1
|
McKinney WS, Schmitt LM, De Stefano LA, Ethridge L, Norris JE, Horn PS, Dauterman S, Rosselot H, Pedapati EV, Reisinger DL, Dominick KC, Shaffer RC, Chin D, Friedman NR, Hong M, Sweeney JA, Erickson C. Results from a Double-Blind, Randomized, Placebo-Controlled, Single-Dose, Crossover Trial of Lovastatin or Minocycline in Fragile X Syndrome. J Child Adolesc Psychopharmacol 2024. [PMID: 39651602 DOI: 10.1089/cap.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Introduction: Treatment studies in FMR1 knockout rodent models have found that minocycline and lovastatin each improve synaptic, neurological, and behavioral functioning, and open-label chronic dosing studies in human patients with fragile X syndrome (FXS) have demonstrated modest clinical improvements. Findings from blinded studies are mixed, and there is a limited understanding of electrophysiological target engagement that would facilitate cross-species translational studies. Smaller-scale, acute (e.g., single-dose) drug studies may speed treatment identification by detecting subtle electrophysiological and behavioral changes. Materials and Methods: Twenty-nine participants with FXS (31% female) ages 15-45 years completed a randomized, double-blind, crossover study in which they received a single oral dose of 40 mg of lovastatin, 270 mg of minocycline, or placebo, with a 2-week washout period between dosing visits. Participants completed a comprehensive neuropsychological battery and three EEG paradigms (resting state; auditory chirp; auditory habituation) before and 4 hours after dosing. Results: No serious adverse events were reported, and both drugs were well-tolerated. Compared with placebo, there were no overall treatment effects for any outcomes, including EEG, but several modest drug responses varied as a function of sex and age. Lovastatin treatment was associated with improved spatial awareness in older participants and females compared with minocycline and placebo. Discussion: We show that single-dose drug studies are highly feasible in FXS and that patients with FXS can complete a range of EEG and behavioral tasks, many of which have been shown to be reliable and may therefore be sensitive to subtle drug target engagement. Conclusions: Acute single doses of lovastatin or minocycline did not lead to changes in electrophysiological or performance-based measures. This may be due to the limited effects of these drugs in human patients or limited acute effects relative to chronic dosing. However, the study design was further validated for use in neurodevelopmental populations.
Collapse
Affiliation(s)
- Walker S McKinney
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren M Schmitt
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shelby Dauterman
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Debra L Reisinger
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebecca C Shaffer
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Danielle Chin
- The Heidt Center of Excellence, Cincinnati, Ohio, USA
| | - Nicole R Friedman
- Department of Psychology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Michael Hong
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Nelson MA, Schmitt LM, Horn PS, Berry-Kravis E, Hessl D, Shaffer RC, Carpenter R, Budimirovic DB, Wang P, Reisinger DL, Walton-Bowen K, Erickson CA. Parent-Reported Outcome Measures for Individuals with Fragile X Syndrome: Clinically Meaningful Change Thresholds. J Autism Dev Disord 2024:10.1007/s10803-024-06634-6. [PMID: 39579284 DOI: 10.1007/s10803-024-06634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
Estimating meaningful change thresholds (MCT) on clinical outcome assessments is an important consideration when evaluating treatments. In fragile X syndrome (FXS) research, there has been no consensus on how to define MCT's on several commonly used outcome measures. The purpose of the current study was to determine clinically relevant MCT's of caregiver-rated assessments using data from a phase 3 clinical trials of arbaclofen (Berry-Kravis et al., 2017). Data were collected as a part of previous phase 3, double-blind, placebo-controlled studies of arbaclofen in individuals with FXS (Berry-Kravis et al., 2017). The two studies enrolled age groups of 5-11-years (n = 159) and 12-50-years (n = 119). The current study examines meaningful within-patient change thresholds from baseline to treatment week 8 across several measures: ABC-CFXS; PSI; Vineland-II; and a Visual Analog Scale (VAS) of Anxiety and Disruptive Behaviors. MCT's were established by using anchor-based methods, using the CGI-S and CGI-I as anchors. Examining the results of the anchor-based analyses and visual CDF plots, MCT's were observed for the pediatric study for the ABC-CFXS subscales (with a range depending on use of CGI-S or CGI-I as anchor): Irritability: 11.1-14.8 points; Hyperactivity: 6.7-8.9 points; and Socially Unresponsive/Lethargic: 6.6-8.1 points; as well both VAS subscales: Anxiety: 28.3-36.2 mm; and Disruptive Behavior: 22.4-27.4 mm. Such thresholds were not observed for the Vineland-II and PSI subscales. Our analysis of MCT's helps set the stage for interpreting clinical trial results in FXS. This may include use of relevant subscales of the ABC-CFXS and VAS as primary outcomes using the MCT's for response definition. This work may help define future study inclusion criteria and enable future interpretation of treatment outcome results in the field.
Collapse
Affiliation(s)
- Meredith A Nelson
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
- Department of Pediatrics , University of Cincinnati College of Medicine, Cincinnati, USA.
| | - Lauren M Schmitt
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics , University of Cincinnati College of Medicine, Cincinnati, USA
| | - Paul S Horn
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics , University of Cincinnati College of Medicine, Cincinnati, USA
| | | | - David Hessl
- MIND Institute, University of California Davis, Davis, USA
| | - Rebecca C Shaffer
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics , University of Cincinnati College of Medicine, Cincinnati, USA
| | | | - Dejan B Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, USA
| | - Paul Wang
- Clinical Research Associates, LLC, New York, USA
| | - Debra L Reisinger
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics , University of Cincinnati College of Medicine, Cincinnati, USA
| | | | - Craig A Erickson
- Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Psychiatry , University of Cincinnati, Cincinnati, USA
| |
Collapse
|
3
|
Proteau-Lemieux M, Knoth IS, Davoudi S, Martin CO, Bélanger AM, Fontaine V, Côté V, Agbogba K, Vachon K, Whitlock K, Biag HMB, Thurman AJ, Rosenfelt C, Tassone F, Frei J, Capano L, Abbeduto L, Jacquemont S, Hessl D, Hagerman RJ, Schneider A, Bolduc F, Anagnostou E, Lippe S. Specific EEG resting state biomarkers in FXS and ASD. J Neurodev Disord 2024; 16:53. [PMID: 39251926 PMCID: PMC11382468 DOI: 10.1186/s11689-024-09570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) and autism spectrum disorder (ASD) are neurodevelopmental conditions that often have a substantial impact on daily functioning and quality of life. FXS is the most common cause of inherited intellectual disability (ID) and the most common monogenetic cause of ASD. Previous literature has shown that electrophysiological activity measured by electroencephalogram (EEG) during resting state is perturbated in FXS and ASD. However, whether electrophysiological profiles of participants with FXS and ASD are similar remains unclear. The aim of this study was to compare EEG alterations found in these two clinical populations presenting varying degrees of cognitive and behavioral impairments. METHODS Resting state EEG signal complexity, alpha peak frequency (APF) and power spectral density (PSD) were compared between 47 participants with FXS (aged between 5-20), 49 participants with ASD (aged between 6-17), and 52 neurotypical (NT) controls with a similar age distribution using MANCOVAs with age as covariate when appropriate. MANCOVAs controlling for age, when appropriate, and nonverbal intelligence quotient (NVIQ) score were subsequently performed to determine the impact of cognitive functioning on EEG alterations. RESULTS Our results showed that FXS participants manifested decreased signal complexity and APF compared to ASD participants and NT controls, as well as altered power in the theta, alpha and low gamma frequency bands. ASD participants showed exaggerated beta power compared to FXS participants and NT controls, as well as enhanced low and high gamma power compared to NT controls. However, ASD participants did not manifest altered signal complexity or APF. Furthermore, when controlling for NVIQ, results of decreased complexity in higher scales and lower APF in FXS participants compared to NT controls and ASD participants were not replicated. CONCLUSIONS These findings suggest that signal complexity and APF might reflect cognitive functioning, while altered power in the low gamma frequency band might be associated with neurodevelopmental conditions, particularly FXS and ASD.
Collapse
Affiliation(s)
- Mélodie Proteau-Lemieux
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Inga Sophia Knoth
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Saeideh Davoudi
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | | | - Anne-Marie Bélanger
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Valérie Fontaine
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Valérie Côté
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Kristian Agbogba
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | | | | | - Hazel Maridith Barlahan Biag
- Department of Pediatrics and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Cory Rosenfelt
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Julia Frei
- McMaster University of Ottawa, Ottawa, ON, Canada
| | - Lucia Capano
- Queen's University of Kingston, Kingston, ON, Canada
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Sébastien Jacquemont
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - David Hessl
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Jenssen Hagerman
- Department of Pediatrics and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Andrea Schneider
- Department of Pediatrics and MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Francois Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Evdokia Anagnostou
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Holland Bloorview Research Center, Toronto, ON, Canada
| | - Sarah Lippe
- Department of Psychology, University of Montreal, Montreal, QC, Canada.
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada.
| |
Collapse
|
4
|
Pedapati EV, Ethridge LE, Liu Y, Liu R, Sweeney JA, DeStefano LA, Miyakoshi M, Razak K, Schmitt LM, Moore DR, Gilbert DL, Wu SW, Smith E, Shaffer RC, Dominick KC, Horn PS, Binder D, Erickson CA. Frontal Cortex Hyperactivation and Gamma Desynchrony in Fragile X Syndrome: Correlates of Auditory Hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598957. [PMID: 38915683 PMCID: PMC11195233 DOI: 10.1101/2024.06.13.598957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in top-down modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lauren E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Yanchen Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rui Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, UK
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth Smith
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Devin Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
5
|
Potter SN, Harvey D, Sterling A, Abbeduto L. Parental Responsivity and Child Communication During Mother-Child and Father-Child Interactions in Fragile X Syndrome. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:939-959. [PMID: 38407074 PMCID: PMC11001423 DOI: 10.1044/2023_jslhr-23-00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
PURPOSE Past research shows that parentally responsive behavior toward the child positively influences language development in both neurotypical children and children with intellectual and developmental disabilities, including those with fragile X syndrome (FXS); however, most studies have focused exclusively on the mother-child relationship. The current study examined relationships between parent behavior (i.e., responsivity and behavior management) and child language performance in both mother-child and father-child interactions, as well as relationships between child characteristics and both parent behavior and child language. METHOD Participants were 23 families of young boys with FXS between 3 and 7 years of age. Mothers and fathers independently completed questionnaires assessing child characteristics and separately engaged in 12-min play-based interactions with their child via telehealth. One parent also completed a comprehensive interview assessing child adaptive behavior. Video recordings of the parent-child interactions were transcribed and coded for parent and child behavior, and measures of parent and child language were obtained from the transcripts. RESULTS Mothers and fathers used similar rates of responsive behaviors during parent-child interactions, and parental responsivity was positively associated with some aspects of child language performance (i.e., talkativeness and lexical diversity). Parental behavior, however, was not associated with syntactic complexity. Older children and children with higher levels of adaptive behavior had parents who used higher rates of responsive behaviors. Fathers used higher rates of behavior management strategies compared to mothers, and this type of parent behavior was not associated with child language. CONCLUSION Overall, this study provides evidence that interventions focused on increasing parental responsiveness would be beneficial for families of children with FXS and that these interventions should be delivered early given the association between responsivity and child age. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25229939.
Collapse
Affiliation(s)
- Sarah Nelson Potter
- MIND Institute, UC Davis Health, Sacramento, CA
- Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA
| | - Danielle Harvey
- Department of Public Health Sciences, UC Davis Health, Sacramento, CA
| | - Audra Sterling
- Waisman Center, University of Wisconsin–Madison
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
| | - Leonard Abbeduto
- MIND Institute, UC Davis Health, Sacramento, CA
- Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA
| |
Collapse
|
6
|
Dykens EM, Roof E, Hunt-Hawkins H. The Prader-Willi syndrome Profile: validation of a new measure of behavioral and emotional problems in Prader-Willi syndrome. Orphanet J Rare Dis 2024; 19:83. [PMID: 38395848 PMCID: PMC10885615 DOI: 10.1186/s13023-024-03045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a rare, neurodevelopmental disorder caused by the lack of expression of paternally imprinted genes on chromosome 15q11-13. PWS features a complex behavioral phenotype, including hyperphagia, anxiety, compulsivity, rigidity, repetitive speech, temper outbursts, aggressivity, and skin-picking. Questionnaires exist for measuring hyperphagia, but not for the aggregation of other problems that are distinctive to PWS. A PWS-specific tool is needed for phenotypic research, and to help evaluate treatment efficacy in future clinical trials aimed at attenuating PWS's hyperphagia and related problems. In this 4-phase study, we leveraged our expertise in PWS with feedback from families and specialists to validate the PWS Profile, a novel, informant-based measure of behavioral and emotional problems in this syndrome. RESULTS The authors developed a bank of 73 items that tapped both common and less frequent but clinically significant problems in PWS (Phase 1). An iterative feedback process with families and stakeholders was used to ensure content and construct validity (Phase 2). After adding, omitting, or revising items, in Phase 3, we pilot tested the measure in 112 participants. Results were reviewed by an international team of PWS specialists and revised again (Phase 3). The final, 57-item Profile was then administered to 761 participants (Phase 4). Principal component factor analyses (n = 873) revealed eight conceptually meaningful factors, accounting for 60.52% of test variance, and were readily interpretated as: Rigidity, Insistence; Aggressive Behaviors; Repetitive Questioning, Speech; Compulsive Behaviors; Depression, Anxiety; Hoarding; Negative Distorted Thinking; and Magical Distorted Thinking. Factors were internally consistent and showed good test-retest reliability and convergent validity with existent measures of behavioral problems. Profile factors were not related to IQ, BMI, or parental SES. Three Profile factors differed across PWS genetic subtypes. Age and gender differences were found in only one Profile factor, Hoarding. CONCLUSIONS The PWS Profile is a valid, psychometrically-sound questionnaire that already has shown responsivity to treatment in a previous clinical trial. The Profile can extend the reach of future clinical trials by evaluating the impact of novel agents not only on hyperphagia, but also on the emotional and behavioral problems that characterize PWS.
