1
|
Kajander K, Nowak N, Vaziri N, Vallittu PK, Heino TJ, Määttä JA. Unraveling the immunomodulatory and metabolic effects of bioactive glass S53P4 on macrophages in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:13. [PMID: 39853555 PMCID: PMC11762225 DOI: 10.1007/s10856-025-06861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear. According to the results presented here, the lipopolysaccharide (LPS) induced suppression in oxidative phosphorylation is rescued in macrophages cultured with BG S53P4 before the inflammatory stimulus. Additionally, BG S53P4-exposed macrophages expressed lower mRNA levels of inflammatory cytokines Il6 and Il1b, as well as demonstrated decreased activation of inflammatory interferon regulatory factor (IRF) and NF-κB pathways and nitrogen oxide secretion in response to LPS. These results did not rely on cells being in direct contact with the material as similar effects were observed in the presence of BG S53P4-conditioned medium. Our findings link the immunomodulatory properties of BG S53P4 and macrophage metabolism, which improves our understanding of the mechanisms underlying the clinical efficacy of bioactive glasses.
Collapse
Affiliation(s)
- Karoliina Kajander
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
| | - Nicole Nowak
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Negin Vaziri
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Welfare District of South-West Finland, Turku, Finland
| | - Terhi J Heino
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jorma A Määttä
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
| |
Collapse
|
2
|
Nowotnick AG, Xi Z, Jin Z, Khalatbarizamanpoor S, Brauer DS, Löffler B, Jandt KD. Antimicrobial Biomaterials Based on Physical and Physicochemical Action. Adv Healthc Mater 2024; 13:e2402001. [PMID: 39301968 DOI: 10.1002/adhm.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Developing effective antimicrobial biomaterials is a relevant and fast-growing field in advanced healthcare materials. Several well-known (e.g., traditional antibiotics, silver, copper etc.) and newer (e.g., nanostructured, chemical, biomimetic etc.) approaches have been researched and developed in recent years and valuable knowledge has been gained. However, biomaterials associated infections (BAIs) remain a largely unsolved problem and breakthroughs in this area are sparse. Hence, novel high risk and potential high gain approaches are needed to address the important challenge of BAIs. Antibiotic free antimicrobial biomaterials that are largely based on physical action are promising, since they reduce the risk of antibiotic resistance and tolerance. Here, selected examples are reviewed such antimicrobial biomaterials, namely switchable, protein-based, carbon-based and bioactive glass, considering microbiological aspects of BAIs. The review shows that antimicrobial biomaterials mainly based on physical action are powerful tools to control microbial growth at biomaterials interfaces. These biomaterials have major clinical and application potential for future antimicrobial healthcare materials without promoting microbial tolerance. It also shows that the antimicrobial action of these materials is based on different complex processes and mechanisms, often on the nanoscale. The review concludes with an outlook and highlights current important research questions in antimicrobial biomaterials.
Collapse
Affiliation(s)
- Adrian G Nowotnick
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhongqian Xi
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhaorui Jin
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Sadaf Khalatbarizamanpoor
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Delia S Brauer
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Bettina Löffler
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| |
Collapse
|
3
|
Xu Y, Bei Z, Li M, Ye L, Chu B, Zhao Y, Qian Z. Biomedical application of materials for external auditory canal: History, challenges, and clinical prospects. Bioact Mater 2024; 39:317-335. [PMID: 38827173 PMCID: PMC11139775 DOI: 10.1016/j.bioactmat.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024] Open
Abstract
Biomaterials play an integral role in treatment of external auditory canal (EAC) diseases. Regarding the special anatomic structure and physiological characteristics of EAC, careful selection of applicable biomaterials was essential step towards effective management of EAC conditions. The bioactive materials can provide reasonable biocompatibility, reduce risk of host pro-inflammatory response and immune rejection, and promote the healing process. In therapeutic procedure, biomaterials were employed for covering or packing the wound, protection of the damaged tissue, and maintaining of normal structures and functions of the EAC. Therefore, understanding and application of biomaterials was key to obtaining great rehabilitation in therapy of EAC diseases. In clinical practice, biomaterials were recognized as an important part in the treatment of different EAC diseases. The choice of biomaterials was distinct according to the requirements of various diseases. As a result, awareness of property regarding different biomaterials was fundamental for appropriate selection of therapeutic substances in different EAC diseases. In this review, we firstly introduced the characteristics of EAC structures and physiology, and EAC pathologies were summarized secondarily. From the viewpoint of biomaterials, the different materials applied to individual diseases were outlined in categories. Besides, the underlying future of therapeutic EAC biomaterials was discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Li
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Gatti SD, Gaddi D, Turati M, Leone G, Arts JJ, Pessina F, Carminati M, Zatti G, De Rosa L, Bigoni M. Clinical outcomes and complications of S53P4 bioactive glass in chronic osteomyelitis and septic non-unions: a retrospective single-center study. Eur J Clin Microbiol Infect Dis 2024; 43:489-499. [PMID: 38195783 DOI: 10.1007/s10096-023-04737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Dead space management following debridement surgery in chronic osteomyelitis or septic non-unions is one of the most crucial and discussed steps for the success of the surgical treatment of these conditions. In this retrospective clinical study, we described the efficacy and safety profile of surgical debridement and local application of S53P4 bioactive glass (S53P4 BAG) in the treatment of bone infections. METHODS A consecutive single-center series of 38 patients with chronic osteomyelitis (24) and septic non-unions (14), treated with bioactive glass S53P4 as dead space management following surgical debridement between May 2015 and November 2020, were identified and evaluated retrospectively. RESULTS Infection eradication was reached in 22 out of 24 patients (91.7%) with chronic osteomyelitis. Eleven out of 14 patients (78.6%) with septic non-union achieved both fracture healing and infection healing in 9.1 ± 4.9 months. Three patients (7.9%) developed prolonged serous discharge with wound dehiscence but healed within 2 months with no further surgical intervention. Average patient follow-up time was 19.8 months ± 7.6 months. CONCLUSION S53P4 bioactive glass is an effective and safe therapeutic option in the treatment of chronic osteomyelitis and septic non-unions because of its unique antibacterial properties, but also for its ability to generate a growth response in the remaining healthy bone at the bone-glass interface.
