocked the beneficial effects induced by ELA. ELA was also observed to upregulate the phosphorylation level of AKT. This ELA-induced activation of the PI3K/AKT pathway, however, is inhibited with knockdown of METTL3. Our data indicate that ELA could act as a promoter of MSC proliferation and migration in vitro through the APJ receptor, something which might be attributed to the activation of the METTL3/PI3K/AKT signaling pathway. Therefore, ELA is a candidate for optimizing MSC-based cell therapy, while METTL3 is a potential target for its promoting action on MSCs.
Collapse
Affiliation(s)
- D. Xu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
| | - J. Fu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
| | - X. Liu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510120 China
| | - Y. Hong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
| | - X. Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
| | - S. Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
| | - J. Hou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510120 China
| | - K. Zhang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510120 China
| | - C. Zhou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
| | - C. Zeng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510120 China
| | - G. Zheng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510120 China
| | - H. Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
| | - T. Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003 China
| |
Collapse
|
6
|
Lu Y, Ran Y, Li H, Wen J, Cui X, Zhang X, Guan X, Cheng M. Micropeptides: origins, identification, and potential role in metabolism-related diseases. J Zhejiang Univ Sci B 2023; 24:1106-1122. [PMID: 38057268 PMCID: PMC10710913 DOI: 10.1631/jzus.b2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
7
|
Wyderka R, Diakowska D, Łoboz-Rudnicka M, Mercik J, Borger M, Osuch Ł, Brzezińska B, Leśków A, Krzystek-Korpacka M, Jaroch J. Influence of the Apelinergic System on Conduction Disorders in Patients after Myocardial Infarction. J Clin Med 2023; 12:7603. [PMID: 38137673 PMCID: PMC10744328 DOI: 10.3390/jcm12247603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND There is a growing body of evidence for an important role of the apelinergic system in the modulation of cardiovascular homeostasis. The aim of our study was to (1) examine the relationship between apelin serum concentration at index myocardial infarction (MI) and atrioventricular conduction disorders (AVCDs) at 12-month follow-up, and (2) investigate the association between initial apelin concentration and the novel marker of post-MI scar (Q/QRS ratio) at follow-up. METHODS In 84 patients with MI with complete revascularization, apelin peptide serum concentrations for apelin-13, apelin-17, elabela (ELA) and apelin receptor (APJ) were measured on day one of hospitalization; at 12-month follow-up, 54 of them underwent thorough examination that included 12-lead electrocardiography (ECG), Holter ECG monitoring and echocardiography. RESULTS The mean age was 58.9 years. At 12-month follow-up, AVCDs were diagnosed in 21.4% of subjects, with AV first-degree block in 16.7% and sinoatrial arrest in 3.7%. ELA serum concentration at index MI correlated positively with the occurrence of AVCD (p = 0.003) and heart rate (p = 0.005) at 12-month follow-up. The apelin-13 serum concentration at index MI correlated negatively with the Q/QRS ratio. CONCLUSIONS The apelin peptide concentration during an acute phase of MI impacts the development of AVCD and the value of Q/QRS ratio in MI survivors.
Collapse
Affiliation(s)
- Rafał Wyderka
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, Fieldorf 2, 54-049 Wroclaw, Poland (J.M.); (M.B.)
- Faculty of Medicine, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland
| | - Dorota Diakowska
- Department of Basic Sciences, Faculty of Health Science, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | - Maria Łoboz-Rudnicka
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, Fieldorf 2, 54-049 Wroclaw, Poland (J.M.); (M.B.)
| | - Jakub Mercik
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, Fieldorf 2, 54-049 Wroclaw, Poland (J.M.); (M.B.)
| | - Michał Borger
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, Fieldorf 2, 54-049 Wroclaw, Poland (J.M.); (M.B.)
- Department of Internal Nursing, Faculty of Health Science, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | - Łukasz Osuch
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, Fieldorf 2, 54-049 Wroclaw, Poland (J.M.); (M.B.)
| | - Barbara Brzezińska
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, Fieldorf 2, 54-049 Wroclaw, Poland (J.M.); (M.B.)
| | - Anna Leśków
- Department of Basic Sciences, Faculty of Health Science, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | | | - Joanna Jaroch
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, Fieldorf 2, 54-049 Wroclaw, Poland (J.M.); (M.B.)
- Faculty of Medicine, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland
- Department of Internal Nursing, Faculty of Health Science, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| |
Collapse
|
8
|
Liu Y, Jiang M, Li Y, Chen P, Chen X. Advances in the study of ELABELA in renal physiological functions and related diseases. Front Pharmacol 2023; 14:1276488. [PMID: 38026926 PMCID: PMC10644379 DOI: 10.3389/fphar.2023.1276488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
ELABELA (ELA), also known as Toddler or Apela, is a novel endogenous ligand of the angiotensin receptor AT1-related receptor protein (APJ). ELA is highly expressed in human embryonic, cardiac, and renal tissues and involves various biological functions, such as embryonic development, blood circulation regulation, and maintaining body fluid homeostasis. ELA is also closely related to the occurrence and development of acute kidney injury, hypertensive kidney damage, diabetic nephropathy, renal tumors, and other diseases. Understanding the physiological role of ELA and its mechanism of action in kidney-related diseases would provide new targets and directions for the clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- YuRong Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - MingChun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Yue Li
- Department of Anatomy, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Peng Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - XiaoYu Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| |
Collapse
|
9
|
Küçük U, Kırılmaz B, Kaya H, Akşit E, Arslan K. Is elabela/toddler a poor prognostic marker in heart failure patients? Hippokratia 2023; 27:126-131. [PMID: 39372325 PMCID: PMC11451502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Elabela/toddler (ELA-32) is a recently identified endogenous apelin receptor ligand. ELA levels are known to rise in heart failure (HF) patients. However, the association between elevated ELA levels and prognosis in these patients remains unknown. We aimed to investigate whether ELA plasma levels are correlated with prognosis in heart failure patients with reduced ejection fraction (HFrEF). Methods This case-control cross-sectional study enrolled 150 patients, including 73 HFrEF patients and 77 age- and gender-matched healthy volunteers. We collected a blood sample at hospital admission to measure ELA-32 levels. The study endpoint was cardiovascular mortality or HF-related hospitalization. We followed up all patients in the study for a mean of 7.48 ± 2.73 months. Results In patients with HFrEF, ELA-32 levels were higher than those in controls. The levels of ELA-32 showed a significant increase at advanced New York Heart Association stages. In the receiver operating characteristics curve analysis, a cut-off value of the serum ELA-32 level of 8.25 ng/mL showed a sensitivity of 76 % and specificity of 82 % for predicting the study endpoint [area under the curve: 0.84; 95 % confidence interval (CI): 0.72-0.98; p <0.001]. Cardiovascular mortality (p =0.042) and HF-related hospitalization (p <0.001) were statistically more significant in patients with ELA-32 levels greater than 8.25. Age [Hazard ratio (HR) =1.023; 95 % CI: 0.964-1.230, p =0.039], N-terminal pro-brain natriuretic peptide (HR =1.300; 95 % CI: 1.017-1.874, p =0.017), left ventricular end-diastolic volume (HR =1.142; 95 % CI 1.022-1.547, p =0.028), and ELA-32 ≥8.25 (HR =2.556; 95 % CI: 1.078-3.941, p <0.001) remained independently associated with the risk of study endpoint. Conclusion For the first time, HF-related hospitalizations and cardiovascular mortality are independently associated with increased ELA-32 levels in patients with HFrEF. HIPPOKRATIA 2023, 27 (4):126-131.
