1
|
Gök Dağıdır H, Bukan N, Bahcelioglu M, Çalıkuşu A, Alim E, Dizakar SÖ, Topa E, Bolay H. tVNS alters inflammatory response in adult VPA-induced mouse model of autism: evidence for sexual dimorphism. FEBS Open Bio 2025; 15:69-80. [PMID: 39401991 PMCID: PMC11705413 DOI: 10.1002/2211-5463.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 01/05/2025] Open
Abstract
Autism is a neurodevelopmental disorder with limited treatment alternatives and which incidence is increasing. Some research suggests that vagus nerve simulation might lead to the reduction of certain symptom. Therefore, we aimed to examine the effect of bilateral transcutaneous auricular vagus nerve stimulation (tVNS) on the inflammatory response in an adult valproic acid (VPA) induced mouse (C57BL6) model of autism for the first time. The autism model was induced by oral VPA administration (600 mg·kg-1) to C57BL/6 pregnant mice on E12.5 days. The study included three groups: the VPA Transcutaneous Auricular Stimulation Group (VPA + tVNS), the VPA Control Group (VPA + sham), and the Healthy Control Group (Control + sham). Each group included 16 mice (8 M/8 F). Our results show that serum IL-1β and IL-6 levels were significantly higher in male VPA-exposed mice than controls. However, IL-1β was significantly lower, and IL-6, TNF- α, and IL-22 were not different in female VPA-exposed mice compared to the control group. Brain NLRP3 levels were significantly higher in both sexes in the VPA autism model (P < 0.05). tVNS application increased brain NLRP3 levels in both sexes and reduced serum IL-1β levels in male mice. We conclude that cytokine dysregulation is associated with the VPA-induced adult autism model, and the inflammatory response is more pronounced in male mice. tVNS application altered the inflammatory response and increased brain NLPR3 levels in both sexes. Further studies are needed to understand the beneficial or detrimental role of the inflammatory response in autism and its sexual dimorphism.
Collapse
Affiliation(s)
- Hale Gök Dağıdır
- Department of Medical Biochemistry, Faculty of MedicineGazi UniversityAnkaraTurkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM)Gazi UniversityAnkaraTurkey
| | - Neslihan Bukan
- Department of Medical Biochemistry, Faculty of MedicineGazi UniversityAnkaraTurkey
| | - Meltem Bahcelioglu
- Faculty of Medicine, Department of Anatomy, and Neuroscience and Neurotechnology Center of Excellence NÖROMGazi UniversityAnkaraTurkey
| | - Ayşen Çalıkuşu
- Department of Neuroscience, Institute of Health SciencesGazi UniversityAnkaraTurkey
| | - Ece Alim
- Faculty of Medicine, Department of Anatomy, and Neuroscience and Neurotechnology Center of Excellence NÖROMGazi UniversityAnkaraTurkey
| | - Saadet Özen Dizakar
- Department of Histology and Embryology, Faculty of Medicineİzmir Bakırcay UniversityTurkey
| | - Elif Topa
- Neuropsychiatry Education, Research and Application Center (NPM)Gazi UniversityAnkaraTurkey
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Neuropsychiatry Education, Research and Application Center (NPM), Neuroscience and Neurotechnology Center of Excellence NÖROMGazi UniversityAnkaraTurkey
| |
Collapse
|
2
|
Maltman N, Sterling A, Santos E, Hagerman R. Language use predicts symptoms of fragile X-associated tremor/ataxia syndrome in men and women with the FMR1 premutation. Sci Rep 2024; 14:20707. [PMID: 39237554 PMCID: PMC11377817 DOI: 10.1038/s41598-024-70810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age-related neurodegenerative disorder caused by a premutation of the FMR1 gene on the X chromosome. Despite the pervasive physical and cognitive effects of FXTAS, no studies have examined language in symptomatic males and females, limiting utility as an outcome measure in clinical trials of FXTAS. The goal of this work is to determine (a) the extent to which male and female FMR1 premutation carriers with FXTAS symptoms differ in their language use and (b) whether language production predicts FXTAS symptoms. Thirty-one individuals with the FMR1 premutation (21M, 10F), ages 58-85 years with some symptoms of FXTAS, were recruited from a larger cross-sectional study. Participants completed a five-minute monologic language sample. Language transcripts were assessed for rate of dysfluencies, lexical-semantics, syntax, and speech rate. Multivariable linear and ordinal regressions were used to predict FXTAS-associated symptoms, cognitive functioning, and executive functioning. Males and females did not differ in their language use. Language production predicted FXTAS symptom severity, cognitive functioning, and executive functioning. Language production difficulties may co-occur with FXTAS-associated symptoms and may be a viable outcome measure in future clinical trials, with future research needed.
