1
|
Ortiz-Valladares M, Gonzalez-Perez O, Pedraza-Medina R. Bridging the gap: Prenatal nutrition, myelination, and schizophrenia etiopathogenesis. Neuroscience 2024; 558:58-69. [PMID: 39159841 DOI: 10.1016/j.neuroscience.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Schizophrenia (SZ) is a complex mental illness characterized by disturbances in thinking, emotionality, and behavior, significantly impacting the quality of life for individuals affected and those around them. The etiology of SZ involves intricate interactions between genetic and environmental factors, although the precise mechanisms remain incompletely understood. Genetic predisposition, neurotransmitter dysregulation (particularly involving dopamine and serotonin), and structural brain abnormalities, including impaired prefrontal cortex function, have been implicated in SZ development. However, increasing evidence reveals the role of environmental factors, such as nutrition, during critical periods like pregnancy and lactation. Epidemiological studies suggest that early malnutrition significantly increases the risk of SZ symptoms manifesting in late adolescence, a crucial period coinciding with peak myelination and brain maturation. Prenatal undernutrition may disrupt myelin formation, rendering individuals more susceptible to SZ pathology. This review explores the potential relationship between prenatal undernutrition, myelin alterations, and susceptibility to SZ. By delineating the etiopathogenesis, examining genetic and environmental factors associated with SZ, and reviewing the relationship between SZ and myelination disorders, alongside the impact of malnutrition on myelination, we aim to examine how malnutrition might be linked to SZ by altering myelination processes, which contribute to increasing the understanding of SZ etiology and help identify targets for intervention and management.
Collapse
Affiliation(s)
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040. México
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima 28040. México
| |
Collapse
|
2
|
Costello SM, Schultz A, Smith D, Horan D, Chaverra M, Tripet B, George L, Bothner B, Lefcort F, Copié V. Metabolic Deficits in the Retina of a Familial Dysautonomia Mouse Model. Metabolites 2024; 14:423. [PMID: 39195519 PMCID: PMC11356057 DOI: 10.3390/metabo14080423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Neurodegenerative retinal diseases such as glaucoma, diabetic retinopathy, Leber's hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA) are marked by progressive death of retinal ganglion cells (RGC). This decline is promoted by structural and functional mitochondrial deficits, including electron transport chain (ETC) impairments, increased oxidative stress, and reduced energy (ATP) production. These cellular mechanisms associated with progressive optic nerve atrophy have been similarly observed in familial dysautonomia (FD) patients, who experience gradual loss of visual acuity due to the degeneration of RGCs, which is thought to be caused by a breakdown of mitochondrial structures, and a disruption in ETC function. Retinal metabolism plays a crucial role in meeting the elevated energetic demands of this tissue, and recent characterizations of FD patients' serum and stool metabolomes have indicated alterations in central metabolic processes and potential systemic deficits of taurine, a small molecule essential for retina and overall eye health. The present study sought to elucidate metabolic alterations that contribute to the progressive degeneration of RGCs observed in FD. Additionally, a critical subpopulation of retinal interneurons, the dopaminergic amacrine cells, mediate the integration and modulation of visual information in a time-dependent manner to RGCs. As these cells have been associated with RGC loss in the neurodegenerative disease Parkinson's, which shares hallmarks with FD, a targeted analysis of the dopaminergic amacrine cells and their product, dopamine, was also undertaken. One dimensional (1D) proton (1H) nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and retinal histology methods were employed to characterize retinae from the retina-specific Elp1 conditional knockout (CKO) FD mouse model (Pax6-Cre; Elp1LoxP/LoxP). Metabolite alterations correlated temporally with progressive RGC degeneration and were associated with reduced mitochondrial function, alterations in ATP production through the Cahill and mini-Krebs cycles, and phospholipid metabolism. Dopaminergic amacrine cell populations were reduced at timepoints P30-P90, and dopamine levels were 25-35% lower in CKO retinae compared to control retinae at P60. Overall, this study has expanded upon our current understanding of retina pathology in FD. This knowledge may apply to other retinal diseases that share hallmark features with FD and may help guide new avenues for novel non-invasive therapeutics to mitigate the progressive optic neuropathy in FD.
Collapse
Affiliation(s)
- Stephanann M. Costello
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University—Bozeman, Bozeman, MT 59717, USA
| | - Donald Smith
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Danielle Horan
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Martha Chaverra
- Department of Microbiology and Cell Biology, Montana State University—Bozeman, Bozeman, MT 59717, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University—Billings, Billings, MT 59102, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University—Bozeman, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University—Bozeman, Bozeman, MT 59717, USA; (S.M.C.)
| |
Collapse
|
3
|
Biswal L, Sardoiwala MN, Kushwaha AC, Mukherjee S, Karmakar S. Melatonin-Loaded Nanoparticles Augment Mitophagy to Retard Parkinson's Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8417-8429. [PMID: 38344952 DOI: 10.1021/acsami.3c17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The molecular pathways that melatonin follows as a Parkinson's disease (PD) antagonist remain poorly elucidated, despite it being a safe and a potential neurotherapeutic drug with a few limitations such as less bioavailability, premature oxidation, brain delivery, etc. Here, we used a biocompatible protein (HSA) nanocarrier for the delivery of melatonin to the brain. This nanomelatonin showed better antioxidative and neuroprotective properties, and it not only improves mitophagy to remove unhealthy mitochondria but also improves mitochondrial biogenesis to counteract rotenone-induced toxicity in an in vitro PD model. We also showed BMI1, a member of the PRC1 complex that regulates mitophagy, whose protein expression was enhanced after nanomelatonin dosage. These effects were translated to a rodent model, where nanomelatonin improves the TH+ve neuron population in SNPC and protects against rotenone-mediated toxicity. Our findings highlight the significantly better in vitro and in vivo neuroprotective effect of nanomelatonin as well as the molecular/cellular dynamics it influences to regulate mitophagy as a measure of the potential therapeutic candidate for PD.
Collapse
Affiliation(s)
- Liku Biswal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | | | | | - Syamantak Mukherjee
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
4
|
Thirumalai D, Subramani D, Kim J, Rajarathinam T, Yoon JH, Paik HJ, Lee J, Chang SC. Conductive PEDOT:PSS copolymer electrode coatings for selective detection of dopamine in ex vivo mouse brain slices. Talanta 2024; 267:125252. [PMID: 37774451 DOI: 10.1016/j.talanta.2023.125252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
A novel voltammetric sensor was developed to selectively determine dopamine (DA) concentration in the presence of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC). This sensor utilizes a modified pencil graphite electrode (PGE) coated with a newly synthesized poly (3,4-ethylene dioxythiophene) (PEDOT):poly (styrene sulfonate-co-2-(3-(6-Methyl-4-oxo-1,4-dihydropyrimidin-2-yl) ureido) ethyl methacrylate) (P(SS-co-UPyMA)) composite. The PEDOT:P(SS-co-UPyMA) (PPU) composite was characterized using nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. The PPU-coated PGE was characterized using electrochemical techniques, including cyclic and differential pulse voltammetry. Compared to uncoated, PPU-coated PGE demonstrated improved sensitivity and selectivity for DA. The sensor exhibited a dynamic linear range of 0.1-300 μM for DA, with a detection limit of 44.4 nM (S/N = 3). Additionally, the PPU-coated PGE showed high reproducibility and storage stability for four weeks. To demonstrate its practical applicability, the PPU-coated PGE sensor was used for ex vivo brain slice samples from control and Parkinson's disease model mice.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- BIT Convergence-based Innovative Drug Development Targeting Meta-inflammation, Pusan National University, Busan, 46241, Republic of Korea
| | - Devaraju Subramani
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea; Polymer Composites Lab, Department of Chemistry, School of Applied Science and Technology, Vignan's Foundation for Science, Technology, and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, 522213, India
| | - Jaehoon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Centre, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jaewon Lee
- BIT Convergence-based Innovative Drug Development Targeting Meta-inflammation, Pusan National University, Busan, 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Ravanfar P, Syeda WT, Jayaram M, Rushmore RJ, Moffat B, Lin AP, Lyall AE, Merritt AH, Yaghmaie N, Laskaris L, Luza S, Opazo CM, Liberg B, Chakravarty MM, Devenyi GA, Desmond P, Cropley VL, Makris N, Shenton ME, Bush AI, Velakoulis D, Pantelis C. In Vivo 7-Tesla MRI Investigation of Brain Iron and Its Metabolic Correlates in Chronic Schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:86. [PMID: 36289238 PMCID: PMC9605948 DOI: 10.1038/s41537-022-00293-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Brain iron is central to dopaminergic neurotransmission, a key component in schizophrenia pathology. Iron can also generate oxidative stress, which is one proposed mechanism for gray matter volume reduction in schizophrenia. The role of brain iron in schizophrenia and its potential link to oxidative stress has not been previously examined. In this study, we used 7-Tesla MRI quantitative susceptibility mapping (QSM), magnetic resonance spectroscopy (MRS), and structural T1 imaging in 12 individuals with chronic schizophrenia and 14 healthy age-matched controls. In schizophrenia, there were higher QSM values in bilateral putamen and higher concentrations of phosphocreatine and lactate in caudal anterior cingulate cortex (caCC). Network-based correlation analysis of QSM across corticostriatal pathways as well as the correlation between QSM, MRS, and volume, showed distinct patterns between groups. This study introduces increased iron in the putamen in schizophrenia in addition to network-wide disturbances of iron and metabolic status.