Collapse
Affiliation(s)
- U Küçük
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - B Kırılmaz
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - H Kaya
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - E Akşit
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - K Arslan
- Department of Cardiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
10
|
Zhang T, Wang X, Wang Z, Zhai J, He L, Wang Y, Zuo Q, Ma S, Zhang G, Guo Y. Canagliflozin Ameliorates Ventricular Remodeling through Apelin/Angiotensin-Converting Enzyme 2 Signaling in Heart Failure with Preserved Ejection Fraction Rats. Pharmacology 2023; 108:478-491. [PMID: 37611563 DOI: 10.1159/000533277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the effect of canagliflozin (CANA) on ventricular remodeling in patients with preserved ejection fraction (HFpEF) heart failure and to further investigate its possible molecular mechanisms. METHODS A high-salt diet was used to induce the formation of HFpEF model in salt-sensitive rats. The rats were fed with CANA and irbesartan, respectively. The mice were divided into control group, model group, CANA group, irbesartan group, and combined drug group. After 12 weeks of feeding, the rats were evaluated by measuring the relevant indexes and echocardiography for cardiac function. Histological analysis was performed using Masson trichrome staining and immunohistochemical staining. RT-qPCR and Western blot were used to quantify the relevant genes and proteins. RESULTS In this study, CANA exhibited diuresis, decreased blood pressure, weight loss, and increased food and water intake. Following a high-salt diet, Dahl salt-sensitive rats developed hypertension followed by left ventricular diastolic dysfunction, myocardial fibrosis, and left ventricular remodeling. Myocardial hypertrophy and fibrosis were reduced, and left ventricular diastolic function and ventricular remodeling improved after CANA treatment. The combination of CANA and irbesartan was superior to monotherapy in reducing blood pressure and improving cardiac insufficiency and left ventricular diastolic dysfunction in rats. CANA improves myocardial fibrosis, left ventricular diastolic dysfunction, and ventricular remodeling by upregulating apelin, activating angiotensin-converting enzyme 2 (ACE2), and increasing ACE2/Ang (1-7)/MASR axis levels. CONCLUSION CANA improves myocardial fibrosis, left ventricular diastolic dysfunction, and ventricular remodeling in HFpEF rats through upregulation of apelin/ACE2 signaling.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China,
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China,
| | - Xinyu Wang
- College of Postgraduate, Hebei North University, Zhangjiakou, China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Yan Wang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Yifang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
11
|
Wang CW, Chuang HC, Tan TH. ACE2 in chronic disease and COVID-19: gene regulation and post-translational modification. J Biomed Sci 2023; 30:71. [PMID: 37608279 PMCID: PMC10464117 DOI: 10.1186/s12929-023-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a counter regulator of the renin-angiotensin system, provides protection against several chronic diseases. Besides chronic diseases, ACE2 is the host receptor for SARS-CoV or SARS-CoV-2 virus, mediating the first step of virus infection. ACE2 levels are regulated by transcriptional, post-transcriptional, and post-translational regulation or modification. ACE2 transcription is enhanced by transcription factors including Ikaros, HNFs, GATA6, STAT3 or SIRT1, whereas ACE2 transcription is reduced by the transcription factor Brg1-FoxM1 complex or ERRα. ACE2 levels are also regulated by histone modification or miRNA-induced destabilization. The protein kinase AMPK, CK1α, or MAP4K3 phosphorylates ACE2 protein and induces ACE2 protein levels by decreasing its ubiquitination. The ubiquitination of ACE2 is induced by the E3 ubiquitin ligase MDM2 or UBR4 and decreased by the deubiquitinase UCHL1 or USP50. ACE2 protein levels are also increased by the E3 ligase PIAS4-mediated SUMOylation or the methyltransferase PRMT5-mediated ACE2 methylation, whereas ACE2 protein levels are decreased by AP2-mediated lysosomal degradation. ACE2 is downregulated in several human chronic diseases like diabetes, hypertension, or lung injury. In contrast, SARS-CoV-2 upregulates ACE2 levels, enhancing host cell susceptibility to virus infection. Moreover, soluble ACE2 protein and exosomal ACE2 protein facilitate SARS-CoV-2 infection into host cells. In this review, we summarize the gene regulation and post-translational modification of ACE2 in chronic disease and COVID-19. Understanding the regulation and modification of ACE2 may help to develop prevention or treatment strategies for ACE2-mediated diseases.
Collapse
Affiliation(s)
- Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| |
Collapse
|
12
|
Xi Y, Li Y, Ren W, Bo W, Ma Y, Pan S, Gong DAW, Tian Z. ELABELA-APJ-Akt/YAP Signaling Axis: A Novel Mechanism of Aerobic Exercise in Cardioprotection of Myocardial Infarction Rats. Med Sci Sports Exerc 2023; 55:1172-1183. [PMID: 36878020 DOI: 10.1249/mss.0000000000003143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE The aim of this study was to investigate the function and mechanisms of ELABELA (ELA) in the aerobic exercise-induced antiapoptosis and angiogenesis of ischemic heart. METHODS The myocardial infarction (MI) model of Sprague-Dawley rat was established by the ligation of the left anterior descending coronary artery. MI rats underwent 5 wk of Fc-ELA-21 subcutaneous injection and aerobic exercise training using a motorized rodent treadmill. Heart function was evaluated by hemodynamic measures. Cardiac pathological remodeling was evaluated by Masson's staining and the calculation of left ventricular weight index. Cell proliferation, angiogenesis, and Yes-associated protein (YAP) translocation were observed by immunofluorescence staining. Cell apoptosis was analyzed by TUNEL. Cell culture and treatment were used to elucidate the molecular mechanism of ELA. Protein expression was detected by Western blotting. Angiogenesis was observed by tubule formation test. One-way or two-way ANOVA and Student's t -test were used for statistical analysis. RESULTS Aerobic exercise stimulated the endogenous ELA expression. Exercise and Fc-ELA-21 intervention significantly activated APJ-Akt-mTOR-P70S6K signaling pathway, kept more cardiomyocytes alive, and increased angiogenesis, so as to inhibit the cardiac pathological remodeling and improved the heart function of MI rats. Fc-ELA-32 also had the cellular and functional cardioprotective activities in vivo . In vitro , ELA-14 peptide regulated the phosphorylation and nucleoplasmic translocation of YAP and activated the APJ-Akt signaling pathway so as to increase the proliferation of H9C2 cells. Moreover, the antiapoptosis and the tubule formation of HUVECs were also enhanced by ELA-14, whereas the inhibition of Akt activity weakened such effects. CONCLUSIONS ELA is a potential therapeutic member that plays a key role through APJ-Akt/YAP signaling axis in aerobic exercise-induced cardioprotection of MI rats.
Collapse
Affiliation(s)
| | - Yongxia Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - Wujing Ren
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - Wenyan Bo
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - Yixuan Ma
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - Shou Pan
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| | - DA-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an, Shaanxi, P.R. CHINA
| |
Collapse
|
13
|
Zhang KL, Li SM, Hou JY, Hong YH, Chen XX, Zhou CQ, Wu H, Zheng GH, Zeng CT, Wu HD, Fu JY, Wang T. Elabela, a Novel Peptide, Exerts Neuroprotective Effects Against Ischemic Stroke Through the APJ/miR-124-3p/CTDSP1/AKT Pathway. Cell Mol Neurobiol 2023:10.1007/s10571-023-01352-6. [PMID: 37106272 DOI: 10.1007/s10571-023-01352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Elabela (ELA), which is the second endogenous peptide ligand of the apelin receptor (APJ) to be discovered, has been widely studied for potential use as a therapeutic peptide. However, its role in ischemic stroke (IS), which is a leading cause of disability and death worldwide and has limited therapeutic options, is uncertain. The aim of the present study was to investigate the beneficial effects of ELA on neuron survival after ischemia and the underlying molecular mechanisms. Primary cortical neurons were isolated from the cerebral cortex of pregnant C57BL/6J mice. Flow cytometry and immunofluorescence showed that ELA inhibited oxygen-glucose deprivation (OGD) -induced apoptosis and axonal damage in vitro. Additionally, analysis of the Gene Expression Omnibus database revealed that the expression of microRNA-124-3p (miR-124-3p) was decreased in blood samples from patients with IS, while the expression of C-terminal domain small phosphatase 1 (CTDSP1) was increased. These results indicated that miR-124-3p and CTDSP1 were related to ischemic stroke, and there might be a negative regulatory relationship between them. Then, we found that ELA significantly elevated miR-124-3p expression, suppressed CTDSP1 expression, and increased p-AKT expression by binding to the APJ receptor under OGD in vitro. A dual-luciferase reporter assay confirmed that CTDSP1 was a direct target of miR-124-3p. Furthermore, adenovirus-mediated overexpression of CTDSP1 exacerbated neuronal apoptosis and axonal damage and suppressed AKT phosphorylation, while treatment with ELA or miR-124-3p mimics reversed these effects. In conclusion, these results indicated that ELA could alleviate neuronal apoptosis and axonal damage by upregulating miR-124-3p and activating the CTDSP1/AKT signaling pathway. This study, for the first time, verified the protective effect of ELA against neuronal injury after ischemia and revealed the underlying mechanisms. We demonstrated the potential for the use of ELA as a therapeutic agent in the treatment of ischemic stroke.
Collapse
Grants
- No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009 the Shenzhen Fundamental Research Program
- No. JCYJ20190808101405466, JCYJ20210324115003008, JCYJ20220530144404009 the Shenzhen Fundamental Research Program
- No. FTWS2019001, FTWS2021016, FTWS2022018 the Futian District Health and Public Welfare Research Project of Shenzhen City
- No. FTWS2019001, FTWS2021016, FTWS2022018 the Futian District Health and Public Welfare Research Project of Shenzhen City
- No. 81070125, 81270213, 81670306 National Natural Science Foundation of China
- No. 2010B031600032, 2014A020211002 the Science and Technology Foundation in Guangdong Province
- No. 2017A030313503 the National Natural Science Foundation of Guangdong Province
- No. 201806020084 the Science and Technology Foundation in Guangzhou City
- No. 13ykzd16, 17ykjc18 the Fundamental Research Funds for the Central Universities
Collapse
Affiliation(s)
- Kang-Long Zhang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Shuang-Mei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jing-Yu Hou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Ying-Hui Hong
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Xu-Xiang Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Chang-Qing Zhou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guang-Hui Zheng
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Chao-Tao Zeng
- Department of Emergency, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hai-Dong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jia-Ying Fu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518003, Guangdong, People's Republic of China.
| |
Collapse
|
14
|
Pang B, Jiang YR, Xu JY, Shao DX, Hao LY. Apelin/ELABELA-APJ system in cardiac hypertrophy: Regulatory mechanisms and therapeutic potential. Eur J Pharmacol 2023; 949:175727. [PMID: 37062502 DOI: 10.1016/j.ejphar.2023.175727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Heart failure is one of the most significant public health problems faced by millions of medical researchers worldwide. And pathological cardiac hypertrophy is considered one of the possible factors of increasing the risk of heart failure. Here, we introduce apelin/ELABELA-APJ system as a novel therapeutic target for cardiac hypertrophy, bringing about new directions in clinical treatment. Apelin has been proven to regulate cardiac hypertrophy through various pathways. And an increasing number of studies on ELABELA, the newly discovered endogenous ligand, suggest it can alleviate cardiac hypertrophy through mechanisms similar or different to apelin. In this review, we elaborate on the role that apelin/ELABELA-APJ system plays in cardiac hypertrophy and the intricate mechanisms that apelin/ELABELA-APJ affect cardiac hypertrophy. We also illuminate and make comparisons of the newly designed peptides and small molecules as agonists and antagonists for APJ, updating the breakthroughs in this field.