Collapse
Affiliation(s)
- Nell Maltman
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA.
- Department of Speech, Language, and Hearing Sciences, University of Arizona, 1131 2nd St , Tucson, AZ, 85721, USA.
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Dr, Madison, WI, 53706, USA
| | - Ellery Santos
- MIND Institute, University of California-Davis, 2825 50th St., Sacramento, CA, 95817, USA
| | - Randi Hagerman
- MIND Institute, University of California-Davis, 2825 50th St., Sacramento, CA, 95817, USA
| |
Collapse
|
3
|
Klusek J, Will E, Christensen T, Caravella K, Hogan A, Sun J, Smith J, Fairchild AJ, Roberts JE. Social Communication Delay in an Unbiased Sample of Preschoolers With the FMR1 Premutation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2316-2332. [PMID: 38889222 PMCID: PMC11253810 DOI: 10.1044/2024_jslhr-23-00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE The Fragile X Messenger Ribonucleoprotein-1 (FMR1) premutation (FXpm) is a genetic variant that is common in the general population and is associated with health symptoms and disease in adulthood. However, poor understanding of the clinical phenotype during childhood has hindered the development of clinical practice guidelines for screening and intervention. Given that social communication difficulties have been widely documented in adults with the FXpm and are linked with reduced psychosocial functioning, the present study aimed to characterize the communication profile of the FXpm during early childhood. METHOD Eighteen children with the FXpm who were identified through cascade testing (89%) or screening at birth (11%) were compared to 21 matched typically developing children, aged 2-4 years. Participants completed standardized assessments of language (Mullen Scales of Early Learning) and adaptive communication (Vineland Adaptive Behavior Scales-II). Social communication was rated from seminaturalistic interaction samples using the Brief Observation of Social Communication Change. RESULTS Children with the FXpm showed delayed social communication development, with the magnitude of group differences highlighting social communication as a feature that distinguishes children with the FXpm from their peers (p = .046, ηp2 = .12). The groups did not differ on the standardized language and adaptive communication measures (ps > .297, ηp2s < .03). CONCLUSIONS Early screening and treatment of social communication delays may be key to optimizing outcomes for children with the FXpm. Further research is needed to replicate findings in a larger sample, delineate the trajectory and consequences of social communication difficulties across the life span in the FXpm, and determine the potential epidemiological significance of FMR1 as a mediator of developmental communication differences within the general population.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Elizabeth Will
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Thomas Christensen
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Kelly Caravella
- Department of Psychiatry, Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill School of Medicine
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Jennifer Sun
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia
| | - Jenna Smith
- Department of Psychology, University of South Carolina, Columbia
| | | | - Jane E. Roberts
- Department of Psychology, University of South Carolina, Columbia
| |
Collapse
|
4
|
Zucker A, Hinton VJ. Autistic Traits Associated with the Fragile X Premutation Allele: The Neurodevelopmental Profile. Dev Neuropsychol 2024; 49:153-166. [PMID: 38753030 PMCID: PMC11330676 DOI: 10.1080/87565641.2024.2351795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Although most individuals who carry the Fragile X premutation allele, defined as 55-200 CGG repeats on the X-linked FMR1 gene (Fragile X Messenger Ribonucleoprotein 1 gene), do not meet diagnostic criteria for autism spectrum disorder, there is a suggestion of increased behaviors associated with subtle autistic traits. More autism associated characteristics have been reported among adults than children. This may highlight a possible worsening developmental trajectory, variable findings due to research quality or differences in number of studies done in adults vs children, rather than true developmental changes. This review is designed to examine the neurodevelopmental profile associated with the premutation allele from a developmental perspective, focused on autistic traits.