Collapse
Affiliation(s)
| | - Diego Gaddi
- Department of Orthopedic Surgery, Policlinico San Pietro, Ponte San Pietro, Italy
| | - Marco Turati
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy.
- Orthopedic Department, IRCCS San Gerardo dei Tintori, Via Pergolesi, 33, 20900, Monza, Italy.
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza (Italy), Grenoble, France.
- Department of Paediatric Orthopedic Surgery, Hospital Couple Enfants, Grenoble Alpes University, Grenoble, France.
| | - Giulio Leone
- Orthopedic Department, IRCCS San Gerardo dei Tintori, Via Pergolesi, 33, 20900, Monza, Italy
| | - Jacobus J Arts
- Department Orthopaedic Biomechanics, Faculty Biomedical Engineering, Eindhoven University of Technology TU/e, Eindhoven, Netherlands
- Department Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Fabio Pessina
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
| | - Mattia Carminati
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
| | - Giovanni Zatti
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
- Orthopedic Department, IRCCS San Gerardo dei Tintori, Via Pergolesi, 33, 20900, Monza, Italy
| | - Laura De Rosa
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
- Orthopedic Department, IRCCS San Gerardo dei Tintori, Via Pergolesi, 33, 20900, Monza, Italy
| | - Marco Bigoni
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
- Department of Orthopedic Surgery, Policlinico San Pietro, Ponte San Pietro, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza (Italy), Grenoble, France
| |
Collapse
|
5
|
Teja KV, Janani K, Srivastava KC, Shrivastava D, Natoli V, Di Blasio M, Cicciu M, Minervini G. Comparative evaluation of antimicrobial efficacy of different combinations of calcium hydroxide against Enterococcus faecalis. BMC Oral Health 2023; 23:849. [PMID: 37951871 PMCID: PMC10638705 DOI: 10.1186/s12903-023-03552-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The study aims to compare the synergistic antibacterial efficacy of different combinations of calcium hydroxide as an intracanal medicament against E. faecalis. MATERIAL AND METHODS The current study included four hundred extracted human permanent mandibular premolar teeth. After complete chemo-mechanical preparation, the middle third of the root was sectioned using a rotary diamond disc and a total of 400 samples were obtained. The specimens were inoculated with E. faecalis for 21 days. After that, specimens were divided into five groups (n = 80) based on materials used for the disinfection of samples: Group I, calcium hydroxide alone; Group II, calcium hydroxide + 2% chlorhexidine gel; Group III, calcium hydroxide + 2% chitosan gel; Group IV, calcium hydroxide + 0.02% silver nanoparticle gel; Group V, calcium hydroxide + Bioactive glass S53P4. Dentin shavings from the apical third were obtained from the inner third of dentin were obtained using gates glidden no.1 to the apical depth, followed by no.2, 3, 4 and 5 analyzed for E. faecalis using the culture method. One-way analysis of variance (ANOVA) was used for data analysis, followed by post-hoc Tukey's test for multiple comparisons of means to check the difference in bacterial inhibition between the groups. RESULTS ANOVA results revealed a significant reduction of bacterial counts in all the groups compared (p < 0.001). Intergroup comparison showed maximum bacterial reduction (p < 0.001) with calcium hydroxide + bioactive glass S53P4 compared with other groups. CONCLUSION Synergistic effect of calcium hydroxide showed better bacterial reduction compared to calcium hydroxide alone. Among the combinations evaluated, calcium hydroxide with bioactive glass, found to be most effective compared to other groups.
Collapse
Affiliation(s)
- Kavalipurapu Venkata Teja
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College & Hospitals, Saveetha University, Chennai, Tamilnadu, India
| | - Krishnamchari Janani
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, Chennai, Tamilnadu, India
| | - Kumar Chandan Srivastava
- Department of Oral & Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, 72345, Sakaka, Saudi Arabia.
| | - Deepti Shrivastava
- Department of Preventive Dentistry, College of Dentistry, Jouf University, 72345, Sakaka, Saudi Arabia.