Collapse
Affiliation(s)
- Elisabeth M Dykens
- Department of Psychology and Human Development, Vanderbilt University, Vanderbilt Kennedy Center, 1 Magnolia Circle, 37203, Nashville, TN, USA.
| | - Elizabeth Roof
- Department of Psychology and Human Development, Vanderbilt University, Vanderbilt Kennedy Center, 1 Magnolia Circle, 37203, Nashville, TN, USA
| | - Hailee Hunt-Hawkins
- Department of Psychology and Human Development, Vanderbilt University, Vanderbilt Kennedy Center, 1 Magnolia Circle, 37203, Nashville, TN, USA
| |
Collapse
|
7
|
Kaufmann WE, Raspa M, Bann CM, Gable JM, Harris HK, Budimirovic DB, Lozano R. Latent Class Analysis Identifies Distinctive Behavioral Subtypes in Children with Fragile X Syndrome. J Autism Dev Disord 2024; 54:725-737. [PMID: 36441429 PMCID: PMC10258834 DOI: 10.1007/s10803-022-05821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome (FXS) is characterized by variable neurobehavioral abnormalities, which leads to difficulties in developing and evaluating treatments and in determining accurate prognosis. We employed a pediatric cross-sectional sample (1,072 males, 338 females) from FORWARD, a clinic-based natural history study, to identify behavioral subtypes by latent class analysis. Input included co-occurring behavioral conditions, sleep and sensory problems, autistic behavior scales (SCQ, SRS-2), and the Aberrant Behavior Checklist revised for FXS (ABCFX). A 5-class solution yielded the most clinically meaningful, pharmacotherapy independent behavioral groups with distinctive SCQ, SRS-2, and ABCFX profiles, and adequate non-overlap (≥ 71%): "Mild" (31%), "Moderate without Social Impairment" (32%), "Moderate with Social Impairment" (7%), "Moderate with Disruptive Behavior" (20%), and "Severe" (9%). Our findings support FXS subtyping, for improving clinical management and therapeutic development.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.
| | - Melissa Raspa
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Carla M Bann
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Julia M Gable
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Holly K Harris
- Texas Children's Hospital, 8080 North Stadium Drive, Houston, TX, 77054, USA
| | | | - Reymundo Lozano
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
8
|
Watkins LV, Moon S, Burrows L, Tromans S, Barwell J, Shankar R. Pharmacological management of fragile X syndrome: a systematic review and narrative summary of the current evidence. Expert Opin Pharmacother 2024; 25:301-313. [PMID: 38393835 DOI: 10.1080/14656566.2024.2323605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Fragile X syndrome (FXS) is the most common inherited cause of Intellectual Disability. There is a broad phenotype that includes deficits in cognition and behavioral changes, alongside physical characteristics. Phenotype depends upon the level of mutation in the FMR1 (fragile X messenger ribonucleoprotein 1) gene. The molecular understanding of the impact of the FMR1 gene mutation provides an opportunity to target treatment not only at symptoms but also on a molecular level. METHODS We conducted a systematic review to provide an up-to-date narrative summary of the current evidence for pharmacological treatment in FXS. The review was restricted to randomized, blinded, placebo-controlled trials. RESULTS The outcomes from these studies are discussed and the level of evidence assessed against validated criteria. The initial search identified 2377 articles, of which 16 were included in the final analysis. CONCLUSION Based on this review to date there is limited data to support any specific pharmacological treatments, although the data for cannabinoids are encouraging in those with FXS and in future developments in gene therapy may provide the answer to the search for precision medicine. Treatment must be person-centered and consider the combination of medical, genetic, cognitive, and emotional challenges.
Collapse
Affiliation(s)
- Lance V Watkins
- Epilepsy Specialist Service, Swansea Bay University Health Board, Cardiff, UK
- Unit for Development in Intellectual and Developmental Disabilities, University of South Wales, Pontypridd, UK
- Cornwall Intellectual Disability Equitable Research (CIDER), University of Plymouth Peninsula School of Medicine, Truro, UK
| | - Seungyoun Moon
- Epilepsy Specialist Service, Swansea Bay University Health Board, Cardiff, UK
| | - Lisa Burrows
- Cornwall Intellectual Disability Equitable Research (CIDER), University of Plymouth Peninsula School of Medicine, Truro, UK
- Adult Neurodevelopmental Psychiatry, Cornwall Partnership NHS Trust, Truro, UK
| | - Samuel Tromans
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Adult Learning Disability Service, Leicestershire Partnership NHS Trust, Leicester, UK
| | - Julian Barwell
- Clinical Genetics Department, University Hospitals of Leicester, Leicester, UK
| | - Rohit Shankar
- Cornwall Intellectual Disability Equitable Research (CIDER), University of Plymouth Peninsula School of Medicine, Truro, UK
| |
Collapse
|
9
|
Müller AR, den Hollander B, van de Ven PM, Roes KCB, Geertjens L, Bruining H, van Karnebeek CDM, Jansen FE, de Wit MCY, Ten Hoopen LW, Rietman AB, Dierckx B, Wijburg FA, Boot E, Brands MMG, van Eeghen AM. Cannabidiol (Epidyolex®) for severe behavioral manifestations in patients with tuberous sclerosis complex, mucopolysaccharidosis type III and fragile X syndrome: protocol for a series of randomized, placebo-controlled N-of-1 trials. BMC Psychiatry 2024; 24:23. [PMID: 38177999 PMCID: PMC10768432 DOI: 10.1186/s12888-023-05422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Many rare genetic neurodevelopmental disorders (RGNDs) are characterized by intellectual disability (ID), severe cognitive and behavioral impairments, potentially diagnosed as a comorbid autism spectrum disorder or attention-deficit hyperactivity disorder. Quality of life is often impaired due to irritability, aggression and self-injurious behavior, generally refractory to standard therapies. There are indications from previous (case) studies and patient reporting that cannabidiol (CBD) may be an effective treatment for severe behavioral manifestations in RGNDs. However, clear evidence is lacking and interventional research is challenging due to the rarity as well as the heterogeneity within and between disease groups and interindividual differences in treatment response. Our objective is to examine the effectiveness of CBD on severe behavioral manifestations in three RGNDs, including Tuberous Sclerosis Complex (TSC), mucopolysaccharidosis type III (MPS III), and Fragile X syndrome (FXS), using an innovative trial design. METHODS We aim to conduct placebo-controlled, double-blind, block-randomized, multiple crossover N-of-1 studies with oral CBD (twice daily) in 30 patients (aged ≥ 6 years) with confirmed TSC, MPS III or FXS and severe behavioral manifestations. The treatment is oral CBD up to a maximum of 25 mg/kg/day, twice daily. The primary outcome measure is the subscale irritability of the Aberrant Behavior Checklist. Secondary outcome measures include (personalized) patient-reported outcome measures with regard to behavioral and psychiatric outcomes, disease-specific outcome measures, parental stress, seizure frequency, and adverse effects of CBD. Questionnaires will be completed and study medication will be taken at the participants' natural setting. Individual treatment effects will be determined based on summary statistics. A mixed model analysis will be applied for analyzing the effectiveness of the intervention per disorder and across disorders combining data from the individual N-of-1 trials. DISCUSSION These N-of-1 trials address an unmet medical need and will provide information on the effectiveness of CBD for severe behavioral manifestations in RGNDs, potentially generating generalizable knowledge at an individual-, disorder- and RGND population level. TRIAL REGISTRATION EudraCT: 2021-003250-23, registered 25 August 2022, https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-003250-23/NL .
Collapse
Affiliation(s)
- A R Müller
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- 's Heeren Loo Care Group, Amersfoort, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - B den Hollander
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - P M van de Ven
- Department of Data Science and Biostatistics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K C B Roes
- Department of Health Evidence, Biostatistics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Geertjens
- Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Reproduction and Development, N=You Neurodevelopmental Precision Center, Amsterdam, The Netherlands
| | - H Bruining
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Reproduction and Development, N=You Neurodevelopmental Precision Center, Amsterdam, The Netherlands
- Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | - C D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - F E Jansen
- Department of Pediatric Neurology, Brain, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Y de Wit
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - L W Ten Hoopen
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A B Rietman
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B Dierckx
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F A Wijburg
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - E Boot
- 's Heeren Loo Care Group, Amersfoort, The Netherlands
- The Dalglish Family 22Q Clinic, Toronto, ON, Canada
- Department of Psychiatry & Neuropsychology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M M G Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - A M van Eeghen
- Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands.
- 's Heeren Loo Care Group, Amersfoort, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Aishworiya R, Tak Y, Ponzini MD, Biag HMB, Salcedo-Arellano MJ, Kim K, Tassone F, Schneider A, Thurman AJ, Abbeduto L, Hessl D, Randol JL, Bolduc FV, Lippe S, Hagerman P, Hagerman R. Adaptive, behavioral, and cognitive outcomes in individuals with fragile X syndrome with varying autism severity. Int J Dev Neurosci 2023; 83:715-727. [PMID: 37724826 PMCID: PMC10868665 DOI: 10.1002/jdn.10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/06/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
This study aimed to determine the association between severity of autism spectrum disorder (ASD) and cognitive, behavioral, and molecular measures in individuals with fragile X syndrome (FXS). Study inclusion criteria included individuals with FXS and (1) age 6-40 years, (2) full-scale IQ < 84, and (3) language ≥3-word phrases. ASD symptom severity was determined by Autism Diagnostic Observation Schedule-2 (ADOS-2). Other measures identified non-verbal IQ, adaptive skills, and aberrant behaviors. Molecular measures included blood FMR1 and CYFIP1 mRNA levels, FMRP and MMP9 levels. Analysis of variance (ANOVA) and Spearman's correlations were used to compare ASD severity groups. Data from 54 individuals was included with no/mild (N = 7), moderate (N = 18), and severe (N = 29) ASD. Individuals with high ASD severity had lower adaptive behavior scores (47.48 ± 17.49) than the no/mild group (69.00 ± 20.45, p = 0.0366); they also had more challenging behaviors, lethargy, and stereotypic behaviors. CYFIP1 mRNA expression levels positively correlated with the ADOS-2 comparison score(r2 = 0.33, p = 0.0349), with no significant correlations with other molecular markers. In conclusion, autism symptom severity is associated with more adverse cognitive and adaptive skills and specific behaviors in FXS, whereas CYFIP1 mRNA expression levels may be a potential biomarker for severity of ASD in FXS.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - YeEun Tak
- University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Matthew Dominic Ponzini
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Hazel Maridith Barlahan Biag
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Angela John Thurman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Leonard Abbeduto
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Jamie Leah Randol
- University of California Davis School of Medicine, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis, One Shields Avenue, Davis, California, United States of America
- UC Davis Biotechnology Program, University of California Davis, Davis, California, United States of America
| | - Francois V Bolduc
- Division of Pediatric Neurology, Pediatrics, University of Alberta, Alberta, Canada
- Division of Medical Genetics, University of Alberta, Alberta, Canada
| | - Sarah Lippe
- Département de Psychologie, Université de Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Université de Montréal, Québec, Canada
| | - Paul Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- University of California Davis School of Medicine, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| |
Collapse
|
11
|
Berry-Kravis E, Abbeduto L, Hagerman R, Coffey CS, Cudkowicz M, Erickson CA, McDuffie A, Hessl D, Ethridge L, Tassone F, Kaufmann WE, Friedmann K, Bullard L, Hoffmann A, Veenstra-VanderWeele J, Staley K, Klements D, Moshinsky M, Harkey B, Long J, Fedler J, Klingner E, Ecklund D, Costigan M, Huff T, Pearson B. Effects of AFQ056 on language learning in fragile X syndrome. J Clin Invest 2023; 134:e171723. [PMID: 37651202 PMCID: PMC10904045 DOI: 10.1172/jci171723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUNDFXLEARN, the first-ever large multisite trial of effects of disease-targeted pharmacotherapy on learning, was designed to explore a paradigm for measuring effects of mechanism-targeted treatment in fragile X syndrome (FXS). In FXLEARN, the effects of metabotropic glutamate receptor type 5 (mGluR5) negative allosteric modulator (NAM) AFQ056 on language learning were evaluated in 3- to 6-year-old children with FXS, expected to have more learning plasticity than adults, for whom prior trials of mGluR5 NAMs have failed.METHODSAfter a 4-month single-blind placebo lead-in, participants were randomized 1:1 to AFQ056 or placebo, with 2 months of dose optimization to the maximum tolerated dose, then 6 months of treatment during which a language-learning intervention was implemented for both groups. The primary outcome was a centrally scored videotaped communication measure, the Weighted Communication Scale (WCS). Secondary outcomes were objective performance-based and parent-reported cognitive and language measures.RESULTSFXLEARN enrolled 110 participants, randomized 99, and had 91 who completed the placebo-controlled period. Although both groups made language progress and there were no safety issues, the change in WCS score during the placebo-controlled period was not significantly different between the AFQ056 and placebo-treated groups, nor were there any significant between-group differences in change in any secondary measures.CONCLUSIONDespite the large body of evidence supporting use of mGluR5 NAMs in animal models of FXS, this study suggests that this mechanism of action does not translate into benefit for the human FXS population and that better strategies are needed to determine which mechanisms will translate from preclinical models to humans in genetic neurodevelopmental disorders.TRIAL REGISTRATIONClincalTrials.gov NCT02920892.FUNDING SOURCESNeuroNEXT network NIH grants U01NS096767, U24NS107200, U24NS107209, U01NS077323, U24NS107183, U24NS107168, U24NS107128, U24NS107199, U24NS107198, U24NS107166, U10NS077368, U01NS077366, U24NS107205, U01NS077179, and U01NS077352; NIH grant P50HD103526; and Novartis IIT grant AFQ056X2201T for provision of AFQ056.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - Leonard Abbeduto
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Randi Hagerman
- MIND Institute and Department of Pediatrics, UCD, Sacramento, California, USA
| | | | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea McDuffie
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - David Hessl
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Lauren Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Flora Tassone
- MIND Institute and Department of Biochemistry and Molecular Medicine, UCD, Sacramento, California, USA
| | - Walter E. Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lauren Bullard
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Anne Hoffmann
- Departments of Pediatrics and Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Klements
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Moshinsky
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Brittney Harkey
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeff Long
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Janel Fedler
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | | | - Dixie Ecklund
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Michele Costigan
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Trevis Huff
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Brenda Pearson
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
12
|
Aishworiya R, Chi MH, Zafarullah M, Mendoza G, Ponzini MD, Kim K, Biag HMB, Thurman AJ, Abbeduto L, Hessl D, Randol JL, Bolduc FV, Jacquemont S, Lippé S, Hagerman P, Hagerman R, Schneider A, Tassone F. Intercorrelation of Molecular Biomarkers and Clinical Phenotype Measures in Fragile X Syndrome. Cells 2023; 12:1920. [PMID: 37508583 PMCID: PMC10377864 DOI: 10.3390/cells12141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This study contributes to a greater understanding of the utility of molecular biomarkers to identify clinical phenotypes of fragile X syndrome (FXS). Correlations of baseline clinical trial data (molecular measures-FMR1 mRNA, CYFIP1 mRNA, MMP9 and FMRP protein expression levels, nonverbal IQ, body mass index and weight, language level, NIH Toolbox, adaptive behavior rating, autism, and other mental health correlates) of 59 participants with FXS ages of 6-32 years are reported. FMR1 mRNA expression levels correlated positively with adaptive functioning levels, expressive language, and specific NIH Toolbox measures. The findings of a positive correlation of MMP-9 levels with obesity, CYFIP1 mRNA with mood and autistic symptoms, and FMR1 mRNA expression level with better cognitive, language, and adaptive functions indicate potential biomarkers for specific FXS phenotypes. These may be potential markers for future clinical trials for targeted treatments of FXS.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119074, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mei-Hung Chi
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
| | - Matthew Dominic Ponzini
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Kyoungmi Kim
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Hazel Maridith Barlahan Biag
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Angela John Thurman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Jamie Leah Randol
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
- Integrative Genetics and Genomics Graduate Group, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- UC Davis Biotechnology Program, University of California Davis, Davis, CA 95616, USA
| | - Francois V. Bolduc
- Department of Pediatrics, Department of Medical Genetics, Women and Children Health Research Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sebastien Jacquemont
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sarah Lippé
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Psychology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Paul Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
| |
Collapse
|
13
|
Shaffer RC, Reisinger DL, Schmitt LM, Lamy M, Dominick KC, Smith EG, Coffman MC, Esbensen AJ. Systematic Review: Emotion Dysregulation in Syndromic Causes of Intellectual and Developmental Disabilities. J Am Acad Child Adolesc Psychiatry 2023; 62:518-557. [PMID: 36007813 DOI: 10.1016/j.jaac.2022.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To summarize the current state of the literature regarding emotion dysregulation (ED) in syndromic intellectual disabilities (S-IDs) in 6 of the most common forms of S-IDs-Down syndrome, fragile X syndrome (FXS), tuberous sclerosis complex, Williams syndrome, Prader-Willi syndrome, and Angelman syndrome-and to determine future research directions for identification and treatment of ED. METHOD PubMed bibliographic database was searched from date of inception to May 2021. PRISMA 2020 guidelines were followed with the flowchart, table of included studies, list of excluded studies, and checklist provided. Filters applied included human research and English. Only original research articles were included in the final set, but review articles were used to identify secondary citations of primary studies. All articles were reviewed for appropriateness by 2 authors and summarized. Inclusion criteria were met by 145 articles (Down syndrome = 29, FXS = 55, tuberous sclerosis complex = 11, Williams syndrome = 18, Prader-Willi syndrome = 24, Angelman syndrome = 8). RESULTS Each syndrome review was summarized separately and further subdivided into articles related to underlying neurobiology, behaviors associated with ED, assessment, and targeted intervention. FXS had the most thorough research base, followed by Down syndrome and Prader-Willi syndrome, with the other syndromes having more limited available research. Very limited research was available regarding intervention for all disorders except FXS. CONCLUSION Core underlying characteristics of S-IDs appear to place youth at higher risk for ED, but further research is needed to better assess and treat ED in S-IDs. Future studies should have a standard assessment measure of ED, such as the Emotion Dysregulation Inventory, and explore adapting established curricula for ED from the neurotypical and autism spectrum disorder fields.