Collapse
Affiliation(s)
- Bo Pang
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Yin-Ru Jiang
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Jia-Yao Xu
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Dong-Xue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
15
|
Li W, Xu P, Kong L, Feng S, Shen N, Huang H, Wang W, Xu X, Wang X, Wang G, Zhang Y, Sun W, Hu W, Liu X. Elabela-APJ axis mediates angiogenesis via YAP/TAZ pathway in cerebral ischemia/reperfusion injury. Transl Res 2023; 257:78-92. [PMID: 36813109 DOI: 10.1016/j.trsl.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Angiogenesis helps to improve neurological recovery by repairing damaged brain tissue and restoring cerebral blood flow (CBF). The role of the Elabela (ELA)-Apelin receptor (APJ) system in angiogenesis has gained much attention. We aimed to investigate the function of endothelial ELA on postischemic cerebral angiogenesis. Here, we demonstrated that the endothelial ELA expression was upregulated in the ischemic brain and treatment with ELA-32 mitigated brain injury and enhanced the restoration of CBF and newly formed functional vessels following cerebral ischemia/reperfusion (I/R) injury. Furthermore, ELA-32 incubation potentiated proliferation, migration, and tube formation abilities of the mouse brain endothelial cells (bEnd.3 cells) under oxygen-glucose deprivation/reoxygenation (OGD/R) condition. RNA sequencing analysis indicated that ELA-32 incubation had a role in the Hippo signaling pathway, and improved angiogenesis-related gene expression in OGD/R-exposed bEnd.3 cells. Mechanistically, we depicted that ELA could bind to APJ and subsequently activate YAP/TAZ signaling pathway. Silence of APJ or pharmacological blockade of YAP abolished the pro-angiogenesis effects of ELA-32. Together, these findings highlight the ELA-APJ axis as a potential therapeutic strategy for ischemic stroke by showing how activation of this pathway promotes poststroke angiogenesis.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuo Feng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongmei Huang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuxuan Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Sun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinfeng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
16
|
Feedback Interaction Between Apelin and Endoplasmic Reticulum Stress in the Rat Myocardium. J Cardiovasc Pharmacol 2023; 81:21-34. [PMID: 36084017 DOI: 10.1097/fjc.0000000000001369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/01/2022] [Indexed: 01/26/2023]
Abstract
ABSTRACT Apelin is an endogenous active peptide, playing a crucial role in regulating cardiovascular homeostasis. This study aimed to investigate the interaction between apelin and endoplasmic reticulum stress (ERS). Tunicamycin (Tm) and dithiothreitol (DTT) were used to induce ERS in the ex vivo cultured myocardium of rats. Myocardial injury was determined by the activities of lactate dehydrogenase and creatine kinase-MB in the culture medium. The protein levels of an ERS-associated molecule, apelin, and its receptor angiotensin domain type 1 receptor-associated proteins (APJ) in the myocardium were determined by western blot analysis. The level of apelin in the culture medium was determined by enzyme immunoassay. Administration of Tm and DTT triggered ERS activation and myocardial injury, and led to a decrease in protein levels of apelin and APJ, in a dose-dependent manner. Integrated stress response inhibitor, an inhibitor of eukaryotic initiation factor 2α phosphorylation that is commonly used to prevent activation of protein kinase R-like ER kinase cascades, blocked ERS-induced myocardial injury and reduction of apelin and APJ levels. The ameliorative effect of integrated stress response inhibitor was partially inhibited by [Ala]-apelin-13, an antagonist of APJ. Furthermore, apelin treatment inhibited activation of the 3 branches of ERS induced by Tm and DTT in a dose-dependent manner, thereby preventing Tm-induced or DTT-induced myocardial injury. The negative feedback regulation between ERS activation and apelin/APJ suppression might play a critical role in myocardial injury. Restoration of apelin/APJ signaling provides a potential target for the treatment and prevention of ERS-associated tissue injury and diseases.
Collapse
|
17
|
Zhang MW, Li XT, Zhang ZZ, Liu Y, Song JW, Liu XM, Chen YH, Wang N, Guo Y, Liang LR, Zhong JC. Elabela blunts doxorubicin-induced oxidative stress and ferroptosis in rat aortic adventitial fibroblasts by activating the KLF15/GPX4 signaling. Cell Stress Chaperones 2023; 28:91-103. [PMID: 36510036 PMCID: PMC9877260 DOI: 10.1007/s12192-022-01317-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug for a variety of malignancies, while its application is restricted by the cardiovascular toxic effects characterized by oxidative stress. Ferroptosis is a novel iron-dependent regulated cell death driven by lipid peroxidation. Our study aimed to investigate the role of Elabela (ELA) in DOX-induced oxidative stress and ferroptosis. In cultured rat aortic adventitial fibroblasts (AFs), stimulation with DOX dramatically induced cytotoxicity with reduced cell viability and migration ability, and enhanced lactate dehydrogenase (LDH) activity. Importantly, ELA and ferrostatin-1 (Fer-1) mitigated DOX-mediated augmentation of reactive oxygen species (ROS) in rat aortic AFs, accompanied by upregulated levels of Nrf2, SLC7A11, GPX4, and GSH. In addition, ELA reversed DOX-induced dysregulation of apoptosis- and inflammation-related factors including Bax, Bcl2, interleukin (IL)-1β, IL6, IL-10, and CXCL1. Intriguingly, knockdown of Krüppel-like factor 15 (KLF15) by siRNA abolished ELA-mediated alleviation of ROS production and inflammatory responses. More importanly, KLF15 siRNA impeded the beneficial roles of ELA in DOX-pretreated rat aortic AFs by suppressing the Nrf2/SLC7A11/GPX4 signaling. In conclusion, ELA prevents DOX-triggered promotion of cytotoxicity, and exerts anti-oxidative and anti-ferroptotic effects in rat aortic AFs via activation of the KLF15/GPX4 signaling, indicating a promising therapeutic value of ELA in antagonizing DOX-mediated cardiovascular abnormality and disorders.
Collapse
Affiliation(s)
- Mi-Wen Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xue-Ting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen-Zhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi-Hang Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ning Wang
- Department of Geratology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Guo
- Department of Geratology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li-Rong Liang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
18
|
Salles ÉL, Emami Naeini S, Bhandari B, Khodadadi H, Threlkeld E, Rezaee S, Meeks W, Meeks A, Awe A, El-Marakby A, Yu JC, Wang LP, Baban B. Sexual Dimorphism in the Polarization of Cardiac ILCs through Elabela. Curr Issues Mol Biol 2022; 45:223-232. [PMID: 36661503 PMCID: PMC9856941 DOI: 10.3390/cimb45010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Elabela is a component of the apelinergic system and may exert a cardioprotective role by regulating the innate immune responses. Innate lymphoid cells (ILCs) have a significant role in initiating and progressing immune-inflammatory responses. While ILCs have been intensively investigated during the last decade, little is known about their relationship with the apelinergic system and their cardiac diversity in a gender-based paradigm. In this study, we investigated the polarization of cardiac ILCs by Elabela in males versus females in a mouse model. Using flow cytometry and immunohistochemistry analyses, we showed a potential interplay between Elabela and cardiac ILCs and whether such interactions depend on sexual dimorphism. Our findings showed, for the first time, that Elabela is expressed by cardiac ILCs, and its expression is higher in females' ILC class 3 (ILC3s) compared to males. Females had higher frequencies of ILC1s, and Elabela was able to suppress T-cell activation and the expression of co-stimulatory CD28 in a mixed lymphocyte reaction assay (MLR). In conclusion, our results suggest, for the first time, a protective role for Elabela through its interplay with ILCs and that it can be used as an immunotherapeutic target in the treatment of cardiovascular disorders in a gender-based fashion.
Collapse
Affiliation(s)
- Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)-721-3181
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Edie Threlkeld
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sholeh Rezaee
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Avery Meeks
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Aderemi Awe
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ahmed El-Marakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jack C. Yu
- Department of Plastic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lei P. Wang
- Medicinal Cannabis of Georgia LLC, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Sharma M, Prabhavalkar KS, Bhatt LK. Elabela Peptide: An Emerging Target in Therapeutics. Curr Drug Targets 2022; 23:1304-1318. [PMID: 36029072 DOI: 10.2174/1389450123666220826160123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
Elabela, a bioactive micropeptide, is recognized as the second endogenous ligand for the Apelin receptor and is widely distributed in different tissues and organs. Elabela plays an important role in various physiological processes, such as blood pressure control, heart morphogenesis, apoptosis, angiogenesis, cell proliferation, migration, etc. Elabela is also implicated in pathological conditions, like cardiac dysfunctions, heart failure, hypertension, kidney diseases, cancer and CNS disorders. The association of Elabela with these disease conditions makes it a potential target for their therapy. This review summarizes the physiological role of Elabela peptide as well as its implication in various disease conditions.