Collapse
Affiliation(s)
- Ariel Zucker
- The Graduate Center, City University of New York, USA
- Queens College, City University of New York, USA
| | - Veronica J Hinton
- The Graduate Center, City University of New York, USA
- Queens College, City University of New York, USA
| |
Collapse
|
5
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Friedman L, Lauber M, Behroozmand R, Fogerty D, Kunecki D, Berry-Kravis E, Klusek J. Atypical vocal quality in women with the FMR1 premutation: an indicator of impaired sensorimotor control. Exp Brain Res 2023; 241:1975-1987. [PMID: 37347418 PMCID: PMC10863608 DOI: 10.1007/s00221-023-06653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Women with the FMR1 premutation are susceptible to motor involvement related to atypical cerebellar function, including risk for developing fragile X tremor ataxia syndrome. Vocal quality analyses are sensitive to subtle differences in motor skills but have not yet been applied to the FMR1 premutation. This study examined whether women with the FMR1 premutation demonstrate differences in vocal quality, and whether such differences relate to FMR1 genetic, executive, motor, or health features of the FMR1 premutation. Participants included 35 women with the FMR1 premutation and 45 age-matched women without the FMR1 premutation who served as a comparison group. Three sustained /a/ vowels were analyzed for pitch (mean F0), variability of pitch (standard deviation of F0), and overall vocal quality (jitter, shimmer, and harmonics-to-noise ratio). Executive, motor, and health indices were obtained from direct and self-report measures and genetic samples were analyzed for FMR1 CGG repeat length and activation ratio. Women with the FMR1 premutation had a lower pitch, larger pitch variability, and poorer vocal quality than the comparison group. Working memory was related to harmonics-to-noise ratio and shimmer in women with the FMR1 premutation. Vocal quality abnormalities differentiated women with the FMR1 premutation from the comparison group and were evident even in the absence of other clinically evident motor deficits. This study supports vocal quality analyses as a tool that may prove useful in the detection of early signs of motor involvement in this population.
Collapse
Affiliation(s)
- Laura Friedman
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Meagan Lauber
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Roozbeh Behroozmand
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Daniel Fogerty
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, USA
| | - Dariusz Kunecki
- Department of Pediatrics, Rush University Medical Center, Chicago, USA
| | | | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA.
| |
Collapse
|
7
|
Dembo RS, Hong J, DaWalt LS, Berry-Kravis EM, Mailick MR. Health Effects of Sleep Quality in Premutation Carrier Mothers of Individuals With Fragile X Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2023; 128:254-268. [PMID: 37104861 PMCID: PMC10506164 DOI: 10.1352/1944-7558-128.3.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/15/2022] [Indexed: 05/25/2023]
Abstract
Sleep plays an integral role in supporting well-being, and sleep difficulties are common in mothers of individuals with developmental disabilities, including fragile X syndrome (FXS). This study assessed whether the effects of sleep quality on physical health and depression are exacerbated by genetic risk factors (CGG repeats) in FMR1 premutation carrier mothers of individuals with FXS. Poor sleep quality predicted a greater number of physical health conditions for mothers with CGG repeats in the mid-premutation range (90-110 repeats), but not for those in the lower (< 90 repeats) or higher (> 110 repeats) ends of the range. A significant association between poor sleep quality and maternal depressive symptoms was also observed, but there was no evidence that this effect varied by level of genetic vulnerability. This research extends our understanding of individual differences in the effects of sleep quality among mothers of individuals with FXS.