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Valentino Natoli
- Department of Dentistry, School of Biomedical and Health Sciences, European University of Madrid, 28670, Madrid, Spain
| | - Marco Di Blasio
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, 43126, Parma, Italy.
| | - Macro Cicciu
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, 95123, Catania, Italy
| | - Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", 80121, Naples, Italy
- Saveetha Dental College & Hospitals Saveetha Institute of Medical & Technical Sciences Saveetha University, Saavetha Dental College, Chennai, India
| |
Collapse
|
6
|
Vafa E, Tayebi L, Abbasi M, Azizli MJ, Bazargan-Lari R, Talaiekhozani A, Zareshahrabadi Z, Vaez A, Amani AM, Kamyab H, Chelliapan S. A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116960-116983. [PMID: 36456674 DOI: 10.1007/s11356-022-24176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The introduction of bioactive glasses (BGs) precipitated a paradigm shift in the medical industry and opened the path for the development of contemporary regenerative medicine driven by biomaterials. This composition can bond to live bone and can induce osteogenesis by the release of physiologically active ions. 45S5 BG products have been transplanted effectively into millions of patients around the world, primarily to repair bone and dental defects. Over the years, many other BG compositions have been introduced as innovative biomaterials for repairing soft tissue and delivering drugs. When research first started, many of the accomplishments that have been made today were unimaginable. It appears that the true capacity of BGs has not yet been realized. Because of this, research involving BGs is extremely fascinating. However, to be successful, it requires interdisciplinary cooperation between physicians, glass chemists, and bioengineers. The present paper gives a picture of the existing clinical uses of BGs and illustrates key difficulties deserving to be faced in the future. The challenges range from the potential for BGs to be used in a wide variety of applications. We have high hopes that this paper will be of use to both novice researchers, who are just beginning their journey into the world of BGs, as well as seasoned scientists, in that it will promote conversation regarding potential additional investigation and lead to the discovery of innovative medical applications for BGs.
Collapse
Affiliation(s)
- Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Azizli
- Department of Chemistry and Chemical Engineering, Islamic Azad University, Rasht, Rasht Branch, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran
- Alavi Educational and Cultural Complex, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohamad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India, Chennai, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Holmström A, Meriläinen A, Hyvönen J, Nolvi A, Ylitalo T, Steffen K, Björkenheim R, Strömberg G, Nieminen HJ, Kassamakov I, Pajarinen J, Hupa L, Salmi A, Hæggström E, Lindfors NC. Evaluation of bone growth around bioactive glass S53P4 by scanning acoustic microscopy co-registered with optical interferometry and elemental analysis. Sci Rep 2023; 13:6646. [PMID: 37095138 PMCID: PMC10126192 DOI: 10.1038/s41598-023-33454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Bioactive glass (BAG) is a bone substitute that can be used in orthopaedic surgery. Following implantation, the BAG is expected to be replaced by bone via bone growth and gradual degradation of the BAG. However, the hydroxyapatite mineral forming on BAG resembles bone mineral, not providing sufficient contrast to distinguish the two in X-ray images. In this study, we co-registered coded-excitation scanning acoustic microscopy (CESAM), scanning white light interferometry (SWLI), and scanning electron microscopy with elemental analysis (Energy Dispersive X-ray Spectroscopy) (SEM-EDX) to investigate the bone growth and BAG reactions on a micron scale in a rabbit bone ex vivo. The acoustic impedance map recorded by the CESAM provides high elasticity-associated contrast to study materials and their combinations, while simultaneously producing a topography map of the sample. The acoustic impedance map correlated with the elemental analysis from SEM-EDX. SWLI also produces a topography map, but with higher resolution than CESAM. The two topography maps (CESAM and SWLI) were in good agreement. Furthermore, using information from both maps simultaneously produced by the CESAM (acoustic impedance and topography) allowed determining regions-of-interest related to bone formation around the BAG with greater ease than from either map alone. CESAM is therefore a promising tool for evaluating the degradation of bone substitutes and the bone healing process ex vivo.