Collapse
Affiliation(s)
- Maneesha Sharma
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
20
|
Neuropeptide apelin presented in the dopaminergic neurons modulates the neuronal excitability in the substantia nigra pars compacta. Neuropharmacology 2022; 219:109235. [PMID: 36041497 DOI: 10.1016/j.neuropharm.2022.109235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
The dopaminergic neurons in the substantia nigra pars compacta are characterized by autonomous pacemaking activity. The spontaneous firing activity of nigral dopaminergic neurons plays an important role in physiological function and is essential for their survival. Importantly, the spontaneous firing activity may also be involved in the preferential vulnerability of the nigral dopaminergic neurons in Parkinson's disease (PD). The neuropeptide apelin was reported to exert neuroprotective effects in neurodegenerative diseases, including PD. And it was noticed that apelin modulates neuronal activity in some brain regions. The present study investigated the electrophysiological and behavioral effects of apelin in the substantia nigra. Double-labeling immunofluorescence showed that apelin was present in nigral dopaminergic neurons and that these neurons expressed apelin receptor APJ. Further single unit in vivo electrophysiological recordings revealed that endogenous apelin tonically increased the firing rate of nigral dopaminergic neurons in both normal and parkinsonian animals. Exogenous apelin-13 exerted excitatory effects on the majority of nigral dopaminergic neurons, yet reduced excitability in a subset of neurons. In addition, nigral application of apelin-13 increased motor activity in normal rats and blocking endogenous apelin reduced motor activity. Considering the involvement of the spontaneous firing activity of nigral dopaminergic neurons in the development of PD and the possibility that apelin acts in an autocrine manner on apelin receptors expressed by nigral dopaminergic neurons, the modulation of the spontaneous firing activity of nigral dopaminergic neurons by apelin may serve as a neuroprotective factor in PD.
Collapse
|
21
|
Sahinturk S, Demirel S, Ozyener F, Isbil N. Vascular Functional Effect Mechanisms of Elabela in Rat Thoracic Aorta. Ann Vasc Surg 2022; 84:381-397. [PMID: 35472496 DOI: 10.1016/j.avsg.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Elabela is a recently discovered peptide hormone. The present study aims to investigate the vasorelaxant effect mechanisms of elabela in the rat thoracic aorta. METHODS The vascular rings obtained from the thoracic aortas of the male Wistar albino rats were placed in the isolated tissue bath system. Resting tension was set to 1 gram. After the equilibration period, the vessel rings were contracted with phenylephrine or potassium chloride. Once a stable contraction was achieved, elabela-32 was applied cumulatively (10-9-10-6 molar) to the vascular rings. The experimental protocol was repeated in the presence of specific signaling pathway inhibitors or potassium channel blockers to determine the effect mechanisms of elabela. RESULTS Elabela showed a significant vasorelaxant effect in a concentration-dependent manner (P < 0.001). The vasorelaxant effect level of elabela was significantly reduced by the apelin receptor antagonist F13A, cyclooxygenase inhibitor indomethacin, adenosine monophosphate-activated protein kinase inhibitor dorsomorphin, protein kinase C inhibitor bisindolmaleimide, large-conductance calcium-activated potassium channel blocker iberiotoxin, and intermediate-conductance calcium-activated potassium channel blocker TRAM-34 (P < 0.001). However, the vasorelaxant effect level of elabela was not significantly affected by the endothelial nitric oxide synthase inhibitor nitro-L-arginine methyl ester and mitogen-activated protein kinase inhibitor U0126. CONCLUSIONS Elabela exhibits a prominent vasodilator effect in rat thoracic aorta. Apelin receptor, prostanoids, adenosine monophosphate-activated protein kinase, protein kinase C, and calcium-activated potassium channels are involved in the vasorelaxant effect mechanisms of elabela.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey.
| | - Sadettin Demirel
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Fadil Ozyener
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| | - Naciye Isbil
- Physiology Department, Bursa Uludag University Medicine School, Bursa, Turkey
| |
Collapse
|
22
|
Design and preparation of N-linked hydroxypyridine-based APJ agonists. Bioorg Med Chem Lett 2022; 73:128882. [PMID: 35817293 DOI: 10.1016/j.bmcl.2022.128882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Agonism of the apelin receptor (APJ) has demonstrated beneficial effects in models of heart failure. We have previously disclosed compounds such as 4, which showed good APJ agonist activity but were metabolized to the mono-demethylated, non-interconverting atropisomer metabolites. Herein, we detail the design and optimization of a novel series of N-linked APJ agonists with good potency, metabolic stability, and rat pharmacokinetic profile, which are unable to undergo the same metabolic mono-demethylation cleavage.
Collapse
|
23
|
Mesenchymal Stem Cells Alleviate Renal Fibrosis and Inhibit Autophagy via Exosome Transfer of miRNA-122a. Stem Cells Int 2022; 2022:1981798. [PMID: 35859725 PMCID: PMC9289760 DOI: 10.1155/2022/1981798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes derived from mesenchymal stem cell (MSC) alleviate kidney damage through autophagy. This study determined whether MSCs relieve renal fibrosis and inhibit autophagy by exosome transfer of miRNA-122a. The gene expression involved in the mTOR signaling pathway and autophagy was assessed in TGF-β1-treated human renal tubular epithelial cells (HK-2) and unilateral ureteral obstruction (UUO) mice before and after MSC-derived exosomes and miRNA-122a mimic treatment. Small RNA (sRNA) next-generation sequencing was also performed on TGF-β1-treated HK-2 cells. MSC-derived exosomes relieve fibrosis caused by TGFβ in HK-2 via regulation of the mTOR signaling pathway and downstream autophagy. Furthermore, we found that MSC-derived exosomes mediate miRNA-122a to relieve renal fibrosis in HK-2 cells in response to TGF-β1 through the regulation of mTOR signaling and autophagy. In the UUO mouse model, miRNA-122a mimic-transfected MSC treatment and its combination with 3-MA both recapitulated the same results as the in vitro experiments, along with reduced expansion of renal tubule, interstitial expansion, and preservation of kidney architecture. The antifibrotic activity of MSC-derived exosomes after renal fibrosis occurs partially by autophagy suppression via excreted exosomes containing mainly miRNA-122a. These findings indicate that the export of miRNA-122a via MSC-derived exosomes represents a novel strategy to alleviate renal fibrosis.
Collapse
|
24
|
Hu Y, Jin L, Pan Y, Zou J, Wang Z. Apela gene therapy alleviates pulmonary hypertension in rats. FASEB J 2022; 36:e22431. [PMID: 35747913 DOI: 10.1096/fj.202200266r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Pulmonary artery hypertension (PAH) is a common disease that threatens human health. At present, no treatment can cure PAH, and the prognosis is poor. Therefore, it is important to determine new targets for PAH treatment. Recently, a novel endogenous ligand Apela (ELABELA/Toddler/ELA32) of apelin peptide jejunum (APJ) receptor was identified as a possible PAH target. This study explored the potential effect of Apela gene therapy on rats with PAH. An AAV-ELA32 recombinant expression vector was constructed by molecular cloning. Purified adeno-associated virus (AAV) was injected into monocrotaline (MCT)-induced PAH rats via tail vein 1 and 2 weeks after modeling. Apela gene therapy significantly reduced the increased right ventricular systolic pressure and N-terminal pro-brain natriuretic peptide (NT-proBNP) in PAH rats. The results of histopathology and immunofluorescence showed that Apela gene therapy not only reduced the rate of pulmonary arteriole muscularization and media thickening in PAH rats but also inhibited the endothelial-to-mesenchymal transition of the pulmonary arteriole. Western blotting showed that Apela gene therapy up-regulated the expression of KLF2/eNOs and BMPRII/SMAD4 in pulmonary arterioles of PAH rats. Overall, the results show that Apela gene therapy can inhibit pulmonary arteriolar vascular remodeling and reduce pulmonary artery pressure in PAH rats. These effects may be related to KLF2/eNOs and BMPRII/SMAD4 signaling pathways. The apelinergic system may be a potential new target for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Liangli Jin
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Wang J, Zhang Q, Chen E, Zhao P, Xu Y. Elabela promotes the retinal angiogenesis by inhibiting ferroptosis during the vaso-obliteration phase in mouse oxygen-induced retinopathy model. FASEB J 2022; 36:e22257. [PMID: 35471770 DOI: 10.1096/fj.202101785rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness associated with retinal vaso-obliteration in phase 1 and pathological neovascularization (NV) in phase 2; however, effective and safe treatments for ROP definitive treatment are yet to be determined. Anti-vascular endothelial growth factor (VEGF) therapy mainly focuses on reducing abnormal NV in phase 2 but with high risks of late recurrence and systemic side effects. Previous studies have established that the severity of vaso-obliteration in phase 1 largely influences subsequent stages, suggesting that prevention of vessels loss may be a potential therapeutic target for ROP. Herein, the therapeutic potential and safety of early Elabela intervention treatment in treating phase 1 ROP and the possible underlying mechanisms were investigated using an oxygen-induced retinopathy (OIR) mouse model. It was observed that intraperitoneal injection of Elabela remarkably reduced the avascular retinal area and increased the vascular density in phase 1 of OIR mice. Further investigation revealed that mitochondrion-dependent ferroptosis was involved in oxidative stress-mediated vascular protection loss in phase 1 OIR. Furthermore, we demonstrated that Elabela could rescue mitochondria-dependent ferroptosis via mediating the xCT/GPX4 axis. Collectively, our study revealed that ferroptosis may play a significant role in early ROP, while Elabela may be a safe and promising strategy for the early intervention of ROP.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Enguang Chen
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Effect of Severe Renal Impairment on the Safety, Tolerability, and Pharmacokinetics of AMG 986. Drugs R D 2022; 22:89-94. [PMID: 35092583 PMCID: PMC8885944 DOI: 10.1007/s40268-021-00380-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 01/07/2023] Open
Abstract
Introduction AMG 986 is a first-in-class, novel apelin receptor small molecule agonist initially developed for the treatment of heart failure (HF). The safety and pharmacokinetics (PK) of AMG 986 in participants with renal impairment (RI) remains unknown. Methods This phase 1 study compared the safety and PK of AMG 986 200 mg in six participants with severe RI (estimated glomerular filtration rate [eGFR] 15–29 mL/min/1.73 m2) versus six participants with normal renal function (eGFR ≥ 90 mL/min/1.73 m2). Results Following a single oral dose of AMG 986 200 mg on day 1, the maximum observed concentration increased 1.41-fold (90% confidence interval [CI] 0.88–2.27) and the area under the curve from time zero to infinity increased 1.23-fold (90% CI 0.73–2.06) in participants with severe RI versus normal renal function. AMG 986 had an acceptable safety profile; all adverse events were mild in severity. Conclusions The results of this study support the enrollment of HF patients with RI to clinical trials of AMG 986 without the need for dose adjustments. Trial Registration Number NCT03318809 (registered: October 24, 2017).