Collapse
Affiliation(s)
- Robert S Dembo
- Robert S. Dembo, Jinkuk Hong, and Leann Smith DaWalt, University of Wisconsin-Madison
| | - Jinkuk Hong
- Robert S. Dembo, Jinkuk Hong, and Leann Smith DaWalt, University of Wisconsin-Madison
| | - Leann Smith DaWalt
- Robert S. Dembo, Jinkuk Hong, and Leann Smith DaWalt, University of Wisconsin-Madison
| | | | | |
Collapse
|
8
|
Klusek J, Thurman AJ, Abbeduo L. Maternal Pragmatic Language Difficulties in the FMR1 Premutation and the Broad Autism Phenotype: Associations with Individual and Family Outcomes. J Autism Dev Disord 2022; 52:835-851. [PMID: 33813684 PMCID: PMC8488060 DOI: 10.1007/s10803-021-04980-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 02/03/2023]
Abstract
Broader phenotypes associated with genetic liability, including mild difficulties with pragmatic language skills, have been documented in mothers of children with autism spectrum disorder (ASD) and mothers of children with fragile X syndrome (FXS). This study investigated the relationship between pragmatic difficulties and indicators of maternal well-being and family functioning. Pragmatic difficulty was associated with loneliness in mothers of children with ASD or FXS, and with depression, decreased life satisfaction, and poorer family relationship quality in mothers of children with FXS only. Results inform subtle maternal pragmatic language difficulties as a risk factor that that may contribute to reduced health and well-being, informing tailored support services to better meet the unique needs of families of children with ASD or FXS.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, 1705 College Street, University of South Carolina, Columbia SC 29208, USA
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA 95817, USA
| | - Leonard Abbeduo
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Klusek J, Fairchild A, Moser C, Mailick MR, Thurman AJ, Abbeduto L. Family history of FXTAS is associated with age-related cognitive-linguistic decline among mothers with the FMR1 premutation. J Neurodev Disord 2022; 14:7. [PMID: 35026985 PMCID: PMC8903682 DOI: 10.1186/s11689-022-09415-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/02/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Women who carry a premutation allele of the FMR1 gene are at increased vulnerability to an array of age-related symptoms and disorders, including age-related decline in select cognitive skills. However, the risk factors for age-related decline are poorly understood, including the potential role of family history and genetic factors. In other forms of pathological aging, early decline in syntactic complexity is observed and predicts the later onset of neurodegenerative disease. To shed light on the earliest signs of degeneration, the present study characterized longitudinal changes in the syntactic complexity of women with the FMR1 premutation across midlife, and associations with family history of fragile X-associated tremor/ataxia syndrome (FXTAS) and CGG repeat length. METHODS Forty-five women with the FMR1 premutation aged 35-64 years at study entry participated in 1-5 longitudinal assessments spaced approximately a year apart (130 observations total). All participants were mothers of children with confirmed fragile X syndrome. Language samples were analyzed for syntactic complexity and participants provided information on family history of FXTAS. CGG repeat length was determined via molecular genetic testing. RESULTS Hierarchical linear models indicated that women who reported a family history of FXTAS exhibited faster age-related decline in syntactic complexity than those without a family history, with that difference emerging as the women reached their mid-50 s. CGG repeat length was not a significant predictor of age-related change. CONCLUSIONS Results suggest that women with the FMR1 premutation who have a family history of FXTAS may be at increased risk for neurodegenerative disease, as indicated by age-related loss of syntactic complexity. Thus, family history of FXTAS may represent a personalized risk factor for age-related disease. Follow-up study is needed to determine whether syntactic decline is an early indicator of FXTAS specifically, as opposed to being a more general age-related cognitive decline associated with the FMR1 premutation.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, SC 29208, Columbia, USA
| | - Amanda Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street Columbia, Columbia, SC 29208 USA
| | - Carly Moser
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, SC 29208, Columbia, USA
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705 USA
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA 95817 USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
10
|
Moser C, Mattie L, Abbeduto L, Klusek J. The FMR1 Premutation Phenotype and Mother-Youth Synchrony in Fragile X Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2021; 126:443-459. [PMID: 34700350 PMCID: PMC8555425 DOI: 10.1352/1944-7558-126.6.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/12/2021] [Indexed: 06/13/2023]
Abstract
A subset of mothers who carry the FMR1 premutation may express a unique phenotype. The relationship between the FMR1 phenotype and mother-child interaction in families with fragile X-associated disorders has not been well characterized, despite the importance of high-quality mother-child interaction for child development. This study examined the association between the FMR1 phenotype and the quality of interactions between mothers and their adolescent/young adult sons with fragile X syndrome. Mother-youth synchrony was coded from a dyadic interaction. Maternal anxiety and depression symptoms, executive function deficits, and pragmatic language difficulties were evaluated. Results indicated that pragmatic language was associated with mother-youth synchrony. These findings highlight the importance of family-centered intervention practices for families with fragile X-associated disorders.