Collapse
Affiliation(s)
- Axi Holmström
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Antti Meriläinen
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Jere Hyvönen
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Anton Nolvi
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Tuomo Ylitalo
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Kari Steffen
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Robert Björkenheim
- Department of Orthopaedics and Traumatology, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Gustav Strömberg
- Department of Hand Surgery, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Heikki J Nieminen
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ivan Kassamakov
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Jukka Pajarinen
- Department of Plastic Surgery, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Ari Salmi
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Edward Hæggström
- Electronics Research Laboratory, Department of Physics, University of Helsinki, Helsinki, Finland
| | - Nina C Lindfors
- Department of Hand Surgery, Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Kroon VJ, Mes SW, Borggreven PA, van de Langenberg R, Colnot DR, Quak JJ. Cholesteatoma surgery in the pediatric population: remaining challenges in the era of mastoid obliteration. Eur Arch Otorhinolaryngol 2023; 280:1713-1722. [PMID: 36208330 PMCID: PMC9988747 DOI: 10.1007/s00405-022-07669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To present the first pediatric study on the safety and efficacy of mastoid obliteration using S53P4 bioactive glass (BAG) for cholesteatoma surgery. METHODS A single-center retrospective cohort study was conducted. Inclusion criteria were pediatric cases (≤ 18 years) and at least at least one year of follow-up including non-echo planar diffusion-weighted MRI to assess cholesteatoma recidivism. Both canal wall up (CWU) and canal wall down (CWD) procedures were evaluated. RESULTS A total of 61 cases (56 patients) were included. Most cases had an otologic history before the development of the cholesteatoma. CWU procedure was performed in 18 cases (30%) and CWD procedure in 43 cases (70%). The cholesteatoma recidivism rate was 33% after a mean follow-up period of 58 months. Kaplan-Meier curve estimated a 5-year recidivism rate of 40%. Few complications were seen that were all minor and resolved spontaneously or after local or systemic treatment. Control of the infection (merchant grade 0-1) was achieved in 98% of the cases. Closure of the air-bone gap within 20 dB was achieved in 22% of the cases with complete audiometric evaluation. CONCLUSION In this MRI-controlled study, we show the safety and efficacy of S53P4 BAG for mastoid obliteration in a pediatric cholesteatoma cohort. Postoperative complications were both rare and minor, and a dry ear was achieved in almost all patients. Nevertheless, persistent hearing loss and the apparent high recidivism rate reflect the challenging nature of pediatric cholesteatoma.
Collapse
Affiliation(s)
- Victor J Kroon
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands.
- Faculty of Medicine, University Utrecht, Utrecht, The Netherlands.
| | - Steven W Mes
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
- Otolaryngology-Head and Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Pepijn A Borggreven
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| | - Rick van de Langenberg
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| | - David R Colnot
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands
| | - Jasper J Quak
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht, Bosboomstraat 1, 3582 KE, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Moritz N, Liesmäki O, Plyusnin A, Keränen P, Kulkova J. Load-bearing composite fracture-fixation devices with tailored fibre placement for toy-breed dogs. Res Vet Sci 2023; 156:66-80. [PMID: 36791579 DOI: 10.1016/j.rvsc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Fibre reinforced composites are attractive materials for hard tissue reconstructions, due to the high strength and low flexural modulus. However, lack of contourability in the operation theatre inhibits their clinical applications. The study presents a novel in situ contourable composite implant system for load-bearing conditions. The implant system consists of a thin bioresorbable shell with several cavities, much like bubble-wrap. The central cavity contains a semi-flexible glass fibre preform prepared using Tailored Fibre Placement method. The preform is either pre-impregnated with a light curable resin, or the resin is injected into the cavity during the surgical procedure, followed by light curing. The semi-flexible glass fibre preforms were also examined as separate devices, "miniplates". Two types of miniplates were scrutinized, a simplified pilot design and a spatially refined, "optimized" design. The optimized miniplates were implemented as biostable and bioresorbable versions. The feasibility of the in situ contourable composite implant system was demonstrated. The potential of Tailored Fibre Placement for the semi-flexible glass fibre preforms and miniplates was confirmed in a series of biomechanical tests. However, structural optimization is required. Antebrachial fractures in toy-breeds of dogs are exemplar veterinary applications of the devices; further applications in veterinary and human patients are foreseen.
Collapse
Affiliation(s)
- Niko Moritz
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Oliver Liesmäki
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Artem Plyusnin
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Pauli Keränen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Julia Kulkova
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland.
| |
Collapse
|
10
|
Pajares-Chamorro N, Lensmire JM, Hammer ND, Hardy JW, Chatzistavrou X. Unraveling the mechanisms of inhibition of silver-doped bioactive glass-ceramic particles. J Biomed Mater Res A 2022; 111:975-994. [PMID: 36583930 DOI: 10.1002/jbm.a.37482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Infections are a major concern in orthopedics. Antibacterial agents such as silver ions are of great interest as broad-spectrum biocides and have been incorporated into bioactive glass-ceramic particles to control the release of ions within a therapeutic concentration and provide tissue regenerative properties. In this work, the antibacterial capabilities of silver-doped bioactive glass (Ag-BG) microparticles were explored to reveal the unedited mechanisms of inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial properties were not limited to the delivery of silver ions but rather a combination of antibacterial degradation by-products. For example, nano-sized debris punctured holes in bacteria membranes, osmotic effects, and reactive oxygen species causing oxidative stress and almost 40% of the inhibition. Upon successive Ag-BG treatments, MRSA underwent phenotypic and genomic mutations which were not only insufficient to develop resistance but instead, the clones became more sensitive as the treatment was re-delivered. Additionally, the unprecedented restorative functionality of Ag-BG allowed the effective use of antibiotics that MRSA resists. The synergy mechanism was mainly identified for combinations targeting cell-wall activity and their action was proven in biofilm-like and virulent conditions. Unraveling these mechanisms may offer new insights into how to tailor healthcare materials to prevent or debilitate infections and join the fight against antibiotic resistance in clinical cases.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Josh M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jonathan W Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.,Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Yang X, Yu Q, Gao W, Tang X, Yi H, Tang X. The mechanism of metal-based antibacterial materials and the progress of food packaging applications: A review. CERAMICS INTERNATIONAL 2022; 48:34148-34168. [PMID: 36059853 PMCID: PMC9419445 DOI: 10.1016/j.ceramint.2022.08.249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 05/13/2023]
Abstract
Food packages have been detected carrying novel coronavirus in multi-locations since the outbreak of COVID-19, causing major concern in the field of food safety. Metal-based supported materials are widely used for sterilization due to their excellent antibacterial properties as well as low biological resistance. As the principal part of antibacterial materials, the active component, commonly referred to Ag, Cu, Zn, etc., plays the main role in inhibiting and killing pathogenic microorganisms by destroying the structure of cells. As another composition of metal-based antibacterial materials, the carrier could support and disperse the active component, which on one hand, could effectively decrease the usage amount of active component, on the other hand, could be processed into various forms to broaden the application range of antibacterial materials. Different from other metal-based antibacterial reviews, in order to highlight the detailed function of various carriers, we divided the carriers into biocompatible and adsorptable types and discussed their different antibacterial effects. Moreover, a novel substitution antibacterial mechanism was proposed. The coating and shaping techniques of metal-based antibacterial materials as well as their applications in food storage at ambient and low temperatures are also comprehensively summarized. This review aims to provide a theoretical basis and reference for researchers in this field to develop new metal-based antibacterial materials.