Collapse
Affiliation(s)
- Parsa Ravanfar
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Warda T Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Mahesh Jayaram
- Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Australia
| | - R Jarrett Rushmore
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Morphometric Analysis (CMA), Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Bradford Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC, Australia
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonia H Merritt
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Negin Yaghmaie
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Liliana Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Sandra Luza
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, and The University of Melbourne, Parkville, VIC, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, and The University of Melbourne, Parkville, VIC, Australia
| | - Benny Liberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Mallar Chakravarty
- Cerebral Imaging Center, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Center, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Desmond
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Morphometric Analysis (CMA), Massachusetts General Hospital, Charlestown, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, and The University of Melbourne, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
From the tyrosine hydroxylase hypothesis of Parkinson's disease to modern strategies: a short historical overview. J Neural Transm (Vienna) 2022; 129:487-495. [PMID: 35460433 PMCID: PMC9188506 DOI: 10.1007/s00702-022-02488-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
A time span of 60 years covers the detection of catecholamines in the brain, their function in movement and correlation to Parkinson’s disease (PD). The clinical findings that orally given l-DOPA can alleviate or even prevent akinesia gave great hope for the treatment of PD. Attention focused on the role of tyrosine hydroxylase (TH) as the rate-limiting enzyme in the formation of catecholamines. It became evident that the enzyme driven formation is lowered in PD. Such results could only be obtained from studying human brain samples demonstrating the necessity for human brain banks. Originally, a TH enzyme deficiency was suspected in PD. Studies were conducted on the enzyme properties: its induction and turnover, the complex regulation starting with cofactor requirements as tetrahydrobiopterin and ferrous iron, and the necessity for phosphorylation for activity as well as inhibition by toxins or regulatory feedback inhibition by catecholamines. In the course of time, it became evident that neurodegeneration and cell death of dopaminergic neurons is the actual pathological process and the decrease of TH a cophenomenon. Nevertheless, TH immunochemistry has ever since been a valuable tool to study neuronal pathways, neurodegeneration in various animal models of neurotoxicity and cell cultures, which have been used as well to test potential neuroprotective strategies.
Collapse
|
7
|
Shahandeh A, Bui BV, Finkelstein DI, Nguyen CTO. Effects of Excess Iron on the Retina: Insights From Clinical Cases and Animal Models of Iron Disorders. Front Neurosci 2022; 15:794809. [PMID: 35185447 PMCID: PMC8851357 DOI: 10.3389/fnins.2021.794809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Iron plays an important role in a wide range of metabolic pathways that are important for neuronal health. Excessive levels of iron, however, can promote toxicity and cell death. An example of an iron overload disorder is hemochromatosis (HH) which is a genetic disorder of iron metabolism in which the body’s ability to regulate iron absorption is altered, resulting in iron build-up and injury in several organs. The retina was traditionally assumed to be protected from high levels of systemic iron overload by the blood-retina barrier. However, recent data shows that expression of genes that are associated with HH can disrupt retinal iron metabolism. Thus, the effects of iron overload on the retina have become an area of research interest, as excessively high levels of iron are implicated in several retinal disorders, most notably age–related macular degeneration. This review is an effort to highlight risk factors for excessive levels of systemic iron build-up in the retina and its potential impact on the eye health. Information is integrated across clinical and preclinical animal studies to provide insights into the effects of systemic iron loading on the retina.
Collapse
Affiliation(s)
- Ali Shahandeh
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Christine T. O. Nguyen,
| |
Collapse
|
8
|
Guo Y, Sang Y, Pu T, Li X, Wang Y, Yu L, Liang Y, Wang L, Liu P, Tang L. Relation of Serum Hepcidin Levels and Restless Legs Syndrome in Patients Undergoing Peritoneal Dialysis. Front Med (Lausanne) 2021; 8:685601. [PMID: 34966748 PMCID: PMC8711647 DOI: 10.3389/fmed.2021.685601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Restless legs syndrome is a common and severe complication in patients undergoing peritoneal dialysis (PD), which seriously affects the life quality and prognosis of patients undergoing PD. Unfortunately, there are still no effective prevention and treatment measures. Serum hepcidin was demonstrated to be related to primary restless legs syndrome (RLS), whereas there are no studies on the relationship between serum hepcidin and RLS in patients undergoing PD. We aimed to evaluate the role and function of serum hepcidin in patients undergoing PD with RLS. Methods: A total of 51 patients undergoing PD with RLS and 102 age-and gender-matched patients undergoing PD without RLS were included. We collected the clinical data including serum hepcidin of those patients undergoing PD. We scored the severity of RLS according to the International restless leg Syndrome Research Group rating scale (IRLS). We compared the clinical characteristics of the two groups and evaluated the determinant factors of RLS by Logistic regression analysis. In addition, we evaluated the diagnostic value of serum hepcidin in patients undergoing PD with RLS by receiver operating characteristic (ROC) curve. We also analyzed the influencing factors of IRLS by multivariate linear regression analysis. Results: The duration of PD, serum hepcidin, and calcium were found to be significantly higher in patients undergoing PD with RLS than those patients undergoing PD without RLS (P < 0.001, P < 0.001, and P = 0.002, respectively). The level of hemoglobin, albumin, and RKF were significantly lower in patients undergoing PD with RLS (P = 0.002, P = 0.042, and P < 0.001, respectively). The duration of PD [odds ratio (OR) 1.038, 95% CI: 1.017, 1.060, P < 0.001], hemoglobulin level (OR 0.969, 95% CI: 0.944, 0.995, P = 0.019), calcium level (OR 9.224, 95% CI: 1.261, 67.450, P = 0.029), albumin level (OR 0.835, 95% CI: 0.757, 0.921, P < 0.001), hepcidin level (OR 1.023, 95% CI: 1.009, 1.038, P = 0.001), and RKF (OR 0.65, 95% CI: 0.495, 0.856, P = 0.002) are independent determinant factors of RLS in patients undergoing PD. Multivariate linear regression analysis revealed that, in addition to albumin, they were also independently associated with the severity of RLS. Conclusion: A significant relation was detected between serum hepcidin level and RLS in patients undergoing PD.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Sang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Pu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Li
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Yu
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liuwei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Kleppe R, Waheed Q, Ruoff P. DOPA Homeostasis by Dopamine: A Control-Theoretic View. Int J Mol Sci 2021; 22:12862. [PMID: 34884667 PMCID: PMC8657751 DOI: 10.3390/ijms222312862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) is an important signal mediator in the brain as well as in the periphery. The term "dopamine homeostasis" occasionally found in the literature refers to the fact that abnormal DA levels can be associated with a variety of neuropsychiatric disorders. An analysis of the negative feedback inhibition of tyrosine hydroxylase (TH) by DA indicates, with support from the experimental data, that the TH-DA negative feedback loop has developed to exhibit 3,4-dihydroxyphenylalanine (DOPA) homeostasis by using DA as a derepression regulator. DA levels generally decline when DOPA is removed, for example, by increased oxidative stress. Robust DOPA regulation by DA further implies that maximum vesicular DA levels are established, which appear necessary for a reliable translation of neural activity into a corresponding chemical transmitter signal. An uncontrolled continuous rise (windup) in DA occurs when Levodopa treatment exceeds a critical dose. Increased oxidative stress leads to the successive breakdown of DOPA homeostasis and to a corresponding reduction in DA levels. To keep DOPA regulation robust, the vesicular DA loading requires close to zero-order kinetics combined with a sufficiently high compensatory flux provided by TH. The protection of DOPA and DA due to a channeling complex is discussed.
Collapse
Affiliation(s)
- Rune Kleppe
- Norwegian Center for Maritime and Diving Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Qaiser Waheed
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| |
Collapse
|
10
|
Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia-A Focus on Tyrosine Hydroxylase Deficiency. J Pers Med 2021; 11:jpm11111186. [PMID: 34834538 PMCID: PMC8625014 DOI: 10.3390/jpm11111186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Dopa-responsive dystonia (DRD) is a rare movement disorder associated with defective dopamine synthesis. This impairment may be due to the fact of a deficiency in GTP cyclohydrolase I (GTPCHI, GCH1 gene), sepiapterin reductase (SR), tyrosine hydroxylase (TH), or 6-pyruvoyl tetrahydrobiopterin synthase (PTPS) enzyme functions. Mutations in GCH1 are most frequent, whereas fewer cases have been reported for individual SR-, PTP synthase-, and TH deficiencies. Although termed DRD, a subset of patients responds poorly to L-DOPA. As this is regularly observed in severe cases of TH deficiency (THD), there is an urgent demand for more adequate or personalized treatment options. TH is a key enzyme that catalyzes the rate-limiting step in catecholamine biosynthesis, and THD patients often present with complex and variable phenotypes, which results in frequent misdiagnosis and lack of appropriate treatment. In this expert opinion review, we focus on THD pathophysiology and ongoing efforts to develop novel therapeutics for this rare disorder. We also describe how different modeling approaches can be used to improve genotype to phenotype predictions and to develop in silico testing of treatment strategies. We further discuss the current status of mathematical modeling of catecholamine synthesis and how such models can be used together with biochemical data to improve treatment of DRD patients.