Collapse
Affiliation(s)
- Rebecca C Shaffer
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio.
| | | | - Lauren M Schmitt
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Martine Lamy
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Kelli C Dominick
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Elizabeth G Smith
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | | | - Anna J Esbensen
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
14
|
Frazier TW, Busch RM, Klaas P, Lachlan K, Jeste S, Kolevzon A, Loth E, Harris J, Speer L, Pepper T, Anthony K, Graglia JM, Delagrammatikas C, Bedrosian-Sermone S, Beekhuyzen J, Smith-Hicks C, Sahin M, Eng C, Hardan AY, Uljarević M. Development of informant-report neurobehavioral survey scales for PTEN hamartoma tumor syndrome and related neurodevelopmental genetic syndromes. Am J Med Genet A 2023. [PMID: 37045800 DOI: 10.1002/ajmg.a.63195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
There are few well-validated measures that are appropriate for assessing the full range of neurobehavioral presentations in PTEN hamartoma tumor syndrome (PHTS) and other neurodevelopmental genetic syndromes (NDGS). As potential therapeutics are developed, having reliable, valid, free, and easily accessible measures to track a range of neurobehavioral domains will be crucial for future clinical trials. This study focused on the development and initial psychometric evaluation of a set of freely available informant-report survey scales for PHTS-the Neurobehavioral Evaluation Tool (NET). Concept elicitation, quantitative ratings, and cognitive interviewing processes were conducted with stakeholders and clinician-scientist experts, used to identify the most important neurobehavioral domains for this population, and to ensure items were appropriate for the full range of individuals with PHTS. Results of this process identified a PHTS neurobehavioral impact model with 11 domains. The final NET scales assessing these domains were administered to a sample of 384 participants (median completion time = 20.6 min), including 32 people with PHTS, 141 with other NDGS, 47 with idiopathic neurodevelopmental disorder (NDD), and 164 neurotypical controls. Initial psychometric results for the total scores of each scale indicated very good model (ω = 0.83-0.99) and internal consistency reliability (α = 0.82-0.98) as well as excellent test-retest reproducibility at 1-month follow-up (r = 0.78-0.98) and stability at 4-month follow-up (r = 0.76-0.96). Conditional reliability estimates indicated very strong measurement precision in key score ranges for assessing PHTS and other people with NDGS and/or idiopathic NDD. Comparisons across domains between PHTS and the other groups revealed specific patterns of symptoms and functioning, including lower levels of challenging behavior and more developed daily living and executive functioning skills relative to other NDGS. The NET appears to be a reliable and potentially useful tool for clinical characterization and monitoring of neurobehavioral symptoms in PHTS and may also have utility in the assessment of other NDGS and idiopathic NDD. Additional validation work, including convergent and discriminant validity analyses, are needed to replicate and extend these observations.
Collapse
Affiliation(s)
- Thomas W Frazier
- Department of Psychology, John Carroll University, University Heights, Ohio, USA
- Departments of Pediatrics and Psychiatry,, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robyn M Busch
- Department of Neurology, Neurological Institute, Clinic Cleveland, Cleveland, Ohio, USA
- Genomic Medicine Institute, Lerner Research Institute, Clinic Cleveland, Cleveland, Ohio, USA
| | - Patricia Klaas
- Department of Neurology, Neurological Institute, Clinic Cleveland, Cleveland, Ohio, USA
| | - Katherine Lachlan
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Shafali Jeste
- Division of Neurology, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Alexander Kolevzon
- Departments of Psychiatry and Pediatrics, Seaver Autism Center for Research and Treatment Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience Kings College London, London, UK
| | - Jacqueline Harris
- Krieger Institute and Johns Hopkins University School of Medicine, Department of Neurology Kennedy, Baltimore, Maryland, USA
| | - Leslie Speer
- Department of Psychology, Frazier Behavioral Health, Cleveland, Ohio, USA
| | - Tom Pepper
- PTEN Research Foundation, Cheltenham, UK
| | - Kristin Anthony
- PTEN Hamartoma Tumor Syndrome Foundation, Huntsville, Alabama, USA
| | | | | | | | | | - Constance Smith-Hicks
- Krieger Institute and Johns Hopkins University School of Medicine, Department of Neurology Kennedy, Baltimore, Maryland, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Clinic Cleveland, Cleveland, Ohio, USA
| | - Antonia Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Mirko Uljarević
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
15
|
General Measurement Tools for Assessing Mental Health Problems Among Children and Adolescents with an Intellectual Disability: A Systematic Review. J Autism Dev Disord 2023; 53:132-204. [PMID: 35022944 PMCID: PMC9889433 DOI: 10.1007/s10803-021-05419-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/04/2023]
Abstract
There is a need for more knowledge of valid and standardized measures of mental health problems among children and adolescents with intellectual disability (ID). In this study, we systematically reviewed and evaluated the psychometric properties of instruments used to assess general mental health problems in this population. Following PRISMA guidelines, we reviewed empirical research published from 1980 through February 2020 with an updated search in March 2021 in Medline, Embase, PsycINFO, Health and Psychological Instruments, CINAHL, ERIC, and Web of Science databases. Forty-nine empirical articles were included in this review. Overall, the review indicated consistently better documentation of the reliability and validity of instruments designed for the ID population compared to instruments developed for the general child population.
Collapse
|
16
|
Norris JE, DeStefano LA, Schmitt LM, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Hemispheric Utilization of Alpha Oscillatory Dynamics as a Unique Biomarker of Neural Compensation in Females with Fragile X Syndrome. ACS Chem Neurosci 2022; 13:3389-3402. [PMID: 36411085 DOI: 10.1021/acschemneuro.2c00404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide expansion on the FMR1 gene and characterized by intellectual disability, sensory hypersensitivity, executive function difficulties, and social anxiety. Recently, efforts to define neural biomarkers for FXS have highlighted disruptions to power in the alpha frequency band; however the dynamic mechanisms supporting these findings are poorly understood. The current study aimed to explore the temporal and hemispheric dynamics supporting alpha phenotypes in FXS and their relationship with neural phenotypes related to auditory processing using electroencephalography during an auditory evoked task. Adolescents and adults (N = 36) with FXS and age/sex matched typically developing controls (N = 40) completed an auditory chirp task. Frontal alpha power in the prestimulus period was decomposed into "bursts" using percentile thresholding, then assessed for number of bursts per second (burst count) and burst length. Data were compared across left and right hemispheres to assess lateralization of neural activity. Individuals with FXS showed more differences in alpha power compared to TDC primarily in the right hemisphere. Notably, alpha hemisphere outcomes in males with FXS were driven by the number of times they entered a dynamically relevant period of alpha (burst count) rather than length of time spent in alpha. Females with FXS showed reduced burst counts but remained in sustained high alpha states for longer periods of time. Length of time spent in alpha may reflect a modulatory or compensatory mechanism capable of recovering sensory processing abilities in females with FXS resulting in a less severe clinical presentation. Right hemisphere abnormalities may impact sensory processing differences between males and females with FXS. The relationship between alpha burst length, count, sex, and hemisphere may shed light on underlying mechanisms for previously observed alpha power abnormalities in FXS and their variation by sex.
Collapse
Affiliation(s)
- Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
17
|
Arpone M, Bretherton L, Amor DJ, Hearps SJC, Rogers C, Field MJ, Hunter MF, Santa Maria L, Alliende AM, Slee J, Godler DE, Baker EK. Agreement between parents' and clinical researchers' ratings of behavioral problems in children with fragile X syndrome and chromosome 15 imprinting disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 131:104338. [PMID: 36179574 DOI: 10.1016/j.ridd.2022.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Despite the increasing number of clinical trials involving children with neurodevelopmental disorders, appropriate and objective outcome measures for behavioral symptoms are still required. AIM This study assessed the agreement between parents' and clinical researchers' ratings of behavioral problem severity in children with fragile X syndrome (FXS) and chromosome 15 imprinting disorders. METHODS AND PROCEDURES The cohort comprised 123 children (64% males), aged 3-17 years, with FXS (n = 79), Prader-Willi (PWS; n = 19), Angelman (AS; n = 15), and Chromosome 15q duplication (n = 10) syndromes. Specific items from the Autism Diagnostic Observation Schedule-Second Edition and Aberrant Behavior Checklist-Community Edition mapping to corresponding behavioral domains were selected ad-hoc, to assess behavioral problems. OUTCOMES AND RESULTS Inter-rater agreement for the cohort was slight for self-injury (Intraclass Correlation Coefficient (ICC) = 0.12), fair for tantrums/aggression (0.24) and mannerisms/stereotypies (0.25), and moderate for hyperactivity (0.48). When stratified by diagnosis, ICC ranged from poor (0; self-injury, AS and PWS) to substantial (0.48; hyperactivity, females with FXS). CONCLUSIONS AND IMPLICATIONS The high level of inter-rater disagreement across most domains suggests that parents' and researchers' assessments led to discrepant appraisal of behavioral problem severity. These findings have implications for treatment targets and outcome measure selection in clinical trials, supporting a multi-informant approach.
Collapse
Affiliation(s)
- Marta Arpone
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - David J Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Stephen J C Hearps
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Critical Care, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Michael J Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Lorena Santa Maria
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Angelica M Alliende
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Jennie Slee
- Department of Health, Government of Western Australia, Genetic Services of Western Australia, Perth, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
18
|
Berry-Kravis E, Hagerman R, Budimirovic D, Erickson C, Heussler H, Tartaglia N, Cohen J, Tassone F, Dobbins T, Merikle E, Sebree T, Tich N, Palumbo JM, O’Quinn S. A randomized, controlled trial of ZYN002 cannabidiol transdermal gel in children and adolescents with fragile X syndrome (CONNECT-FX). J Neurodev Disord 2022; 14:56. [PMID: 36434514 PMCID: PMC9700889 DOI: 10.1186/s11689-022-09466-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is associated with dysregulated endocannabinoid signaling and may therefore respond to cannabidiol therapy. DESIGN CONNECT-FX was a double-blind, randomized phase 3 trial assessing efficacy and safety of ZYN002, transdermal cannabidiol gel, for the treatment of behavioral symptoms in children and adolescents with FXS. METHODS Patients were randomized to 12 weeks of ZYN002 (250 mg or 500 mg daily [weight-based]) or placebo, as add-on to standard of care. The primary endpoint assessed change in social avoidance (SA) measured by the Aberrant Behavior Checklist-Community Edition FXS (ABC-CFXS) SA subscale in a full cohort of patients with a FXS full mutation, regardless of the FMR1 methylation status. Ad hoc analyses assessed efficacy in patients with ≥ 90% and 100% methylation of the promoter region of the FMR1 gene, in whom FMR1 gene silencing is most likely. RESULTS A total of 212 patients, mean age 9.7 years, 75% males, were enrolled. A total of 169 (79.7%) patients presented with ≥ 90% methylation of the FMR1 promoter and full mutation of FMR1. Although statistical significance for the primary endpoint was not achieved in the full cohort, significant improvement was demonstrated in patients with ≥ 90% methylation of FMR1 (nominal P = 0.020). This group also achieved statistically significant improvements in Caregiver Global Impression-Change in SA and isolation, irritable and disruptive behaviors, and social interactions (nominal P-values: P = 0.038, P = 0.028, and P = 0.002). Similar results were seen in patients with 100% methylation of FMR1. ZYN002 was safe and well tolerated. All treatment-emergent adverse events (TEAEs) were mild or moderate. The most common treatment-related TEAE was application site pain (ZYN002: 6.4%; placebo: 1.0%). CONCLUSIONS In CONNECT-FX, ZYN002 was well tolerated in patients with FXS and demonstrated evidence of efficacy with a favorable benefit risk relationship in patients with ≥ 90% methylation of the FMR1 gene, in whom gene silencing is most likely, and the impact of FXS is typically most severe. TRIAL REGISTRATION The CONNECT-FX trial is registered on Clinicaltrials.gov (NCT03614663).