Collapse
Affiliation(s)
- Xiaotong Yang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingjun Yu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Wei Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
12
|
Kroon VJ, Mes SW, Borggreven PA, van de Langenberg R, Colnot DR, Quak JJ. Mastoid Obliteration Using S53P4 Bioactive Glass in Cholesteatoma Surgery: A 10-Year Single-Center Experience in 173 Adult Patients with Long-Term Magnetic Resonance Imaging Controlled Follow-up. Otol Neurotol 2022; 43:1181-1188. [PMID: 36099589 PMCID: PMC9671595 DOI: 10.1097/mao.0000000000003685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To present the long-term outcomes of mastoid obliteration in cholesteatoma surgery using S53P4 bioactive glass (BAG) in an adult population. STUDY DESIGN Retrospective cohort study. SETTING Single-center study. PATIENTS All 173 adult patients who underwent primary or revision surgery for cholesteatoma with mastoid obliteration using S53P4 BAG with at least 1 year of follow-up including nonecho planar diffusion-weighted magnetic resonance imaging (MRI) (non-EP DWI MRI) and/or second-look surgery to evaluate recidivism. Both canal wall up (CWU) and canal wall down (CWD) procedures were included. INTERVENTIONS Patients underwent CWU or CWD mastoidectomy using S53P4 BAG. MAIN OUTCOME AND MEASURES Cholesteatoma recidivism, postoperative complications, Merchant grade, hearing outcome. RESULTS Cholesteatoma recidivism was assessed by MRI in 97% of all cases and second-look surgery look surgery in 3% of cases. After a mean follow-up period of 53 months, cholesteatoma recidivism was seen in 10% of the cases (n = 18). Using the Kaplan-Meier curve to extrapolate, a 5-year recidivism rate of 12% was estimated. Only minor complications occurred, all resolving spontaneously or after minor treatment. Merchant grade of 0 to 1 was achieved 95% of the patients, no persistently wet ears were observed. Closure of the air-bone gap within 20 dB was possible in 32%. CONCLUSION In this long-term (up to 10 yr) follow-up study, we demonstrated the safety of S53P4 BAG. Minimal and only minor postoperative complications were observed. The effectiveness of BAG was indicated by the low rate of recidivism, even when using non-EP DWI MRI, a sensitive and specific noninvasive technique to detect cholesteatoma recidivism.
Collapse
Affiliation(s)
| | - Steven W Mes
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht
| | - Pepijn A Borggreven
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht
| | | | - David R Colnot
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht
| | - Jasper J Quak
- Department of Otolaryngology and Head and Neck Surgery, Diakonessenhuis Utrecht
| |
Collapse
|
13
|
Kurtuldu F, Mutlu N, Boccaccini AR, Galusek D. Gallium containing bioactive materials: A review of anticancer, antibacterial, and osteogenic properties. Bioact Mater 2022; 17:125-146. [PMID: 35386441 PMCID: PMC8964984 DOI: 10.1016/j.bioactmat.2021.12.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The incorporation of gallium into bioactive materials has been reported to enhance osteogenesis, to influence blood clotting, and to induce anti-cancer and anti-bacterial activity. Gallium-doped biomaterials prepared by various techniques include melt-derived and sol-gel-derived bioactive glasses, calcium phosphate bioceramics, metals and coatings. In this review, we summarize the recently reported developments in antibacterial, anticancer, osteogenesis, and hemostasis properties of Ga-doped biomaterials and briefly outline the mechanisms leading to Ga biological effects. The key finding is that gallium addition to biomaterials has great potential for treating bone-related diseases since it can be efficiently transferred to the desired region at a controllable rate. Besides, it can be used as a potential substitute for antibiotics for the inhibition of infections during the initial and advanced phases of the wound healing process. Ga is also used as an anticancer agent due to the increased concentration of gallium around excessive cell proliferation (tumor) sites. Moreover, we highlight the possibility to design different therapeutic approaches aimed at increasing the efficiency of the use of gallium containing bioactive materials for multifunctional applications.