Collapse
|
11
|
Mikami K, Akama F, Kimoto K, Okazawa H, Orihashi Y, Onishi Y, Takahashi Y, Yabe H, Yamamoto K, Matsumoto H. Iron supplementation for hypoferritinemia-related psychological symptoms in children and adolescents. J NIPPON MED SCH 2021; 89:203-211. [PMID: 34526463 DOI: 10.1272/jnms.jnms.2022_89-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although some studies have described the association between serum ferritin levels and specific disorders in child and adolescent psychiatry, few have focused on mental health with low serum ferritin levels in children and adolescents. This study examined the effects of iron administration on psychological state of children and adolescents with reduced serum ferritin concentration. METHODS This prospective study evaluated 19 participants aged 6-15 years with serum ferritin levels <30 ng/mL who visited a mental health clinic and received oral iron administration for 12 weeks. The participants were assessed using the Clinical Global Impression Severity (CGI-S), Profile of Mood States 2nd Edition Youth-Short (POMS), Center for Epidemiologic Studies Depression Scale (CES-D), and Pittsburgh Sleep Quality Index (PSQI). In addition to serum ferritin, blood biochemical values such as hemoglobin (Hb) and mean corpuscular volume (MCV) were examined. School attendance was recorded. RESULTS The most prevalent physical symptoms were fatigability and insomnia. The CGI-S, PSQI, and CES-D scores decreased significantly following iron supplementation, whereas the scores of almost all POMS subscales improved significantly at week 12. No participant had hemoglobin levels <12 g/dL. Serum ferritin concentration increased significantly, whereas Hb and MCV remained unchanged. At baseline, 74% of the participants did not attend school regularly; this number improved to varying degrees by week 12. DISCUSSION Serum ferritin levels would be preferable to be measured in children and adolescents with insomnia and/or fatigability regardless of psychiatric diagnoses or gender. Iron supplementation can improve the hypoferritinemia-related psychological symptoms of children and adolescents, such as poor concentration, anxiety, depression, low energy and/or irritability.
Collapse
Affiliation(s)
| | - Fumiaki Akama
- Department of Psychiatry, Tokai University School of Medicine
| | - Keitaro Kimoto
- Department of Psychiatry, Tokai University School of Medicine
| | | | - Yasushi Orihashi
- Department of Clinical Pharmacology, Tokai University School of Medicine
| | - Yuichi Onishi
- Department of Psychiatry, Tokai University School of Medicine
| | - Yuki Takahashi
- Department of Psychiatry, Tokai University School of Medicine
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine
| | - Kenji Yamamoto
- Department of Psychiatry, Tokai University School of Medicine
| | - Hideo Matsumoto
- Department of Psychiatry, Tokai University School of Medicine
| |
Collapse
|
12
|
Turk AZ, Lotfi Marchoubeh M, Fritsch I, Maguire GA, SheikhBahaei S. Dopamine, vocalization, and astrocytes. BRAIN AND LANGUAGE 2021; 219:104970. [PMID: 34098250 PMCID: PMC8260450 DOI: 10.1016/j.bandl.2021.104970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 05/06/2023]
Abstract
Dopamine, the main catecholamine neurotransmitter in the brain, is predominately produced in the basal ganglia and released to various brain regions including the frontal cortex, midbrain and brainstem. Dopamine's effects are widespread and include modulation of a number of voluntary and innate behaviors. Vigilant regulation and modulation of dopamine levels throughout the brain is imperative for proper execution of motor behaviors, in particular speech and other types of vocalizations. While dopamine's role in motor circuitry is widely accepted, its unique function in normal and abnormal speech production is not fully understood. In this perspective, we first review the role of dopaminergic circuits in vocal production. We then discuss and propose the conceivable involvement of astrocytes, the numerous star-shaped glia cells of the brain, in the dopaminergic network modulating normal and abnormal vocal productions.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Mahsa Lotfi Marchoubeh
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 72701 AR, USA
| | - Ingrid Fritsch
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 72701 AR, USA
| | - Gerald A Maguire
- Department of Psychiatry and Neuroscience, School of Medicine, University of California, Riverside, 92521 CA, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA.
| |
Collapse
|
13
|
Poetini MR, Musachio EAS, Araujo SM, Almeida FP, Dahleh MMM, Bortolotto VC, Janner DE, Pinheiro FC, Ramborger BP, Roehrs R, La Rosa Novo D, Mesko MF, Guerra GP, Prigol M. Iron overload during the embryonic period develops hyperactive like behavior and dysregulation of biogenic amines in Drosophila melanogaster. Dev Biol 2021; 475:80-90. [PMID: 33741348 DOI: 10.1016/j.ydbio.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Iron (Fe) is used in various cellular functions, and a constant balance between its uptake, transport, storage, and use is necessary to maintain its homeostasis in the body. Changes in Fe metabolism with a consequent overload of this metal are related to neurological changes and cover a broad spectrum of diseases, mainly when these changes occur during the embryonic period. This work aimed to evaluate the effect of exposure to Fe overload during the embryonic period of Drosophila melanogaster. Progenitor flies (male and female) were exposed to ferrous sulfate (FeSO4) for ten days in concentrations of 0.5, 1, and 5 mM. After mating and oviposition, the progenitors were removed and the treatment bottles preserved, and the number of daily hatches and cumulative hatching of the first filial generation (F1) were counted. Subsequently, F1 flies (separated by sex) were subjected to behavioral tests such as negative geotaxis test, open field test, grooming, and aggression test. They have evaluated the levels of dopamine (DA), serotonin (5-HT), octopamine (OA), tryptophan and tyrosine hydroxylase (TH), acetylcholinesterase, reactive species, and the levels of Fe in the progenitor flies and F1. The Fe levels of F1 flies are directly proportional to what is incorporated during the period of embryonic development; we also observed a delay in hatching and a reduction in the number of the hatch of F1 flies exposed during the embryonic period to the 5mM Fe diet, a fact that may be related to the reduction of the cell viability of the ovarian tissue of progenitor flies. The flies exposed to Fe (1 and 5 mM) showed an increase in locomotor activity (hyperactivity) and a significantly higher number of repetitive movements. In addition to a high number of aggressive encounters when compared to control flies. We can also observe an increase in the levels of biogenic amines DA and 5-HT and an increase in TH activity in flies exposed to Fe (1 and 5 mM) compared to the control group. We conclude that the hyperactive-like behavior demonstrated in both sexes by F1 flies exposed to Fe may be associated with a dysregulation in the levels of DA and 5-HT since Fe is a cofactor of TH, which had its activity increased in this study. Therefore, more attention is needed during the embryonic development period for exposure to Fe overload.
Collapse
Affiliation(s)
- Márcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Francielli Polet Almeida
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Dieniffer Espinosa Janner
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Bruna Piaia Ramborger
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Diogo La Rosa Novo
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Márcia Foster Mesko
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas- LaftamBio Pampa, Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Rua Joaquim de Sá Britto, s/n, Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil.
| |
Collapse
|
14
|
Siddiqui MF, Jeon S, Kim M. Monitoring of whitening agent for skin analysis using tyrosinase gold nanoparticle‐based colorimetric assay. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sojeong Jeon
- Department of Biology & Chemistry Dong‐Eui University Busan Republic of Korea
| | - Moon‐Moo Kim
- Department of Applied Chemistry Dong‐Eui University Busan Republic of Korea
| |
Collapse
|
15
|
Jacobs AJ, Roskam AL, Hummel FM, Ronan PJ, Gorres-Martens BK. Exercise improves high-fat diet- and ovariectomy-induced insulin resistance in rats with altered hepatic fat regulation. Curr Res Physiol 2020; 3:11-19. [PMID: 34746816 PMCID: PMC8562195 DOI: 10.1016/j.crphys.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
A high-fat diet (HFD) and loss of endogenous estrogens increases the risk for type 2 diabetes (T2D) and insulin resistance. Although exercise is known to prevent and manage insulin resistance, the cellular mechanisms remain largely unknown, especially in the context of a combined HFD and endogenous estrogen loss via ovariectomy (OVX). This study uses female Wistar rats to assess the effect of diet, endogenous estrogens, an exercise on insulin resistance, serum hormones, hepatic AMPK, hepatic regulators of fat metabolism, and expression of signaling molecules of the brain reward pathway. The combination of the HFD/OVX increased the homeostatic model assessment of insulin resistance (HOMA-IR), the glucose-insulin (G-I) index, and the serum adiponectin and leptin values, and exercise decreased these factors. The combination of the HFD/OVX decreased hepatic pAMPK, and exercise restored hepatic pAMPK, an important regulator of fat and glucose metabolism. Furthermore, consumption of the HFD by rats with intact ovaries (and endogenous estrogens) did not result in these drastic changes compared to intact rats fed a standard diet, suggesting that the presence of estrogens provides whole body benefits. Additionally, the HFD decreased the hepatic protein expression of acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), two proteins involved in de novo lipid synthesis and increased the hepatic protein expression of lipoprotein lipase (LPL), a protein involved in fat storage. Finally, exercise increased mRNA expression of the dopamine D2 receptor and tyrosine hydroxylase in the dopaminergic neuron cell body region of the ventral tegmental area, which is a key component of the brain reward pathway. Overall, this study demonstrates that exercise prevents insulin resistance even when a HFD is combined with OVX, despite hepatic changes in ACC, FAS, and LPL.