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- grid.240684.c0000 0001 0705 3621Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL USA
| | - Randi Hagerman
- grid.413079.80000 0000 9752 8549Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA USA
| | - Dejan Budimirovic
- grid.21107.350000 0001 2171 9311Departments of Psychiatry and Child Psychiatry, Fragile X Clinic, Kennedy Krieger Institute/the Johns Hopkins Medical Institutions, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Craig Erickson
- grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Helen Heussler
- grid.512914.a0000 0004 0642 3960Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Children’s Health Queensland, Brisbane, Australia ,grid.1003.20000 0000 9320 7537Centre for Child Health Research, University of Queensland, Brisbane, Australia
| | - Nicole Tartaglia
- Department of Pediatrics, Developmental Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO USA
| | - Jonathan Cohen
- Fragile X Alliance Inc, North Caulfield, VIC, Australia ,grid.1002.30000 0004 1936 7857Centre for Developmental Disability Health Victoria, Monash University, Clayton, VIC Australia
| | - Flora Tassone
- grid.413079.80000 0000 9752 8549Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA USA ,grid.413079.80000 0000 9752 8549Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA USA
| | | | | | - Terri Sebree
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| | - Nancy Tich
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| | - Joseph M. Palumbo
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| | - Stephen O’Quinn
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| |
Collapse
|
19
|
Wilkinson EH, Britton TC, Hall SS. Examining Phenotypic Differences in Gaze Avoidance Between Autism Spectrum Disorder and Fragile X Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2022; 127:435-454. [PMID: 36306410 PMCID: PMC9667749 DOI: 10.1352/1944-7558-127.6.435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/31/2021] [Indexed: 05/22/2023]
Abstract
We examined potential phenotypic differences in eye gaze avoidance exhibited by boys with autism spectrum disorder (ASD) and boys with fragile X syndrome (FXS). In Study 1, the Eye Contact Avoidance Scale (ECAS) was administered to caregivers of boys aged 7-18 years with FXS (n = 148), ASD (n = 168), and mixed developmental disabilities (MDD; n = 128). In Study 2, subsets of boys with FXS (n = 31) and boys with ASD (n = 25) received a brief behavioral treatment probe to improve eye contact. Results showed that boys with FXS obtained significantly higher scores on the ECAS compared to boys with ASD and MDD. Exposure to the brief behavioral treatment probe resulted in significant decreases in scores for boys with FXS, but not for boys with ASD.
Collapse
Affiliation(s)
- Ellen H Wilkinson
- Ellen H. Wilkinson, Tobias C. Britton, and Scott S. Hall, Stanford University School of Medicine
| | - Tobias C Britton
- Ellen H. Wilkinson, Tobias C. Britton, and Scott S. Hall, Stanford University School of Medicine
| | - Scott S Hall
- Ellen H. Wilkinson, Tobias C. Britton, and Scott S. Hall, Stanford University School of Medicine
| |
Collapse
|
20
|
Berry-Kravis E. Disease-Targeted Treatment Translation in Fragile X Syndrome as a Model for Neurodevelopmental Disorders. J Child Neurol 2022; 37:797-812. [PMID: 35791522 DOI: 10.1177/08830738221089740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fragile X syndrome (FXS), the most common monogenic cause of intellectual disability and autism spectrum disorder, has been one of the first neurodevelopmental disorders in which molecular and neuronal mechanisms of disease were identified, leading to the concept of targeting the underlying disease to reverse symptoms. Translating findings in basic science and animal models to humans with FXS has proven difficult. These challenges have prompted the FXS field to organize to build interlocking projects and initiatives to improve consistency of supportive care, make clinical research accessible to families, generate collaborative research on natural history, outcome measures and biomarkers, and create clinical trial consortia and novel trial designs. This work has resulted in improved success in recent clinical trials, providing key steps toward regulatory approval of disease-targeted treatments for FXS. Progress in the FXS field has informed translation of transformative new disease-targeted therapies for other monogenic neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Hall SS, Rodriguez AB, Jo B, Pollard JS. Long-term follow-up of telehealth-enabled behavioral treatment for challenging behaviors in boys with fragile X syndrome. J Neurodev Disord 2022; 14:53. [PMID: 36180840 PMCID: PMC9523179 DOI: 10.1186/s11689-022-09463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background A significant proportion of boys with fragile X syndrome (FXS), the most common known genetic cause of intellectual disability, exhibit challenging behaviors such as aggression and self-injury that can cause significant distress to families. Recent evidence suggests that coaching caregivers to implement functional communication training (FCT) with their child via telehealth can help to ameliorate these behaviors in FXS. In the present study, we followed families who had participated in our previous randomized controlled trial of FCT to evaluate the longer-term effects of FCT on challenging behaviors in this population. Methods In study 1, follow-up emails, phone calls, text messages, and letters were sent to caregivers of 48 boys with FXS who had completed our previous study conducted between 2016 and 2019. The main outcome measures administered at follow-up were the Aberrant Behavior Checklist–Community (ABC-C) and the Parenting Stress Index, 4th Edition (PSI-4). In study 2, families who had received FCT treatment but whose child exhibited challenging behaviors daily at follow-up received a 1-h parent training booster session to determine whether the intervention effect could be recovered. Results Sixteen (66.7%) of 24 families who had received FCT treatment and 18 (75.0%) of 24 families who had received treatment as usual were traced and consented between March and August 2021. The mean follow-up time was 3.1 years (range, 1.4 to 4.2 years). Longitudinal mixed effects analyses indicated that boys who had received FCT were more likely to show improvements on the irritability and lethargy/social withdrawal subscales of the ABC-C over the follow-up interval compared to boys who had continued with treatment as usual. Four of the six boys who had received the booster parent training session via telehealth were reported to exhibit fewer forms of challenging behavior at a 4-week follow-up. Conclusions Empowering parents to implement behavior analytic treatments with their child in their own home can have durable effects on maintaining low levels of challenging behaviors in boys with FXS. These data further support the need to implement parent-mediated interventions for challenging behaviors in this population at an early age. Trial registration ClinicalTrials.gov, NCT03510156. Registered 27 April 2018
Collapse
Affiliation(s)
- Scott S Hall
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5795, USA.
| | - Arlette Bujanda Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5795, USA.,Behavior Change Institute, Oakland, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5795, USA
| | - Joy S Pollard
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA, 94305-5795, USA.,Behavior Change Institute, Oakland, USA
| |
Collapse
|
22
|
Lozano R, Thompson T, Dixon-Weber J, Erickson CA, Berry-Kravis E, Williams S, Smith E, Frazier JA, Rosselot H, Farmer C, Hessl D. Observable Symptoms of Anxiety in Individuals with Fragile X Syndrome: Parent and Caregiver Perspectives. Genes (Basel) 2022; 13:genes13091660. [PMID: 36140827 PMCID: PMC9498703 DOI: 10.3390/genes13091660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Caregiver reports, clinical observations, and diagnostic assessments indicate that most individuals with fragile X syndrome experience high levels of chronic anxiety. However, anxiety is a challenging endpoint for outcome measurement in FXS because most individuals cannot reliably report internal emotional or body states. A comprehensive survey of the presence, frequency, and duration of anxiety-related symptoms and questions to elicit open-ended responses was completed by caregivers of 456 individuals with FXS, ages 2–81 years (87 female, 369 male) and 24 female and 2 male FXS self-advocates ages 15–66 years. Caregivers reported classic behavioral indicators of anxiety, such as avoidance, irritability, motor agitation, and physiological symptoms, as well as behavioral features in FXS such as repetitive behavior, aggression, and self-injury. Self-advocate accounts largely paralleled caregiver data. Factor analyses yielded four factors: (1) increased irritability, aggression, and self-injury; (2) increased physical movement, nervous activity, and restlessness; (3) physical and physiological features of anxiety; and (4) internalizing and gastrointestinal symptoms. Caregivers are capable of observing and reporting behaviors that are valid indicators of anxious states that are usually reported in self-report standardized assessments. These results support the development of an anxiety measure for FXS that minimizes problems with rater inference.
Collapse
Affiliation(s)
- Reymundo Lozano
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (R.L.); (D.H.); Tel.: +1-212-242-5962 (R.L.); +1-916-703-0249 (D.H.)
| | - Talia Thompson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Craig A. Erickson
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Sara Williams
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth Smith
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jean A. Frazier
- Department of Psychiatry, Chan Medical School, University of Massachusetts, Worcester, MA 01655, USA
| | | | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Psychiatry and Behavioral Sciences, Davis School of Medicine, University of California, Sacramento, CA 95817, USA
- Correspondence: (R.L.); (D.H.); Tel.: +1-212-242-5962 (R.L.); +1-916-703-0249 (D.H.)
| |
Collapse
|
23
|
Laroui A, Galarneau L, Abolghasemi A, Benachenhou S, Plantefève R, Bouchouirab FZ, Lepage JF, Corbin F, Çaku A. Clinical significance of matrix metalloproteinase-9 in Fragile X Syndrome. Sci Rep 2022; 12:15386. [PMID: 36100610 PMCID: PMC9470743 DOI: 10.1038/s41598-022-19476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
High plasma matrix metalloproteases-9 (MMP-9) levels have been reported in Fragile X Syndrome in a limited number of animal and human studies. Since the results obtained are method-dependent and not directly comparable, the clinical utility of MMP-9 measurement in FXS remains unclear. This study aimed to compare quantitative gel zymography and ELISA and to determine which method better discriminates abnormal MMP-9 levels of individuals with FXS from healthy controls and correlates with the clinical profile. The active and total forms of MMP-9 were quantified respectively, by gel zymography and ELISA in a cohort of FXS (n = 23) and healthy controls (n = 20). The clinical profile was assessed for the FXS group using the Aberrant Behavior Checklist FXS adapted version (ABC-CFX), Adaptive Behavior Assessment System (ABAS), Social Communication Questionnaire (SCQ), and Anxiety Depression and Mood Scale questionnaires. Method comparison showed a disagreement between gel zymography and ELISA with a constant error of − 0.18 [95% CI: − 0.35 to − 0.02] and a proportional error of 2.31 [95% CI: 1.53 to 3.24]. Plasma level of MMP-9 active form was significantly higher in FXS (n = 12) as compared to their age-sex and BMI matched controls (n = 12) (p = 0.039) and correlated with ABC-CFX (rs = 0.60; p = 0.039) and ADAMS (rs = 0.57; p = 0.043) scores. As compared to the plasma total form, the plasma MMP-9 active form better enables the discrimination of individuals with FXS from controls and correlates with the clinical profile. Our results highlight the importance of choosing the appropriate method to quantify plasma MMP-9 in future FXS clinical studies.
Collapse
|
24
|
Buchanan CB, Stallworth JL, Joy AE, Dixon RE, Scott AE, Beisang AA, Benke TA, Glaze DG, Haas RH, Heydemann PT, Jones MD, Lane JB, Lieberman DN, Marsh ED, Neul JL, Peters SU, Ryther RC, Skinner SA, Standridge SM, Kaufmann WE, Percy AK. Anxiety-like behavior and anxiolytic treatment in the Rett syndrome natural history study. J Neurodev Disord 2022; 14:31. [PMID: 35568815 PMCID: PMC9107202 DOI: 10.1186/s11689-022-09432-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a neurodevelopmental disorder most often related to a pathogenic variant in the X-linked MECP2 gene. Internalizing behaviors appear to be common, but standard methods of diagnosing anxiety are not readily applied in this population which typically has cognitive impairment and limited expressive language. This study aims to describe the frequency of anxiety-like behavior and anxiolytic treatments along with associated clinical features in individuals with RTT. METHODS Parental reports and medication logs provided data from 1380 females with RTT participating in two iterations of the multicenter U.S. RTT Natural History Study (RNHS) from 2006 to 2019. RESULTS Most participants with RTT (77.5%) had at least occasional anxious or nervous behavior. Anxiety was reported to be the most troublesome concern for 2.6%, and within the top 3 concerns for 10.0%, of participants in the second iteration. Parents directly reported treatment for anxious or nervous behavior in 16.6% of participants in the second iteration with most reporting good control of the behavior (71.6%). In the medication logs of both RNHS iterations, the indication of anxiety was listed for a similar number of participants (15% and 14.5%, respectively). Increased use of anxiolytics and selective serotonin reuptake inhibitors (SSRIs) was related to more frequent anxiety-like behaviors (P < 0.001), older age (P < 0.001), and mild MECP2 variants (P = 0.002). CONCLUSION Anxiety-like behavior is frequent at all ages and is a significant parental concern in RTT. Older individuals and those with mild MECP2 variants are more likely to be treated with medications. Better diagnosis and treatment of anxiety in RTT should be a goal of both future studies and clinical care. TRIAL REGISTRATION NCT00299312 and NCT02738281.
