1
|
Sciorio R, Cantatore C, D'Amato G, Smith GD. Cryopreservation, cryoprotectants, and potential risk of epigenetic alteration. J Assist Reprod Genet 2024:10.1007/s10815-024-03287-3. [PMID: 39436484 DOI: 10.1007/s10815-024-03287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
The cryopreservation of gametes and embryos has increased notably over the past 20 years and is now an essential part of assisted reproductive technologies (ARTs). However, because the cryopreservation process is un-physiological for human cells, gametes, and embryos, cryobiologists have suggested diverse methods to successfully cryopreserve human gametes and embryos in order to maintain their viability and assure successful pregnancy. During the first period of early development, major waves of epigenetic reprogramming-crucial for the fate of the embryo-occur. Recently, concerns relating to the increased incidence of epigenetic anomalies and genomic-imprinting disorders have been reported after ARTs and cryopreservation. Epigenetic reprogramming is particularly susceptible to environmental and un-physiological conditions such as ovarian stimulation, embryo culture, and cryopreservation that might collectively affect epigenetics dysregulation. Additionally, recent literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, osmotic shock, oxidative stress, rapid temperature and pH changes, and cryoprotectants; it is therefore critical to have a more comprehensive understanding of the potential induced perturbations of epigenetic modifications that may be associated with vitrification. The aim of this paper is to present a critical evaluation of the association of gamete and embryo cryopreservation, use of cryoprotectants, and epigenetic dysregulations with potential long-term consequences for offspring health.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Clementina Cantatore
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Giuseppe D'Amato
- Department of Advanced Reproductive Risk Management and High-Risk Pregnancies, ASL Bari, Reproductive and IVF Unit, PTA Conversano, Conversano, BA, Italy
| | - Gary D Smith
- Departments of Obstetrics and Gynecology, Physiology, and Urology and Reproductive Sciences Program, University of Michigan, 4742F Medical Sciences II, 1301 E. Catherine Street, Ann Arbor, MI, 48109-056171500, USA.
| |
Collapse
|
2
|
Klibaner-Schiff E, Simonin EM, Akdis CA, Cheong A, Johnson MM, Karagas MR, Kirsh S, Kline O, Mazumdar M, Oken E, Sampath V, Vogler N, Wang X, Nadeau KC. Environmental exposures influence multigenerational epigenetic transmission. Clin Epigenetics 2024; 16:145. [PMID: 39420431 PMCID: PMC11487774 DOI: 10.1186/s13148-024-01762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Epigenetic modifications control gene expression and are essential for turning genes on and off to regulate and maintain differentiated cell types. Epigenetics are also modified by a multitude of environmental exposures, including diet and pollutants, allowing an individual's environment to influence gene expression and resultant phenotypes and clinical outcomes. These epigenetic modifications due to gene-environment interactions can also be transmitted across generations, raising the possibility that environmental influences that occurred in one generation may be transmitted beyond the second generation, exerting a long-lasting effect. In this review, we cover the known mechanisms of epigenetic modification acquisition, reprogramming and persistence, animal models and human studies used to understand multigenerational epigenetic transmission, and examples of environmentally induced epigenetic change and its transmission across generations. We highlight the importance of environmental health not only on the current population but also on future generations that will experience health outcomes transmitted through epigenetic inheritance.
Collapse
Affiliation(s)
- Eleanor Klibaner-Schiff
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ana Cheong
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mary M Johnson
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Sarah Kirsh
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olivia Kline
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas Vogler
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
3
|
Mortillo M, Kennedy E, Hermetz K, Burt A, Marsit C. Associations between placental hydroxymethylation and birthweight. EPIGENETICS REPORTS 2024; 2:1-7. [PMID: 39091447 PMCID: PMC11290493 DOI: 10.1080/28361512.2024.2376954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
5-hydroxymethylcytosine (5hmC), formed through the ten-eleven translocation (TET) methylcytosine dioxygenase mediated oxidation of 5-methylcytosine (5mC) at cytosine-phosphate-guanine (CpG) dinucleotides, is believed to mainly serve as an intermediate in the DNA demethylation pathway, though recent evidence suggests that 5hmC may also play a functionally relevant role. We have conducted an epigenome-wide association study (EWAS) to assess the association between placenta 5hmC, obtained through parallel bisulfite and oxidative bisulfite modification of DNA and array-based assessment, and newborn birthweight in the Rhode Island Child Health Study (RICHS). We also assessed whether the removal of 5hmC signal impacts the observed results from traditional epigenome-wide studies that rely on BS modification-based (combined 5mC and 5hmC) assessment alone. We identified 5hmC at one CpG in the CUBN gene to be significantly associated with birthweight (FDR < 0.05) and demonstrate that expression of that gene was also associated with birthweight. Comparison of 5hmC+5mC and 5mC EWAS effect estimates reveal a strong correlation (r = 0.77, p < 0.0001). Our study suggests that traditional assessment of 5mC through bisulfite modification alone provides an accurate assessment of CpG-specific DNA methylation for EWAS studies but was unable to provide evidence of widespread associations between placental 5hmC and birthweight.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Elizabeth Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
| |
Collapse
|
4
|
Van Campen H, Bishop JV, Brink Z, Engle TE, Gonzalez-Berrios CL, Georges HM, Kincade JN, Murtazina DA, Hansen TR. Epigenetic Modifications of White Blood Cell DNA Caused by Transient Fetal Infection with Bovine Viral Diarrhea Virus. Viruses 2024; 16:721. [PMID: 38793603 PMCID: PMC11125956 DOI: 10.3390/v16050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) infections cause USD 1.5-2 billion in losses annually. Maternal BVDV after 150 days of gestation causes transient fetal infection (TI) in which the fetal immune response clears the virus. The impact of fetal TI BVDV infections on postnatal growth and white blood cell (WBC) methylome as an index of epigenetic modifications was examined by inoculating pregnant heifers with noncytopathic type 2 BVDV or media (sham-inoculated controls) on Day 175 of gestation to generate TI (n = 11) and control heifer calves (n = 12). Fetal infection in TI calves was confirmed by virus-neutralizing antibody titers at birth and control calves were seronegative. Both control and TI calves were negative for BVDV RNA in WBCs by RT-PCR. The mean weight of the TI calves was less than that of the controls (p < 0.05). DNA methyl seq analysis of WBC DNA demonstrated 2349 differentially methylated cytosines (p ≤ 0.05) including 1277 hypomethylated cytosines, 1072 hypermethylated cytosines, 84 differentially methylated regions based on CpGs in promoters, and 89 DMRs in islands of TI WBC DNA compared to controls. Fetal BVDV infection during late gestation resulted in epigenomic modifications predicted to affect fetal development and immune pathways, suggesting potential consequences for postnatal growth and health of TI cattle.
Collapse
Affiliation(s)
- Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Zella Brink
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Terry E. Engle
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Carolina L. Gonzalez-Berrios
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Hanah M. Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
- Currently at Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jessica N. Kincade
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Dilyara A. Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (H.V.C.); (J.V.B.); (Z.B.); (C.L.G.-B.); (H.M.G.); (J.N.K.); (D.A.M.)
| |
Collapse
|
5
|
Wu CY, Zhou Y, Yin X, Peng R, Xie HN. Prenatal ultrasound findings and clinical outcomes of uniparental disomy: a retrospective study. BMC Pregnancy Childbirth 2024; 24:288. [PMID: 38637738 PMCID: PMC11027273 DOI: 10.1186/s12884-024-06493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Uniparental disomy is the inheritance of a homologous chromosome pair or part of homologous chromosomes from only one parent. However, the clinical significance of uniparental disomy and the difference among the prognosis of involvement of different chromosomes remain unclear. OBJECTIVE To assess the associated prenatal ultrasound presentations and clinical outcomes of uniparental disomy on different chromosomes and to analyze the relationship between prenatal ultrasound markers and clinical outcomes. STUDY DESIGN We retrospectively analyzed data from fetuses with uniparental disomy diagnosed using chromosome microarray analysis with the Affymetrix CytoScan HD array at our institution between January 2013 and September 2022. The relationship between prenatal ultrasound findings, the involved chromosome(s), and clinical outcomes was evaluated. RESULTS During the study period, 36 fetuses with uniparental disomy were diagnosed, and two cases were excluded for non-available postnatal data. Finally, 34 fetuses were included in our study, of which 30 (88.2%) had uniparental disomy occurring on a single chromosome, while four (11.8%) were identified with uniparental disomy on different chromosomes. The most frequently involved chromosomes were chromosomes 16, X and 2, which presented in 8 (23.5%), 5 (14.7%) and 4 (11.8%), respectively. Prenatal ultrasound abnormalities were detected in 21 fetuses, with the most common category being multiple abnormalities (12 (57.1%)). Fetal growth restriction was identified in 14 (41.2%) fetuses, all of which coexisted with other abnormal findings. The rate of adverse perinatal outcomes in patients with uniparental disomy and fetal abnormalities was significantly higher than those without abnormalities (76.2% versus 15.4%, P = 0.002). The incidence of fetal or neonatal death was significantly higher in fetuses with fetal growth restriction than those without (85.7% versus 30.0%, P = 0.004). CONCLUSIONS The prognosis of fetuses with uniparental disomy combined with fetal abnormalities, especially fetal growth restriction, was much poorer than those without.