Collapse
Affiliation(s)
| | - Adam L Roskam
- Chemistry Department, Mount Marty College, Yankton, SD, USA
| | - Faith M Hummel
- Biology Department, Black Hills State University, Spearfish, SD, USA
| | - Patrick J Ronan
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, USA.,Department of Psychiatry and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
16
|
Picard E, Daruich A, Youale J, Courtois Y, Behar-Cohen F. From Rust to Quantum Biology: The Role of Iron in Retina Physiopathology. Cells 2020; 9:cells9030705. [PMID: 32183063 PMCID: PMC7140613 DOI: 10.3390/cells9030705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Iron is essential for cell survival and function. It is a transition metal, that could change its oxidation state from Fe2+ to Fe3+ involving an electron transfer, the key of vital functions but also organ dysfunctions. The goal of this review is to illustrate the primordial role of iron and local iron homeostasis in retinal physiology and vision, as well as the pathological consequences of iron excess in animal models of retinal degeneration and in human retinal diseases. We summarize evidence of the potential therapeutic effect of iron chelation in retinal diseases and especially the interest of transferrin, a ubiquitous endogenous iron-binding protein, having the ability to treat or delay degenerative retinal diseases.
Collapse
Affiliation(s)
- Emilie Picard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Correspondence: ; Tel.: +331-44-27-81-82
| | - Alejandra Daruich
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Ophthalmology Department, Necker-Enfants Malades University Hospital, APHP, 75015 Paris, France
| | - Jenny Youale
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
| | - Yves Courtois
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
17
|
Mikami K, Okazawa H, Kimoto K, Akama F, Onishi Y, Takahashi Y, Yamamoto K, Matsumoto H. Effect of Oral Iron Administration on Mental State in Children With Low Serum Ferritin Concentration. Glob Pediatr Health 2019; 6:2333794X19884816. [PMID: 31696146 PMCID: PMC6820182 DOI: 10.1177/2333794x19884816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/15/2019] [Accepted: 09/26/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Hideki Okazawa
- Tokai University, Isehara, Kanagawa, Japan.,Kobe Juvenile Classification Home, Hyogo-ku, Kobe, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Fischer CL, Bates AM, Lanzel EA, Guthmiller JM, Johnson GK, Singh NK, Kumar A, Vidva R, Abbasi T, Vali S, Xie XJ, Zeng E, Brogden KA. Computational Models Accurately Predict Multi-Cell Biomarker Profiles in Inflammation and Cancer. Sci Rep 2019; 9:10877. [PMID: 31350446 PMCID: PMC6659691 DOI: 10.1038/s41598-019-47381-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/15/2019] [Indexed: 01/28/2023] Open
Abstract
Individual computational models of single myeloid, lymphoid, epithelial, and cancer cells were created and combined into multi-cell computational models and used to predict the collective chemokine, cytokine, and cellular biomarker profiles often seen in inflamed or cancerous tissues. Predicted chemokine and cytokine output profiles from multi-cell computational models of gingival epithelial keratinocytes (GE KER), dendritic cells (DC), and helper T lymphocytes (HTL) exposed to lipopolysaccharide (LPS) or synthetic triacylated lipopeptide (Pam3CSK4) as well as multi-cell computational models of multiple myeloma (MM) and DC were validated using the observed chemokine and cytokine responses from the same cell type combinations grown in laboratory multi-cell cultures with accuracy. Predicted and observed chemokine and cytokine responses of GE KER + DC + HTL exposed to LPS and Pam3CSK4 matched 75% (15/20, p = 0.02069) and 80% (16/20, P = 0.005909), respectively. Multi-cell computational models became ‘personalized’ when cell line-specific genomic data were included into simulations, again validated with the same cell lines grown in laboratory multi-cell cultures. Here, predicted and observed chemokine and cytokine responses of MM cells lines MM.1S and U266B1 matched 75% (3/4) and MM.1S and U266B1 inhibition of DC marker expression in co-culture matched 100% (6/6). Multi-cell computational models have the potential to identify approaches altering the predicted disease-associated output profiles, particularly as high throughput screening tools for anti-inflammatory or immuno-oncology treatments of inflamed multi-cellular tissues and the tumor microenvironment.
Collapse
Affiliation(s)
- Carol L Fischer
- Department of Biology, Waldorf University, Forest City, IA, 50436, USA
| | - Amber M Bates
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Janet M Guthmiller
- College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Georgia K Johnson
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Neeraj Kumar Singh
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Ansu Kumar
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Robinson Vidva
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Taher Abbasi
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Shireen Vali
- Cellworks Group Inc., San Jose, CA, 95110, USA.,Cellworks Research India Pvt. Ltd (Wholly owned subsidiary of Cellworks Group Inc.), Bangalore, India
| | - Xian Jin Xie
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kim A Brogden
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA. .,Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
19
|
Zhang X, Li L, Chen T, Sun Z, Tang W, Wang S, Wang T, Wang Y, Zhang H. Research Progress in the Effect of Traditional Chinese Medicine for Invigoration on Neurotransmitter Related Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4642018. [PMID: 29861770 PMCID: PMC5976975 DOI: 10.1155/2018/4642018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
Tonic traditional Chinese medicine is widely used in clinical practice and is categorized into four main drugs, namely, Qi-supplementing, Blood-enriching, Yin-nourishing, and Yang-tonifying. Neurotransmitters play a coordinating role in the nervous system, visceral function, and stress response. The excitation or suppression of the central nervous system is closely related to various diseases, such as insomnia, depression, Alzheimer's disease, Parkinson's disease, and perimenopausal syndrome. An increasing amount of evidence shows that Chinese tonic herb and its active ingredients can delay the occurrence and development of these diseases by modulating related neurotransmitters and their receptors, including norepinephrine (NE), serotonin (5-HT), dopamine (DA), acetylcholine (ACh), and γ-aminobutyric acid (GABA). In the present report, studies on the treatment of these neurotransmitter related diseases in relation to the application of tonic Chinese medicine are reviewed.
Collapse
Affiliation(s)
- Xiting Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 300193, China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 300193, China
| | - Ting Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zuoyan Sun
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 300193, China
| | - Weiwei Tang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 300193, China
| | - Shuang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 300193, China
| | - Tianqi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 300193, China
| |
Collapse
|
20
|
Jia F, Song N, Wang W, Du X, Chi Y, Jiang H. High Dietary Iron Supplement Induces the Nigrostriatal Dopaminergic Neurons Lesion in Transgenic Mice Expressing Mutant A53T Human Alpha-Synuclein. Front Aging Neurosci 2018; 10:97. [PMID: 29681846 PMCID: PMC5897504 DOI: 10.3389/fnagi.2018.00097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Both alpha-synuclein aggregation and iron deposits are neuropathological hallmarks of Parkinson’s disease (PD). We are particularly interested in whether iron could synergize with alpha-synuclein pathology in vivo, especially in the nigrostriatal system. In the present study, we reported transgenic mice with overexpressing human A53T alpha-synuclein, as well as WT mice with high dietary iron displayed hyperactive motor coordination and impaired colonic motility, compared with those with basal dietary iron. Only A53T mice, but not WT mice with high dietary iron exhibited nigral dopaminergic neuronal loss, lower levels of tyrosine hydroxylase (TH) in the substantia nigra (SN) and decreased dopamine contents in the striatum. Although there was no obvious elevation of iron contents in the SN in WT mice with high dietary iron, we observed iron contents in the SN were especially higher than the other brain regions in 12-month aged mice with either high or basal dietary iron. These results suggested high dietary iron supplement could induce nigral dopaminergic neurons lesion in A53T mice, which might be due to the vulnerability of SN to accumulate iron.
Collapse
Affiliation(s)
- Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Weiwei Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Yajing Chi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Brogden KA, Parashar D, Hallier AR, Braun T, Qian F, Rizvi NA, Bossler AD, Milhem MM, Chan TA, Abbasi T, Vali S. Genomics of NSCLC patients both affirm PD-L1 expression and predict their clinical responses to anti-PD-1 immunotherapy. BMC Cancer 2018; 18:225. [PMID: 29486723 PMCID: PMC5897943 DOI: 10.1186/s12885-018-4134-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses. Methods We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses. Results Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses. Conclusions Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies. Electronic supplementary material The online version of this article (10.1186/s12885-018-4134-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, 801 Newton Road, Iowa City, IA, 52242, USA.