Collapse
|
27
|
Chen X, Zhou C, Xu D, Liu X, Li S, Hou J, Zhang K, Zeng C, Zheng G, Wu H, Wu H, Wang W, Fu J, Wang T. Peptide hormone ELABELA promotes rat bone marrow-derived mesenchymal stem cell proliferation and migration by manipulating the cell cycle through the PI3K/AKT pathway under the hypoxia and ischemia microenvironmemt. Stem Cell Res Ther 2022; 13:32. [PMID: 35090551 PMCID: PMC8796437 DOI: 10.1186/s13287-021-02691-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are emerging as a potential candidate for stem cell transplantation to repair myocardial tissue in myocardial infarctions (MI). However, there are some pivotal limitations such as poor survival and low migration capacity of MSCs in hypoxic and ischemic microenvironments of MI. Our previous work verified that ELABELA (also abbreviated as ELA), a peptide hormone, could play a role as a growth factor and prolong the life span of rat bone marrow-derived mesenchymal stem cells (RAT BM-MSCs) under hypoxic and ischemic conditions. Nevertheless, the influence of ELA on the cell cycle, proliferation, and migration remains elusive. This study will further explore the improvement of the biological functions of ELA-treated RAT BM-MSCs, so as to provide a reference for improving the efficacy of RAT BM-MSCs in MI. METHODS Rat BM-MSCs were isolated from 80 to 120 g Sprague Dawley rats by flushing femurs and tibias under the aseptic condition. RAT BM-MSCs of the third passage were divided into control group, hypoxic/ischemic (H/I) group, ELA group, ELA-LY group and LY group. RAT BM-MSCs were cultured under normoxia in control group. In H/I group, RAT BM-MSCs were exposed to hypoxia (1% O2) and serum deprivation for 24 h. RAT BM-MSCs in ELA group were treated with 5 µM ELA prior to the H/I exposure for 24 h. The PI3K/AKT inhibitor, LY294002 (50 µM), was used in ELA-LY group and LY group to observe the effect of ELA on PI3K/AKT activation. Cell proliferation ability was examined by CCK-8. Cell cycle was assessed with flow cytometry. Cell migration was evaluated by Transwell assay. Expression levels of total-AKT, phosphorylated-AKT, and cell cycle-associated proteins were examined by Western blotting. RESULTS ELA-treated RAT BM-MSCs exhibited significantly higher proliferation ability, cell viability, and migration under H/I conditions. The cell cycle analysis showed that an increased proportion of cells in the S and G2/M phases of the cell cycle were observed in ELA-treated RAT BM-MSCs. The addition of ELA activated the PI3K/AKT signaling pathway. Additionally, upon treating with the inhibitor of the PI3K/AKT signaling pathway, ELA-triggered proliferation, cell viability, and migration were abrogated. CONCLUSIONS ELA can be used to enhance the proliferation ability, cell viability, and migration of RAT BM-MSCs through the PI3K/AKT signaling pathway and alleviate cell cycle arrest at the G0/G1 phase under hypoxic and ischemic injury. Thus, this study provides a promising strategy that ELA may help to optimize the mesenchymal stem cell-based therapy in MI.
Collapse
Affiliation(s)
- Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Changqing Zhou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Daishi Xu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Xin Liu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Shuangmei Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jingyu Hou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Kanglong Zhang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Chaotao Zeng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guanghui Zheng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wuming Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jiaying Fu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China.
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Gaddam RR, Kim Y, Jacobs JS, Yoon J, Li Q, Cai A, Shankaiahgari H, London B, Irani K, Vikram A. The microRNA-204-5p inhibits APJ signalling and confers resistance to cardiac hypertrophy and dysfunction. Clin Transl Med 2022; 12:e693. [PMID: 35060347 PMCID: PMC8777385 DOI: 10.1002/ctm2.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MicroRNAs regulate cardiac hypertrophy development, which precedes and predicts the risk of heart failure. microRNA-204-5p (miR-204) is well expressed in cardiomyocytes, but its role in developing cardiac hypertrophy and cardiac dysfunction (CH/CD) remains poorly understood. METHODS We performed RNA-sequencing, echocardiographic, and molecular/morphometric analysis of the heart of mice lacking or overexpressing miR-204 five weeks after trans-aortic constriction (TAC). The neonatal rat cardiomyocytes, H9C2, and HEK293 cells were used to determine the mechanistic role of miR-204. RESULTS The stretch induces miR-204 expression, and miR-204 inhibits the stretch-induced hypertrophic response of H9C2 cells. The mice lacking miR-204 displayed a higher susceptibility to CH/CD during pressure overload, which was reversed by the adeno-associated virus serotype-9-mediated cardioselective miR-204 overexpression. Bioinformatic analysis of the cardiac transcriptomics of miR-204 knockout mice following pressure overload suggested deregulation of apelin-receptor (APJ) signalling. We found that the stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and hypertrophy-related genes expression depend on the APJ, and both of these effects are subject to miR-204 levels. The dynamin inhibitor dynasore inhibited both stretch-induced APJ endocytosis and ERK1/2 activation. In contrast, the miR-204-induced APJ endocytosis was neither inhibited by dynamin inhibitors (dynasore and dyngo) nor associated with ERK1/2 activation. We find that the miR-204 increases the expression of ras-associated binding proteins (e.g., Rab5a, Rab7) that regulate cellular endocytosis. CONCLUSIONS Our results show that miR-204 regulates trafficking of APJ and confers resistance to pressure overload-induced CH/CD, and boosting miR-204 can inhibit the development of CH/CD.
Collapse
Affiliation(s)
- Ravinder Reddy Gaddam
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Young‐Rae Kim
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Julia S. Jacobs
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Jin‐Young Yoon
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Qiuxia Li
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Angela Cai
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Hamsitha Shankaiahgari
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Barry London
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Kaikobad Irani
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| | - Ajit Vikram
- Department of Internal MedicineCarver College of Medicine University of IowaIowa CityIowaUSA
| |
Collapse
|
29
|
Marczewski K, Gospodarczyk N, Gospodarczyk A, Widuch M, Tkocz M. APELIN IN HEART FAILURE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2501-2506. [PMID: 36472288 DOI: 10.36740/wlek202210130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Apelin is a biologically active protein encoded by the APLN gene. It was first isolated in 1998 as a ligand for the APJ receptor. It exists in several isoforms differing in polypeptide chain length and biological activity. It is secreted by white adipose tissue, and its expression has been identified in many body tissues, including the cardiovascular system, kidneys, lungs, CNS (especially the hypothalamus, suprachiasmatic and ventricular nuclei), skeletal muscle, mammary glands, adrenal glands, ovaries, stomach, liver cells, placenta, and breast milk. However, the highest concentrations were observed in the endocardium and endothelium of vascular smooth muscle cells. In myocardial tissue, apelin has a positive inotropic effect and exerts an opposing effect to the RAA (renin-angiotensin-aldosterone) system, lowering blood pressure. Therefore, its positive role in early stages of heart failure, in patients with hypertension and ischemic heart disease is emphasized. The synthesis and secretion of apelin by adipocytes makes it possible to classify this peptide as an adipokine. Therefore, its production in adipose tissue is enhanced in obesity. Furthermore, apelin has been shown to increase cellular sensitivity to insulin and improve glucose tolerance in the onset of type 2 diabetes, and therefore appears to play a significant role in the pathogenesis of metabolic disease. An accurate assessment of the importance of apelin in cardiovascular disease requires further studies, which may contribute to the use of apelin in the treatment of heart failure.