Collapse
Affiliation(s)
- Cui-Yi Wu
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhou
- Department of Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xia Yin
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruan Peng
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hong-Ning Xie
- Department of Ultrasonic Medicine, Fetal Medical Centre, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Sciorio R, Pluchino N, Fuller BJ. Review of human oocyte cryopreservation in ART programs: Current challenges and opportunities. Cryobiology 2023; 113:104590. [PMID: 37804949 DOI: 10.1016/j.cryobiol.2023.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Oocyte cryopreservation has notably increased in recent times, to become an essential part of clinical infertility treatment. Since the 1980s, many improvements in oocyte cryopreservation (OC) have been adopted, including the great advance with the application of vitrification. The commonly used vitrification protocol applies different cryoprotectants (Ethylene glycol and/or DMSO and/or PROH and sucrose and/or Trehalose) and two different steps: firstly, exposure in equilibration solution for 5-15 min, followed by a vitrification solution for 60-90 s at room temperature. The warming method includes a first step for 1 min at 37 °C and 3 subsequent steps at room temperature to remove the cryoprotectant for a total of 9-12 min. In addition, biosafety is a critical aspect to mention, and it is related to devices used during the vitrification, mainly in terms of whether the biological vitrified material comes in direct contact with liquid nitrogen (open vitrification) or not (closed vitrification), where LN2 may contain potentially contaminating viruses or pathogens. Furthermore, during early development major waves of epigenetic reprogramming take place. Recent literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, including osmotic shock, temperature, rapid changes of pH and toxicity of cryoprotectants. It is, therefore, important to better understand the potential perturbations of epigenetic modifications that may be associated with the globally used vitrification methods. Therefore, we here discuss the benefits and efficiency of human oocyte vitrification; we also review the evidence surrounding oocyte cryopreservation-related epigenetic modifications and potential epigenetic dysregulations, together with long-term consequences for offspring health.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, CHUV-Lausanne University Hospital, 1011, Lausanne, Switzerland.
| | - Nicola Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, CHUV-Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Barry J Fuller
- Division of Surgery & Interventional Science, University College London Medical School, London, UK
| |
Collapse
|
7
|
Ware CB, Jonlin EC, Anderson DJ, Cavanaugh C, Hesson J, Sidhu S, Cook S, Villagomez-Olea G, Horwitz MS, Wang Y, Mathieu J. Derivation of Naïve Human Embryonic Stem Cells Using a CHK1 Inhibitor. Stem Cell Rev Rep 2023; 19:2980-2990. [PMID: 37702917 PMCID: PMC10662141 DOI: 10.1007/s12015-023-10613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Embryonic development is a continuum in vivo. Transcriptional analysis can separate established human embryonic stem cells (hESC) into at least four distinct developmental pluripotent stages, two naïve and two primed, early and late relative to the intact epiblast. In this study we primarily show that exposure of frozen human blastocysts to an inhibitor of checkpoint kinase 1 (CHK1) upon thaw greatly enhances establishment of karyotypically normal late naïve hESC cultures. These late naïve cells are plastic and can be toggled back to early naïve and forward to early primed pluripotent stages. The early primed cells are transcriptionally equivalent to the post inner cell mass intermediate (PICMI) stage seen one day following transfer of human blastocysts into in vitro culture and are stable at an earlier stage than conventional primed hESC.
Collapse
Affiliation(s)
- Carol B Ware
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Erica C Jonlin
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Donovan J Anderson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Christopher Cavanaugh
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer Hesson
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Sonia Sidhu
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Savannah Cook
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Guillermo Villagomez-Olea
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Laboratory of Tissue Engineering and Regenerative Medicine, Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marshall S Horwitz
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Julie Mathieu
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
8
|
Bina M. Defining Candidate Imprinted loci in Bos taurus. Genes (Basel) 2023; 14:1036. [PMID: 37239396 PMCID: PMC10217866 DOI: 10.3390/genes14051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Using a whole-genome assembly of Bos taurus, I applied my bioinformatics strategy to locate candidate imprinting control regions (ICRs) genome-wide. In mammals, genomic imprinting plays essential roles in embryogenesis. In my strategy, peaks in plots mark the locations of known, inferred, and candidate ICRs. Genes in the vicinity of candidate ICRs correspond to potential imprinted genes. By displaying my datasets on the UCSC genome browser, one could view peak positions with respect to genomic landmarks. I give two examples of candidate ICRs in loci that influence spermatogenesis in bulls: CNNM1 and CNR1. I also give examples of candidate ICRs in loci that influence muscle development: SIX1 and BCL6. By examining the ENCODE data reported for mice, I deduced regulatory clues about cattle. I focused on DNase I hypersensitive sites (DHSs). Such sites reveal accessibility of chromatin to regulators of gene expression. For inspection, I chose DHSs in chromatin from mouse embryonic stem cells (ESCs) ES-E14, mesoderm, brain, heart, and skeletal muscle. The ENCODE data revealed that the SIX1 promoter was accessible to the transcription initiation apparatus in mouse ESCs, mesoderm, and skeletal muscles. The data also revealed accessibility of BCL6 locus to regulatory proteins in mouse ESCs and examined tissues.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Carvalho AA, Ferraz LDA, Martelli DRB, Machado RA, Martelli H. Craniofacial findings in syndromes associated with cafe-au-lait spots: a literature review. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:195-202. [PMID: 36629650 PMCID: PMC9937591 DOI: 10.1590/1806-9282.20220866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Adriana Amaral Carvalho
- Universidade Estadual de Montes Claros, Postgraduate Program in Health Sciences – Montes Claros (MG), Brazil.,Universidade Estadual de Montes Claros, Medical School – Montes Claros (MG), Brazil.,Corresponding author:
| | | | | | - Renato Assis Machado
- Universidade Estadual de Campinas, Dental School, Department of Oral Diagnosis – Piracicaba (SP), Brazil.,Universidade de São Paulo, Hospital for Rehabilitation of Craniofacial Anomalies – Bauru (SP), Brazil
| | - Hercílio Martelli
- Universidade Estadual de Montes Claros, Postgraduate Program in Health Sciences – Montes Claros (MG), Brazil.,Universidade Estadual de Montes Claros, Dental School – Montes Claros (MG), Brazil
| |
Collapse
|
10
|
The Role of SNPs in the Pathogenesis of Idiopathic Central Precocious Puberty in Girls. CHILDREN 2023; 10:children10030450. [PMID: 36980008 PMCID: PMC10047240 DOI: 10.3390/children10030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
The initiation of puberty is a crucial timepoint of development, with its disruptions being associated with multiple physical and psychological complications. Idiopathic Central Precocious Puberty (iCPP) has been correlated with Single-Nucleotide Polymorphisms (SNPs) of certain genes that are implicated in various steps of the process of pubertal onset. The aim of this review was to gather current knowledge on SNPs of genes associated with iCPP. We searched articles published on the PubMed, EMBASE and Google Scholar platforms and gathered current literature. KISS1, KISS1R, PLCB1, PRKCA, ITPR1, MKRN3, HPG axis genes, NPVF/NPFFR1, DLK1, KCNK9Q, LIN28B, PROK2R, IGF-1, IGF2, IGF-1R, IGF-2R, IGFBP-3, insulin, IRS-1, LEP/LEPR, PPARγ2, TAC3, TACR3, Estrogen receptors, CYP3A4 and CYP19A1 were studied for implication in the development of precocious puberty. SNPs discovered in genes KISS1, KISS1R, PLCB1, MKRN3, NPVF, LIN28B, PROK2R, IRS-1 TAC3, and CYP3A4 were significantly correlated with CPP, triggering or protecting from CPP. Haplotype (TTTA)13 in CYP19A1 was a significant contributor to CPP. Further investigation of the mechanisms implicated in the pathogenesis of CPP is required to broaden the understanding of these genes’ roles in CPP and possibly initiate targeted therapies.
Collapse
|
11
|
Rahman QFA, Jufri NF, Hamid A. Hyperphagia in Prader-Willi syndrome with obesity: From development to pharmacological treatment. Intractable Rare Dis Res 2023; 12:5-12. [PMID: 36873672 PMCID: PMC9976092 DOI: 10.5582/irdr.2022.01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder due to lack of genes expression inherited from the paternal chromosome 15q11-q13 region usually from paternal deletions, maternal uniparental disomy 15 or imprinting defect. There are two different nutritional stages reported in an individual with PWS; first stage during infancy marked by feeding and growth difficulties and second stage where hyperphagia starts and leads to development of obesity. However, the exact mechanism of hyperphagia development, from having difficulties in feeding during early years to insatiable appetite after they grow is still unknown and is the focused in this review. The keywords used for literature search such as "Prader-Willi syndrome", "hyperphagia", "obesity", and "treatment" were used to create the search strings by using synonyms in order to retrieve the relevant records from PubMed, Scopus and Science Direct. The possible mechanism of hyperphagia can be classed into hormonal abnormalities such as increase in ghrelin and leptin from infancy to adulthood. Low level of hormones was observed in the thyroid, insulin and peptide YY at certain ages. Neuronal abnormalities contributed by Orexin A and brain structure alteration was documented at 4-30 years old. Treatment in the form of drugs such as livoletide, topiramate, and diazoxide could potentially alleviate these abnormalities and make hyperphagia less prominent in PWS. The approaches are important to regulate the hormonal changes and neuronal involvement as potentially controlling hyperphagia and obesity.