| | - Deepak Parashar
- Cellworks Research India Ltd., Whitefield, Bangalore, 560066, India
| | - Andrea R Hallier
- Biomedical Engineering, The University of Iowa, 5318 SC, Iowa City, IA, 52242, USA
| | - Terry Braun
- Biomedical Engineering, The University of Iowa, 5318 SC, Iowa City, IA, 52242, USA
| | - Fang Qian
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, 801 Newton Road, Iowa City, IA, 52242, USA.,Division of Biostatistics and Research Design, College of Dentistry, The University of Iowa, 801 Newton Road, Iowa City, IA, 52242, USA
| | - Naiyer A Rizvi
- Division of Hematology/Oncology, Columbia University Medical Center, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Aaron D Bossler
- Molecular Pathology Laboratory, Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., C606GH, Iowa City, IA, 52242, USA
| | - Mohammed M Milhem
- Clinical Services, Experimental Therapeutics, Melanoma and Sarcoma Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, 52242, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Human Oncology and Pathogenesis Program, Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Taher Abbasi
- Cellworks Group, Inc., 2033 Gateway Place Suite 500, San Jose, CA, 95110, USA
| | - Shireen Vali
- Cellworks Group, Inc., 2033 Gateway Place Suite 500, San Jose, CA, 95110, USA
| |
Collapse
|
22
|
Beeler JA, Mourra D. To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Front Integr Neurosci 2018; 12:6. [PMID: 29487508 PMCID: PMC5816947 DOI: 10.3389/fnint.2018.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| | - Devry Mourra
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
23
|
Bates AM, Lanzel EA, Qian F, Abbasi T, Vali S, Brogden KA. Cell genomics and immunosuppressive biomarker expression influence PD-L1 immunotherapy treatment responses in HNSCC-a computational study. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124:157-164. [PMID: 28756882 DOI: 10.1016/j.oooo.2017.05.474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Programmed death-ligand 1 (PD-L1) expression is correlated with objective response rates to PD-1 and PD-L1 immunotherapies. However, both immunotherapies have only demonstrated 12%-24.8% objective response rates in patients with head and neck squamous cell carcinoma (HNSCC), demonstrating a need for a more accurate method to identify those who will respond before their therapy. Immunohistochemistry to detect PD-L1 reactivity in tumors can be challenging, and additional methods are needed to predict and confirm PD-L1 expression. Here, we hypothesized that HNSCC tumor cell genomics influences cell signaling and downstream effects on immunosuppressive biomarkers and that these profiles can predict patient clinical responses. STUDY DESIGN We identified deleterious gene mutations in SCC4, SCC15, and SCC25 and created cell line-specific predictive computational simulation models. The expression of 24 immunosuppressive biomarkers were then predicted and used to sort cell lines into those that would respond to PD-L1 immunotherapy and those that would not. RESULTS SCC15 and SCC25 were identified as cell lines that would respond to PD-L1 immunotherapy treatment and SCC4 was identified as a cell line that would not likely respond to PD-L1 immunotherapy treatment. CONCLUSIONS This approach, when applied to HNSCC cells, has the ability to predict PD-L1 expression and predict PD-1- or PD-L1-targeted treatment responses in these patients.
Collapse
Affiliation(s)
- Amber M Bates
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Fang Qian
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA; Division of Biostatistics and Research Design, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | | | | | - Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
McDowall JS, Ntai I, Hake J, Whitley PR, Mason JM, Pudney CR, Brown DR. Steady-State Kinetics of α-Synuclein Ferrireductase Activity Identifies the Catalytically Competent Species. Biochemistry 2017; 56:2497-2505. [DOI: 10.1021/acs.biochem.7b00257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer S. McDowall
- Department of Biology and
Biochemistry, Faculty of Science, University of Bath, Bath, U.K
| | - Ioanna Ntai
- Department of Biology and
Biochemistry, Faculty of Science, University of Bath, Bath, U.K
| | - Jonathon Hake
- Department of Biology and
Biochemistry, Faculty of Science, University of Bath, Bath, U.K
| | - Paul R. Whitley
- Department of Biology and
Biochemistry, Faculty of Science, University of Bath, Bath, U.K
| | - Jody M. Mason
- Department of Biology and
Biochemistry, Faculty of Science, University of Bath, Bath, U.K
| | - Christopher R. Pudney
- Department of Biology and
Biochemistry, Faculty of Science, University of Bath, Bath, U.K
| | - David R. Brown
- Department of Biology and
Biochemistry, Faculty of Science, University of Bath, Bath, U.K
| |
Collapse
|
25
|
Wang ZT, Verma SK, Dubey JP, Sibley LD. The aromatic amino acid hydroxylase genes AAH1 and AAH2 in Toxoplasma gondii contribute to transmission in the cat. PLoS Pathog 2017; 13:e1006272. [PMID: 28288194 PMCID: PMC5363998 DOI: 10.1371/journal.ppat.1006272] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/23/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
The Toxoplasma gondii genome contains two aromatic amino acid hydroxylase genes, AAH1 and AAH2 encode proteins that produce L-DOPA, which can serve as a precursor of catecholamine neurotransmitters. It has been suggested that this pathway elevates host dopamine levels thus making infected rodents less fearful of their definitive Felidae hosts. However, L-DOPA is also a structural precursor of melanins, secondary quinones, and dityrosine protein crosslinks, which are produced by many species. For example, dityrosine crosslinks are abundant in the oocyst walls of Eimeria and T. gondii, although their structural role has not been demonstrated, Here, we investigated the biology of AAH knockout parasites in the sexual reproductive cycle within cats. We found that ablation of the AAH genes resulted in reduced infection in the cat, lower oocyst yields, and decreased rates of sporulation. Our findings suggest that the AAH genes play a predominant role during infection in the gut of the definitive feline host.
Collapse
Affiliation(s)
- Zi T. Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shiv K. Verma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, United States of America
| | - Jitender P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, United States of America
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
26
|
McDowall JS, Brown DR. Alpha-synuclein: relating metals to structure, function and inhibition. Metallomics 2016; 8:385-97. [DOI: 10.1039/c6mt00026f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Pan X, Guo X, Xiong F, Cheng G, Lu Q, Yan H. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system. Toxicol Lett 2015; 236:60-8. [PMID: 25943760 DOI: 10.1016/j.toxlet.2015.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/25/2022]
Abstract
Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.
Collapse
Affiliation(s)
- Xiaoqi Pan
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Research institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiongxiong Guo
- Shenzhen Luohu Institute of Health Inspection, Shenzhen 518000, China
| | - Fei Xiong
- Chongqing Jiulongpo Municipal Center for Disease and Prevention, Chongqing 400039, China
| | - Guihong Cheng
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Research institute for Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
28
|
Ferreira GK, Carvalho-Silva M, Gomes LM, Scaini G, Teixeira LJ, Mota IT, Schuck PF, Ferreira GC, Streck EL. The characterization of neuroenergetic effects of chronic L-tyrosine administration in young rats: evidence for striatal susceptibility. Metab Brain Dis 2015; 30:215-21. [PMID: 25252880 DOI: 10.1007/s11011-014-9615-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
Tyrosinemia type II is an inborn error of metabolism caused by a deficiency in hepatic cytosolic aminotransferase. Affected patients usually present a variable degree of mental retardation, which may be related to the level of plasma tyrosine. In the present study we evaluated effect of chronic administration of L-tyrosine on the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase and complexes I, II, II-III and IV in cerebral cortex, hippocampus and striatum of rats in development. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old); rats were killed 12 h after last injection. Our results demonstrated that L-tyrosine inhibited the activity of citrate synthase in the hippocampus and striatum, malate dehydrogenase activity was increased in striatum and succinate dehydrogenase, complexes I and II-III activities were inhibited in striatum. However, complex IV activity was increased in hippocampus and inhibited in striatum. By these findings, we suggest that repeated administrations of L-tyrosine cause alterations in energy metabolism, which may be similar to the acute administration in brain of infant rats. Taking together the present findings and evidence from the literature, we hypothesize that energy metabolism impairment could be considered an important pathophysiological mechanism underlying the brain damage observed in patients with tyrosinemia type II.
Collapse
Affiliation(s)
- Gabriela K Ferreira
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pingle SC, Sultana Z, Pastorino S, Jiang P, Mukthavaram R, Chao Y, Bharati IS, Nomura N, Makale M, Abbasi T, Kapoor S, Kumar A, Usmani S, Agrawal A, Vali S, Kesari S. In silico modeling predicts drug sensitivity of patient-derived cancer cells. J Transl Med 2014; 12:128. [PMID: 24884660 PMCID: PMC4030016 DOI: 10.1186/1479-5876-12-128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive disease associated with poor survival. It is essential to account for the complexity of GBM biology to improve diagnostic and therapeutic strategies. This complexity is best represented by the increasing amounts of profiling ("omics") data available due to advances in biotechnology. The challenge of integrating these vast genomic and proteomic data can be addressed by a comprehensive systems modeling approach. METHODS Here, we present an in silico model, where we simulate GBM tumor cells using genomic profiling data. We use this in silico tumor model to predict responses of cancer cells to targeted drugs. Initially, we probed the results from a recent hypothesis-independent, empirical study by Garnett and co-workers that analyzed the sensitivity of hundreds of profiled cancer cell lines to 130 different anticancer agents. We then used the tumor model to predict sensitivity of patient-derived GBM cell lines to different targeted therapeutic agents. RESULTS Among the drug-mutation associations reported in the Garnett study, our in silico model accurately predicted ~85% of the associations. While testing the model in a prospective manner using simulations of patient-derived GBM cell lines, we compared our simulation predictions with experimental data using the same cells in vitro. This analysis yielded a ~75% agreement of in silico drug sensitivity with in vitro experimental findings. CONCLUSIONS These results demonstrate a strong predictability of our simulation approach using the in silico tumor model presented here. Our ultimate goal is to use this model to stratify patients for clinical trials. By accurately predicting responses of cancer cells to targeted agents a priori, this in silico tumor model provides an innovative approach to personalizing therapy and promises to improve clinical management of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Santosh Kesari
- Translational Neuro-Oncology Laboratories, Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
30
|
Abstract
Many genes are likely involved in the control of iron metabolism in brain and in peripheral tissues, and genetically-defined murine strains present the opportunity to investigate genetic variations in iron metabolism. Weanling C57BL/6 (B6) and DBA/2 (D2) mice were divided into two treatment groups receiving distilled water with or without 5000 ppm ferric chloride ad libitum as their sole fluid source for 100 days. Iron overload increased liver, spleen and plasma iron levels in male and female B6 and female D2 mice. In D2 males, liver iron was increased relative to control, but spleen and plasma iron remained unaffected. Brain iron content was not different between control and iron-treated mice in ventral midbrain, caudate, pons or hippocampus, but D2 iron overloaded mice displayed lower iron levels in nucleus accumbens and prefrontal cortex. We conclude that genetic background influences the accumulation of excess iron in the periphery and iron regulation in the central nervous system.