Collapse
Affiliation(s)
- Carly Moser
- University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Laura Mattie
- University of Illinois, Champaign, Illinois, 61820, USA
| | | | - Jessica Klusek
- University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
11
|
Maltman N, Guilfoyle J, Nayar K, Martin GE, Winston M, Lau JCY, Bush L, Patel S, Lee M, Sideris J, Hall DA, Zhou L, Sharp K, Berry-Kravis E, Losh M. The Phenotypic Profile Associated With the FMR1 Premutation in Women: An Investigation of Clinical-Behavioral, Social-Cognitive, and Executive Abilities. Front Psychiatry 2021; 12:718485. [PMID: 34421690 PMCID: PMC8377357 DOI: 10.3389/fpsyt.2021.718485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
The FMR1 gene in its premutation (PM) state has been linked to a range of clinical and subclinical phenotypes among FMR1 PM carriers, including some subclinical traits associated with autism spectrum disorder (ASD). This study attempted to further characterize the phenotypic profile associated with the FMR1 PM by studying a battery of assessments examining clinical-behavioral traits, social-cognitive, and executive abilities in women carrying the FMR1 PM, and associations with FMR1-related variability. Participants included 152 female FMR1 PM carriers and 75 female controls who were similar in age and IQ, and screened for neuromotor impairments or signs of fragile X-associated tremor/ataxia syndrome. The phenotypic battery included assessments of ASD-related personality and language (i.e., pragmatic) traits, symptoms of anxiety and depression, four different social-cognitive tasks that tapped the ability to read internal states and emotions based on different cues (e.g., facial expressions, biological motion, and complex social scenes), and a measure of executive function. Results revealed a complex phenotypic profile among the PM carrier group, where subtle differences were observed in pragmatic language, executive function, and social-cognitive tasks that involved evaluating basic emotions and trustworthiness. The PM carrier group also showed elevated rates of ASD-related personality traits. In contrast, PM carriers performed similarly to controls on social-cognitive tasks that involved reliance on faces and biological motion. The PM group did not differ from controls on self-reported depression or anxiety symptoms. Using latent profile analysis, we observed three distinct subgroups of PM carriers who varied considerably in their performance across tasks. Among PM carriers, CGG repeat length was a significant predictor of pragmatic language violations. Results suggest a nuanced phenotypic profile characterized by subtle differences in select clinical-behavioral, social-cognitive, and executive abilities associated with the FMR1 PM in women.