Collapse
Affiliation(s)
| | - Nurul Farhana Jufri
- Address correspondence to:Nurul Farhana Jufri, Biomedical Science Program, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia. E-mail:
| | | |
Collapse
|
12
|
Paternal UPD14 with sSMC derived from chromosome 14 in Kagami-Ogata syndrome. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:1. [PMID: 36656404 DOI: 10.1007/s10577-023-09712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023]
|
13
|
Chan D, Oros Klein K, Riera-Escamilla A, Krausz C, O’Flaherty C, Chan P, Robaire B, Trasler JM. Sperm DNA methylome abnormalities occur both pre- and post-treatment in men with Hodgkin disease and testicular cancer. Clin Epigenetics 2023; 15:5. [PMID: 36611168 PMCID: PMC9826600 DOI: 10.1186/s13148-022-01417-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Combination chemotherapy has contributed to increased survival from Hodgkin disease (HD) and testicular cancer (TC). However, questions concerning the quality of spermatozoa after treatment have arisen. While studies have shown evidence of DNA damage and aneuploidy in spermatozoa years following anticancer treatment, the sperm epigenome has received little attention. Our objectives here were to determine the impact of HD and TC, as well as their treatments, on sperm DNA methylation. Semen samples were collected from community controls (CC) and from men undergoing treatment for HD or TC, both before initiation of chemotherapy and at multiple times post-treatment. Sperm DNA methylation was assessed using genome-wide and locus-specific approaches. RESULTS Imprinted gene methylation was not affected in the sperm of HD or TC men, before or after treatment. Prior to treatment, using Illumina HumanMethylation450 BeadChip (450 K) arrays, a subset of 500 probes was able to distinguish sperm samples from TC, HD and CC subjects; differences between groups persisted post-treatment. Comparing altered sperm methylation between HD or TC patients versus CC men, twice as many sites were affected in TC versus HD men; for both groups, the most affected CpGs were hypomethylated. For TC patients, the promoter region of GDF2 contained the largest region of differential methylation. To assess alterations in DNA methylation over time/post-chemotherapy, serial samples from individual patients were compared. With restriction landmark genome scanning and 450 K array analyses, some patients who underwent chemotherapy showed increased alterations in DNA methylation, up to 2 to 3 years post-treatment, when compared to the CC cohort. Similarly, a higher-resolution human sperm-specific assay that includes assessment of environmentally sensitive regions, or "dynamic sites," also demonstrated persistently altered sperm DNA methylation in cancer patients post-treatment and suggested preferential susceptibility of "dynamic" CpG sites. CONCLUSIONS Distinct sperm DNA methylation signatures were present pre-treatment in men with HD and TC and may help explain increases in birth defects reported in recent clinical studies. Epigenetic defects in spermatozoa of some cancer survivors were evident even up to 2 years post-treatment. Abnormalities in the sperm epigenome both pre- and post-chemotherapy may contribute to detrimental effects on future reproductive health.
Collapse
Affiliation(s)
- Donovan Chan
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada
| | - Kathleen Oros Klein
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC Canada
| | - Antoni Riera-Escamilla
- grid.7080.f0000 0001 2296 0625Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain
| | - Csilla Krausz
- grid.7080.f0000 0001 2296 0625Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain ,grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Cristian O’Flaherty
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Surgery, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada
| | - Peter Chan
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Urology, McGill University, Montréal, QC Canada
| | - Bernard Robaire
- grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Obstetrics and Gynecology, McGill University, Montréal, QC Canada
| | - Jacquetta M. Trasler
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC Canada
| |
Collapse
|
14
|
Morita S, Horii T, Hatada I. Regulation of Gene Expression Using dCas9-SunTag Platforms. Methods Mol Biol 2023; 2577:189-195. [PMID: 36173574 DOI: 10.1007/978-1-0716-2724-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Regulating gene expression is important for basic research and therapeutic applications. The epigenome is a record of genetic modifications such as DNA methylation and histone modifications, and epigenetic changes can play a key role in modifying gene expression. With the advent of genome editing technologies, it has become possible to manipulate the epigenome of specific genomic regions to control gene expression. In particular, CRISPR-Cas9 systems have been used widely for epigenome editing due to their high efficiency, versatility, specificity, and ease of use. Here, we describe a protocol for the upregulation of specific genes using the dCas9-SunTag system.
Collapse
Affiliation(s)
- Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
15
|
Han XX, Zhao FY, Gu KR, Wang GP, Zhang J, Tao R, Yuan J, Gu J, Yu JQ. Development of precocious puberty in children: Surmised medicinal plant treatment. Biomed Pharmacother 2022; 156:113907. [DOI: 10.1016/j.biopha.2022.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
|
16
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome. Front Genet 2022; 13:1055343. [PMID: 36457750 PMCID: PMC9705782 DOI: 10.3389/fgene.2022.1055343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Background: As couples struggle with infertility and livestock producers wish to rapidly improve genetic merit in their herd, assisted reproductive technologies (ART) have become increasingly popular in human medicine as well as the livestock industry. Utilizing ART can cause an increased risk of congenital overgrowth syndromes, such as Large Offspring Syndrome (LOS) in ruminants. A dysregulation of transcripts has been observed in bovine fetuses with LOS, which is suggested to be a cause of the phenotype. Our recent study identified variations in tRNA expression in LOS individuals, leading us to hypothesize that variations in tRNA expression can influence the availability of their processed regulatory products, tRNA-derived fragments (tRFs). Due to their resemblance in size to microRNAs, studies suggest that tRFs target mRNA transcripts and regulate gene expression. Thus, we have sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have utilized our previously generated tRNA sequencing data to analyze the contribution of tRNA availability to tRF abundance. Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle tissue respectively. The greatest number of reads originated from 5' tRFs in muscle and 5' halves in liver. In addition, mitochondrial (MT) and nuclear derived tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite variation in tRF abundance within treatment groups, we identified differentially expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs target transcripts enriched in pathways related to growth and development in the muscle and tumor development in the liver. Finally, we found positive correlation coefficients between tRNA availability and tRF expression in muscle (R = 0.47) and liver (0.6). Conclusion: Our results highlight the dysregulation of tRF expression and its regulatory roles in LOS. These tRFs were found to target both imprinted and non-imprinted genes in muscle as well as genes linked to tumor development in the liver. Furthermore, we found that tRNA transcription is a highly modulated event that plays a part in the biogenesis of tRFs. This study is the first to investigate the relationship between tRNA and tRF expression in combination with ART-induced LOS.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
17
|
Cechinel LR, Batabyal RA, Freishtat RJ, Zohn IE. Parental obesity-induced changes in developmental programming. Front Cell Dev Biol 2022; 10:918080. [PMID: 36274855 PMCID: PMC9585252 DOI: 10.3389/fcell.2022.918080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies support the link between parental obesity and the predisposition to develop adult-onset metabolic syndromes that include obesity, high blood pressure, dyslipidemia, insulin resistance, and diabetes in the offspring. As the prevalence of obesity increases in persons of childbearing age, so does metabolic syndrome in their descendants. Understanding how parental obesity alters metabolic programs in the progeny, predisposing them to adult-onset metabolic syndrome, is key to breaking this cycle. This review explores the basis for altered metabolism of offspring exposed to overnutrition by focusing on critical developmental processes influenced by parental obesity. We draw from human and animal model studies, highlighting the adaptations in metabolism that occur during normal pregnancy that become maladaptive with obesity. We describe essential phases of development impacted by parental obesity that contribute to long-term alterations in metabolism in the offspring. These encompass gamete formation, placentation, adipogenesis, pancreas development, and development of brain appetite control circuits. Parental obesity alters the developmental programming of these organs in part by inducing epigenetic changes with long-term consequences on metabolism. While exposure to parental obesity during any of these phases is sufficient to alter long-term metabolism, offspring often experience multiple exposures throughout their development. These insults accumulate to increase further the susceptibility of the offspring to the obesogenic environments of modern society.
Collapse
|
18
|
Han X, He H, Shao L, Cui S, Yu H, Zhang X, Wu Q. Deletion of Meg8-DMR Enhances Migration and Invasion of MLTC-1 Depending on the CTCF Binding Sites. Int J Mol Sci 2022; 23:ijms23158828. [PMID: 35955961 PMCID: PMC9369160 DOI: 10.3390/ijms23158828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains three well-characterized paternally methylated differentially methylated regions (DMRs): IG-DMR, Gtl2-DMR, and Dlk1-DMR. These DMRs control the expression of many genes involved in embryonic development, inherited diseases, and human cancer in this domain. The first maternal methylation DMR discovered in this domain was the Meg8-DMR, the targets and biological function of which are still unknown. Here, using an enhancer-blocking assay, we first dissected the functional parts of the Meg8-DMR and showed that its insulator activity is dependent on the CCCTC-binding factor (CTCF) in MLTC-1. Results from RNA-seq showed that the deletion of the Meg8-DMR and its compartment CTCF binding sites, but not GGCG repeats, lead to the downregulation of numerous genes on chromosome 12, in particular the drastically reduced expression of Dlk1 and Rtl1 in the Dlk1-Dio3 domain, while differentially expressed genes are enriched in the MAPK pathway. In vitro assays revealed that the deletion of the Meg8-DMR and CTCF binding sites enhances cell migration and invasion by decreasing Dlk1 and activating the Notch1-Rhoc-MAPK/ERK pathway. These findings enhance research into gene regulation in the Dlk1-Dio3 domain by indicating that the Meg8-DMR functions as a long-range regulatory element which is dependent on CTCF binding sites and affects multiple genes in this domain.