Collapse
Affiliation(s)
- Caroline B. Buchanan
- grid.418307.90000 0000 8571 0933Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29649 USA
| | - Jennifer L. Stallworth
- grid.418307.90000 0000 8571 0933Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29649 USA
| | - Aubin E. Joy
- grid.418307.90000 0000 8571 0933Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29649 USA
| | - Rebekah E. Dixon
- grid.418307.90000 0000 8571 0933Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29649 USA
| | - Alexandra E. Scott
- grid.418307.90000 0000 8571 0933Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29649 USA
| | - Arthur A. Beisang
- grid.429065.c0000 0000 9002 4129Gillette Children’s Hospital, St. Paul, MN USA
| | - Timothy A. Benke
- grid.241116.10000000107903411Children’s Hospital Colorado, University of Colorado at Denver, Denver, CO USA
| | - Daniel G. Glaze
- grid.39382.330000 0001 2160 926XBaylor College of Medicine, Houston, TX USA
| | - Richard H. Haas
- grid.266100.30000 0001 2107 4242Rady Children’s Hospital-San Diego, University of California, San Diego, CA USA
| | - Peter T. Heydemann
- grid.240684.c0000 0001 0705 3621Rush University Medical Center, Chicago, IL USA
| | - Mary D. Jones
- grid.414016.60000 0004 0433 7727UCSF Benioff Children’s Hospital of Oakland, Oakland, CA USA
| | - Jane B. Lane
- grid.265892.20000000106344187Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - David N. Lieberman
- grid.38142.3c000000041936754XBoston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Eric D. Marsh
- grid.25879.310000 0004 1936 8972Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Jeffrey L. Neul
- grid.412807.80000 0004 1936 9916Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - Sarika U. Peters
- grid.412807.80000 0004 1936 9916Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - Robin C. Ryther
- grid.4367.60000 0001 2355 7002Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Steve A. Skinner
- grid.418307.90000 0000 8571 0933Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29649 USA
| | - Shannon M. Standridge
- grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Walter E. Kaufmann
- grid.254567.70000 0000 9075 106XUniversity of South Carolina School of Medicine, Columbia, SC USA ,grid.189967.80000 0001 0941 6502Emory University School of Medicine, Atlanta, GA USA
| | - Alan K. Percy
- grid.265892.20000000106344187Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
25
|
Meng L, Kaufmann WE, Frye RE, Ong K, Kaminski JW, Velinov M, Berry-Kravis E. The association between mosaicism type and cognitive and behavioral functioning among males with fragile X syndrome. Am J Med Genet A 2022; 188:858-866. [PMID: 35148024 PMCID: PMC10948005 DOI: 10.1002/ajmg.a.62594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Mosaicism in fragile X syndrome (FXS) refers to two different FMR1 allele variations: size mosaicism represents different numbers of CGG repeats between the two alleles, such that in addition to a full mutation allele there is an allele in the normal or premutation range of CGG repeats, while methylation mosaicism indicates whether a full-mutation allele is fully or partially methylated. The present study explored the association between mosaicism type and cognitive and behavioral functioning in a large sample of males 3 years and older (n = 487) with FXS, participating in the Fragile X Online Registry with Accessible Research Database. Participants with methylation mosaicism were less severely cognitively affected as indicated by a less severe intellectual disability rating, higher intelligence quotient and adaptive behavior score, and lower social impairment score. In contrast, the presence of size mosaicism was not significantly associated with better cognitive and behavioral outcomes than full mutation. Our findings suggest that methylation mosaicism is associated with better cognitive functioning and adaptive behavior and less social impairment. Further research could assess to what extent these cognitive and behavioral differences depend on molecular diagnostic methods and the impact of mosaicism on prognosis of individuals with FXS.
Collapse
Affiliation(s)
- Lu Meng
- Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA
| | - Walter E. Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard E. Frye
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
| | - Katherine Ong
- Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA
| | - Jennifer W. Kaminski
- Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA
| | - Milen Velinov
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
26
|
Kenny A, Wright D, Stanfield AC. EEG as a translational biomarker and outcome measure in fragile X syndrome. Transl Psychiatry 2022; 12:34. [PMID: 35075104 PMCID: PMC8786970 DOI: 10.1038/s41398-022-01796-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
Targeted treatments for fragile X syndrome (FXS) have frequently failed to show efficacy in clinical testing, despite success at the preclinical stages. This has highlighted the need for more effective translational outcome measures. EEG differences observed in FXS, including exaggerated N1 ERP amplitudes, increased resting gamma power and reduced gamma phase-locking in the sensory cortices, have been suggested as potential biomarkers of the syndrome. These abnormalities are thought to reflect cortical hyper excitability resulting from an excitatory (glutamate) and inhibitory (GABAergic) imbalance in FXS, which has been the target of several pharmaceutical remediation studies. EEG differences observed in humans also show similarities to those seen in laboratory models of FXS, which may allow for greater translational equivalence and better predict clinical success of putative therapeutics. There is some evidence from clinical trials showing that treatment related changes in EEG may be associated with clinical improvements, but these require replication and extension to other medications. Although the use of EEG characteristics as biomarkers is still in the early phases, and further research is needed to establish its utility in clinical trials, the current research is promising and signals the emergence of an effective translational biomarker.
Collapse
Affiliation(s)
- Aisling Kenny
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK.
| | - Damien Wright
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| | - Andrew C. Stanfield
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| |
Collapse
|
27
|
Grebe SC, Limon DL, McNeel MM, Guzick A, Peters SU, Tan WH, Sadhwani A, Bacino CA, Bird LM, Samaco RC, Berry LN, Goodman WK, Schneider SC, Storch EA. Anxiety in Angelman Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2022; 127:1-10. [PMID: 34979033 PMCID: PMC8803540 DOI: 10.1352/1944-7558-127.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/20/2021] [Indexed: 06/14/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder most commonly caused by the impaired expression of the maternal UBE3A gene on chromosome 15. Though anxiety has been identified as a frequently present characteristic in AS, there are limited studies examining anxiety in this population. Studies of anxiety in other neurodevelopmental disorders have found disorder specific symptoms of anxiety and age specific displays of anxiety symptoms. However, there is a consistent challenge in identifying anxiety in people with neurodevelopmental disorders given the lack of measurement instruments specifically designed for this population. Given the limited information about AS and anxiety, the aims of the current project were to (a) examine symptoms of anxiety in children with AS and (b) determine the correlates of anxiety in children with AS. Participants included 42 adult caregivers of youth with AS in the AS Natural History study who completed the Developmental Behavior Checklist (DBC). The results found that 26% of the sample demonstrated elevated symptoms of anxiety and established a relationship between elevated anxiety in youth with AS and higher levels of irritability, hyperactivity, self-absorbed behaviors, and disruptive/antisocial behaviors. Findings from this research provide a foundation for tailoring evidence-based assessments and treatments for youth with AS and anxiety.
Collapse
Affiliation(s)
- Stacey C Grebe
- Stacey C. Grebe, Danica L. Limon, Morgan M. McNeel, and Andrew Guzick, Baylor College of Medicine
| | - Danica L Limon
- Stacey C. Grebe, Danica L. Limon, Morgan M. McNeel, and Andrew Guzick, Baylor College of Medicine
| | - Morgan M McNeel
- Stacey C. Grebe, Danica L. Limon, Morgan M. McNeel, and Andrew Guzick, Baylor College of Medicine
| | - Andrew Guzick
- Stacey C. Grebe, Danica L. Limon, Morgan M. McNeel, and Andrew Guzick, Baylor College of Medicine
| | | | - Wen-Hann Tan
- Wen-Hann Tan and Anjali Sadhwani, Boston Children's Hospital
| | - Anjali Sadhwani
- Wen-Hann Tan and Anjali Sadhwani, Boston Children's Hospital
| | - Carlos A Bacino
- Carlos A. Bacino, Baylor College of Medicine and Texas Children's Hospital
| | - Lynne M Bird
- Lynne M. Bird, University of California and Boston Children's Hospital
| | | | - Leandra N Berry
- Leandra N. Berry, Baylor College of Medicine and Texas Children's Hospital
| | | | | | - Eric A Storch
- Sophie C. Schneider and Eric A. Storch, Baylor College of Medicine
| |
Collapse
|
28
|
Fucà E, Galassi P, Costanzo F, Vicari S. Parental perspectives on the quality of life of children with Down syndrome. Front Psychiatry 2022; 13:957876. [PMID: 36032222 PMCID: PMC9411982 DOI: 10.3389/fpsyt.2022.957876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Down Syndrome (DS) is the most common chromosome abnormality and the most frequent cause of developmental delay/intellectual disabilities in children. Although the investigation of the quality of life (QoL) is crucial in children with DS, relatively poor attention has been paid to this topic. The current study aimed to evaluate parent-reported QoL in a group of children with DS and identify children's individual and clinical features associated with different levels of QoL. We included in the study 73 children with DS (5-12 years) and investigated the parent-reported levels of QoL by means of the Pediatric Quality of Life Inventory. Cognitive level and the presence of behavioral difficulties were also evaluated. The overall parent-reported QoL of children with DS was high; emotional functioning was the domain with the highest level of QoL. Moreover, parents perceived low levels of QoL in children who exhibited low IQ, worse analogical reasoning, worse adaptive skills, more frequent challenging behaviors, more ritualistic/sameness behavior and more autistic symptoms. No differences emerged for family variables, namely parental education and employment, between the two groups with high and low QoL, as perceived by parents. The understanding of cognitive and behavioral factors - such as analogical reasoning, socio-communication abilities and challenging behaviors - related with different degrees of QoL in children with DS is crucial for the development of effective strategies to promote the improvement of the QoL.
Collapse
Affiliation(s)
- Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Galassi
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
29
|
Potter SN, Harvey DJ, Sterling A, Abbeduto L. Mental Health Challenges, Parenting Stress, and Features of the Couple Relationship in Parents of Children With Fragile X Syndrome. Front Psychiatry 2022; 13:857633. [PMID: 35432025 PMCID: PMC9012337 DOI: 10.3389/fpsyt.2022.857633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Individuals with fragile X syndrome (FXS) have significant delays in cognition and language, as well as anxiety, symptoms of autism spectrum disorder, and challenging behaviors such as hyperactivity and aggression. Biological mothers of children with FXS, who are themselves FMR1 premutation or full mutation carriers, are at elevated risk for mental health challenges in addition to experiencing stress associated with parenting a child with significant disabilities. However, little is known about fathers in these families, including the ways in which parental well-being influences the mother-father relationship and the impact of child characteristics on paternal and couple functioning. METHOD The current study examined features of, and relationships between, parental well-being, couple well-being, and child functioning in 23 families of young boys with FXS. Mothers and fathers independently completed multiple questionnaires about their individual well-being, couple functioning, and child behavior. One parent per family also completed an interview about the child's adaptive skills. RESULTS Results suggest that both mothers and fathers in these families experience clinically significant levels of mental health challenges and elevated rates of parenting stress relative to the general population. Findings also indicate that the couples' relationship may be a source of strength that potentially buffers against some of the daily stressors faced by these families. Additionally, parents who reported less parenting stress had higher couples satisfaction and dyadic coping. Finally, parents of children with less severe challenging behaviors exhibited fewer mental health challenges, less parenting stress, and higher levels of both couples satisfaction and dyadic coping. Parents of children with higher levels of adaptive behavior also reported less parenting stress and higher couples satisfaction. CONCLUSION Overall, this study provides evidence that families of children with FXS need access to services that not only target improvements in the child's functioning, but also ameliorate parental stress. Family-based services that include both mothers and fathers would lead to better outcomes for all family members.
Collapse
Affiliation(s)
- Sarah Nelson Potter
- MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA, United States
| | - Danielle J Harvey
- Department of Public Health Sciences, UC Davis Health, Sacramento, CA, United States
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| | - Leonard Abbeduto
- MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA, United States
| |
Collapse
|
30
|
Budimirovic DB, Dominick KC, Gabis LV, Adams M, Adera M, Huang L, Ventola P, Tartaglia NR, Berry-Kravis E. Gaboxadol in Fragile X Syndrome: A 12-Week Randomized, Double-Blind, Parallel-Group, Phase 2a Study. Front Pharmacol 2021; 12:757825. [PMID: 34690787 PMCID: PMC8531725 DOI: 10.3389/fphar.2021.757825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Fragile X syndrome (FXS), the most common single-gene cause of intellectual disability and autism spectrum disorder (ASD), is caused by a >200-trinucleotide repeat expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. Individuals with FXS can present with a range of neurobehavioral impairments including, but not limited to: cognitive, language, and adaptive deficits; ASD; anxiety; social withdrawal and avoidance; and aggression. Decreased expression of the γ-aminobutyric acid type A (GABAA) receptor δ subunit and deficient GABAergic tonic inhibition could be associated with symptoms of FXS. Gaboxadol (OV101) is a δ-subunit-selective, extrasynaptic GABAA receptor agonist that enhances GABAergic tonic inhibition, providing the rationale for assessment of OV101 as a potential targeted treatment of FXS. No drug is approved in the United States for the treatment of FXS. Methods: This 12-weeks, randomized (1:1:1), double-blind, parallel-group, phase 2a study was designed to assess the safety, tolerability, efficacy, and optimal daily dose of OV101 5 mg [once (QD), twice (BID), or three-times daily (TID)] when administered for 12 weeks to adolescent and adult men with FXS. Safety was the primary study objective, with key assessments including treatment-emergent adverse events (TEAEs), treatment-related adverse events leading to study discontinuation, and serious adverse events (SAEs). The secondary study objective was to evaluate the effect of OV101 on a variety of problem behaviors. Results: A total of 23 participants with FXS (13 adolescents, 10 adults) with moderate-to-severe neurobehavioral phenotypes (Full Scale Intelligence Quotient, 41.5 ± 3.29; ASD, 82.6%) were randomized to OV101 5 mg QD (n = 8), 5 mg BID (n = 8), or 5 mg TID (n = 7) for 12 weeks. OV101 was well tolerated across all 3 treatment regimens. The most common TEAEs were upper respiratory tract infection (n = 4), headache (n = 3), diarrhea (n = 2), and irritability (n = 2). No SAEs were reported. Improvements from baseline to end-of-treatment were observed on several efficacy endpoints, and 60% of participants were identified as treatment responders based on Clinical Global Impressions-Improvement. Conclusions: Overall, OV101 was safe and well tolerated. Efficacy results demonstrate an initial signal for OV101 in individuals with FXS. These results need to be confirmed in a larger, randomized, placebo-controlled study with optimal outcomes and in the most appropriate age group. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03697161.