Collapse
Affiliation(s)
- Kamil Marczewski
- DEPARTMENT OF EMERGENCY MEDICINE, MEDICAL UNIVERSITY OF SILESIA, POLAND
| | | | | | - Michał Widuch
- DEPARTMENT OF BIOCHEMISTRY, MEDICAL UNIVERSITY OF SILESIA, POLAND
| | - Michał Tkocz
- UROLOGICAL DEPARTMENT OF MUNICIPAL HOSPITAL, MEDICAL UNIVERSITY OF SILESIA, POLAND
| |
Collapse
|
30
|
Song JJ, Yang M, Liu Y, Song JW, Liu XY, Miao R, Zhang ZZ, Liu Y, Fan YF, Zhang Q, Dong Y, Yang XC, Zhong JC. Elabela prevents angiotensin II-induced apoptosis and inflammation in rat aortic adventitial fibroblasts via the activation of FGF21-ACE2 signaling. J Mol Histol 2021; 52:905-918. [PMID: 34453661 PMCID: PMC8401356 DOI: 10.1007/s10735-021-10011-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Apoptosis, inflammation, and fibrosis contribute to vascular remodeling and injury. Elabela (ELA) serves as a crucial regulator to maintain vascular function and has been implicated in the pathogenesis of hypertensive vascular remodeling. This study aims to explore regulatory roles and underlying mechanisms of ELA in rat aortic adventitial fibroblasts (AFs) in response to angiotensin II (ATII). In cultured AFs, exposure to ATII resulted in marked decreases in mRNA and protein levels of ELA, fibroblast growth factor 21 (FGF21), and angiotensin-converting enzyme 2 (ACE2) as well as increases in apoptosis, inflammation, oxidative stress, and cellular migration, which were partially blocked by the exogenous replenishment of ELA and recombinant FGF21, respectively. Moreover, treatment with ELA strikingly reversed ATII-mediated the loss of FGF21 and ACE2 levels in rat aortic AFs. FGF21 knockdown with small interfering RNA (siRNA) significantly counterbalanced protective effects of ELA on ATII-mediated the promotion of cell migration, apoptosis, inflammatory, and oxidative injury in rat aortic AFs. More importantly, pretreatment with recombinant FGF21 strikingly inhibited ATII-mediated the loss of ACE2 and the augmentation of cell apoptosis, oxidative stress, and inflammatory injury in rat aortic AFs, which were partially prevented by the knockdown of ACE2 with siRNA. In summary, ELA exerts its anti-apoptotic, anti-inflammatory, and anti-oxidant effects in rat aortic AFs via activation of the FGF21-ACE2 signaling. ELA may represent a potential candidate to predict vascular damage and targeting the FGF21-ACE2 signaling may be a promising therapeutic intervention for vascular adventitial remodeling and related disorders.
Collapse
Affiliation(s)
- Juan-Juan Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mei Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen-Zhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yu Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi-Fan Fan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qian Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Chun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
31
|
Ma Z, Zhao L, Zhang YP, Zhong JC, Yang XC. Declined ELABELA plasma levels in hypertension patients with atrial fibrillation: a case control study. BMC Cardiovasc Disord 2021; 21:390. [PMID: 34384364 PMCID: PMC8359615 DOI: 10.1186/s12872-021-02197-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/04/2021] [Indexed: 02/22/2023] Open
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia in patients with hypertension. ELABELA, which has cardioprotective effects, is decreased in the plasma of patients with hypertension and might be associated with AF in the hypertensive population. This study aims to measure the ELABELA plasma levels in hypertension patients with and without AF and to analyse the related factors. Methods A total of 162 hypertension patients with or without AF were recruited for our monocentric observational study. Subjects were excluded if they had a history of valvular heart disease, rheumatic heart disease, cardiomyopathy, thyroid diseases, or heart failure. The patients’ histories were recorded, and laboratory examinations were conducted. Plasma ELABELA was detected by immunoassay. Echocardiographs were performed, and parameters were collected by two experienced doctors. Binary logistic regression analysis was used to identify the association between ELABELA plasma level and AF in patients with hypertension. Results Plasma ELABELA levels were lower in hypertension patients with AF than in those without AF (2.0 [1.5, 2.8] vs. 4.0 [3.4, 5.0] ng/ml, P < 0.001). ELABELA levels were correlated with age, heart rate, BNP levels and left atrial dimension. In addition to the left atrial dimension, ELABELA plasma levels were associated with AF in patients with hypertension (OR 0.081, 95% CI 0.029–0.224, P < 0.001). ELABELA levels were further decreased in the persistent AF subgroup compared with the paroxysmal AF subgroup (1.8 [1.4, 2.5] vs. 2.2 [1.8, 3.0] ng/ml, P = 0.012) and correlated with HR, BNP and ESR levels. Conclusions ELALABELA levels were decreased in hypertension patients with AF and further lowered in the persistent AF subgroup. Decreased ELABELA plasma levels were associated with AF in hypertension patients and may be an underlying risk factor. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02197-x.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Cardiology, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiao Minxiang, Dongcheng District, Beijing, 100730, China
| | - Lei Zhao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ye-Ping Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Xin-Chun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
32
|
Sainsily X, Coquerel D, Giguère H, Dumont L, Tran K, Noll C, Ionescu AL, Côté J, Longpré JM, Carpentier A, Marsault É, Lesur O, Sarret P, Auger-Messier M. Elabela Protects Spontaneously Hypertensive Rats From Hypertension and Cardiorenal Dysfunctions Exacerbated by Dietary High-Salt Intake. Front Pharmacol 2021; 12:709467. [PMID: 34385922 PMCID: PMC8353398 DOI: 10.3389/fphar.2021.709467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives: Arterial hypertension, when exacerbated by excessive dietary salt intake, worsens the morbidity and mortality rates associated with cardiovascular and renal diseases. Stimulation of the apelinergic system appears to protect against several circulatory system diseases, but it remains unknown if such beneficial effects are conserved in severe hypertension. Therefore, we aimed at determining whether continuous infusion of apelinergic ligands (i.e., Apelin-13 and Elabela) exerted cardiorenal protective effects in spontaneously hypertensive (SHR) rats receiving high-salt diet. Methods: A combination of echocardiography, binding assay, histology, and biochemical approaches were used to investigate the cardiovascular and renal effects of Apelin-13 or Elabela infusion over 6 weeks in SHR fed with normal-salt or high-salt chow. Results: High-salt intake upregulated the cardiac and renal expression of APJ receptor in SHR. Importantly, Elabela was more effective than Apelin-13 in reducing high blood pressure, cardiovascular and renal dysfunctions, fibrosis and hypertrophy in high-salt fed SHR. Unlike Apelin-13, the beneficial effects of Elabela were associated with a counter-regulatory role of the ACE/ACE2/neprilysin axis of the renin-angiotensin-aldosterone system (RAAS) in heart and kidneys of salt-loaded SHR. Interestingly, Elabela also displayed higher affinity for APJ in the presence of high salt concentration and better resistance to RAAS enzymes known to cleave Apelin-13. Conclusion: These findings highlight the protective action of the apelinergic system against salt-induced severe hypertension and cardiorenal failure. As compared with Apelin-13, Elabela displays superior pharmacodynamic and pharmacokinetic properties that warrant further investigation of its therapeutic use in cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- Xavier Sainsily
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Coquerel
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kien Tran
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christophe Noll
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrei L Ionescu
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jérôme Côté
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André Carpentier
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Lesur
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
33
|
Li XT, Zhang MW, Zhang ZZ, Cao YD, Liu XY, Miao R, Xu Y, Song XF, Song JW, Liu Y, Xu YL, Li J, Dong Y, Zhong JC. Abnormal apelin-ACE2 and SGLT2 signaling contribute to adverse cardiorenal injury in patients with COVID-19. Int J Cardiol 2021; 336:123-129. [PMID: 34000358 PMCID: PMC8123373 DOI: 10.1016/j.ijcard.2021.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Angiotensin converting enzyme 2 (ACE2) has recently been identified as the functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent response for novel coronavirus disease 2019 (COVID-19). This study aimed to explore the roles of ACE2, apelin and sodium-glucose cotransporter 2 (SGLT2) in SARS-CoV-2-mediated cardiorenal damage. METHODS AND RESULTS The published RNA-sequencing datasets of cardiomyocytes infected with SARS-CoV-2 and COVID-19 patients were used. String, UMAP plots and single cell RNA sequencing data were analyzed to show the close relationship and distinct cardiorenal distribution patterns of ACE2, apelin and SGLT2. Intriguingly, there were decreases in ACE2 and apelin expression as well as marked increases in SGLT2 and endothelin-1 levels in SARS-CoV-2-infected cardiomyocytes, animal models with diabetes, acute kidney injury, heart failure and COVID-19 patients. These changes were linked with downregulated levels of interleukin (IL)-10, superoxide dismutase 2 and catalase as well as upregulated expression of profibrotic genes and pro-inflammatory cytokines/chemokines. Genetic ACE2 deletion resulted in upregulation of pro-inflammatory cytokines containing IL-1β, IL-6, IL-17 and tumor necrosis factor α. More importantly, dapagliflozin strikingly alleviated cardiorenal fibrosis in diabetic db/db mice by suppressing SGLT2 levels and potentiating the apelin-ACE2 signaling. CONCLUSION Downregulation of apelin and ACE2 and upregulation of SGLT2, endothelin-1 and pro-inflammatory cytokines contribute to SARS-CoV-2-mediated cardiorenal injury, indicating that the apelin-ACE2 signaling and SGLT2 inhibitors are potential therapeutic targets for COVID-19 patients.