Collapse
Affiliation(s)
- Xiao Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Lan Shao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Shuang Cui
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Haoran Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: ; Tel./Fax: +86-0451-86416944
| |
Collapse
|
19
|
Proteins and Proteases of Prader-Willi Syndrome: A Comprehensive Review and Perspectives. Biosci Rep 2022; 42:231361. [PMID: 35621394 PMCID: PMC9208313 DOI: 10.1042/bsr20220610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Prader–Willi Syndrome (PWS) is a rare complex genetic disease that is associated with pathological disorders that include endocrine disruption, developmental, neurological, and physical problems as well as intellectual, and behavioral dysfunction. In early stage, PWS is characterized by respiratory distress, hypotonia, and poor sucking ability, causing feeding concern and poor weight gain. Additional features of the disease evolve over time. These include hyperphagia, obesity, developmental, cognitive delay, skin picking, high pain threshold, short stature, growth hormone deficiency, hypogonadism, strabismus, scoliosis, joint laxity, or hip dysplasia. The disease is associated with a shortened life expectancy. There is no cure for PWS, although interventions are available for symptoms management. PWS is caused by genetic defects in chromosome 15q11.2-q13, and categorized into three groups, namely Paternal deletion, Maternal uniparental disomy, and Imprinting defect. PWS is confirmed through genetic testing and DNA-methylation analysis. Studies revealed that at least two key proteins namely MAGEL-2 and NECDIN along with two proteases PCSK1 and PCSK2 are linked to PWS. Herein, we summarize our current understanding and knowledge about the role of these proteins and enzymes in various biological processes associated with PWS. The review also describes how loss and/or impairment of functional activity of these macromolecules can lead to hormonal disbalance by promoting degradation of secretory granules and via inhibition of proteolytic maturation of precursor-proteins. The present review will draw attention of researchers, scientists, and academicians engaged in PWS study and will help to identify potential targets and molecular pathways for PWS intervention and treatment.
Collapse
|
20
|
Imprinted lncRNA Dio3os preprograms intergenerational brown fat development and obesity resistance. Nat Commun 2021; 12:6845. [PMID: 34824246 PMCID: PMC8617289 DOI: 10.1038/s41467-021-27171-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal obesity (MO) predisposes offspring to obesity and metabolic disorders but little is known about the contribution of offspring brown adipose tissue (BAT). We find that MO impairs fetal BAT development, which persistently suppresses BAT thermogenesis and primes female offspring to metabolic dysfunction. In fetal BAT, MO enhances expression of Dio3, which encodes deiodinase 3 (D3) to catabolize triiodothyronine (T3), while a maternally imprinted long noncoding RNA, Dio3 antisense RNA (Dio3os), is inhibited, leading to intracellular T3 deficiency and suppression of BAT development. Gain and loss of function shows Dio3os reduces D3 content and enhances BAT thermogenesis, rendering female offspring resistant to high fat diet-induced obesity. Attributing to Dio3os inactivation, its promoter has higher DNA methylation in obese dam oocytes which persists in fetal and adult BAT, uncovering an oocyte origin of intergenerational obesity. Overall, our data uncover key features of Dio3os activation in BAT to prevent intergenerational obesity and metabolic dysfunctions. Maternal obesity predisposes offspring to obesity and metabolic disorders through incompletely understood mechanisms. Here the authors report that Dio3os is an imprinted long-coding RNA that modulates brown adipose tissue development and obesity resistance in the offspring.
Collapse
|
21
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
22
|
Iyer GR, Utage P, Devi RR, Vattam KK, Hasan Q. Expanding the clinico-molecular spectrum of Angelman syndrome phenotype with the GABRG3 gene: Evidence from methylation and sequencing studies. Ann Hum Genet 2021; 86:71-79. [PMID: 34779508 DOI: 10.1111/ahg.12449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angelman syndrome (AS) (OMIM#105830) is an imprinting disorder caused due to alterations in the maternal chr 15q11-13 region. Majority of cases can be diagnosed by methylation-specific polymerase chain reaction (MS-PCR) of SNRPN gene and by UBE3A sequencing, however, about 10% of cases with AS phenotype remain undiagnosed. Differential diagnoses of AS can be detected by chromosomal microarray (CMA) and clinical exome sequencing (CES). In this study, 30 cases with AS features were evaluated by MS-PCR, CMA, and CES. SNRPN MS-PCR confirmed AS in eight (26%), CMA and CES diagnosed nine (30%) cases. One case was identified with a novel variant c.1125C > T in GABRG3, located at 15q12 region, which is currently not associated with any syndrome. The GABRG3 gene is also speculated to be imprinted, a MS-PCR assay was designed to confirm its differential parental methylation status. This assay identified another case with altered GABRG3 methylation. The two cases with GABRG3 alteration-sequence change and methylation indicate that GABRG3 may be associated with a subtype of AS or a new related syndrome. Performing GABRG3 MS-PCR and sequencing of a larger group of patients with AS phenotype and normal SNPRN and UBE3A status will help in establishing exact genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gayatri R Iyer
- Department of Genetics & Molecular Medicine, Kamineni Hospitals, Hyderabad, Telangana, India.,Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Prashant Utage
- Department of Pediatrics, Kamineni Hospitals, Hyderabad, Telangana, India.,Department of Pediatric Neurology, Utage Child Development Center, Hyderabad, Telangana, India
| | - Radha Rama Devi
- Department of Pediatrics - Rainbow Hospitals, Hyderabad, Telangana, India
| | - Kiran Kumar Vattam
- Department of Genomics & Molecular Diagnostics, Sandor Specialty Diagnostics, Hyderabad, Telangana, India.,Department of Cytogenetics, Sandor Speciality Diagnostics, Hyderabad, Telangana, India
| | - Qurratulain Hasan
- Department of Genetics & Molecular Medicine, Kamineni Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
23
|
Dai R, Wang Z, Ahmed SA. Epigenetic Contribution and Genomic Imprinting Dlk1-Dio3 miRNAs in Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:680. [PMID: 34062726 PMCID: PMC8147206 DOI: 10.3390/genes12050680] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that afflicts multiple organs, especially kidneys and joints. In addition to genetic predisposition, it is now evident that DNA methylation and microRNAs (miRNAs), the two major epigenetic modifications, are critically involved in the pathogenesis of SLE. DNA methylation regulates promoter accessibility and gene expression at the transcriptional level by adding a methyl group to 5' cytosine within a CpG dinucleotide. Extensive evidence now supports the importance of DNA hypomethylation in SLE etiology. miRNAs are small, non-protein coding RNAs that play a critical role in the regulation of genome expression. Various studies have identified the signature lupus-related miRNAs and their functional contribution to lupus incidence and progression. In this review, the mutual interaction between DNA methylation and miRNAs regulation in SLE is discussed. Some lupus-associated miRNAs regulate DNA methylation status by targeting the DNA methylation enzymes or methylation pathway-related proteins. On the other hand, DNA hyper- and hypo-methylation are linked with dysregulated miRNAs expression in lupus. Further, we specifically discuss the genetic imprinting Dlk1-Dio3 miRNAs that are subjected to DNA methylation regulation and are dysregulated in several autoimmune diseases, including SLE.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
24
|
Kummerfeld DM, Raabe CA, Brosius J, Mo D, Skryabin BV, Rozhdestvensky TS. A Comprehensive Review of Genetically Engineered Mouse Models for Prader-Willi Syndrome Research. Int J Mol Sci 2021; 22:3613. [PMID: 33807162 PMCID: PMC8037846 DOI: 10.3390/ijms22073613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.
Collapse
Affiliation(s)
- Delf-Magnus Kummerfeld
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Juergen Brosius
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingding Mo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| |
Collapse
|
25
|
The prolonged disease state of infertility is associated with embryonic epigenetic dysregulation. Fertil Steril 2021; 116:309-318. [PMID: 33745724 DOI: 10.1016/j.fertnstert.2021.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the epigenetic consequence of a prolonged disease state of infertility in euploid blastocysts. DESIGN Methylome analysis as well as targeted imprinted methylation and expression analysis on individual human euploid blastocysts examined in association with duration of patient infertility and time to live birth. SETTING Research study. PATIENT(S) One hundred four surplus cryopreserved euploid blastocysts of transferrable-quality were donated with informed patient consent and grouped based on time to pregnancy (TTP). INTERVENTION(S) None MAIN OUTCOME MEASURE(S): The Methyl Maxi-Seq platform (Zymo Research) was used to determine genome-wide methylation, while targeted methylation and expression analyses were performed by pyrosequencing and quantitative real-time polymerase chain reaction, respectively. Statistical analyses used Student's t test, 1-way ANOVA, Fisher's exact test, and pairwise-fixed reallocation randomization test, where appropriate. RESULT(S) The methylome analysis of individual blastocysts revealed significant alterations at 6,609 CpG sites associated with prolonged infertility (≥60 months) compared with those of fertile controls (0 months). Significant CpG alterations were localized to numerous imprinting control regions and imprinted genes, and several signaling pathways were highly represented among genes that were differentially methylated. Targeted imprinting methylation analysis uncovered significant hypomethylation at KvDMR and MEST imprinting control regions, with significant decreases in the gene expression levels upon extended TTP (≥36 months) compared to minimal TTP (≤24 months). CONCLUSION(S) The prolonged disease state of infertility correlates with an altered methylome in euploid blastocysts, with particular emphasis on genomic imprinting regulation, compared with assisted reproductive technologies alone.
Collapse
|
26
|
Zhu H, Sun H, Yu D, Li T, Hai T, Liu C, Zhang Y, Chen Y, Dai X, Li Z, Li W, Liu R, Feng G, Zhou Q. Transcriptome and DNA Methylation Profiles of Mouse Fetus and Placenta Generated by Round Spermatid Injection. Front Cell Dev Biol 2021; 9:632183. [PMID: 33796527 PMCID: PMC8009284 DOI: 10.3389/fcell.2021.632183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Low birth efficiency and developmental abnormalities in embryos derived using round spermatid injection (ROSI) limit the clinical application of this method. Further, the underlying molecular mechanisms remain elusive and warrant further in-depth study. In this study, the embryonic day (E) 11.5 mouse fetuses and corresponding placentas derived upon using ROSI, intracytoplasmic sperm injection (ICSI), and natural in vivo fertilized (control) embryos were collected. Transcriptome and DNA methylation profiles were analyzed and compared using RNA-sequencing (RNA-seq) and whole-genome bisulfite sequencing, respectively. RNA-seq results revealed similar gene expression profiles in the ROSI, ICSI, and control fetuses and placentas. Compared with the other two groups, seven differentially expressed genes (DEGs) were identified in ROSI fetuses, and ten DEGs were identified in the corresponding placentas. However, no differences in CpG methylation were observed in fetuses and placentas from the three groups. Imprinting control region methylation and imprinted gene expression were the same between the three fetus and placenta groups. Although 49 repetitive DNA sequences (RS) were abnormally activated in ROSI fetuses, RS DNA methylation did not differ between the three groups. Interestingly, abnormal hypermethylation in promoter regions and low expression of Fggy and Rec8 were correlated with a crown-rump length less than 6 mm in one ROSI fetus. Our study demonstrates that the transcriptome and DNA methylation in ROSI-derived E11.5 mouse fetuses and placentas were comparable with those in the other two groups. However, some abnormally expressed genes in the ROSI fetus and placenta warrant further investigation to elucidate their effect on the development of ROSI-derived embryos.