Collapse
Affiliation(s)
- Nell Maltman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Janna Guilfoyle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Gary E. Martin
- Department of Communication Sciences and Disorders, St. John's University, Staten Island, NY, United States
| | - Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Joseph C. Y. Lau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Lauren Bush
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Shivani Patel
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Michelle Lee
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - John Sideris
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Lili Zhou
- Rush University Medical Center, Chicago, IL, United States
| | - Kevin Sharp
- Rush University Medical Center, Chicago, IL, United States
| | | | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
12
|
Bangert K, Moser C, Friedman L, Klusek J. Family as a Context for Child Development: Mothers with the FMR1 Premutation and Their Children with Fragile X Syndrome. Semin Speech Lang 2021; 42:277-286. [PMID: 34311480 PMCID: PMC11298790 DOI: 10.1055/s-0041-1730988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by changes of the FMR1 gene that is passed along among families. A range of developmental processes may be impacted with wide variation in abilities across individuals with FXS. Mothers of children with FXS are often carriers of a "premutation" expansion on the FMR1 gene, which is associated with its own clinical phenotype. These maternal features may increase individual and family vulnerabilities, including increased risk for depression and anxiety disorders and difficulties in social and cognitive ability. These characteristics may worsen with age, and potentially interact with a child's challenging behaviors and with family dynamics. Thus, families of children with FXS may experience unique challenges related to genetic risk, manifested across both children and parents, that should be considered in therapeutic planning to optimize outcomes for children and their families. In this article, we review core features of the FMR1 premutation as expressed in mothers and aspects of the family environment that interface with developmental outcomes of children with FXS. Recommendations for family-centered support services are discussed.
Collapse
Affiliation(s)
- Katherine Bangert
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - Carly Moser
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| | - Laura Friedman
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
13
|
Winston M, Nayar K, Landau E, Maltman N, Sideris J, Zhou L, Sharp K, Berry-Kravis E, Losh M. A Unique Visual Attention Profile Associated With the FMR1 Premutation. Front Genet 2021; 12:591211. [PMID: 33633778 PMCID: PMC7901883 DOI: 10.3389/fgene.2021.591211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Atypical visual attention patterns have been observed among carriers of the fragile X mental retardation gene (FMR1) premutation (PM), with some similarities to visual attention patterns observed in autism spectrum disorder (ASD) and among clinically unaffected relatives of individuals with ASD. Patterns of visual attention could constitute biomarkers that can help to inform the neurocognitive profile of the PM, and that potentially span diagnostic boundaries. This study examined patterns of eye movement across an array of fixation measurements from three distinct eye-tracking tasks in order to investigate potentially overlapping profiles of visual attention among PM carriers, ASD parents, and parent controls. Logistic regression analyses were conducted to examine whether variables constituting a PM-specific looking profile were able to effectively predict group membership. Participants included 65PM female carriers, 188 ASD parents, and 84 parent controls. Analyses of fixations across the eye-tracking tasks, and their corresponding areas of interest, revealed a distinct visual attention pattern in carriers of the FMR1 PM, characterized by increased fixations on the mouth when viewing faces, more intense focus on bodies in socially complex scenes, and decreased fixations on salient characters and faces while narrating a wordless picture book. This set of variables was able to successfully differentiate individuals with the PM from controls (Sensitivity = 0.76, Specificity = 0.85, Accuracy = 0.77) as well as from ASD parents (Sensitivity = 0.70, Specificity = 0.80, Accuracy = 0.72), but did not show a strong distinction between ASD parents and controls (Accuracy = 0.62), indicating that this set of variables comprises a profile that is unique to PM carriers. Regarding predictive power, fixations toward the mouth when viewing faces was able to differentiate PM carriers from both ASD parents and controls, whereas fixations toward other social stimuli did not differentiate PM carriers from ASD parents, highlighting some overlap in visual attention patterns that could point toward shared neurobiological mechanisms. Results demonstrate a profile of visual attention that appears strongly associated with the FMR1 PM in women, and may constitute a meaningful biomarker.