Collapse
Affiliation(s)
- Erica L Unger
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
31
|
Gottfried RJ, Gerring JP, Machell K, Yenokyan G, Riddle MA. The iron status of children and youth in a community mental health clinic is lower than that of a national sample. J Child Adolesc Psychopharmacol 2013; 23:91-100. [PMID: 23480325 PMCID: PMC3609602 DOI: 10.1089/cap.2012.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Iron plays a key role in brain function, and a deficiency of iron has been implicated in various cognitive, motor, and psychiatric disorders. Because of recent evidence that iron deficiency may be related to attention-deficit/hyperactivity disorder (ADHD) and other psychiatric disorders, the goal of this study was to compare the iron status of children and youth seen in a community mental health clinic with a national sample of same-aged subjects. METHODS In this study, a consecutive series of 108 patients (79 males) referred to a community mental health clinic was compared with a National Health and Nutrition Examination Survey (NHANES) sample on measures of iron status. Wilcoxon sign rank and median tests were used to compare distributions of ferritin. Quantile regression was performed to compare the ferritin level in the two samples while adjusting for demographic differences. Chi squared (χ2) was used to compare rates of low hemoglobin in the two samples. RESULTS The iron status of the clinic sample, as measured by ferritin levels (median=23 μg/L), was significantly lower than that of the national sample (median=43 μg/L). After adjustment for age, gender, and race, the clinic sample was found to have 19.2 μg/L lower ferritin than the national sample (95% CI from 7.6 to 30.9, p value=0.001). There were also significantly more subjects in the clinic sample with low hemoglobin than in the national sample. There were no differences in ferritin levels between those patients in the clinic sample with and without an ADHD or other specific psychiatric diagnosis. CONCLUSIONS The ferritin levels of children and youth in a mental health clinic sample were significantly lower than those of the same-aged subjects in a national sample. Therefore, compromised iron status may be an additional biological risk factor for cognitive, behavioral, and psychiatric problems in pediatric populations served by the community mental health clinic.
Collapse
Affiliation(s)
| | - Joan P. Gerring
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kyla Machell
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gayane Yenokyan
- Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Mark A. Riddle
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Wallace LJ. Effects of amphetamine on subcellular distribution of dopamine and DOPAC. Synapse 2012; 66:592-607. [PMID: 22314940 DOI: 10.1002/syn.21546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/03/2012] [Indexed: 02/02/2023]
Abstract
Amphetamine effects on distribution of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and amphetamine in vesicular, cytosolic, and extracellular compartments associated with a striatal varicosity were estimated through use of a computer simulation model. In addition, contribution to overall effects of amphetamine by each of five actions--transport by dopamine transporter (DAT), transport by vesicular monoamine transporter, stimulation of reverse transport, inhibition of monoamine oxidase (MAO), and slowing of dopamine cell firing rate--were evaluated. Amphetamine enters a varicosity almost entirely by DAT and accumulates to very high levels within the varicosity. Both reverse transport by DAT and passive diffusion contribute to continual amphetamine egress across the plasma membrane. Amphetamine enters storage vesicles by both transport and diffusion. The transport portion competes with dopamine storage, resulting in redistribution of approximately half of dopamine from vesicles to cytosol. The high concentration of amphetamine in the cytosol inhibits MAO, protecting cytosolic dopamine. A very small fraction of cytosolic dopamine is moved to extracellular compartment via reverse transport by DAT. The amount of dopamine moved by reverse transport is limited because of competition by very high cytosolic levels of amphetamine. In the presence of amphetamine, rate of dopamine transfer to extracellular compartment is less than control; however, high levels of extracellular dopamine are maintained because amphetamine occupies the DAT, thus limiting dopamine reuptake. Simulation output from a model using exchange-diffusion mechanism of reverse transport does not match all published data that were simulated, suggesting that inward transport of a substrate is not required to initiate reverse transport.
Collapse
Affiliation(s)
- Lane J Wallace
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
33
|
Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates tyrosine hydroxylase through extracellular signal-regulated kinase in rat striatum. Neurochem Int 2011; 59:779-86. [DOI: 10.1016/j.neuint.2011.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/28/2023]
|
34
|
Sultana Z, Paleologou KE, Al-Mansoori KM, Ardah MT, Singh N, Usmani S, Jiao H, Martin FL, Bharath MMS, Vali S, El-Agnaf OMA. Dynamic modeling of α-synuclein aggregation in dopaminergic neuronal system indicates points of neuroprotective intervention: experimental validation with implications for Parkinson's therapy. Neuroscience 2011; 199:303-17. [PMID: 22056602 DOI: 10.1016/j.neuroscience.2011.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/15/2022]
Abstract
Protein aggregation is the major pathological hallmark seen in neurodegenerative disorders such as Parkinson's disease (PD). Alpha-synuclein (αS) is the main component of protein aggregates that form Lewy bodies (LBs) in PD and dementia with LBs. There have been several attempts to intervene in the process of expression, modification, clearance, and aggregation of αS as a therapeutic strategy toward neuroprotection. In this study, we have employed a novel, predictive, system level approach in silico to study four different strategies of anti-aggregation therapies: (a) reduction in αS modifications such as phosphorylation, nitration, or truncation in an approach called "seed clearance;" (b) "anti-oligomerization" approach through blocking the early oligomers formation; (c) "oligomers clearance" process by increasing its lysosomal degradation; and (d) "anti-aggregation" that involves prevention of aggregate formation at a later stage. These strategies were tested in a virtual dopaminergic neuronal system triggered by overexpression (OE) of mutant αS-A53T with or without rotenone (Rot)-induced oxidative stress. The results were compared by analyzing markers related to various end points such as oxidative stress, dopamine (DA) metabolism, proteasome function, survival and apoptosis. The experimental system and anti-oligomerization strategies were recapitulated in vitro in M17 dopaminergic cells overexpressing mutant αS-A53T triggered with Cu(II)-mediated oxidative stress, and the experimental data prospectively corroborated with the predictive results. Through this analysis, we found that intervention in the early part of the aggregation pathway by prevention of oligomer formation and increased clearance is indeed a good neuroprotective strategy, whereas anti-aggregation efforts to break up the aggregate at later stages has negative effects on the system.
Collapse
Affiliation(s)
- Z Sultana
- Cellworks Group Incorporated, 13962 Pierce Road, Saratoga, CA 95070, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sansar W, Ahboucha S, Gamrani H. Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat. Acta Histochem 2011; 113:601-7. [PMID: 20656334 DOI: 10.1016/j.acthis.2010.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 02/02/2023]
Abstract
Lead is an environmental toxin and its effects are principally manifested in the brain. Glial and neuronal changes have been described during development following chronic or acute lead intoxication, however, little is known about the effects of chronic lead intoxication in adults. In this study we evaluated immunohistochemically the glial and dopaminergic systems in adult male Wistar rats. 0.5% (v/v) lead acetate in drinking water was administrated chronically over a 3-month period. Hypertrophic immunoreactive astrocytes were observed in the frontal cortex and other brain structures of the treated animals. Analysis of the astroglial features showed increased number of astrocyte cell bodies and processes in treated rats, an increase confirmed by Western blot. Particular distribution of glial fibrillary acidic protein immunoreactivity was observed within the blood vessel walls in which dense immunoreactive glial processes emanate from astrocytes. Glial changes in the frontal cortex were concomitant with reduced tyrosine hydroxylase immunoreactive neuronal processes, which seem to occur as a consequence of significantly reduced dopaminergic neurons within the nucleus of origin in the substantia nigra. These glial and neuronal changes following lead intoxication may affect animal behavior as evidenced by reduced locomotor activity in an open field test. These findings demonstrate that chronic lead exposure induces astroglial changes, which may compromise neuronal function and consequently animal behavior.