Collapse
Affiliation(s)
- Haibo Zhu
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Tianda Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruizhi Liu
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, China
- Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Martella A, Fisher DI. Regulation of Gene Expression and the Elucidative Role of CRISPR-Based Epigenetic Modifiers and CRISPR-Induced Chromosome Conformational Changes. CRISPR J 2021; 4:43-57. [PMID: 33616442 DOI: 10.1089/crispr.2020.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In complex multicellular systems, gene expression is regulated at multiple stages through interconnected complex molecular pathways and regulatory networks. Transcription is the first step in gene expression and is subject to multiple layers of regulation in which epigenetic mechanisms such as DNA methylation, histone tail modifications, and chromosomal conformation play an essential role. In recent years, CRISPR-Cas9 systems have been employed to unearth this complexity and provide new insights on the contribution of chromatin dysregulation in the development of genetic diseases, as well as new tools to prevent or reverse this dysregulation. In this review, we outline the recent development of a variety of CRISPR-based epigenetic editors for targeted DNA methylation/demethylation, histone modification, and three-dimensional DNA conformational change, highlighting their relative performance and impact on gene regulation. Finally, we provide insights on the future developments aimed to accelerate our understanding of the causal relationship between epigenetic marks, genome organization, and gene regulation.
Collapse
Affiliation(s)
- Andrea Martella
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - David I Fisher
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
28
|
Hypogonadism in Patients with Prader Willi Syndrome: A Narrative Review. Int J Mol Sci 2021; 22:ijms22041993. [PMID: 33671467 PMCID: PMC7922674 DOI: 10.3390/ijms22041993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a multisystemic complex genetic disorder related to the lack of a functional paternal copy of chromosome 15q11-q13. Several clinical manifestations are reported, such as short stature, cognitive and behavioral disability, temperature instability, hypotonia, hypersomnia, hyperphagia, and multiple endocrine abnormalities, including growth hormone deficiency and hypogonadism. The hypogonadism in PWS is due to central and peripheral mechanisms involving the hypothalamus-pituitary-gonadal axis. The early diagnosis and management of hypogonadism in PWS are both important for physicians in order to reach a better quality of life for these patients. The aim of this study is to summarize and investigate causes and possible therapies for hypogonadism in PWS. Additional studies are further needed to clarify the role of different genes related to hypogonadism and to establish a common and evidence-based therapy.
Collapse
|
29
|
Lorgen-Ritchie M, Murray AD, Staff R, Ferguson-Smith AC, Richards M, Horgan GW, Phillips LH, Hoad G, McNeil C, Ribeiro A, Haggarty P. Imprinting methylation predicts hippocampal volumes and hyperintensities and the change with age in later life. Sci Rep 2021; 11:943. [PMID: 33441584 PMCID: PMC7806645 DOI: 10.1038/s41598-020-78062-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
Epigenetic imprinting is important for neurogenesis and brain function. Hippocampal volumes and brain hyperintensities in late life have been associated with early life circumstances. Epigenetic imprinting may underpin these associations. Methylation was measured at 982 sites in 13 imprinted locations in blood samples from a longitudinal cohort by bisulphite amplicon sequencing. Hippocampal volumes and hyperintensities were determined at age 64y and 72y using MRI. Hyperintensities were determined in white matter, grey matter and infratentorial regions. Permutation methods were used to adjust for multiple testing. At 64y, H19/IGF2 and NESPAS methylation predicted hippocampal volumes. PEG3 predicted hyperintensities in hippocampal grey matter, and white matter. GNASXL predicted grey matter hyperintensities. Changes with age were predicted for hippocampal volume (MEST1, KvDMR, L3MBTL, GNASXL), white matter (MEST1, PEG3) and hippocampal grey matter hyperintensities (MCTS2, GNASXL, NESPAS, L3MBTL, MCTS2, SNRPN, MEST1). Including childhood cognitive ability, years in education, or socioeconomic status as additional explanatory variables in regression analyses did not change the overall findings. Imprinting methylation in multiple genes predicts brain structures, and their change over time. These findings are potentially relevant to the development of novel tests of brain structure and function across the life-course, strategies to improve cognitive outcomes, and our understanding of early influences on brain development and function.
Collapse
Affiliation(s)
- Marlene Lorgen-Ritchie
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | | | | | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Graham W Horgan
- Biomathematics and Statistics Scotland, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Louise H Phillips
- School of Psychology, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Gwen Hoad
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Chris McNeil
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Antonio Ribeiro
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Paul Haggarty
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Mammals have two complete sets of chromosomes, one from each parent with equal autosomal gene expression. Less than one percentage of human genes are imprinted or show expression from only one parent without changing gene structure, usually by DNA methylation, but reversible in gametogenesis. Many imprinted genes affect fetal growth and development accounting for several human disorders reviewed in this report. RECENT FINDINGS Disorders include Prader-Willi and Angelman syndromes, the first examples of imprinting errors in humans, chromosome 15q11.2-q13.3 duplication, Silver-Russell syndrome, Beckwith-Weidemann syndrome, GNAS gene-related inactivation disorders (e.g. Albright hereditary osteodystrophy), uniparental chromosome 14 disomy, chromosome 6q24-related transient neonatal diabetes mellitus, parent of origin effects in 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome and 15q11-q13 single gene imprinted disorders. SUMMARY Periconceptional and intrauterine life can be influenced by environmental factors and nutrition impacting DNA methylation. This process not only alters development of the fetus, but pregnancy complications may result from large fetal size. Epigenetic processes control imprinted gene functions and regulation with susceptibility to diseases as described. A better understanding of these processes will impact on care and treatment of affected individuals.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
31
|
Abstract
Mosaicism refers to the occurrence of two or more genomes in an individual derived from a single zygote. Germline mosaicism is a mutation that is limited to the gonads and can be transmitted to offspring. Somatic mosaicism is a postzygotic mutation that occurs in the soma, and it may occur at any developmental stage or in adult tissues. Mosaic variation may be classified in six ways: (a) germline or somatic origin, (b) class of DNA mutation (ranging in scale from single base pairs to multiple chromosomes), (c) developmental context, (d) body location(s), (e) functional consequence (including deleterious, neutral, or advantageous), and (f) additional sources of mosaicism, including mitochondrial heteroplasmy, exogenous DNA sources such as vectors, and epigenetic changes such as imprinting and X-chromosome inactivation. Technological advances, including single-cell and other next-generation sequencing, have facilitated improved sensitivity and specificity to detect mosaicism in a variety of biological contexts.
Collapse
Affiliation(s)
- Jeremy Thorpe
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA;
| | - Ikeoluwa A Osei-Owusu
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | | | - Rossella Tupler
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA; .,Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA; .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
32
|
Henningsen AA, Gissler M, Rasmussen S, Opdahl S, Wennerholm UB, Spangmose AL, Tiitinen A, Bergh C, Romundstad LB, Laivuori H, Forman JL, Pinborg A, Lidegaard Ø. Imprinting disorders in children born after ART: a Nordic study from the CoNARTaS group. Hum Reprod 2020; 35:1178-1184. [DOI: 10.1093/humrep/deaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract
STUDY QUESTION:
Is the risk of imprinting disorders increased in children conceived after
SUMMARY ANSWER:
We found an adjusted odds ratio (AOR) of 2.84 [95% CI: 1.34–6.01] for Beckwith–Wiedemann syndrome in ART children, while the risk of Prader–Willi syndrome, Silver–Russell syndrome or Angelman syndrome was not increased in children conceived after ART.
WHAT IS KNOWN ALREADY:
Earlier studies, most of them small, have suggested an association between ART and imprinting disorders.
STUDY DESIGN, SIZE, DURATION:
This was a binational register-based cohort study. All children conceived by ART in Denmark (n = 45 393, born between 1994 and 2014) and in Finland (n = 29 244, born between 1990 and 2014) were identified. The full background populations born during the same time periods in the two countries were included as controls. Odds ratios of imprinting disorders in ART children compared with naturally conceived (NC) children were calculated. The median follow-up time was 8 years and 9 months for ART children and 11 years and 9 months for NC children.
PARTICIPANTS/MATERIALS, SETTING, METHODS:
From the national health registries in Denmark and Finland, we identified all children diagnosed with Prader–Willi syndrome (n = 143), Silver–Russell syndrome (n = 69), Beckwith–Wiedemann syndrome (n = 105) and Angelman syndrome (n = 72) born between 1994/1990 and 2014, respectively.