Collapse
Affiliation(s)
- Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Nurshen Mutlu
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Dušan Galusek
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, Študentská 2, 911 50, Trenčín, Slovakia
| |
Collapse
|
14
|
Yun J, Burrow MF, Matinlinna JP, Wang Y, Tsoi JKH. A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites. J Funct Biomater 2022; 13:jfb13040208. [PMID: 36412849 PMCID: PMC9680275 DOI: 10.3390/jfb13040208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
This review aims to provide a comprehensive analysis of the characterizations of bioactive glass (BAG)-loaded dental resin-based composite materials. Online databases (Web of Science, PubMed, and Science Direct) were used to collect data published from January 2011 to January 2022. Only BAG-containing resin adhesive and resin restorative composites are discussed in this narrative review. BAG-loaded resin composites exhibit excellent mineralization ability reflecting enhanced ion release, pH elevation, and apatite formation, especially regarding high BAG loading. This aids the anti-demineralization and remineralization of teeth. Furthermore, BAG-loaded resin composites demonstrated in vitro biocompatibility and antibacterial performance. It has been suggested that BAG fillers with small particle sizes and no more than 20 wt% in terms of loading amount should be used to guarantee the appropriate mechanical properties of resin composites. However, most of these studies focused on one or some aspects using different resin systems, BAG types, and BAG amounts. As such, this makes the comparison difficult, and it is essential to find an optimal balance between different properties. BAG-loaded resin composites can be regarded as bioactive materials, which present major benefits in dentistry, especially their capability in the bacterial inhibition, cell biocompatibility, anti-demineralization, and remineralization of teeth.
Collapse
Affiliation(s)
- Jiaojiao Yun
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Francis Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - James Kit Hon Tsoi
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-28590515
| |
Collapse
|
15
|
Mastoid obliteration and external auditory canal reconstruction using 3D printed bioactive glass S53P4 /polycaprolactone scaffold loaded with bone morphogenetic protein-2: A simulation clinical study in rabbits. Regen Ther 2022; 21:469-476. [PMID: 36313396 PMCID: PMC9588957 DOI: 10.1016/j.reth.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The lack of good prosthetic materials and objective standards has limited the promotion of mastoid obliteration and external auditory canal reconstruction, and the quality of the surgery varies. In this study, bioactive glass S53P4 (S53P4), the most popular artificial prosthetic material, was modified and combined with polycaprolactone (PCL) and bone morphogenetic protein-2 (BMP-2) to produce an individualized biological scaffold using 3D printing technology to explore a better material and method for mastoid obliteration and external auditory canal reconstruction. METHODS 3D-printed S53P4/PCL scaffolds were fabricated from 3D reconstruction data of bone defect areas in New Zealand rabbits simulating "Canal Wall Down Mastoidectomy". The water absorption, swelling rate, porosity, and Young's modulus of the scaffold were measured, and the morphology and pore size of the scaffold were observed using scanning electron microscopy. The cytotoxicity of the S53P4/PCL scaffolds was detected using the CCK8 assay, and the in vitro antibacterial activity of the S53P4/PCL scaffolds was detected using the inhibition circle method. The BMP-2-loaded S53P4/PCL scaffolds were prepared using the drop-in lyophilization method and implanted into animal models. The biocompatibility, osteogenic activity, and external auditory canal repair of the scaffolds were observed using endoscopy, micro-CT, and histological examination. RESULTS The S53P4/PCL scaffold was highly compatible with the defective area of the animal model, and its physicochemical properties met the requirements of bone tissue engineering. In vitro experiments showed that the S53P4/PCL scaffold was non-cytotoxic and exhibited better antibacterial activity than the same volume of the S53P4 powder. In vivo experiments showed that the S53P4/PCL scaffold had good biocompatibility and osteogenic activity, and could effectively repair bone defects and reconstruct the normal morphology of the external auditory canal in animal models. Furthermore, its osteogenic activity and repair ability were significantly improved after loading with BMP-2. CONCLUSIONS The 3D printed S53P4/PCL scaffold has great potential for clinical mastoid obliteration and external auditory canal reconstruction.