Collapse
|
36
|
Morris RW, Fung SJ, Rothmond DA, Richards B, Ward S, Noble PL, Woodward RA, Weickert CS, Winslow JT. The effect of gonadectomy on prepulse inhibition and fear-potentiated startle in adolescent rhesus macaques. Psychoneuroendocrinology 2010; 35:896-905. [PMID: 20042297 DOI: 10.1016/j.psyneuen.2009.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 11/22/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Sex steroids, such as testosterone, can regulate brain development, cognition and modify psychiatric conditions. However, the role of adolescent testosterone in the emergence of cognitive deficits relevant to psychiatric illness has not been directly studied in primates. We examined whether removing testosterone during adolescence in rhesus macaques would affect prepulse inhibition (PPI) and fear-potentiated startle (FPS), which are translational tests of cognition affected in psychiatric disorders. Prepubertal macaques (30 months old) were castrated (n=6) or sham operated (n=6), and PPI and (FPS) were tested before the onset of puberty (34 months old) and after the pubertal surge in sex hormones 16 months later (50 months old). As expected there were no differences between the gonadectomized and intact groups' level of startle amplitude, PPI or (FPS) before puberty. After puberty, the intact group displayed substantially less PPI than the gonadectomized group, consistent with evidence that PPI is attenuated by endogenous increases in sex hormones. At the end of the study, testosterone among the intact monkeys was also correlated with tyrosine hydroxylase levels in the putamen, suggesting the attenuation of PPI by gonadal sex hormones may be influenced by subcortical dopamine. Thus, puberty involves significant increases in sex hormones, which in turn may modulate subcortical dopamine synthesis and affect cognitive functions impaired in psychiatric illnesses such as schizophrenia.
Collapse
|
37
|
Yeager MP, Coleman RA. In silico evidence for glutathione- and iron-related pathogeneses in Parkinson's disease. J Neurosci Methods 2010; 188:151-64. [DOI: 10.1016/j.jneumeth.2010.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/25/2010] [Accepted: 01/29/2010] [Indexed: 12/20/2022]
|
38
|
Macreadie IG, Bartone N, Sparrow L. Inhibition of Respiratory Growth and Survival in Yeast by Dopamine and Counteraction with Ascorbate or Glutathione. ACTA ACUST UNITED AC 2010; 15:297-301. [DOI: 10.1177/1087057109358920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine is a key monamine neurotransmitter, yet it can also exhibit toxicity to neuronal cells. There are suggestions that dopamine may be neurotoxic due to its propensity to induce the formation of reactive oxygen species, which may in turn adversely affect mitochondrial function and cell viability. In this study, the effects of dopamine or a dopamine reaction product on yeast growth and survival have been explored. Yeast is ideal for such a study because, unlike mammalian cells, yeast cells can be grown even when respiratory function is totally absent. Indeed, dopamine was found to be inhibitory to yeast growth in media where respiratory function was required and cytotoxic to yeast cells suspended in water. The inhibitory effects of dopamine were reduced greatly by the antioxidants ascorbate and glutathione, suggesting the involvement of reactive oxygen species in dopamine-mediated toxicity. It would appear that yeast may offer a convenient model to perform screens for further compounds that may provide protection against dopamine-mediated growth inhibition and toxicity.
Collapse
Affiliation(s)
- Ian G. Macreadie
- CSIRO Molecular and Health Technologies and P-Health Flagship, Parkville, Victoria, Australia
| | - Nick Bartone
- CSIRO Molecular and Health Technologies and P-Health Flagship, Parkville, Victoria, Australia
| | - Lindsay Sparrow
- CSIRO Molecular and Health Technologies and P-Health Flagship, Parkville, Victoria, Australia
| |
Collapse
|
39
|
Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition 2009; 26:411-22. [PMID: 19811894 PMCID: PMC2839073 DOI: 10.1016/j.nut.2009.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 03/15/2009] [Accepted: 05/08/2009] [Indexed: 11/22/2022]
Abstract
Objective Hypothalamic centers integrate external signals of nutrient availability and energy status and initiate responses to maintain homeostasis. Quantifying changes in hypothalamic gene expression in the presence of nutrient excess may identify novel responsive elements. Methods Affymetrix Mouse Genome 430 2.0 oligonucleotide microarrays containing 45 102 probe sets were used to interrogate differential expression of genes in dietary-induced obesity model C57BL6 inbred mice fed a high-fat (35% fat; n = 8) or standard (4% fat; n = 6) diet from 3 to 15 wk of age. Ontologies of regulated genes were examined and expression of selected genes was validated by quantitative real-time polymerase chain reaction. Results One thousand two hundred twelve unique gene transcripts showed altered expression on the microarrays. Gene ontology analysis revealed changes in neuropeptide genes responding to leptin, Pomc, Cart, Npy, and Agrp, compatible with a homeostatic response to high-fat intake, although mean weight increased 2.3-fold compared with standard fed mice (P < 0.001). Neurotransmitter system ontologies revealed upregulation of five genes controlling availability of dopamine. Changes in Th tyrosine hydroxylase (2.1-fold) and Slc18a2 solute carrier family 18 (vesicular monoamine), member 2 (4.4-fold) controlling synthesis and release, and Slc6a3 solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 (4.8-fold), Snca α-synuclein (1.3-fold), and Maoa monoamine oxidase (1.9-fold) limiting availability were confirmed by quantitative real-time polymerase chain reaction. Conclusion Expression of five genes involved in availability of dopamine was increased after a high-fat diet. Failure to reduce dopamine availability sufficiently, to counter the feeding reward effect, could contribute to diet-induced obesity in these mice.
Collapse
|
40
|
Best JA, Nijhout HF, Reed MC. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model. Theor Biol Med Model 2009; 6:21. [PMID: 19740446 PMCID: PMC2755466 DOI: 10.1186/1742-4682-6-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. METHODS We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. RESULTS We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed half-lives of extracellular dopamine under various treatment protocols. CONCLUSION Dopaminergic systems must respond robustly to important biological signals such as bursts, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of tyrosine hydroxylase, the dopamine transporters, and the dopamine autoreceptors.
Collapse
Affiliation(s)
- Janet A Best
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| |
Collapse
|
41
|
Cho CH, Kang SG, Choi JE, Park YM, Lee HJ, Kim L. Association between Antipsychotics-Induced Restless Legs Syndrome and Tyrosine Hydroxylase Gene Polymorphism. Psychiatry Investig 2009; 6:211-5. [PMID: 20046397 PMCID: PMC2796069 DOI: 10.4306/pi.2009.6.3.211] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/05/2009] [Accepted: 07/08/2009] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Restless legs syndrome (RLS) has been reported to be more prevalent in schizophrenic patients who take antipsychotics. The cause of RLS is unknown but associated with dopaminergic deficiency. Tyrosine hydroxylase (TH) is the enzyme responsible for catalyzing the conversion of L-tyrosine to DOPA. The purpose of this study is to determine whether the TH gene Val81Met polymorphism is associated with antipsychotic-induced RLS. METHODS One hundred ninety Korean schizophrenic patients were evaluated by the diagnostic criteria of the International RLS Study Group (IRLSSG). The genotyping was performed by PCR-based methods. RESULTS Of the one hundred ninety schizophrenic patients, 44 (23.2%) were found to have RLS. Although there were no significant associations between TH genotypes or allele frequencies and RLS, when separate analyses were performed by sex (male or female), we detected significant differences in the frequencies of the genotype (chi(2)=6.15, p=0.046) and allele (chi(2)=4.67, p=0.031) of the TH gene Val81Met polymorphism between those with and without RLS in the female patients. CONCLUSION These findings suggest that the TH gene Val81Met SNP might be associated with antipsychotic-induced RLS in female schizophrenic patients.
Collapse
Affiliation(s)
- Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Seung-Gul Kang
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Jung-Eun Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
- Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Young-Min Park
- Department of Neuropsychiatry, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
- Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Leen Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Fortune T, Lurie DI. Chronic low-level lead exposure affects the monoaminergic system in the mouse superior olivary complex. J Comp Neurol 2009; 513:542-58. [PMID: 19226511 DOI: 10.1002/cne.21978] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low-level lead (Pb) exposure is associated with behavioral and cognitive dysfunction, but it is not clear how Pb produces these behavioral changes. Pb has been shown to alter auditory temporal processing in both humans and animals. Auditory temporal processing occurs in the superior olivary complex (SOC) in the brainstem, where it is an important component in sound detection in noisy environments and in selective auditory attention. The SOC receives a serotonergic innervation from the dorsal raphe, and serotonin has been implicated in auditory temporal processing within the brainstem and inferior colliculus. Because Pb exposure modulates auditory temporal processing, the serotonergic system is a potential target for Pb. The current study was undertaken to determine whether developmental Pb exposure preferentially changes the serotonergic system within the SOC. Pb-treated mice were exposed to no Pb, very low Pb (0.01 mM), or low Pb (0.1 mM) throughout gestation and through 21 days postnatally. Brainstem sections from control and Pb-exposed mice were immunostained for the vesicular monoamine transporter 2 (VMAT2), serotonin (5-HT), and dopamine-beta-hydroxylase (DbetaH; a marker for norepinephrine) in order to elucidate the effect of Pb on monoaminergic input into the SOC. Sections were also immunolabeled with antibodies to vesicular glutamate transporter 1 (VGLUT1), vesicular gamma-aminobutyric acid (GABA) transporter (VGAT), and vesicular acetylcholine transporter (VAChT) to determine whether Pb exposure alters the glutaminergic, GABAergic, or cholinergic systems. Pb exposure caused a significant decrease in VMAT2, 5-HT, and DbetaH expression, whereas VGLUT1, VGAT, and VAChT showed no change. These results provide evidence that Pb exposure during development alters normal monoaminergic expression in the auditory brainstem.