MAIN RESULTS AND THE ROLE OF CHANCE:
We identified a total of 388 children diagnosed with imprinting disorders; 16 of these were conceived after ART. The overall AOR for the four imprinting disorders in ART children compared with NC children was 1.35 [95% CI: 0.80–2.29], but since eight ART children were diagnosed with Beckwith–Wiedemann syndrome, the AOR for this specific imprinting disorder was 2.84 [95% CI: 1.34–6.01]. The absolute risk of Beckwith–Wiedemann syndrome in children conceived after ART was still low: 10.7 out of 100 000 newborns. The risks of Prader–Willi syndrome, Silver–Russell syndrome and Angelman syndrome were not increased in children conceived after ART.
LIMITATIONS, REASONS FOR CAUTION:
Imprinting disorders are rare events and our results are based on few ART children with imprinting disorders. The aetiology is complex and only partly clarified, and the clinical diagnoses are challenged by a broad phenotypic spectrum.
WIDER IMPLICATIONS OF THE FINDINGS:
In the existing studies, results on the risk of imprinting disorders in children conceived after ART are ambiguous. This study adds that the risk of imprinting disorders in ART children is very small and perhaps restricted to Beckwith–Wiedemann syndrome.
STUDY FUNDING/COMPETING INTEREST(S):
This work was supported by the Nordic Trial Alliance: a pilot project jointly funded by the Nordic Council of Ministers and NordForsk (grant number: 71450), the Nordic Federation of Obstetrics and Gynecology (grant numbers: NF13041, NF15058, NF16026 and NF17043) and the Interreg Öresund-Kattegat-Skagerak European Regional Development Fund (ReproUnion project). The authors have no conflicts of interest related to this work.
TRIAL REGISTRATION NUMBER:
N/A
Collapse
Affiliation(s)
- A A Henningsen
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - M Gissler
- Information Services Department, THL Finnish Institute for Health and Welfare, 00270 Helsinki, Finland
- Department of Neurobiology, Care Sciences and Society, Division of Family Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - S Rasmussen
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - S Opdahl
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - U B Wennerholm
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - A L Spangmose
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - A Tiitinen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - C Bergh
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - L B Romundstad
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Spiren Fertility Clinic, 7491 Trondheim, Norway
| | - H Laivuori
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and University of Tampere, Faculty of Medicine and Health Technology, 33520 Tampere, Finland
| | - J L Forman
- Department of Biostatistics, University of Copenhagen, 1014 Copenhagen, Denmark
| | - A Pinborg
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Ø Lidegaard
- Gynecological Clinic, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Ramos-Fuentes F, González-Meneses A, Ars E, Hernández-Jaras J. Genetic Diagnosis of Rare Diseases: Past and Present. Adv Ther 2020; 37:29-37. [PMID: 32236876 DOI: 10.1007/s12325-019-01176-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/18/2022]
Abstract
Rare diseases are heterogeneous life-threatening or seriously debilitating conditions that affect < 1 in 2000 individuals, and most have a genetic component. The diagnostic process is usually based on classic clinical practices, such as physical examination, personal and family history (inheritance pattern), laboratory tests and image studies, but diagnosis can be delayed several years after the initiation of symptoms. The advances in molecular genetics that have taken place in recent years have led to an important shift in medical practice and in its approach to the diagnosis and treatment of many rare diseases. The objective of this review is to promote a better understanding of the mechanisms underlying genetic diseases in humans and the tools available for their diagnosis. A practical example of X-linked hypophosphataemic rickets is described.
Collapse
|
34
|
Sandoval A, Elahi H, Ploski JE. Genetically Engineering the Nervous System with CRISPR-Cas. eNeuro 2020; 7:ENEURO.0419-19.2020. [PMID: 32098761 PMCID: PMC7096538 DOI: 10.1523/eneuro.0419-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
The multitude of neuronal subtypes and extensive interconnectivity of the mammalian brain presents a substantial challenge to those seeking to decipher its functions. While the molecular mechanisms of several neuronal functions remain poorly characterized, advances in next-generation sequencing (NGS) and gene-editing technology have begun to close this gap. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (CRISPR-Cas) system has emerged as a powerful genetic tool capable of manipulating the genome of essentially any organism and cell type. This technology has advanced our understanding of complex neurologic diseases by enabling the rapid generation of novel, disease-relevant in vitro and transgenic animal models. In this review, we discuss recent developments in the rapidly accelerating field of CRISPR-mediated genome engineering. We begin with an overview of the canonical function of the CRISPR platform, followed by a functional review of its many adaptations, with an emphasis on its applications for genetic interrogation of the normal and diseased nervous system. Additionally, we discuss limitations of the CRISPR editing system and suggest how future modifications to existing platforms may advance our understanding of the brain.
Collapse
Affiliation(s)
- Alfredo Sandoval
- School of Behavioral and Brain Sciences and the Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080
| | - Hajira Elahi
- School of Behavioral and Brain Sciences and the Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences and the Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
35
|
Freeman DM, Lou D, Li Y, Martos SN, Wang Z. The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure. Epigenetics Chromatin 2020; 13:17. [PMID: 32178731 PMCID: PMC7076959 DOI: 10.1186/s13072-020-00338-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The significance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-traditional ASMs are sensitive to exposures in association with human disease. RESULTS We first explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal development and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identified regions were differentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegeneration. Both regions were significantly hypomethylated in response to rotenone. CONCLUSIONS Our data indicate that non-germline ASMs seem conserved between mouse and human genomes, overlap important regulatory factor binding motifs, and regulate the expression of genes vital to neuronal function. These results support the notion that ASMs are sensitive to environmental factors such as rotenone and may alter the risk of neurological disease later in life by disrupting neuronal development.
Collapse
Affiliation(s)
- Dana M Freeman
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Dan Lou
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yanqiang Li
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne N Martos
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zhibin Wang
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- The State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
36
|
Liberman N, Wang SY, Greer EL. Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Curr Opin Neurobiol 2019; 59:189-206. [PMID: 31634674 DOI: 10.1016/j.conb.2019.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Inherited information not encoded in the DNA sequence can regulate a variety of complex phenotypes. However, how this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear. Here we review recent examples of brain related transgenerational epigenetic inheritance and delineate potential molecular mechanisms that could regulate how non-genetic information could be transmitted.
Collapse
Affiliation(s)
- Noa Liberman
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
37
|
Howard SR, Dunkel L. Delayed Puberty-Phenotypic Diversity, Molecular Genetic Mechanisms, and Recent Discoveries. Endocr Rev 2019; 40:1285-1317. [PMID: 31220230 PMCID: PMC6736054 DOI: 10.1210/er.2018-00248] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
This review presents a comprehensive discussion of the clinical condition of delayed puberty, a common presentation to the pediatric endocrinologist, which may present both diagnostic and prognostic challenges. Our understanding of the genetic control of pubertal timing has advanced thanks to active investigation in this field over the last two decades, but it remains in large part a fascinating and mysterious conundrum. The phenotype of delayed puberty is associated with adult health risks and common etiologies, and there is evidence for polygenic control of pubertal timing in the general population, sex-specificity, and epigenetic modulation. Moreover, much has been learned from comprehension of monogenic and digenic etiologies of pubertal delay and associated disorders and, in recent years, knowledge of oligogenic inheritance in conditions of GnRH deficiency. Recently there have been several novel discoveries in the field of self-limited delayed puberty, encompassing exciting developments linking this condition to both GnRH neuronal biology and metabolism and body mass. These data together highlight the fascinating heterogeneity of disorders underlying this phenotype and point to areas of future research where impactful developments can be made.
Collapse
Affiliation(s)
- Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
Genome imprinting in stem cells: A mini-review. Gene Expr Patterns 2019; 34:119063. [PMID: 31279979 DOI: 10.1016/j.gep.2019.119063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Genomic imprinting is an epigenetic process result in silencing of one of the two alleles (maternal or paternal) based on the parent of origin. Dysregulation of imprinted genes results in detectable developmental and differential abnormalities. Epigenetics erasure is required for resetting the cell identity to a ground state during the production of induced pluripotent stem (iPS) cells from somatic cells. There are some contradictory reports regarding the status of the imprinting marks in the genome of iPS cells. Additionally, many studies highlighted the existence of subtle differences in the imprinting loci between different types of iPS cells and embryonic stem (ES) cells. These observations could ultimately undermine the use of patient-derived iPS cells for regenerative medicine.
Collapse
|
39
|
Litzky JF, Marsit CJ. Epigenetically regulated imprinted gene expression associated with IVF and infertility: possible influence of prenatal stress and depression. J Assist Reprod Genet 2019; 36:1299-1313. [PMID: 31127477 PMCID: PMC6642239 DOI: 10.1007/s10815-019-01483-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Despite the growing body of research implying an impact of in vitro fertilization (IVF) on imprinted genes and epigenetics, few studies have examined the effects of underlying subfertility or prenatal stress on epigenetics, particularly in terms of their role in determining infant birthweights. Both subfertility and prenatal stressors have been found to impact epigenetics and may be confounding the effect of IVF on epigenetics and imprinted genes. Like IVF, both of these exposures-infertility and prenatal stressors-have been associated with lower infant birthweights. The placenta, and specifically epigenetically regulated placental imprinted genes, provides an ideal but understudied mechanism for evaluating the relationship between underlying genetics, environmental exposures, and birthweight. METHODS AND RESULTS In this review, we discuss the impacts of IVF and infertility on birthweight, epigenetic mechanisms and genomic imprinting, and the role of these mechanisms in the IVF population and discuss the role and importance of the placenta in infant development. We then highlight recent work on the relationships between infertility, IVF, and prenatal stressors in terms of placental imprinting. CONCLUSIONS In combination, the studies discussed, as well as two recent projects of our own on placental imprinted gene expression, suggest that lower birthweights in IVF infants are secondary to a combination of exposures including the infertility and prenatal stress that couples undergoing IVF are experiencing. The work highlighted herein emphasizes the need for appropriate control populations that take infertility into account and also for consideration of prenatal psychosocial stressors as confounders and causes of variation in IVF infant outcomes.