Collapse
Affiliation(s)
- Xue-Ting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Mi-Wen Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhen-Zhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; State Key Laboratory of Medical Genomics & Shanghai Institute of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yu-Dan Cao
- Department of endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Xu
- Department of endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiao-Fang Song
- Department of endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying-Le Xu
- State Key Laboratory of Medical Genomics & Shanghai Institute of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; State Key Laboratory of Medical Genomics & Shanghai Institute of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
34
|
Johnson JA, Kim SH, Jiang J, Phillips M, Schumacher WA, Bostwick JS, Gargalovic PS, Onorato JM, Luk CE, Generaux C, He Y, Chen XQ, Xu C, Galella MA, Wang T, Gordon DA, Wexler RR, Finlay HJ. Discovery of a Hydroxypyridinone APJ Receptor Agonist as a Clinical Candidate. J Med Chem 2021; 64:3086-3099. [PMID: 33689340 DOI: 10.1021/acs.jmedchem.0c01878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apelin-13 is an endogenous peptidic agonist of the apelin receptor (APJ) receptor with the potential for improving cardiac function in heart failure patients. However, the low plasma stability of apelin-13 necessitates continuous intravenous infusion for therapeutic use. There are several approaches to increase the stability of apelin-13 including attachment of pharmacokinetic enhancing groups, stabilized peptides, and Fc-fusion approaches. We sought a small-molecule APJ receptor agonist approach to target a compound with a pharmacokinetic profile amenable for chronic oral administration. This manuscript describes sequential optimization of the pyrimidinone series, leading to pyridinone 14, with in vitro potency equivalent to the endogenous ligand apelin-13 and with an excellent oral bioavailability and PK profile in multiple preclinical species. Compound 14 exhibited robust pharmacodynamic effects similar to apelin-13 in an acute rat pressure-volume loop model and was advanced as a clinical candidate.
Collapse
Affiliation(s)
- James A Johnson
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Soong-Hoon Kim
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ji Jiang
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Monique Phillips
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - William A Schumacher
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Jeffrey S Bostwick
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Peter S Gargalovic
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Joelle M Onorato
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Chiuwa E Luk
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Claudia Generaux
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Yan He
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Xue-Qing Chen
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Carrie Xu
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Michael A Galella
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Tao Wang
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - David A Gordon
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ruth R Wexler
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Heather J Finlay
- Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| |
Collapse
|
35
|
Ma Z, Zhao L, Martin S, Zhang Y, Dong Y, Zhong JC, Yang XC. Lower Plasma Elabela Levels in Hypertensive Patients With Heart Failure Predict the Occurrence of Major Adverse Cardiac Events: A Preliminary Study. Front Cardiovasc Med 2021; 8:638468. [PMID: 33738301 PMCID: PMC7960768 DOI: 10.3389/fcvm.2021.638468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Elabela, a novel cardiac developmental peptide, has been shown to improve heart dysfunction. However, the roles and correlation of Elabela in predicting adverse cardiac events in hypertensive patients with heart failure (HF) remain largely unclear. Objective: To measure plasma levels of Elabela in hypertensive patients with HF and evaluate its prognostic value. Methods: A single-site, cohort, prospective, observational study was investigated with all subjects, including control subjects and hypertensive patients with or without HF, whom were recruited in Beijing Chaoyang Hospital Affiliated to Capital Medical University form October 2018 to July 2019. The subjects among different groups were matched based on age and sex. The clinical characteristics were collected, and plasma Elabela levels were detected in all subjects. The hypertensive patients with HF were followed up for 180 days, and the major adverse cardiac events (MACE) were recorded. The Cox regression was used to explore the correlation between Elabela level and MACE in hypertensive patients with or without HF. The receiver operating characteristic curves were used to access the predictive power of plasma Elabela level. Results: A total of 308 subjects, including 40 control subjects, 134 hypertensive patients without HF, and 134 hypertensive patients with HF were enrolled in this study. Plasma levels of Elabela were lower in hypertensive patients compared with control subjects [4.9 (2.8, 6.7) vs. 11.8 (9.8, 14.0) ng/ml, P < 0.001]. Furthermore, HF patients with preserved ejection fraction had a higher plasma Elabela level than those with impaired left ventricular systolic function (heart failure with mid-range ejection fraction and heart failure with reduced ejection fraction). The hypertensive patients with HF and higher plasma Elabela levels had a better readmission-free and MACE-free survival than those with lower plasma Elabela levels in survival analysis. The Cox regression analysis revealed that plasma Elabela levels were negatively associated with MACE (HR 0.75, 95% CI 0.61–0.99, P = 0.048) in hypertensive patients with HF. Conclusion: Plasma Elabela levels were decreased in hypertensive patients with left ventricular systolic dysfunction. Thus, Elabela may be potentially used as a novel predictor for MACE in hypertensive patients with HF.
Collapse
Affiliation(s)
- Zheng Ma
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Sara Martin
- Santa Rosa Family Medicine Residency, Santa Rosa, CA, United States
| | - Yeping Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin-Chun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Fu J, Chen X, Liu X, Xu D, Yang H, Zeng C, Long H, Zhou C, Wu H, Zheng G, Wu H, Wang W, Wang T. ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways. Stem Cell Res Ther 2020. [PMID: 33317626 DOI: 10.1186/s13287-020-0206-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have exerted their brilliant potential to promote heart repair following myocardial infarction. However, low survival rate of MSCs after transplantation due to harsh conditions with hypoxic and ischemic stress limits their therapeutic efficiency in treating cardiac dysfunction. ELABELA (ELA) serves as a peptide hormone which has been proved to facilitate cell growth, survival, and pluripotency in human embryonic stem cells. Although ELA works as an endogenous ligand of a G protein-coupled receptor APJ (Apelin receptor, APLNR), whether APJ is an essential signal for the function of ELA remains elusive. The effect of ELA on apoptosis of MSCs is still vague. OBJECTIVE We studied the role of ELABELA (ELA) treatment on the anti-apoptosis of MSCs in hypoxic/ischemic (H/I) conditions which mimic the impaired myocardial microenvironment and explored the possible mechanisms in vitro. METHODS MSCs were obtained from donated rats weighing between 80~120 g. MSCs were exposed to serum-free and hypoxic (1% O2) environments for 24 h, which mimics hypoxic/ischemic damage in vivo, using serum-containing normoxic conditions (20% O2) as a negative control. MSCs that were exposed to H/I injury with ELA processing were treated by 5 μM of ELA. Cell viability and apoptosis of MSCs were evaluated by CCK8 and flow cytometry, respectively. Mitochondrial function of MSCs was also assessed according to mitochondrial membrane potential (MMP) and ATP content. The protein expression of key kinases of the PI3K/AKT and ERK1/2 signaling pathways involving t-AKT, p-AKT, t-ERK1/2, and p-ERK1/2, as well as apoptosis-related protein expression of Bcl-2, Bax, and cleaved Caspase 3, were monitored by Western blot. RESULTS We found that ELA treatment of H/I-induced MSCs improved overall cell viability, enhanced Bcl/Bax expression, and decreased Caspase 3 activity. ELA inhibited H/I-induced mitochondrial dysfunction by increasing ATP concentration and suppressing the loss of mitochondrial transmembrane potential. However, this anti-apoptotic property of ELA was restrained in APJ-silenced MSCs. Additionally, ELA treatment induced the phosphorylation of AKT and ERK, while the blockade of PI3K/AKT and ERK1/2 pathways with respective inhibitors, LY294002 and U0126, suppressed the action of ELA. CONCLUSION ELA positively affected on the survival of MSCs and exhibited anti-apoptotic characteristics when exposed to hypoxic/ischemic condition in vitro. Also, the function of ELA was correlated with the APJ receptor, reduced mitochondrial damage, and activation of the PI3K/AKT and ERK1/2 signal axes.
Collapse
Affiliation(s)
- Jiaying Fu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Xin Liu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Daishi Xu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Huan Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Chaotao Zeng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Huibao Long
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Changqing Zhou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Guanghui Zheng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wuming Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.
| |
Collapse
|
37
|
Fu J, Chen X, Liu X, Xu D, Yang H, Zeng C, Long H, Zhou C, Wu H, Zheng G, Wu H, Wang W, Wang T. ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways. Stem Cell Res Ther 2020; 11:541. [PMID: 33317626 PMCID: PMC7734864 DOI: 10.1186/s13287-020-02063-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have exerted their brilliant potential to promote heart repair following myocardial infarction. However, low survival rate of MSCs after transplantation due to harsh conditions with hypoxic and ischemic stress limits their therapeutic efficiency in treating cardiac dysfunction. ELABELA (ELA) serves as a peptide hormone which has been proved to facilitate cell growth, survival, and pluripotency in human embryonic stem cells. Although ELA works as an endogenous ligand of a G protein-coupled receptor APJ (Apelin receptor, APLNR), whether APJ is an essential signal for the function of ELA remains elusive. The effect of ELA on apoptosis of MSCs is still vague. Objective We studied the role of ELABELA (ELA) treatment on the anti-apoptosis of MSCs in hypoxic/ischemic (H/I) conditions which mimic the impaired myocardial microenvironment and explored the possible mechanisms in vitro. Methods MSCs were obtained from donated rats weighing between 80~120 g. MSCs were exposed to serum-free and hypoxic (1% O2) environments for 24 h, which mimics hypoxic/ischemic damage in vivo, using serum-containing normoxic conditions (20% O2) as a negative control. MSCs that were exposed to H/I injury with ELA processing were treated by 5 μM of ELA. Cell viability and apoptosis of MSCs were evaluated by CCK8 and flow cytometry, respectively. Mitochondrial function of MSCs was also assessed according to mitochondrial membrane potential (MMP) and ATP content. The protein expression of key kinases of the PI3K/AKT and ERK1/2 signaling pathways involving t-AKT, p-AKT, t-ERK1/2, and p-ERK1/2, as well as apoptosis-related protein expression of Bcl-2, Bax, and cleaved Caspase 3, were monitored by Western blot. Results We found that ELA treatment of H/I-induced MSCs improved overall cell viability, enhanced Bcl/Bax expression, and decreased Caspase 3 activity. ELA inhibited H/I-induced mitochondrial dysfunction by increasing ATP concentration and suppressing the loss of mitochondrial transmembrane potential. However, this anti-apoptotic property of ELA was restrained in APJ-silenced MSCs. Additionally, ELA treatment induced the phosphorylation of AKT and ERK, while the blockade of PI3K/AKT and ERK1/2 pathways with respective inhibitors, LY294002 and U0126, suppressed the action of ELA. Conclusion ELA positively affected on the survival of MSCs and exhibited anti-apoptotic characteristics when exposed to hypoxic/ischemic condition in vitro. Also, the function of ELA was correlated with the APJ receptor, reduced mitochondrial damage, and activation of the PI3K/AKT and ERK1/2 signal axes.