Collapse
Affiliation(s)
- Tyler Fortune
- Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, Montana 59812-1552, USA
| | | |
Collapse
|
43
|
Sass MB, Lorenz AN, Green RL, Coleman RA. A pragmatic approach to biochemical systems theory applied to an α-synuclein-based model of Parkinson's disease. J Neurosci Methods 2009; 178:366-77. [DOI: 10.1016/j.jneumeth.2008.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 11/24/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
44
|
Chetsawang B, Chetsawang J, Govitrapong P. Protection against cell death and sustained tyrosine hydroxylase phosphorylation in hydrogen peroxide- and MPP-treated human neuroblastoma cells with melatonin. J Pineal Res 2009; 46:36-42. [PMID: 18507712 DOI: 10.1111/j.1600-079x.2008.00605.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuroprotective effects of melatonin against oxidative stress-induced neuronal cell degeneration in human SH-SY5Y neuroblastoma cells were investigated in this report. The results demonstrate that exogenous administration of H(2)O(2) and 1-methyl, 4-phenyl, pyridinium ion (MPP(+)) significantly decreased cell viability in SH-SY5Y cultured cells. Desipramine, a monoamine uptake blocker was able to abolish the toxic effects of MPP(+) but not H(2)O(2) in reduction of cell viability. Conversely, melatonin reversed the toxic effects of H(2)O(2) and MPP(+) on cell viability. In addition, the reduction of phosphorylation of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis, and phosphorylation of cyclic AMP responsive element-binding protein by H(2)O(2) and MPP(+) was also diminished by melatonin. These results demonstrate some effective roles of melatonin on neuroprotection and its action on the modulation of tyrosine hydroxylase phosphorylation.
Collapse
Affiliation(s)
- Banthit Chetsawang
- Neuro-Behavioural Biology Center, Institute of Science and Technology for Research and Development, Mahidol University, Salaya, Nakhonpathom, Thailand.
| | | | | |
Collapse
|
45
|
Kobayashi H, Fukuhara K, Tada-Oikawa S, Yada Y, Hiraku Y, Murata M, Oikawa S. The mechanisms of oxidative DNA damage and apoptosis induced by norsalsolinol, an endogenous tetrahydroisoquinoline derivative associated with Parkinson's disease. J Neurochem 2008; 108:397-407. [PMID: 19012744 DOI: 10.1111/j.1471-4159.2008.05774.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrahydroisoquinoline (TIQ) derivatives are putative neurotoxins that may contribute to the degeneration of dopaminergic neurons in Parkinson's disease. One TIQ, norsalsolinol (NorSAL), is present in dopamine-rich areas of human brain, including the substantia nigra. Here, we demonstrate that NorSAL reduces cell viability and induces apoptosis via cytochrome c release and caspase 3 activation in SH-SY5Y human neuroblastoma cells. Cytochrome c release, caspase 3 activation, and apoptosis induction were all inhibited by the antioxidant N-acetylcysteine. Thus, reactive oxygen species (ROS) contribute to apoptosis induced by NorSAL. Treatment with NorSAL also increased levels of oxidative damage to DNA, a stimulus for apoptosis, in SH-SY5Y. To clarify the mechanism of intracellular DNA damage, we examined the DNA damage caused by NorSAL using (32)P-5'-end-labeled isolated DNA fragments. NorSAL induced DNA damage in the presence of Cu(II). Catalase and bathocuproine, a Cu(I) chelator, inhibited this DNA damage, suggesting that ROS such as the Cu(I)-hydroperoxo complex derived from the reaction of H(2)O(2) with Cu(I), promote DNA damage by NorSAL. In summary, NorSAL-generated ROS induced oxidative DNA damage, which led to caspase-dependent apoptosis in neuronal cells.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Vali S, Chinta SJ, Peng J, Sultana Z, Singh N, Sharma P, Sharada S, Andersen JK, Bharath MS. Insights into the effects of alpha-synuclein expression and proteasome inhibition on glutathione metabolism through a dynamic in silico model of Parkinson's disease: validation by cell culture data. Free Radic Biol Med 2008; 45:1290-301. [PMID: 18761401 PMCID: PMC2744580 DOI: 10.1016/j.freeradbiomed.2008.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/26/2008] [Accepted: 08/01/2008] [Indexed: 11/21/2022]
Abstract
Dopaminergic neurodegeneration during Parkinson disease (PD) involves several pathways including proteasome inhibition, alpha-synuclein (alpha-syn) aggregation, mitochondrial dysfunction, and glutathione (GSH) depletion. We have utilized a systems biology approach and built a dynamic model to understand and link the various events related to PD pathophysiology. We have corroborated the modeling data by examining the effects of alpha-syn expression in the absence and presence of proteasome inhibition on GSH metabolism in dopaminergic neuronal cultures. We report here that the expression of the mutant A53T form of alpha-syn is neurotoxic and causes GSH depletion in cells after proteasome inhibition, compared to wild-type alpha-syn-expressing cells and vector control. Modeling data predicted that GSH depletion in these cells was due to ATP loss associated with mitochondrial dysfunction. ATP depletion elicited by combined A53T expression and proteasome inhibition results in decreased de novo synthesis of GSH via the rate-limiting enzyme gamma-glutamyl cysteine ligase. Based on these data and other recent reports, we propose a novel dynamic model to explain how the presence of mutated alpha-syn protein or proteasome inhibition may individually impact on mitochondrial function and in combination result in alterations in GSH metabolism via enhanced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shireen Vali
- Cell Works Group, Inc., 3rd Floor, West Wing, “Neil-Rao Tower,” 118, Road 3, EPIP, White Field, Bangalore 560066, India
| | - Shankar J. Chinta
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Jun Peng
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Zeba Sultana
- Cell Works Group, Inc., 3rd Floor, West Wing, “Neil-Rao Tower,” 118, Road 3, EPIP, White Field, Bangalore 560066, India
| | - Neetu Singh
- Cell Works Group, Inc., 3rd Floor, West Wing, “Neil-Rao Tower,” 118, Road 3, EPIP, White Field, Bangalore 560066, India
| | - Purushottam Sharma
- Cell Works Group, Inc., 3rd Floor, West Wing, “Neil-Rao Tower,” 118, Road 3, EPIP, White Field, Bangalore 560066, India
| | - S. Sharada
- Cell Works Group, Inc., 3rd Floor, West Wing, “Neil-Rao Tower,” 118, Road 3, EPIP, White Field, Bangalore 560066, India
| | - Julie K. Andersen
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Corresponding authors. M.M. Srinivas Bharath is to be contacted at fax: +91 080 26564830. J.K. Andersen, fax: +1 415 209-2231. (J.K. Andersen), (M.M.S. Bharath)
| | - M.M. Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
- Corresponding authors. M.M. Srinivas Bharath is to be contacted at fax: +91 080 26564830. J.K. Andersen, fax: +1 415 209-2231. (J.K. Andersen), (M.M.S. Bharath)
| |
Collapse
|
47
|
Qi Z, Miller GW, Voit EO. Computational systems analysis of dopamine metabolism. PLoS One 2008; 3:e2444. [PMID: 18568086 PMCID: PMC2435046 DOI: 10.1371/journal.pone.0002444] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/29/2008] [Indexed: 11/18/2022] Open
Abstract
A prominent feature of Parkinson's disease (PD) is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.
Collapse
Affiliation(s)
- Zhen Qi
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, Georgia, United States of America
- Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gary W. Miller
- Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Vali S, Mythri RB, Jagatha B, Padiadpu J, Ramanujan KS, Andersen JK, Gorin F, Bharath MMS. Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson's disease: a dynamic model. Neuroscience 2007; 149:917-30. [PMID: 17936517 DOI: 10.1016/j.neuroscience.2007.08.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 08/02/2007] [Accepted: 08/13/2007] [Indexed: 12/21/2022]
Abstract
UNLABELLED Oxidative/nitrosative stress and mitochondrial dysfunction have been implicated in the degeneration of dopaminergic neurons in the substantia nigra during Parkinson's disease (PD). During early stages of PD, there is a significant depletion of the thiol antioxidant glutathione (GSH), which may lead to oxidative stress, mitochondrial dysfunction, and ultimately neuronal cell death. Mitochondrial complex I (CI) is believed to be the central player to the mitochondrial dysfunction occurring in PD. We have generated a dynamic, mechanistic model for mitochondrial dysfunction associated with PD progression that is activated by rotenone, GSH depletion, increased nitric oxide and peroxynitrite. The potential insults independently inhibit CI and other complexes of the electron transport chain, drop the proton motive force, and reduce ATP production, ultimately affecting the overall mitochondrial performance. We show that mitochondrial dysfunction significantly affects glutathione synthesis thereby increasing the oxidative damage and further exacerbating the toxicities of these mitochondrial agents resulting in neurodegeneration. Rat dopaminergic neuronal cell culture and in vitro experiments using mouse brain mitochondria were employed to validate important features of the model. MAJOR CONCLUSIONS Using a combination of experimental and in silico modeling approaches, we have demonstrated the interdependence of mitochondrial function with GSH metabolism in relation to neurodegeneration in PD.
Collapse
Affiliation(s)
- S Vali
- Cell Works Group Inc., AECS Layout, Marathahalli, Bangalore 560037, India
| | | | | | | | | | | | | | | |
Collapse
|