Collapse
Affiliation(s)
- Julia F Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, CNR 202, Atlanta, GA, 30322, USA.
| |
Collapse
|
40
|
Perrera V, Martello G. How Does Reprogramming to Pluripotency Affect Genomic Imprinting? Front Cell Dev Biol 2019; 7:76. [PMID: 31143763 PMCID: PMC6521591 DOI: 10.3389/fcell.2019.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
Human induced Pluripotent Stem Cells (hiPSCs) have the capacity to generate a wide range of somatic cells, thus representing an ideal tool for regenerative medicine. Patient-derived hiPSCs are also used for in vitro disease modeling and drug screenings. Several studies focused on the identification of DNA mutations generated, or selected, during the derivation of hiPSCs, some of which are known to drive cancer formation. Avoiding such stable genomic aberrations is paramount for successful use of hiPSCs, but it is equally important to ensure that their epigenetic information is correct, given the critical role of epigenetics in transcriptional regulation and its involvement in a plethora of pathologic conditions. In this review we will focus on genomic imprinting, a prototypical epigenetic mechanism whereby a gene is expressed in a parent-of-origin specific manner, thanks to the differential methylation of specific DNA sequences. Conventional hiPSCs are thought to be in a pluripotent state primed for differentiation. They display a hypermethylated genome with an unexpected loss of DNA methylation at imprinted loci. Several groups recently reported the generation of hiPSCs in a more primitive developmental stage, called naïve pluripotency. Naïve hiPSCs share several features with early human embryos, such as a global genome hypomethylation, which is also accompanied by a widespread loss of DNA methylation at imprinted loci. Given that loss of imprinting has been observed in genetic developmental disorders as well as in a wide range of cancers, it is fundamental to make sure that hiPSCs do not show such epigenetic aberrations. We will discuss what specific imprinted genes, associated with human pathologies, have been found commonly misregulated in hiPSCs and suggest strategies to effectively detect and avoid such undesirable epigenetic abnormalities.
Collapse
Affiliation(s)
- Valentina Perrera
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| | - Graziano Martello
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| |
Collapse
|
41
|
Machtinger R, Zhong J, Mansur A, Adir M, Racowsky C, Hauser R, Brennan K, Karlsson O, Baccarelli AA. Placental lncRNA Expression Is Associated With Prenatal Phthalate Exposure. Toxicol Sci 2019; 163:116-122. [PMID: 29385630 DOI: 10.1093/toxsci/kfy013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phthalates are endocrine-disrupting chemicals that can cross the placenta and affect the fetal epigenome. Among various epigenetic regulators of gene expression, long noncoding RNAs (lncRNAs) are important players that may also be involved in the manifestation of endocrine-disrupting chemical toxicity. We sought to explore the association between maternal urinary phthalate metabolite concentrations and lncRNA expression in human placenta to better understand potential mechanisms through which lncRNAs participate in mediating phthalate toxicity. Ten patients with uncomplicated dichorionic diamniotic twin pregnancies at term were included in this study. Urinary (n = 10) and placenta samples (n = 20) were collected for all participants. Urinary samples were analyzed for 15 phthalate metabolites and 2 phthalate alternative metabolites. Real-time PCR arrays were used to identify and quantify 87 lncRNAs from the placental samples. We tested the Spearman correlation matrix to compare prenatal phthalate measures against placental lncRNA levels. lncRNA levels showed large variations across samples, with no significant differences in lncRNA expression within twin pairs. Mono-(carboxynonyl) phthalate demonstrated consistently strong correlations with most lncRNAs. The strongest correlation was observed between mono-hydroxyisobutyl phthalate and LOC91450 (Rspearman = 0.88, p < .001). This correlation remained significant after Bonferroni adjustment. Other strong correlations were observed between mono-isobutyl phthalate, DPP10 and HOTTIP (Rspearman = -0.91, p < .001). AIRN, DACT3.AS1, DLX6, DPP10, HOTTIP, LOC143666, and LOC91450 were strongly correlated with the greatest number of phthalate metabolites. Further studies are needed to validate these results and understand if the altered expression of lncRNAs in human placenta has clinical significance.
Collapse
Affiliation(s)
- Ronit Machtinger
- Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Jia Zhong
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York City, New York, USA
| | - Abdallah Mansur
- Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Michal Adir
- Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Catherine Racowsky
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kasey Brennan
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York City, New York, USA
| | - Oskar Karlsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York City, New York, USA
| |
Collapse
|
42
|
Neuronal differentiation defects in induced pluripotent stem cells derived from a Prader-Willi syndrome patient. Neurosci Lett 2019; 703:162-167. [PMID: 30902571 DOI: 10.1016/j.neulet.2019.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/24/2022]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by a lack of expression of paternally inherited genes located in the15q11.2-q13 chromosome region. An obstacle in the study of human neurological diseases is the inaccessibility of brain material. Generation of induced pluripotent stem cells (iPSC cells) from patients can partially overcome this problem. We characterized the cellular differentiation potential of iPS cells derived from a PWS patient with a paternal 15q11-q13 deletion. A gene tip transcriptome array revealed very low expression of genes in the 15q11.2-q13 chromosome region, including SNRPN, SNORD64, SNORD108, SNORD109, and SNORD116, in iPS cells of this patient compared to that in control iPS cells. Methylation-specific PCR analysis of the SNRPN gene locus indicated that the PWS region of the paternal chromosome was deleted or methylated in iPS cells from the patient. Both the control and patient-derived iPS cells were positive for Oct3/4, a key marker of pluripotent cells. After 11 days of differentiation into neural stem cells (NSCs), Oct3/4 expression in both types of iPS cells was decreased. The NSC markers Pax6, Sox1, and Nestin were induced in NSCs derived from control iPS cells, whereas induction of these NSC markers was not apparent in NSCs derived from iPS cells from the patient. After 7 days of differentiation into neurons, neuronal cells derived from control iPS cells were positive for βIII-tubulin and MAP2. However, neuronal cells derived from patient iPS cells only included a few immunopositive neurons. The mRNA expression levels of the neuronal marker βIII-tubulin were increased in neuronal cells derived from control iPS cells, while the expression levels of βIII-tubulin in neuronal cells derived from patient iPS cells were similar to those of NSCs. These results indicate that iPS cells derived from a PWS patient exhibited neuronal differentiation defects.
Collapse
|
43
|
Hattori H, Hiura H, Kitamura A, Miyauchi N, Kobayashi N, Takahashi S, Okae H, Kyono K, Kagami M, Ogata T, Arima T. Association of four imprinting disorders and ART. Clin Epigenetics 2019; 11:21. [PMID: 30732658 PMCID: PMC6367766 DOI: 10.1186/s13148-019-0623-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Human-assisted reproductive technologies (ART) are a widely accepted treatment for infertile couples. At the same time, many studies have suggested the correlation between ART and increased incidences of normally rare imprinting disorders such as Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Silver-Russell syndrome (SRS). Major methylation dynamics take place during cell development and the preimplantation stages of embryonic development. ART may prevent the proper erasure, establishment, and maintenance of DNA methylation. However, the causes and ART risk factors for these disorders are not well understood. Results A nationwide epidemiological study in Japan in 2015 in which 2777 pediatrics departments were contacted and a total of 931 patients with imprinting disorders including 117 BWS, 227 AS, 520 PWS, and 67 SRS patients, were recruited. We found 4.46- and 8.91-fold increased frequencies of BWS and SRS associated with ART, respectively. Most of these patients were conceived via in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), and showed aberrant imprinted DNA methylation. We also found that ART-conceived SRS (ART-SRS) patients had incomplete and more widespread DNA methylation variations than spontaneously conceived SRS patients, especially in sperm-specific methylated regions using reduced representation bisulfite sequencing to compare DNA methylomes. In addition, we found that the ART patients with one of three imprinting disorders, PWS, AS, and SRS, displayed additional minor phenotypes and lack of the phenotypes. The frequency of ART-conceived Prader-Willi syndrome (ART-PWS) was 3.44-fold higher than anticipated. When maternal age was 37 years or less, the rate of DNA methylation errors in ART-PWS patients was significantly increased compared with spontaneously conceived PWS patients. Conclusions We reconfirmed the association between ART and imprinting disorders. In addition, we found unique methylation patterns in ART-SRS patients, therefore, concluded that the imprinting disorders related to ART might tend to take place just after fertilization at a time when the epigenome is most vulnerable and might be affected by the techniques of manipulation used for IVF or ICSI and the culture medium of the fertilized egg. Electronic supplementary material The online version of this article (10.1186/s13148-019-0623-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiromitsu Hattori
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.,Kyono ART Clinic, 1-1-1, Honcho, Aoba-ku, Sendai, 980-0014, Japan
| | - Hitoshi Hiura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Akane Kitamura
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Naoko Miyauchi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Souta Takahashi
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Koichi Kyono
- Kyono ART Clinic, 1-1-1, Honcho, Aoba-ku, Sendai, 980-0014, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
44
|
What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry 2019; 9:68. [PMID: 30718449 PMCID: PMC6362194 DOI: 10.1038/s41398-019-0412-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 11/09/2022] Open
Abstract
There has been a limited number of systematic reviews conducted to summarize the overview of the relationship between DNA methylation and depression, and to critically appraise the roles of major study characteristics in the accuracy of study findings. This systematic review aims to critically appraise the impact of study characteristics on the association between DNA methylation and depression, and summarize the overview of this association. Electronic databases and gray literatures until December 2017 were searched for English-language studies with standard diagnostic criteria of depression. A total of 67 studies were included in this review along with a summary of their study characteristics. We grouped the findings into etiological and treatment studies. Majority of these selected studies were recently published and from developed countries. Whole blood samples were the most studied common tissues. Bisulfite conversion, along with pyrosequencing, was widely used to test the DNA methylation level across all the studies. High heterogeneity existed among the studies in terms of experimental and statistical methodologies and study designs. As recommended by the Cochrane guideline, a systematic review without meta-analysis should be undertaken. This review has, in general, found that DNA methylation modifications were associated with depression. Subgroup analyses showed that most studies found BDNF and SLC6A4 hypermethylations to be associated with MDD or depression in general. In contrast, studies on NR3C1, OXTR, and other genes, which were tested by only few studies, reported mixed findings. More longitudinal studies using standardized experimental and laboratory methodologies are needed in future studies to enable more systematical comparisons and quantitative synthesis.