Collapse
Affiliation(s)
- Dejan B Budimirovic
- Department of Psychiatry, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kelli C Dominick
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lidia V Gabis
- Maccabi HMO, Tel Aviv-Yafo, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | | | - Linda Huang
- Ovid Therapeutics Inc., New York, NY, United States
| | - Pamela Ventola
- Child Study Center, Yale University, New Haven, CT, United States
| | - Nicole R Tartaglia
- University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
31
|
Perche O, Lesne F, Patat A, Raab S, Twyman R, Ring RH, Briault S. Electroretinography and contrast sensitivity, complementary translational biomarkers of sensory deficits in the visual system of individuals with fragile X syndrome. J Neurodev Disord 2021; 13:45. [PMID: 34625026 PMCID: PMC8501595 DOI: 10.1186/s11689-021-09375-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disturbances in sensory function are an important clinical feature of neurodevelopmental disorders such as fragile X syndrome (FXS). Evidence also directly connects sensory abnormalities with the clinical expression of behavioral impairments in individuals with FXS; thus, positioning sensory function as a potential clinical target for the development of new therapeutics. Using electroretinography (ERG) and contrast sensitivity (CS), we previously reported the presence of sensory deficits in the visual system of the Fmr1-/y genetic mouse model of FXS. The goals of the current study were two-folds: (1) to assess the feasibility of measuring ERG and CS as a biomarker of sensory deficits in individuals with FXS, and (2) to investigate whether the deficits revealed by ERG and CS in Fmr1-/y mice translate to humans with FXS. METHODS Both ERG and CS were measured in a cohort of male individuals with FXS (n = 20, 18-45 years) and age-matched healthy controls (n = 20, 18-45 years). Under light-adapted conditions, and using both single flash and flicker (repeated train of flashes) stimulation protocols, retinal function was recorded from individual subjects using a portable, handheld, full-field flash ERG device (RETeval®, LKC Technologies Inc., Gaithersburg, MD, USA). CS was assessed in each subject using the LEA SYMBOLS® low-contrast test (Good-Lite, Elgin, IL, USA). RESULTS Data recording was successfully completed for ERG and assessment of CS in most individuals from both cohorts demonstrating the feasibility of these methods for use in the FXS population. Similar to previously reported findings from the Fmr1-/y genetic mouse model, individuals with FXS were found to exhibit reduced b-wave and flicker amplitude in ERG and an impaired ability to discriminate contrasts compared to healthy controls. CONCLUSIONS This study demonstrates the feasibility of using ERG and CS for assessing visual deficits in FXS and establishes the translational validity of the Fmr1-/y mice phenotype to individuals with FXS. By including electrophysiological and functional readouts, the results of this study suggest the utility of both ERG and CS (ERG-CS) as complementary translational biomarkers for characterizing sensory abnormalities found in FXS, with potential applications to the clinical development of novel therapeutics that target sensory function abnormalities to treat core symptomatology in FXS. TRIAL REGISTRATION ID-RCB number 2019-A01015-52 registered on the 17 May 2019.
Collapse
Affiliation(s)
- Olivier Perche
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | - Alain Patat
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | | | - Robert H Ring
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sylvain Briault
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France.
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France.
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France.
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK.
| |
Collapse
|
32
|
Henneberry E, Lamy M, Dominick KC, Erickson CA. Decades of Progress in the Psychopharmacology of Autism Spectrum Disorder. J Autism Dev Disord 2021; 51:4370-4394. [PMID: 34491511 DOI: 10.1007/s10803-021-05237-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Recent decades have been marked by a wave drug treatment research in autism spectrum disorder (ASD). This work has resulted in improved ability to treat commonly occurring behavioral challenges associated with ASD including most prominently irritability marked by aggression, self-injurious behavior, and severe tantrums. While treatment of interfering behavior has progressed in our field, there remain several areas of unmet medical need including most prominently a lack of any approved drug therapies for the core, defining symptoms of autism. We outline the progress to date in the field of autism drug treatment while taking a future look forward into how decades of work can inform better future steps in this field.
Collapse
Affiliation(s)
- Erin Henneberry
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
| | - Martine Lamy
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA. .,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, USA.
| |
Collapse
|
33
|
Proteau-Lemieux M, Lacroix A, Galarneau L, Corbin F, Lepage JF, Çaku A. The safety and efficacy of metformin in fragile X syndrome: An open-label study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110307. [PMID: 33757860 DOI: 10.1016/j.pnpbp.2021.110307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022]
Abstract
Fragile X syndrome (FXS) is a rare genetic disorder characterized by a deficit of the fragile X mental retardation protein (FMRP), encoded by the fragile X mental retardation gene (FMR1) on the X chromosome. It has been hypothesized that the absence of FRMP leads to higher levels of Insulin-like Growth Factor 1 (IGF-1) in the brain, possibly contributing to the intellectual impairment characteristic of the disorder. Preclinical studies have shown that metformin downregulates the insulin/IGF-1 signaling pathway, corrects dendritic defects, and improves repetitive behavior in Fmr1 knockout mice. Here, we conducted an open-label study to evaluate: (1) the safety of metformin in normoglycemic individuals with FXS; and (2) the efficacy of metformin to improve aberrant behavior, attention, and to modulate cortical functioning. Fifteen patients with FXS, aged from 17 to 44, received 500 mg of metformin twice/daily over a 9-week treatment period. The primary outcome measures were: (1) the incidence of adverse events (AE); (2) the decrease in IGF-1 levels; and (3) the global score of the Aberrant Behavior Checklist-Community, Fragile X. The secondary outcomes were: (1) the Test of Attentional Performance for children (KiTAP); and (2) the Transcranial Magnetic Stimulation (TMS) parameters measuring cortical excitability. The metformin treatment was well tolerated, with no significant related AE. The TMS data showed an increase in corticospinal inhibition mediated by GABAA and GABAB mechanisms. This study demonstrates the safety of metformin in normoglycemic patients with FXS, and suggests the potential of this medication in modifying GABA-mediated inhibition, a hallmark of FXS pathophysiology. Implications for future clinical trials are discussed.
Collapse
Affiliation(s)
- Mélodie Proteau-Lemieux
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Angélina Lacroix
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pharmacology, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Luc Galarneau
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - François Corbin
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Jean-François Lepage
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada.
| | - Artuela Çaku
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| |
Collapse
|
34
|
Baker EK, Arora S, Amor DJ, Date P, Cross M, O'Brien J, Simons C, Rogers C, Goodall S, Slee J, Cahir C, Godler DE. The Cost of Raising Individuals with Fragile X or Chromosome 15 Imprinting Disorders in Australia. J Autism Dev Disord 2021; 53:1682-1692. [PMID: 34292487 DOI: 10.1007/s10803-021-05193-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
The study characterised differences in costs associated with raising a child between four rare disorders and examined the associations between these costs with clinical severity. Caregivers of 108 individuals with Prader-Willi, Angelman (AS), Chromosome 15q Duplication and fragile X (FXS) syndromes completed a modified Client Services Receipt Inventory and participants completed intellectual/developmental functioning and autism assessments. AS incurred the highest yearly costs per individual ($AUD96,994), while FXS had the lowest costs ($AUD33,221). Intellectual functioning negatively predicted total costs, after controlling for diagnosis. The effect of intellectual functioning on total costs for those with AS was significantly different to the other syndromes. The study highlights the significant costs associated with these syndromes, particularly AS, linked with severity of intellectual functioning.
Collapse
Affiliation(s)
- Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Sheena Arora
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Perrin Date
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Meagan Cross
- Foundation for Angelman Syndrome Therapeutics (FAST), Salisbury, QLD, Australia
| | - James O'Brien
- Prader-Willi Syndrome Australia Ltd, Melbourne, VIC, Australia
| | - Chloe Simons
- Foundation for Angelman Syndrome Therapeutics (FAST), Salisbury, QLD, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Stephen Goodall
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, NSW, Australia
| | - Jennie Slee
- Department of Health, Government of Western Australia, Genetic Services of Western Australia, Perth, WA, Australia
| | - Chris Cahir
- Dup15q Australia Ltd, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
35
|
Evaluation of the Aberrant Behavior Checklist for Developmental and Epileptic Encephalopathies. Epilepsy Behav 2021; 119:107958. [PMID: 33892287 DOI: 10.1016/j.yebeh.2021.107958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To determine the suitability of the Aberrant Behavior Checklist (ABC)-a common measure used in clinical trials for treatment of challenging behaviors of autism-as an outcome measure for pharmacological and behavioral interventions for young people with Developmental and Epileptic Encephalopathies (DEEs). METHODS We assessed score profiles on the ABC in a sample of 122 young people with DEEs, including Dravet and Lennox-Gastaut syndromes, and KCNQ2- SCN2A-, and KCNB1-associated disorders. Then we examined its internal structure using item cluster analysis. We used both unrestricted item cluster analysis to determine the number of item clusters that maximize reliability and restricted analyses in which we pre-specified models with 5-, 6-, and 7-clusters, to examine consistency with previous factor analytic studies. We also conducted validity analysis on the various scoring methods with age, sex, and autism spectrum screening measure scores. RESULTS Unrestricted item cluster analysis suggested that three clusters maximized reliability of ABC scores. These broadly represented other-directed behaviors (i.e., "externalizing"), self-directed behaviors (i.e., "internalizing"), and inappropriate speech. Restricted models separated item clusters for stereotypy from other self-directed problem behaviors, and self-injurious behaviors from the other externalizing behaviors. Validity analysis also supported these structures. Overall, all scores were low, and less than 20% of DEE participants had symptoms severe enough to qualify for most randomized trials of behavioral therapies. SIGNIFICANCE These results are broadly consistent with the extant ABC scoring algorithms. They suggest a high internal consistency reliability, which may support the use of the ABC in future clinical trials in patients with DEEs who exhibit the behaviors assessed by the ABC. Alternatively, concerns about overall low scores raise cautions about using the ABC as a measure of behavior in unselected populations with DEE.
Collapse
|
36
|
Smith E, Pedapati E, Liu R, Schmitt L, Dominick K, Shaffer R, Sweeney J, Erickson C. Sex differences in resting EEG power in Fragile X Syndrome. J Psychiatr Res 2021; 138:89-95. [PMID: 33836434 PMCID: PMC8192450 DOI: 10.1016/j.jpsychires.2021.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Electrophysiological alterations may represent a neural substrate of impaired neurocognitive processes and other phenotypic features in Fragile X Syndrome (FXS). However, the role of biological sex in electroencephalography (EEG) patterns that differentiate FXS from typical development has not been determined. This limits use of EEG in both the search for biomarkers of impairment in FXS as well as application of those markers to enhance our understanding of underlying neural mechanisms to speed treatment discovery. We investigated topographical relative EEG power in participants at rest in a sample of males and females with FXS and in age- and sex-matched typically developing controls (TDC) using a cluster-based analysis. While alterations in theta and low beta power were similar across males and females in FXS, relative power varied by sex in the alpha, upper beta, gamma, and epsilon frequency bands. Follow up analyses showed that Individual Alpha Peak Frequency (IAPF), a continuous variable that may capture atypicalities across the theta and alpha ranges in neurodevelopmental disorders, also varied by sex. Finally, performance on an auditory filtering task correlated with theta power in males, but not females with FXS. The impact of biological sex on resting state EEG power differences in FXS is discussed as it relates to potential GABAergic and glutamatergic etiologies of neurocognitive deficits in FXS.
Collapse
Affiliation(s)
- Elizabeth Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA,Elizabeth G. Smith, corresponding author Cincinnati Children’s Hospital, 3333 Burnet Avenue, MLC 7039 Cincinnati, OH 45229 , (513) 517-1383
| | - Ernest Pedapati
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA,Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Rui Liu
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Lauren Schmitt
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA,Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kelli Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA,Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Rebecca Shaffer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA,Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - John Sweeney
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Craig Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA,Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Dionne O, Lortie A, Gagnon F, Corbin F. Rates of protein synthesis are reduced in peripheral blood mononuclear cells (PBMCs) from fragile X individuals. PLoS One 2021; 16:e0251367. [PMID: 33974659 PMCID: PMC8112704 DOI: 10.1371/journal.pone.0251367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fragile X syndrome (FXS) is the leading inherited cause of intellectual disability and is caused by the loss of expression of the Fragile X mental retardation protein (FMRP). In animal model of FXS, the absence of FMRP leads to an aberrant rate of neuronal protein synthesis, which in turn is believed to be at the origin of defects regarding spine morphology and synaptic plasticity. Normalisation of protein synthesis in these models has been associated with a rescue of FXS behavioral and biochemicals phenotype, thus establishing the rate of protein synthesis as one of the most promising monitoring biomarker for FXS. However, rate of protein synthesis alteration in fragile X individuals is not well characterized. Method We applied a robust radiolabeled assay to measure rate of protein synthesis in freshly extracted peripheral blood mononuclear cells (PBMCs) and blood platelets. We ultimately settle on PBMCs to measure and compare rate of protein synthesis in 13 males with fragile X and 14 matched controls individuals. Results Using this method, we measured a 26.9% decrease (p = 0,0193) in the rate of protein synthesis in fragile X individuals PBMCs. Furthermore, the rate of protein synthesis measurements obtained were highly reproducible, highlighting the robustness of the method. Conclusion Our work presents the first evidence of a diminution of the rate of protein synthesis in a human peripheral model of fragile X. Our results also support the finding of previous studies using brain PET imaging in Fragile X individuals. Since our assay only requires a simple venous puncture, it could be used in other cases of intellectual disability in order to determine if an aberrant rate of protein synthesis is a common general mechanism leading to impairment in synaptic plasticity and to intellectual disability.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
- * E-mail: (OD); (FC)
| | - Audrey Lortie
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Florence Gagnon
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
- * E-mail: (OD); (FC)
| |
Collapse
|
38
|
Characterization of Sleep Disturbances in Children and Adolescents with Down Syndrome and Their Relation with Cognitive and Behavioral Features. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18095001. [PMID: 34065045 PMCID: PMC8125939 DOI: 10.3390/ijerph18095001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022]
Abstract
Despite sleep disturbances are common among youths with Down syndrome (DS), the cognitive and behavioral features associated with sleep problems have not yet been studied extensively. The present study investigated the presence of sleep disturbances in a group of children and adolescents with DS and their cognitive and behavioral correlates. Seventy-one children and adolescents with DS underwent a neuropsychological evaluation, whereas parents completed questionnaires for the screening of the child's sleep, emotional and behavioral problems. We found no association between sleep disturbances and sex, nonverbal IQ, nor adaptive abilities. However, we found that age was positively associated with disorders in initiating and maintaining sleep (DIMS) and disorders of excessive somnolence (DOES), while body mass index was related with DOES. We also detected a relationship between visual-motor integrations and DIMS, as well as multiple associations between sleep disturbances and psychopathological and behavioral problems, mainly externalizing symptoms. The present study provided a detailed characterization of sleep problems in relation to several features of youths with DS. The proper identification of sleep disturbances profile in the DS population could support the process of clinical evaluation, in particular for psychopathological aspects.