Collapse
Affiliation(s)
- Jiaying Fu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Xin Liu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Daishi Xu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Huan Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Chaotao Zeng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Huibao Long
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Changqing Zhou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Guanghui Zheng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wuming Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.
| |
Collapse
|
38
|
Expression characteristics and regulatory mechanism of Apela gene in liver of chicken (Gallus gallus). PLoS One 2020; 15:e0238784. [PMID: 32915867 PMCID: PMC7485868 DOI: 10.1371/journal.pone.0238784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Apela, a novel endogenous peptide ligand for the G-protein-coupled apelin receptor, was first discovered and identified in human embryonic stem cells in 2013. Apela has showed some biological functions in promoting angiogenesis and inducing vasodilatation of mammals by binding apelin receptor, but little is known about its expression characteristics and regulatory mechanism in chicken. In the present study, the coding sequences of Apela in chicken was cloned. The evolution history and potential function of Apela were analyzed. Subsequently, the spatiotemporal expression characteristics of chicken Apela were investigated. Furthermore, the regulatory mechanism of Apela mRNA responsing to estrogen was explored by in vitro and in vivo experiments. The results showed that the length of the CDs of Apela mRNA was 165 bp and encoded a protein consisting of 54 amino acids residues with a transmembrane domain in chicken. The Apela was derived from the same ancestor of Apelin, and abundantly expressed in liver, kidney and pancreas tissues. The expression levels of Apela in the liver of hens were significantly higher at the peak-laying stage than that at the pre-laying stage (p ≤ 0.05). The Apela mRNA levels were significantly up-regulated in primary hepatocytes treated with 17β-estradiol (p ≤ 0.05), and could be effectively inhibited by estrogen receptor antagonists MPP, ICI 182780 and tamoxifen. It indicated that chicken Apela expression was regulated by estrogen via estrogen receptor α (ERα). In individual levels, both the contents of TG, TC and VLDL-c in serum, and the expression of ApoVLDLII and Apela in liver markedly up-regulated by 17β-estradiol induction at 1mg/kg and 2mg/kg concentrations (p ≤ 0.05). This study lays a foundation for further research on Apela involving in hepatic lipid metabolism.
Collapse
|
39
|
Liu Y, Song JW, Lin JY, Miao R, Zhong JC. Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovasc Toxicol 2020; 20:463-473. [PMID: 32856216 PMCID: PMC7451782 DOI: 10.1007/s12012-020-09603-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Fibrotic diseases cause annually more than 800,000 deaths worldwide, where of the majority accounts for cardiovascular fibrosis, which is characterized by endothelial dysfunction, myocardial stiffening and reduced dispensability. MicroRNAs (miRs), small noncoding RNAs, play critical roles in cardiovascular dysfunction and related disorders. Intriguingly, there is a critical link among miR-122, cardiovascular fibrosis, sirtuin 6 (SIRT6) and angiotensin-converting enzyme 2 (ACE2), which was recently identified as a coreceptor for SARS-CoV2 and a negative regulator of the rennin-angiotensin system. MiR-122 overexpression appears to exacerbate the angiotensin II-mediated loss of autophagy and increased inflammation, apoptosis, extracellular matrix deposition, cardiovascular fibrosis and dysfunction by modulating the SIRT6-Elabela-ACE2, LGR4-β-catenin, TGFβ-CTGF and PTEN-PI3K-Akt signaling pathways. More importantly, the inhibition of miR-122 has proautophagic, antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic effects. Clinical and experimental studies clearly demonstrate that miR-122 functions as a crucial hallmark of fibrogenesis, cardiovascular injury and dysfunction. Additionally, the miR-122 level is related to the severity of hypertension, atherosclerosis, atrial fibrillation, acute myocardial infarction and heart failure, and miR-122 expression is a risk factor for these diseases. The miR-122 level has emerged as an early-warning biomarker cardiovascular fibrosis, and targeting miR-122 is a novel therapeutic approach against progression of cardiovascular dysfunction. Therefore, an increased understanding of the cardiovascular roles of miR-122 will help the development of effective interventions. This review summarizes the biogenesis of miR-122; regulatory effects and underlying mechanisms of miR-122 on cardiovascular fibrosis and related diseases; and its function as a potential specific biomarker for cardiovascular dysfunction.
Collapse
Affiliation(s)
- Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China.,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Jian-Yu Lin
- Department of Comprehensive Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Miao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China. .,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China. .,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
40
|
Song JJ, Yang M, Liu Y, Song JW, Wang J, Chi HJ, Liu XY, Zuo K, Yang XC, Zhong JC. MicroRNA-122 aggravates angiotensin II-mediated apoptosis and autophagy imbalance in rat aortic adventitial fibroblasts via the modulation of SIRT6-elabela-ACE2 signaling. Eur J Pharmacol 2020; 883:173374. [PMID: 32682786 PMCID: PMC7364171 DOI: 10.1016/j.ejphar.2020.173374] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Abnormal aortic adventitial fibroblasts (AFs) play essential roles in the development of vascular remodeling and disorders. Previous studies revealed that microRNA-122 (miR-122) levels were elevated in the aortic adventitia of hypertensive rats with vascular injury. Here, we aim to evaluate the biological effects and underlying mechanisms of miR-122 in rat AFs. Exposure to angiotensin II (ATII) in rat AFs resulted in decreased levels of sirtuin 6 (SIRT6), elabela (ELA), and angiotensin-converting enzyme 2 (ACE2). Additionally, stimulation with ATII contributed to a decline in autophagic flux and obvious increases in cellular migration, oxidative stress, and apoptosis, which were exacerbated by the transfection of miR-122-5p mimic but were rescued by miR-122-5p inhibitor, exogenous replenishment of ELA, and recombinant adeno-associated virus expressing SIRT6 (rAAV-SIRT6), respectively. Moreover, stimulation with miR-122-5p mimic led to a marked reduction in the levels of SIRT6 and ELA in rat AFs, which were elevated by stimulation with rAAV-SIRT6. Furthermore, miR-122-5p inhibitor-mediated pro-autophagic, anti-oxidant and anti-apoptotic effects in rat AFs were partially suppressed by 3-methyladenine, SIRT6 small interfering RNA (siRNA) and ELA siRNA, which were linked with the downregulation in the protein levels of LC3-II, beclin-1, and ACE2 and the upregulation of p62 expression and bax/bcl-2 ratio. Our findings indicated that miR-122-5p inhibition prevented ATII-mediated loss of autophagy, and the promotion of apoptosis and oxidative stress via activating the SIRT6-ELA-ACE2 signaling. MiR-122-5p may be a novel predictive biomarker of adventitial injury, and targeting the SIRT6-ELA-ACE2 signaling may have the potential therapeutic importance of controlling vascular remodeling and disorders.
Collapse
Affiliation(s)
- Juan-Juan Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mei Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Wei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Juan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hong-Jie Chi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiao-Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Kun Zuo
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Chun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
41
|
Liu XM, Du SL, Miao R, Wang LF, Zhong JC. Targeting the forkhead box protein P1 pathway as a novel therapeutic approach for cardiovascular diseases. Heart Fail Rev 2020; 27:345-355. [PMID: 32648149 DOI: 10.1007/s10741-020-09992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and encompasses diverse diseases of the vasculature, myocardium, cardiac electrical circuit, and cardiac development. Forkhead box protein P1 (Foxp1) is a large multi-domain transcriptional regulator belonging to the Fox family with winged helix DNA-binding protein, which plays critical roles in cardiovascular homeostasis and disorders. The broad distribution of Foxp1 and alternative splicing isoforms implicate its distinct functions in diverse cardiac and vascular cells and tissue types. Foxp1 is essential for diverse biological processes and has been shown to regulate cellular proliferation, apoptosis, oxidative stress, fibrosis, angiogenesis, cardiovascular remodeling, and dysfunction. Notably, both loss-of-function and gain-of-function approaches have defined critical roles of Foxp1 in CVD. Genetic deletion of Foxp1 results in pathological cardiac remodeling, exacerbation of atherosclerotic lesion formation, prolonged occlusive thrombus formation, severe cardiac defects, and embryo death. In contrast, activation of Foxp1 performs a wide range of physiological effects, including cell growth, hypertrophy, differentiation, angiogenesis, and cardiac development. More importantly, Foxp1 exerts anti-inflammatory and anti-atherosclerotic effects in controlling coronary thrombus formation and myocardial infarction (MI). Thus, targeting for Foxp1 signaling has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of CVD, and an increased understanding of cardiovascular actions of the Foxp1 signaling will help to develop effective interventions. In this review, we focus on the diverse actions and underlying mechanisms of Foxp1 highlighting its roles in CVD, including heart failure, MI, atherosclerosis, congenital heart defects, and atrial fibrillation.
Collapse
Affiliation(s)
- Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Sheng-Li Du
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Le-Feng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China. .,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|