Collapse
|
16
|
Alciato L, Bernardeschi D, Pourcher V, Mkrtchyan N, Tankéré F, Sterkers O, Lahlou G. Antibiotics in mastoid and epitympanic obliteration with S53P4 bioactive glass: A retrospective study. Laryngoscope Investig Otolaryngol 2022; 7:1584-1594. [PMID: 36258865 PMCID: PMC9575089 DOI: 10.1002/lio2.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/20/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022] Open
Abstract
Objective The role of antibiotics in ear surgery is still controversial. The aim of this study was to assess their need in cholesteatoma surgery when performing obliteration with S53P4 bioactive glass, a biocompatible material with antibacterial properties. Methods This retrospective cohort study was conducted in a tertiary referral center between January 2017 and May 2019. Sixty-nine consecutive patients, who underwent surgery for cholesteatoma removal and/or rehabilitation of canal-wall-down mastoidectomy with mastoid and epitympanic obliteration using S53P4 granules were included. Before 2019, antibiotics were routinely used (group "w/AB"). Patients received intravenous antibiotics during surgery, oral treatment was continued for 7 days and topical antibiotics for 1 month. After 2019, no antibiotics were administered (group "w/oAB"). The primary outcome was the occurrence of early surgical site infection. Secondary outcomes were late infection, anatomic and functional results at 3 and 12 months. Results Twenty-three patients were included in group "w/oAB" and 46 in group "w/AB", with no significant differences in demographics, medical history or follow-up. Five ears (22%) in group "w/oAB" developed an early infection compared with 2 (4%) in group "w/AB" (p = .03). The relative risk was 6.11, 95CI%[1.09;31.96]. Infections were successfully treated with antibiotics, and no patient underwent surgical removal of the granules. No late infections or complications were observed. There was no difference in graft failure or air-bone gap closure at 1 year. Conclusion Peri-/post-operative antibiotics prevent early infection in obliteration surgery with S53P4 granules. Infections can be treated medically without complications or require removal of the implanted material. Level of evidence 4.
Collapse
Affiliation(s)
- Lauranne Alciato
- Sorbonne Université, AP‐HPHôpitaux Universitaires Pitié‐Salpêtrière Charles‐Foix, Service d'Oto‐Rhino‐LaryngologieParisFrance
| | - Daniele Bernardeschi
- Sorbonne Université, AP‐HPHôpitaux Universitaires Pitié‐Salpêtrière Charles‐Foix, Service d'Oto‐Rhino‐LaryngologieParisFrance
| | - Valérie Pourcher
- Sorbonne Université, AP‐HPHôpitaux Universitaires Pitié‐Salpêtrière Charles Foix, Service de Maladies infectieuses et TropicalesParisFrance
- Sorbonne Université, INSERMInstitut Pierre Louis d’Épidémiologie et de Santé Publique, Groupe Hospitalier Universitaire APHP‐Sorbonne Université, site Pitié‐SalpêtrièreParisFrance
| | - Naira Mkrtchyan
- Sorbonne Université, AP‐HPHôpitaux Universitaires Pitié‐Salpêtrière Charles‐Foix, Service d'Oto‐Rhino‐LaryngologieParisFrance
| | - Frédéric Tankéré
- Sorbonne Université, AP‐HPHôpitaux Universitaires Pitié‐Salpêtrière Charles‐Foix, Service d'Oto‐Rhino‐LaryngologieParisFrance
- Institut du Cerveau et de la Moelle épinièreICM, Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Olivier Sterkers
- Sorbonne Université, AP‐HPHôpitaux Universitaires Pitié‐Salpêtrière Charles‐Foix, Service d'Oto‐Rhino‐LaryngologieParisFrance
- Institut Pasteur, Institut de l'auditionTechnologies and Gene Therapy for DeafnessParisFrance
| | - Ghizlène Lahlou
- Sorbonne Université, AP‐HPHôpitaux Universitaires Pitié‐Salpêtrière Charles‐Foix, Service d'Oto‐Rhino‐LaryngologieParisFrance
- Institut Pasteur, Institut de l'auditionTechnologies and Gene Therapy for DeafnessParisFrance
| |
Collapse
|
17
|
Utilisation of bioactive glass S53P4 inside an induced membrane for severe bone defect with high risk of infection: a multi-center preliminary experience. Injury 2022; 53 Suppl 2:S13-S19. [PMID: 35871084 DOI: 10.1016/j.injury.2022.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The induced membrane technique has been developed to address bone defect of critical size from various origins. Despite its exceptional efficacy, several cases underwent a failure, which is regularly associated with a septic problem. The best way to conduct in this situation remains debated. PURPOSE To estimate use of bioactive glass S53P4 (BAG-53P4) in induced membrane technique failures or with an anticipated high risk of failure. MATERIAL AND METHOD We conducted a retrospective analysis of patients from several medical centers in Europe where BAG-S53P4 has been used inside an induced membrane. The etiology of the defect, the bone fixation used, the delay the bioactive glass was placed, the reason why the bioactive glass was used and the results were reported. RESULTS Eight cases were included (3 women and 5 men). Mean age was 43 years (16-82; Standard deviation 23). Mean height was 171 cm (162-184; SD 7), mean weight was 69 kg (60-85; SD 8) and Body Mass Index was 23,39 M/Kg2 (21,9-25,1; SD 1,22). Mean length of defect was 68 mm (40-100mm, SD 23). All patients received BAG-S53P4 granules (BonAlive Biomaterials Ltd, Turku, Finland) to fill the resultant cavity (3 as a stand-alone in the induced membrane and 5 mixed with autograft). Three patients were implanted with BAG-S53P4 during the second stage of a first induced membrane technique because of a high risk of infection (three open fractures); two patients were implanted with BAG-S53P4 during the second stage of a first induced membrane technique because of the great size of the defect (two infectious non-union); two patients were implanted with BAG-S53P4 as a third stage of induced membrane technique, i.e. inside a previously grafted membrane, because of a recurrence of the infection; and one patient was implanted with BAG-S53P4 during the second stage of a second induced membrane technique to avoid a new failure. At a follow-up of 16 months, all healed without any recurrence of the infection. DISCUSSION Critical size bone defects caused by an open fracture or an active infection can usually be addressed by the induced membrane technique. However, some cases are at high risk of failure because of the occurrence or recurrence of an infection. In these cases, bioactive glass may help the surgeon to improve the rate of bone union. CONCLUSION BAG-S53P4 may be considered as bone graft in an induced membrane technique, especially when there is a high probability of occurrence or recurrence of a bone infection.