Collapse
|
39
|
Wilkinson CL, Nelson CA. Increased aperiodic gamma power in young boys with Fragile X Syndrome is associated with better language ability. Mol Autism 2021; 12:17. [PMID: 33632320 PMCID: PMC7908768 DOI: 10.1186/s13229-021-00425-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/16/2021] [Indexed: 02/17/2023] Open
Abstract
Background The lack of robust and reliable clinical biomarkers in Fragile X Syndrome (FXS), the most common inherited form of intellectual disability, has limited the successful translation of bench-to-bedside therapeutics. While numerous drugs have shown promise in reversing synaptic and behavioral phenotypes in mouse models of FXS, none have demonstrated clinical efficacy in humans. Electroencephalographic (EEG) measures have been identified as candidate biomarkers as EEG recordings of both adults with FXS and mouse models of FXS consistently exhibit alterations in resting state and task-related activity. However, the developmental timing of these EEG differences is not known as thus far EEG studies have not focused on young children with FXS. Further, understanding how EEG differences are associated with core symptoms of FXS is crucial to successful use of EEG as a biomarker, and may improve our understanding of the disorder. Methods Resting-state EEG was collected from FXS boys with full mutation of Fmr1 (2.5–7 years old, n = 11) and compared with both age-matched (n = 12) and cognitive-matched (n = 12) typically developing boys. Power spectra (including aperiodic and periodic components) were compared using non-parametric cluster-based permutation testing. Associations between 30 and 50 Hz gamma power and cognitive, language, and behavioral measures were evaluated using Pearson correlation and linear regression with age as a covariate. Results FXS participants showed increased power in the beta/gamma range (~ 25–50 Hz) across multiple brain regions. Both a reduction in the aperiodic (1/f) slope and increase in beta/gamma periodic activity contributed to the significant increase in high-frequency power. Increased gamma power, driven by the aperiodic component, was associated with better language ability in the FXS group. No association was observed between gamma power and parent report measures of behavioral challenges, sensory hypersensitivities, or adaptive behaviors. Limitations The study sample size was small, although comparable to other human studies in rare-genetic disorders. Findings are also limited to males in the age range studied. Conclusions Resting-state EEG measures from this study in young boys with FXS identified similar increases in gamma power previously reported in adults and mouse models. The observed positive association between resting state aperiodic gamma power and language development supports hypotheses that alterations in some EEG measures may reflect ongoing compensatory mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00425-x.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, 1 Autumn Street, 6th Floor, Boston, MA, 02115, USA.
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, 1 Autumn Street, 6th Floor, Boston, MA, 02115, USA
| |
Collapse
|
40
|
Proteau-Lemieux M, Knoth IS, Agbogba K, Côté V, Barlahan Biag HM, Thurman AJ, Martin CO, Bélanger AM, Rosenfelt C, Tassone F, Abbeduto LJ, Jacquemont S, Hagerman R, Bolduc F, Hessl D, Schneider A, Lippé S. EEG Signal Complexity Is Reduced During Resting-State in Fragile X Syndrome. Front Psychiatry 2021; 12:716707. [PMID: 34858220 PMCID: PMC8632368 DOI: 10.3389/fpsyt.2021.716707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fragile X syndrome (FXS) is a genetic disorder caused by a mutation of the fragile X mental retardation 1 gene (FMR1). FXS is associated with neurophysiological abnormalities, including cortical hyperexcitability. Alterations in electroencephalogram (EEG) resting-state power spectral density (PSD) are well-defined in FXS and were found to be linked to neurodevelopmental delays. Whether non-linear dynamics of the brain signal are also altered remains to be studied. Methods: In this study, resting-state EEG power, including alpha peak frequency (APF) and theta/beta ratio (TBR), as well as signal complexity using multi-scale entropy (MSE) were compared between 26 FXS participants (ages 5-28 years), and 7 neurotypical (NT) controls with a similar age distribution. Subsequently a replication study was carried out, comparing our cohort to 19 FXS participants independently recorded at a different site. Results: PSD results confirmed the increased gamma, decreased alpha power and APF in FXS participants compared to NT controls. No alterations in TBR were found. Importantly, results revealed reduced signal complexity in FXS participants, specifically in higher scales, suggesting that altered signal complexity is sensitive to brain alterations in this population. The replication study mostly confirmed these results and suggested critical points of stagnation in the neurodevelopmental curve of FXS. Conclusion: Signal complexity is a powerful feature that can be added to the electrophysiological biomarkers of brain maturation in FXS.
Collapse
Affiliation(s)
- Mélodie Proteau-Lemieux
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Inga Sophia Knoth
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Kristian Agbogba
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Valérie Côté
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Hazel Maridith Barlahan Biag
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States
| | - Angela John Thurman
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States
| | | | - Anne-Marie Bélanger
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| | - Cory Rosenfelt
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - Flora Tassone
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Leonard J Abbeduto
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sébastien Jacquemont
- Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada.,Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Randi Hagerman
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States
| | - François Bolduc
- Department of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| | - David Hessl
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Andrea Schneider
- University of California Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, United States.,California North State University, College of Psychology, Rancho Cordova, CA, United States
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Research Center of the Sainte-Justine University Hospital, Montreal, QC, Canada
| |
Collapse
|
41
|
Champigny C, Morin-Parent F, Bellehumeur-Lefebvre L, Çaku A, Lepage JF, Corbin F. Combining Lovastatin and Minocycline for the Treatment of Fragile X Syndrome: Results From the LovaMiX Clinical Trial. Front Psychiatry 2021; 12:762967. [PMID: 35058813 PMCID: PMC8763805 DOI: 10.3389/fpsyt.2021.762967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Limited success of previous clinical trials for Fragile X syndrome (FXS) has led researchers to consider combining different drugs to correct the pleiotropic consequences caused by the absence of the Fragile X mental retardation protein (FMRP). Here, we report the results of the LovaMiX clinical trial, the first trial for FXS combining two disease-modifying drugs, lovastatin, and minocycline, which have both shown positive effects when used independently. Aim: The main goals of the study were to assess the safety and efficacy of a treatment combining lovastatin and minocycline for patients with FXS. Design: Pilot Phase II open-label clinical trial. Patients with a molecular diagnostic of FXS were first randomized to receive, in two-step titration either lovastatin or minocycline for 8 weeks, followed by dual treatment with lovastatin 40 mg and minocycline 100 mg for 2 weeks. Clinical assessments were performed at the beginning, after 8 weeks of monotherapy, and at week 20 (12 weeks of combined therapy). Outcome Measures: The primary outcome measure was the Aberrant Behavior Checklist-Community (ABC-C) global score. Secondary outcome measures included subscales of the FXS specific ABC-C (ABC-CFX), the Anxiety, Depression, and Mood Scale (ADAMS), the Social Responsiveness Scale (SRS), the Behavior Rating Inventory of Executive Functions (BRIEF), and the Vineland Adaptive Behavior Scale second edition (VABS-II). Results: Twenty-one individuals out of 22 completed the trial. There were no serious adverse events related to the use of either drugs alone or in combination, suggesting good tolerability and safety profile of the combined therapy. Significant improvement was noted on the primary outcome measure with a 40% decrease on ABC-C global score with the combined therapy. Several outcome measures also showed significance. Conclusion: The combination of lovastatin and minocycline is safe in patients for FXS individuals and appears to improve several elements of the behavior. These results set the stage for a larger, placebo-controlled double-blind clinical trial to confirm the beneficial effects of the combined therapy.
Collapse
Affiliation(s)
- Camille Champigny
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| | | | - Laurence Bellehumeur-Lefebvre
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| | - Artuela Çaku
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| | - Jean-François Lepage
- Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada.,Faculty of Medicine and Health Sciences, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du CHUS (CRCHUS), Sherbrooke, QC, Canada
| |
Collapse
|
42
|
Berry-Kravis E, Filipink RA, Frye RE, Golla S, Morris SM, Andrews H, Choo TH, Kaufmann WE. Seizures in Fragile X Syndrome: Associations and Longitudinal Analysis of a Large Clinic-Based Cohort. Front Pediatr 2021; 9:736255. [PMID: 35036394 PMCID: PMC8756611 DOI: 10.3389/fped.2021.736255] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability, learning disability, and autism spectrum disorder, is associated with an increased prevalence of certain medical conditions including seizures. The goal of this study was to better understand seizures in individuals with FXS using the Fragile X Online Registry with Accessible Research Database, a multisite observational study initiated in 2012 involving FXS clinics in the Fragile X Clinic and Research Consortium. Seizure data were available for 1,607 participants, mostly male (77%) and white (74.5%). The overall prevalence of at least one seizure was 12%, with this rate being significantly higher in males than females (13.7 vs. 6.2%, p < 0.001). As compared to individuals with FXS without seizures, those with seizures were more likely to have autism spectrum disorder, current sleep apnea, later acquisition of expressive language, more severe intellectual disability, hyperactivity, irritability, and stereotyped movements. The mean age of seizure onset was 6.4 (SD 6.1) years of age with the great majority (>80%) having onset of seizures which was before 10. For those with epilepsy, about half (52%) had seizures for more than 3 years. This group was found to have greater cognitive and language impairment, but not behavioral disruptions, compared with those with seizures for <3 years. Antiepileptic drugs were more often used in males (60.6%) than females (34.8%), and females more often required more than one medication. The most commonly used anticonvulsants were oxcarbazepine, valproic acid, lamotrigine, and levetiracetam. The current study is the largest and first longitudinal study ever conducted to describe seizures in FXS. Overall, this study confirms previous reports of seizures in FXS and extends previous findings by further defining the cognitive and behavioral phenotype of those with epilepsy in FXS. Future studies should further investigate the natural history of seizures in FXS and the characteristics of seizures in FXS in adulthood.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Robyn A Filipink
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sailaja Golla
- Division of Neurodevelopmental Medicine, Department of Neurology, Thompson Autism Center, Children's Hospital of California, University of Irvine, Orange, CA, United States
| | - Stephanie M Morris
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States
| | - Howard Andrews
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, United States
| | - Tse-Hwei Choo
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | | | | |
Collapse
|
43
|
Improving the Diagnosis of Autism Spectrum Disorder in Fragile X Syndrome by Adapting the Social Communication Questionnaire and the Social Responsiveness Scale-2. J Autism Dev Disord 2020; 50:3276-3295. [PMID: 31342442 DOI: 10.1007/s10803-019-04148-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We carried out a psychometric assessment of the Social Communication Questionnaire (SCQ) and the Social Responsiveness Scale (SRS-2) in fragile X syndrome (FXS), relative to clinician DSM5-based diagnosis of autism spectrum disorder (ASD) in FXS. This was followed by instrument revisions that included: removal of non-discriminating and/or low face validity items for FXS; use of receiver operating characteristic (ROC) curves to determine optimal cut points for the original and revised measures; an exploratory factor analysis to outline subscales better representing ASD in FXS; and creation of a "triple criteria" diagnosis to better delineate ASD subgroups in FXS. These methods improved the sensitivity and/or specificity of the SCQ and SRS-2, but diagnostic accuracy of ASD remains problematic in FXS.
Collapse
|
44
|
Hall SS, Monlux KD, Rodriguez AB, Jo B, Pollard JS. Telehealth-enabled behavioral treatment for problem behaviors in boys with fragile X syndrome: a randomized controlled trial. J Neurodev Disord 2020; 12:31. [PMID: 33218305 PMCID: PMC7679978 DOI: 10.1186/s11689-020-09331-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Background Children with fragile X syndrome (FXS) are at increased risk for exhibiting problem behaviors such as aggression and self-injury. However, many children with FXS have limited access to behavioral treatments that have known efficacy due to the low availability of treatment providers and the wide geographical dispersion of families with FXS across the country. Telehealth may offer a cost-effective and practical solution to overcome these significant barriers. We examined the effect of administering an established behavior analytic intervention called functional communication training (FCT) via telehealth on levels of problem behaviors exhibited by boys with FXS. We also examined treatment acceptability, as well as the effect of the treatment on levels of parenting stress. Methods Boys with FXS, aged 3 to 10 years, who displayed problem behaviors daily, were randomized to receive FCT via telehealth (n = 30) or treatment as usual (n = 27) over 12 weeks. Outcome measures included in-session observations of problem behavior, the Aberrant Behavior Checklist—Community (ABC-C), the Treatment Acceptability Rating Form—Revised (TARF-R), and the Parenting Stress Index, 4th edition (PSI-4). Results Intention-to-treat analyses indicated that scores on the irritability subscale of the ABC-C, our primary outcome measure, decreased significantly for boys who received FCT via telehealth compared to boys who received treatment as usual (p < .001, Cohen’s d = 0.65). In-session observations conducted for those who received treatment showed that levels of problem behavior decreased by 91% from baseline. Levels of parenting stress related to child behavioral problems were also lower following FCT treatment, and caregivers reported that the intervention was acceptable. Conclusions These findings support telehealth-enabled FCT as a framework for expanding access to behavioral treatments for problem behaviors in children with FXS. Expanded delivery of behavior analytic treatment via telehealth also has the potential to lower healthcare costs, improve child and family quality of life, and lead to advances in the treatment of problem behavior in the broader population of individuals with neurodevelopmental disorders. Trial registration ClinicalTrials.gov, NCT03510156. Registered 27 April 2018
Collapse
Affiliation(s)
- Scott S Hall
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Katerina D Monlux
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Arlette Bujanda Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Behavior Change Institute, Oakland, CA, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy S Pollard
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Behavior Change Institute, Oakland, CA, USA
| |
Collapse
|
45
|
DiStefano C, Sadhwani A, Wheeler AC. Comprehensive Assessment of Individuals With Significant Levels of Intellectual Disability: Challenges, Strategies, and Future Directions. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2020; 125:434-448. [PMID: 33211812 DOI: 10.1352/1944-7558-125.6.434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The variety and extent of impairments in individuals with severe-profound levels of intellectual disability (ID) impact their ability to complete valid behavioral assessments. Although standardized assessment is crucial for objectively evaluating patients, many individuals with severe-profound levels of ID perform at the floor of most assessments designed for their chronological age. Additionally, the presence of language and motor impairments may influence the individual's ability to perform a task, even when that task is meant to measure an unrelated construct leading to an underestimation of their true ability. This article provides an overview of the assessment protocols used by multiple groups working with individuals with severe-profound levels of ID, discusses considerations for obtaining high-quality assessment results, and suggests guidelines for standardizing these protocols across the field.