Collapse
Affiliation(s)
- Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Emily Landau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Nell Maltman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - John Sideris
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
| | - Kevin Sharp
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
| | | | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
14
|
Moser C, Schmitt L, Schmidt J, Fairchild A, Klusek J. Response Inhibition Deficits in Women with the FMR1 Premutation are Associated with Age and Fall Risk. Brain Cogn 2020; 148:105675. [PMID: 33387817 DOI: 10.1016/j.bandc.2020.105675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
One in 113-178 females worldwide carry a premutation allele on the FMR1 gene. The FMR1 premutation is linked to neurocognitive and neuromotor impairments, although the phenotype is not fully understood, particularly with respect to age effects. This study sought to define oculomotor response inhibition skills in women with the FMR1 premutation and their association with age and fall risk. We employed an antisaccade eye-tracking paradigm to index oculomotor inhibition skills in 35 women with the FMR1 premutation and 28 control women. The FMR1 premutation group exhibited longer antisaccade latency and reduced accuracy relative to controls, indicating deficient response inhibition skills. Longer response latency was associated with older age in the FMR1 premutation and was also predictive of fall risk. Findings highlight the utility of the antisaccade paradigm for detecting early signs of age-related executive decline in the FMR1 premutation, which is related to fall risk. Findings support the need for clinical prevention efforts to decrease and delay the trajectory of age-related executive decline in women with the FMR1 premutation during midlife.
Collapse
Affiliation(s)
- Carly Moser
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Lyndsay Schmitt
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Joseph Schmidt
- Department of Psychology, University of Central Florida, 4111 Pictor Lane, Orlando, FL 32816, Orlando, Florida 32816, USA
| | - Amanda Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, South Carolina, 29208, USA
| | - Jessica Klusek
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
15
|
Winston M, Nayar K, Hogan AL, Barstein J, La Valle C, Sharp K, Berry-Kravis E, Losh M. Physiological regulation and social-emotional processing in female carriers of the FMR1 premutation. Physiol Behav 2020; 214:112746. [PMID: 31765665 PMCID: PMC6992413 DOI: 10.1016/j.physbeh.2019.112746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 01/28/2023]
Abstract
The FMR1 gene is associated with a wide range of clinical and cognitive phenotypes, ranging from intellectual disability and autism symptoms in fragile X syndrome (caused by the FMR1 full mutation), to a more varied, and still poorly understood range of clinical and cognitive phenotypes among carriers of the gene in its premutation state. Because the FMR1 premutation is relatively common among women (as high as 1 in 150), investigations of its phenotypic impact could have broad implications for understanding gene-behavior relationships underlying complex human traits, with potential clinical implications. This study investigated physiological regulation measured by pupillary responses, along with fixation patterns while viewing facial expressions among women who carry the FMR1 premutation (PM group; n = 47), to examine whether the FMR1 gene may relate to physiological regulation, social-emotional functioning, and social language skills (where subclinical differences have been previously reported among PM carriers that resemble those documented in autism-related conditions). Relative to controls (n = 25), the PM group demonstrated atypical pupillary responses and fixation patterns, controlling for IQ. In the PM group, pupillary response and fixation patterns were related to social cognition, social language abilities, and FMR1-related variation. Results indicate a pattern of atypical attention allocation among women who carry the FMR1 PM that could reflect different emotion-processing strategies mediated by autonomic dysregulation and the FMR1 gene. These findings lend insight into the FMR1 gene's potential contributions to complex human traits such as social emotional processing and social language.
Collapse
Affiliation(s)
- Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States
| | - Abigail L Hogan
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Barnwell College, Suite 220, Columbia, SC 29208, United States
| | - Jamie Barstein
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States
| | - Chelsea La Valle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States
| | - Kevin Sharp
- Rush University Medical Center, Jelke Building, Room 1565, 1750W. Harrison St., Chicago IL 60612, United States
| | - Elizabeth Berry-Kravis
- Rush University Medical Center, Jelke Building, Room 1565, 1750W. Harrison St., Chicago IL 60612, United States
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, United States.