Collapse
|
45
|
Butler MG, Miller JL, Forster JL. Prader-Willi Syndrome - Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Curr Pediatr Rev 2019; 15:207-244. [PMID: 31333129 PMCID: PMC7040524 DOI: 10.2174/1573396315666190716120925] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prader-Willi Syndrome (PWS) is a neurodevelopmental genomic imprinting disorder with lack of expression of genes inherited from the paternal chromosome 15q11-q13 region usually from paternal 15q11-q13 deletions (about 60%) or maternal uniparental disomy 15 or both 15s from the mother (about 35%). An imprinting center controls the expression of imprinted genes in the chromosome 15q11-q13 region. Key findings include infantile hypotonia, a poor suck, failure to thrive and hypogonadism/hypogenitalism. Short stature and small hands/feet due to growth and other hormone deficiencies, hyperphagia and marked obesity occur in early childhood, if uncontrolled. Cognitive and behavioral problems (tantrums, compulsions, compulsive skin picking) are common. OBJECTIVE Hyperphagia and obesity with related complications are major causes of morbidity and mortality in PWS. This report will describe an accurate diagnosis with determination of specific genetic subtypes, appropriate medical management and best practice treatment approaches. METHODS AND RESULTS An extensive literature review was undertaken related to genetics, clinical findings and laboratory testing, clinical and behavioral assessments and summary of updated health-related information addressing the importance of early PWS diagnosis and treatment. A searchable, bulleted and formatted list of topics is provided utilizing a Table of Contents approach for the clinical practitioner. CONCLUSION Physicians and other health care providers can use this review with clinical, genetic and treatment summaries divided into sections pertinent in the context of clinical practice. Frequently asked questions by clinicians, families and other interested participants or providers will be addressed.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida School of Medicine, Gainesville, FL, United States
| | | |
Collapse
|
46
|
Abstract
Delayed pubertal onset has many etiologies, but on average two-thirds of patients presenting with late puberty have self-limited (or constitutional) delayed puberty. Self-limited delayed puberty often has a strong familial basis. Segregation analyses from previous studies show complex models of inheritance, most commonly autosomal dominant, but also including autosomal recessive, bilineal, and X-linked. Sporadic cases are also observed. Despite this, the neuroendocrine mechanisms and genetic regulation remain unclear in the majority of patients with self-limited delayed puberty. Only rarely have mutations in genes known to cause aberrations of the hypothalamic-pituitary-gonadal axis been identified in cases of delayed puberty, and the majority of these are in relatives of patients with congenital hypogonadotropic hypogonadism (CHH), for example in the FGFR1 and GNRHR genes. Using next generation sequencing in a large family with isolated self-limited delayed puberty, a pathogenic mutation in the CHH gene HS6ST1 was found as the likely cause for this phenotype. Additionally, a study comparing the frequency of mutations in genes that cause GnRH deficiency between probands with CHH and probands with isolated self-limited delayed puberty identified that a significantly higher proportion of mutations with a greater degree of oligogenicity were seen in the CHH group. Mutations in the gene IGSF10 have been implicated in the pathogenesis of familial late puberty in a large Finnish cohort. IGSF10 disruption represents a fetal origin of delayed puberty, with dysregulation of GnRH neuronal migration during embryonic development presenting for the first time in adolescence as late puberty. Some patients with self-limited delayed puberty have distinct constitutional features of growth and puberty. Deleterious variants in FTO have been found in families with delayed puberty with extremely low BMI and maturational delay in growth in early childhood. Recent exciting evidence highlights the importance of epigenetic up-regulation of GnRH transcription by a network of miRNAs and transcription factors, including EAP1, during puberty. Whilst a fascinating heterogeneity of genetic defects have been shown to result in delayed and disordered puberty, and many are yet to be discovered, genetic testing may become a realistic diagnostic tool for the differentiation of conditions of delayed puberty.
Collapse
|
47
|
Costa RA, Ferreira IR, Cintra HA, Gomes LHF, Guida LDC. Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome. Front Endocrinol (Lausanne) 2019; 10:864. [PMID: 31920975 PMCID: PMC6923197 DOI: 10.3389/fendo.2019.00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a complex imprinting disorder related to genomic errors that inactivate paternally-inherited genes on chromosome 15q11-q13 with severe implications on endocrine, cognitive and neurologic systems, metabolism, and behavior. The absence of expression of one or more genes at the PWS critical region contributes to different phenotypes. There are three molecular mechanisms of occurrence: paternal deletion of the 15q11-q13 region; maternal uniparental disomy 15; or imprinting defects. Although there is a clinical diagnostic consensus criteria, DNA methylation status must be confirmed through genetic testing. The endocrine system can be the most affected in PWS, and growth hormone replacement therapy provides improvement in growth, body composition, and behavioral and physical attributes. A key feature of the syndrome is the hypothalamic dysfunction that may be the basis of several endocrine symptoms. Clinical and molecular complexity in PWS enhances the importance of genetic diagnosis in therapeutic definition and genetic counseling. So far, no single gene mutation has been described to contribute to this genetic disorder or related to any exclusive symptoms. Here we proposed to review individually disrupted genes within the PWS critical region and their reported clinical phenotypes related to the syndrome. While genes such as MKRN3, MAGEL2, NDN, or SNORD115 do not address the full spectrum of PWS symptoms and are less likely to have causal implications in PWS major clinical signs, SNORD116 has emerged as a critical, and possibly, a determinant candidate in PWS, in the recent years. Besides that, the understanding of the biology of the PWS SNORD genes is fairly low at the present. These non-coding RNAs exhibit all the hallmarks of RNA methylation guides and can be incorporated into ribonucleoprotein complexes with possible hypothalamic and endocrine functions. Also, DNA conservation between SNORD sequences across placental mammals strongly suggests that they have a functional role as RNA entities on an evolutionary basis. The broad clinical spectrum observed in PWS and the absence of a clear genotype-phenotype specific correlation imply that the numerous genes involved in the syndrome have an additive deleterious effect on different phenotypes when deficiently expressed.
Collapse
|
48
|
Mother-child transmission of epigenetic information by tunable polymorphic imprinting. Proc Natl Acad Sci U S A 2018; 115:E11970-E11977. [PMID: 30509985 PMCID: PMC6304996 DOI: 10.1073/pnas.1815005115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
First, our work provides critical biological interpretation of intermediate DNA methylation readouts at the nc886 differentially methylated region (DMR). nc886 was identified in multiple large-scale epigenome-wide association studies (EWAS) that did not recognize that this region acts as a contiguous DMR imposed by genomic imprinting, highlighting the need to reexamine several 450k data sets. Second, strict control of genomic imprinting was thought to be required for organismal viability. Reports of polymorphic imprinting are limited to specific tissue types such as placenta and brain. In blood and somatic tissues, we show nc886 imprinting is mosaic in the population and influenced by maternal environment. Genomic imprinting mediated by DNA methylation restricts gene expression to a single allele determined by parental origin and is not generally considered to be under genetic or environmental influence. Here, we focused on a differentially methylated region (DMR) of approximately 1.9 kb that includes a 101-bp noncoding RNA gene (nc886/VTRNA2-1), which is maternally imprinted in ∼75% of humans. This is unlike other imprinted genes, which demonstrate monoallelic methylation in 100% of individuals. The DMR includes a CTCF binding site on the centromeric side defining the DMR boundary and is flanked by a CTCF binding site on the telomeric side. The centromeric CTCF binding site contains an A/C polymorphism (rs2346018); the C allele is associated with less imprinting. The frequency of imprinting of the nc886 DMR in infants was linked to at least two nongenetic factors, maternal age at delivery and season of conception. In a separate cohort, nc886 imprinting was associated with lower body mass index in children at 5 y of age. Thus, we propose that the imprinting status of the nc886 DMR is “tunable” in that it is associated with maternal haplotype and prenatal environment. This provides a potential mechanism for transmitting information, with phenotypic consequences, from mother to child.
Collapse
|
49
|
Abstract
The dramatic increase in global prevalence of metabolic disease is inexplicable when considering only environmental or only genetic factors, leading to the need to explore the possible roles of epigenetic factors. A great deal of progress has been made in this interdisciplinary field in recent years, with many studies investigating various aspects of the metabolic syndrome and its associated epigenetic changes. Rodent models of metabolic diseases have been particularly illuminating because of the ability to leverage tools such as genetic and environmental modifications. The current review summarizes recent breakthroughs regarding epigenetic markers in studies of obesity, Type II diabetes, and cardiovascular disease, the three major disorders associated with metabolic syndrome. We also discuss open questions and future directions for integrating genomic, epigenomic, and phenotypic big biodata toward understanding metabolic syndrome etiology.
Collapse
Affiliation(s)
- Caryn Carson
- Department of Genetics, Washington University School of Medicine , Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine , Saint Louis, Missouri
| |
Collapse
|
50
|
Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome. Nat Med 2018; 24:802-813. [DOI: 10.1038/s41591-018-0018-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023]
|