Collapse
Affiliation(s)
| | - Anjali Sadhwani
- Anjali Sadhwani, Boston Children's Hospital, Harvard Medical School
| | | |
Collapse
|
46
|
Ethridge L, Thaliath A, Kraff J, Nijhawan K, Berry-Kravis E. Development of Neural Response to Novel Sounds in Fragile X Syndrome: Potential Biomarkers. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2020; 125:449-464. [PMID: 33211818 PMCID: PMC8631234 DOI: 10.1352/1944-7558-125.6.449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Auditory processing abnormalities in fragile X syndrome (FXS) may contribute to difficulties with language development, pattern identification, and contextual updating. Participants with FXS (N = 41) and controls (N = 27) underwent auditory event-related potentials during presentation of an oddball paradigm. Data was adequate for analysis for 33 participants with FXS and 27 controls (age 4-51 y, 13 females [FXS]; 4-54 y, 11 females [control]). Participants with FXS showed larger N1 and P2 amplitudes, abnormal lack of modulation of P1 and P2 amplitudes and P2 latency in response to oddball stimuli ) relative to controls: Females with FXS were more similar to controls. Participants with FXS showed a marginal speeding of the P2 latency, suggesting potentiation to oddball stimuli rather than habituation. Participants with FXS showed a heightened N1 habituation effect compared to controls. Gamma power was significantly higher for participants with FXS. Groups did not differ on mismatch negativity. Both controls and participants with FXS showed similar developmental trajectories in P1 and N1 amplitude, P2 latency, and gamma power, but not for P2 amplitude. One month retest analyses performed in 14 participants suggest strong test-retest reliability for most measures. Individuals with FXS show previously demonstrated increased response amplitude and high frequency neural activity. Despite an overall normal developmental trajectory for most measures, individuals with FXS show age-independent but gender-dependent decreases in complex processing of novel stimuli. Many markers show strong retest reliability even in children and thus are potential biomarkers for clinical trials in FXS.
Collapse
Affiliation(s)
- Lauren Ethridge
- Lauren Ethridge, University of Oklahoma Health Sciences Center
| | - Andrew Thaliath
- Andrew Thaliath, Jeremy Kraff, Karan Nijhawan, and Elizabeth Berry-Kravis, Rush University Medical Center, Chicago
| | - Jeremy Kraff
- Andrew Thaliath, Jeremy Kraff, Karan Nijhawan, and Elizabeth Berry-Kravis, Rush University Medical Center, Chicago
| | - Karan Nijhawan
- Andrew Thaliath, Jeremy Kraff, Karan Nijhawan, and Elizabeth Berry-Kravis, Rush University Medical Center, Chicago
| | - Elizabeth Berry-Kravis
- Andrew Thaliath, Jeremy Kraff, Karan Nijhawan, and Elizabeth Berry-Kravis, Rush University Medical Center, Chicago
| |
Collapse
|
47
|
Aman MG, Norris M, Kaat AJ, Andrews H, Choo TH, Chen C, Wheeler A, Bann C, Erickson C. Factor Structure of the Aberrant Behavior Checklist in Individuals with Fragile X Syndrome: Clarifications and Future Guidance. J Child Adolesc Psychopharmacol 2020; 30:512-521. [PMID: 32746626 DOI: 10.1089/cap.2019.0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: The Aberrant Behavior Checklist (ABC) is a standardized rating scale used for assessing problematic behavior of individuals with developmental disabilities. It has five subscales: Irritability, Social Withdrawal, Stereotypic Behavior, Hyperactivity, and Inappropriate Speech. A previous study in individuals with fragile X syndrome (FXS) reported six factors, with the Social Withdrawal factor bifurcating into Socially Unresponsive and Social Avoidance factors, suggesting a different factor structure in people with FXS. Methods: We assessed the ABC's factor structure (with both exploratory and confirmatory analyses) in 797 people with FXS and we compared these findings with exploratory factors derived from an independent sample of 357 individuals with FXS. In an ancillary analysis, we compared the overlap of the traditional ABC's Social Withdrawal scores with the Social Avoidance scores from the FXS-derived newer scale to determine whether overlap between these was very high and essentially redundant. Finally, we computed norms using both the traditional and the FXS-specific algorithms. Results: In confirmatory factor analyses, the FXS-specific algorithm produced the most consistent factor structure for the sample of 797 participants, but model fit was only marginally better than that derived by the original ABC scoring algorithm. Comparisons of factor structures from separate exploratory analyses revealed no consistent advantage of the FXS algorithm over the traditional algorithm. While a Social Avoidance subscale did emerge in some analyses, in other analyses, this was accompanied by loss of coherence on other domains of interest, such as the Socially Unresponsive/Social Withdrawal subscale. Conclusion: We question whether the newer FXS scoring algorithm contributes data that are consistently helpful in evaluating behavior of people with FXS. In general, we recommend continued use of the original ABC algorithm for scoring behavior of clients with FXS. However, we acknowledge that there may be circumscribed times when the new algorithm may be appropriate for scoring, namely when anxiety and/or social avoidance constructs are the central and unequivocal domains of interest.
Collapse
Affiliation(s)
- Michael G Aman
- The Nisonger Center UCEDD, Ohio State University, Columbus, Ohio, USA
| | - Megan Norris
- Child Development Center, Nationwide Children's Hospital of Columbus, Columbus, Ohio, USA.,Department of Pediatrics and Psychology, Ohio State University, Columbus, Ohio, USA
| | - Aaron J Kaat
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Howard Andrews
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Tse-Hwei Choo
- Division of Biostatistics and Data Coordination, New York State Psychiatric Institute, New York, New York, USA
| | - Chen Chen
- Division of Biostatistics and Data Coordination, New York State Psychiatric Institute, New York, New York, USA
| | - Anne Wheeler
- RTI International, Research Triangle Park, North Carolina, USA
| | - Carla Bann
- RTI International, Research Triangle Park, North Carolina, USA
| | - Craig Erickson
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Cincinnati, Ohio, USA
| |
Collapse
|
48
|
Budimirovic DB, Schlageter A, Filipovic-Sadic S, Protic DD, Bram E, Mahone EM, Nicholson K, Culp K, Javanmardi K, Kemppainen J, Hadd A, Sharp K, Adayev T, LaFauci G, Dobkin C, Zhou L, Brown WT, Berry-Kravis E, Kaufmann WE, Latham GJ. A Genotype-Phenotype Study of High-Resolution FMR1 Nucleic Acid and Protein Analyses in Fragile X Patients with Neurobehavioral Assessments. Brain Sci 2020; 10:E694. [PMID: 33008014 PMCID: PMC7601415 DOI: 10.3390/brainsci10100694] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene, which encodes a protein with a critical role in synaptic plasticity. The molecular abnormality underlying FMR1 silencing, CGG repeat expansion, is well characterized; however, delineation of the pathway from DNA to RNA to protein using biosamples from well characterized patients with FXS is limited. Since FXS is a common and prototypical genetic disorder associated with intellectual disability (ID) and autism spectrum disorder (ASD), a comprehensive assessment of the FMR1 DNA-RNA-protein pathway and its correlations with the neurobehavioral phenotype is a priority. We applied nine sensitive and quantitative assays evaluating FMR1 DNA, RNA, and FMRP parameters to a reference set of cell lines representing the range of FMR1 expansions. We then used the most informative of these assays on blood and buccal specimens from cohorts of patients with different FMR1 expansions, with emphasis on those with FXS (N = 42 total, N = 31 with FMRP measurements). The group with FMRP data was also evaluated comprehensively in terms of its neurobehavioral profile, which allowed molecular-neurobehavioral correlations. FMR1 CGG repeat expansions, methylation levels, and FMRP levels, in both cell lines and blood samples, were consistent with findings of previous FMR1 genomic and protein studies. They also demonstrated a high level of agreement between blood and buccal specimens. These assays further corroborated previous reports of the relatively high prevalence of methylation mosaicism (slightly over 50% of the samples). Molecular-neurobehavioral correlations confirmed the inverse relationship between overall severity of the FXS phenotype and decrease in FMRP levels (N = 26 males, mean 4.2 ± 3.3 pg FMRP/ng genomic DNA). Other intriguing findings included a significant relationship between the diagnosis of FXS with ASD and two-fold lower levels of FMRP (mean 2.8 ± 1.3 pg FMRP/ng genomic DNA, p = 0.04), in particular observed in younger age- and IQ-adjusted males (mean age 6.9 ± 0.9 years with mean 3.2 ± 1.2 pg FMRP/ng genomic DNA, 57% with severe ASD), compared to FXS without ASD. Those with severe ID had even lower FMRP levels independent of ASD status in the male-only subset. The results underscore the link between FMR1 expansion, gene methylation, and FMRP deficit. The association between FMRP deficiency and overall severity of the neurobehavioral phenotype invites follow up studies in larger patient cohorts. They would be valuable to confirm and potentially extend our initial findings of the relationship between ASD and other neurobehavioral features and the magnitude of FMRP deficit. Molecular profiling of individuals with FXS may have important implications in research and clinical practice.
Collapse
Affiliation(s)
- Dejan B. Budimirovic
- Departments of Psychiatry and Neurogenetics, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Annette Schlageter
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Stela Filipovic-Sadic
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Dragana D. Protic
- Departments of Psychiatry and Neurogenetics, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Eran Bram
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - E. Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
| | - Kimberly Nicholson
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kristen Culp
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kamyab Javanmardi
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Jon Kemppainen
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Andrew Hadd
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kevin Sharp
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
| | - Tatyana Adayev
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Giuseppe LaFauci
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Carl Dobkin
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
| | - William Ted Brown
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
- Departments of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Walter E. Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gary J. Latham
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| |
Collapse
|
49
|
Luu S, Province H, Berry-Kravis E, Hagerman R, Hessl D, Vaidya D, Lozano R, Rosselot H, Erickson C, Kaufmann WE, Budimirovic DB. Response to Placebo in Fragile X Syndrome Clinical Trials: An Initial Analysis. Brain Sci 2020; 10:E629. [PMID: 32932789 PMCID: PMC7563217 DOI: 10.3390/brainsci10090629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and autism spectrum disorder. Individuals with FXS often present with a wide range of cognitive deficits and problem behaviors. Educational, behavioral and pharmacological interventions are used to manage these and other complex issues affecting individuals with FXS. Despite the success of preclinical models and early-phase drug clinical studies in FXS, large-scale randomized-controlled trials have failed to meet primary endpoints. Currently, no targeted or disease-modifying treatments for FXS have received regulatory approval. Here, we examined the placebo response in FXS clinical trials conducted between 2006 and 2018. Specifically, we performed a meta-analysis of placebo-treated groups in eight double-blind, randomized controlled trials. Placebo groups demonstrated significant improvements on caregiver-rated efficacy endpoints, which were greater in adolescents and adults than in children. Among the latter measures, the Visual Analog Scale scores displayed the greatest improvements, whereas the positive effects on the Vineland-II Adaptive Behavior Composite and the Aberrant Behavior Checklist-Community/fragile X version were statistically significant in both children and adolescents/adults. Although the Clinical Global Impression scale Improvement appears to have exhibited a substantial placebo effect in multiple clinical trials in FXS, limited data availability for meta-analysis, prevented us from drawing conclusions. No placebo-related improvements were observed in performance-rated measures. These findings raise substantial concerns about placebo effects in outcome measures commonly used in the randomized-controlled trials in FXS and suggest several potential improvements in the study design and implementation of such trials. Considering the small number of trials available for this study, larger and more detailed follow up meta-analyses are needed. Meanwhile, efforts to improve the measurement properties of endpoints and rater training in drug trials in FXS should be prioritized.
Collapse
Affiliation(s)
- Skylar Luu
- Albany Medical Center, Albany Medical College, 43 New Scotland Ave, Albany, NY 12208, USA;
| | - Haley Province
- Feinberg School of Medicine, Northwestern University, 420 E. Superior St, Chicago, IL 60611, USA;
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, 1725 West Harrison, Suite 718, Chicago, IL 60612, USA;
| | - Randi Hagerman
- MIND Institute and the Department of Pediatrics, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817, USA;
| | - David Hessl
- MIND Institute and the Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, 2825 50th Street, Sacramento, CA 95817, USA;
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences, Pediatrics and Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA;
| | | | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 4002, Cincinnati, OH 45229, USA;
| | - Walter E. Kaufmann
- Boston Children’s Hospital and Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Dejan B. Budimirovic
- Kennedy Krieger Institute/The Johns Hopkins Medical Institutions, Department of Psychiatry & Behavioral Sciences-Child Psychiatry, the Johns Hopkins University School of Medicine, 1741 Ashland Ave, Rm 241, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Berry-Kravis E, Horrigan JP, Tartaglia N, Hagerman R, Kolevzon A, Erickson CA, Hatti S, Snape M, Yaroshinsky A, Stoms G, Glass L, Jones NE. A Double-Blind, Randomized, Placebo-Controlled Clinical Study of Trofinetide in the Treatment of Fragile X Syndrome. Pediatr Neurol 2020; 110:30-41. [PMID: 32660869 DOI: 10.1016/j.pediatrneurol.2020.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/10/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND We analyze the safety and tolerability of trofinetide and provide a preliminary evaluation of its efficacy in adolescent and adult males with fragile X syndrome. METHODS This study was an exploratory, phase 2, multicenter, double-blind, placebo-controlled, parallel group study of the safety and tolerability of orally administered trofinetide in 72 adolescent and adult males with fragile X syndrome. Subjects were randomly assigned in a 1:1:1 ratio to 35 or 70 mg/kg twice daily trofinetide or placebo for 28 days. Safety assessments included adverse events, clinical laboratory tests, vital signs, electrocardiograms, physical examinations, and concomitant medications. Efficacy measurements were categorized into four efficacy domains, which related to clinically relevant phenotypic dimensions of impairment associated with fragile X syndrome. RESULTS Both 35 and 70 mg/kg dose levels of trofinetide were well tolerated and appeared to be generally safe. Trofinetide at the 70 mg/kg dose level demonstrated efficacy compared with placebo based on prespecified criteria. On the basis of a permutation test, the probability of a false-positive outcome for the achieved prespecified success was 0.045. In the group analysis, improvement from treatment baseline was demonstrated on three fragile X syndrome-specific outcome measures. CONCLUSIONS Trofinetide was well tolerated in adolescent and adult males with fragile X syndrome. Despite the relatively short duration of the study, a consistent signal of efficacy at the higher dose was observed in both caregiver and clinician assessments, based on a novel analytical model incorporating evaluation of multiple key symptom areas of fragile X syndrome. This finding suggests a potential for trofinetide treatment to provide clinically meaningful improvement in core fragile X syndrome symptoms.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois; Department of Biochemistry, Rush University Medical Center, Chicago, Illinois.
| | - Joseph P Horrigan
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - Nicole Tartaglia
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Randi Hagerman
- Department of Pediatrics, University of California Davis MIND Institute, Sacramento, California
| | - Alexander Kolevzon
- Division of Child and Adolescent Psychiatry, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Craig A Erickson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | | | | | | | - Larry Glass
- Neuren Pharmaceuticals, Ltd., Melbourne, Victoria, Australia
| | - Nancy E Jones
- Neuren Pharmaceuticals, Ltd., Melbourne, Victoria, Australia
| |
Collapse
|