| |
Collapse
|
16
|
Klusek J, Hong J, Sterling A, Berry-Kravis E, Mailick MR. Inhibition deficits are modulated by age and CGG repeat length in carriers of the FMR1 premutation allele who are mothers of children with fragile X syndrome. Brain Cogn 2019; 139:105511. [PMID: 31887710 DOI: 10.1016/j.bandc.2019.105511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Individuals who carry a premutation (PM) allele on the FMR1 gene may experience executive limitations associated with their genetic status, including inhibition deficits. However, poor understanding of individualized risk factors has limited clinical management of this group, particularly in mothers who carry the PM allele who have children with fragile X syndrome (FXS). The present study examined CGG repeat length and age as factors that may account for variable expressivity of inhibition deficits. Participants were 134 carriers of the PM allele who were mothers of children with FXS. Inhibition skills were measured using both self-report and direct behavioral assessments. Increased vulnerability for inhibition deficits was observed at mid-range CGG lengths of approximately 80-100 repeats, with some evidence of a second zone of vulnerability occurring at approximately 130-140 CGG repeats. Risk associated with the genotype also became more pronounced with older age. This study identifies personalized risk factors that may be used to tailor the clinical management of executive deficits in carriers of the PM allele. Inhibition deficits may contribute to poor outcomes in carriers of the PM allele and their families, particularly in midlife and early old age, and clinical monitoring may be warranted.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, USA
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 381 Goodnight Hall, 1975 Willow Drive, Madison, WI 53706, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, 1725 West Harrison Street, Suite 718, Chicago, IL 60612, USA
| | - Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
17
|
Klusek J, Porter A, Abbeduto L, Adayev T, Tassone F, Mailick MR, Glicksman A, Tonnsen BL, Roberts JE. Curvilinear Association Between Language Disfluency and FMR1 CGG Repeat Size Across the Normal, Intermediate, and Premutation Range. Front Genet 2018; 9:344. [PMID: 30197656 PMCID: PMC6118037 DOI: 10.3389/fgene.2018.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Historically, investigations of FMR1 have focused almost exclusively on the clinical effects of CGG expansion within the categories of the premutation (55-200 CGG repeats) and fragile X syndrome (>200 CGG repeats). However, emerging evidence suggests that CGG-dependent phenotypes may occur across allele sizes traditionally considered within the "normal" range. This study adopted an individual-differences approach to determine the association between language production ability and CGG repeat length across the full range of normal, intermediate, and premutation alleles. Participants included 61 adult women with CGG repeats within the premutation (n = 37), intermediate (i.e., 41-54 repeats; n = 2), or normal (i.e., 6-40 repeats; n = 22) ranges. All participants were the biological mothers of a child with a developmental disorder, to control for the potential effects of parenting stress. Language samples were collected and the frequency of language disfluencies (i.e., interruptions in the flow of speech) served as an index of language production skills. Verbal inhibition skills, measured with the Hayling Sentence Completion Test, were also measured and examined as a correlate of language disfluency, consistent with theoretical work linking language disfluency with inhibitory deficits (i.e., the Inhibition Deficit Hypothesis). Blood samples were collected to determine FMR1 CGG repeat size. A general linear model tested CGG repeat size of the larger allele (allele-2) as the primary predictor of language disfluency, covarying for education level, IQ, age, and CGG repeats on the other allele. A robust curvilinear association between CGG length and language disfluency was detected, where low-normal (∼ <25 repeats) and mid-premutation alleles (∼90-110 repeats) were linked with higher rates of disfluency. Disfluency was not associated with inhibition deficits, which challenges prior theoretical work and suggests that a primary language deficit could account for elevated language disfluency in FMR1-associated conditions. Findings suggest CGG-dependent variation in language production ability, which was evident across individuals with and without CGG expansions on FMR1.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Anna Porter
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, United States
- MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Tatyana Adayev
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Flora Tassone
- MIND Institute, University of California, Davis, Sacramento, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, United States
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Anne Glicksman
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Bridgette L. Tonnsen
- Department of Psychological Sciences, Purdue University, Lafayette, IN, United States
| | - Jane E. Roberts
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| |
Collapse
|