Collapse
|
18
|
Zhou P, Garcia BL, Kotsakis GA. Comparison of antibacterial and antibiofilm activity of bioactive glass compounds S53P4 and 45S5. BMC Microbiol 2022; 22:212. [PMID: 36050654 PMCID: PMC9438227 DOI: 10.1186/s12866-022-02617-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background Bone loss and deformation due to damage caused by injury or recurrent invasive infections presents a major clinical obstacle. While bone substitute biomaterials promote osseous tissue regeneration, their application in sites complicated by microbial infections such as osteomyelitis, is limited. Bioactive glass biomaterials (Bioglass) have been shown to have efficient mechanisms of repairing the integrity of bone, while inhibiting growth of a range of bacterial strains. There are several commercially available bioactive glass compounds, each with a unique chemical composition. One compound in particular, S53P4, has demonstrated antimicrobial effects in previous studies but the antimicrobial activity of the parent compound 45S5 has not been investigated. Results To assess whether antimicrobial activity is common among bioglass compounds, 45S5-the parent compound, was evaluated in comparison to S53P4 for antibacterial and antibiofilm effects against multiple strains of aerobic and anaerobic bacteria associated with various types of osteomyelitis. Experiments of antimicrobial effects in liquid cultures demonstrated that both compounds were antimicrobial against various microbial genera including S. gordonii, V. parvula, P. aeruginosa and MRSA; particles of the smallest size (32–125 µm) invariably showed the most robust antimicrobial capabilities. When employed against biofilms ecological biofilms grown on hydroxyapatite, 45S5 particles produced a stronger reduction in biofilm mass compared to S53P4 particles when considering small particle ranges. Conclusion We found that 45S5 seems to be as effective as S53P4 and possibly even more capable of limiting bacterial infections. The efficacy of bioactive glass was not limited to inhibition of planktonic growth, as it also extended to bacterial biofilms. The increased antibacterial activity of 45S5 compared to S53P4 is true for a variety of size ranges.
Collapse
Affiliation(s)
- Peng Zhou
- Translational Periodontal Research Laboratory, UT Health San Antonio, San Antonio, TX, USA.,Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, TX, 78229-3900, San Antonio, USA
| | - Brittny L Garcia
- Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, TX, 78229-3900, San Antonio, USA
| | - Georgios A Kotsakis
- Translational Periodontal Research Laboratory, UT Health San Antonio, San Antonio, TX, USA. .,Department of Periodontics, UT Health San Antonio, 7703 Floyd Curl Dr. 7894, TX, 78229-3900, San Antonio, USA.
| |
Collapse
|
19
|
Skarzynski PH, Krol B, Skarzynski H, Cywka KB. Implantation of two generations of Bonebridge after mastoid obliteration with bioactive glass S53P4. Am J Otolaryngol 2022; 43:103601. [PMID: 35981433 DOI: 10.1016/j.amjoto.2022.103601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE After radical surgery for chronic cholesteatoma (CWD mastoidectomy), patients have the option to have the posterior wall of their external auditory canal surgically reconstructed with S53P4 bioactive glass. The procedure eliminates some of the restrictions related to having a postoperative cavity and extends the options for a hearing prosthesis. If classic reconstruction is not possible and a hearing aid is not used, we suggest use of a Bonebridge implant. METHODS This study describes, over 18 months of follow-up, 16 patients after a two-stage surgical procedure: obliteration of the mastoid cavity with bioactive glass followed by Bonebridge implantation. There were 7 patients who received the first generation implant (BCI 601) and 9 who used the second (BCI 602). Before and after implantation, pure tone audiometry, sound field thresholds, and free-field audiometry were performed. Speech reception thresholds in noise were assessed using the Polish Sentence Matrix Test. Subjective assessment of benefits was done using the APHAB (Abbreviated Profile of Hearing Aid Benefit) questionnaire. RESULTS During the observation period, no serious complications were found. The study demonstrated the safety and validity of the procedures and confirmed the safety of using S53P4 bioactive glass in otosurgery (antibacterial effect, nonrecurrence of cholesteatoma, and no effect on the inner ear). The audiological benefits expected from using the Bonebridge implant processor were also confirmed. CONCLUSION It is concluded that, after reconstructing the posterior wall of the external auditory canal with bioactive glass, two-stage implantation of a Bonebridge implant in a typical site is a safe solution for patients who have difficult anatomical conditions following their CWD mastoidectomy.
Collapse
Affiliation(s)
- Piotr H Skarzynski
- Teleaudiology and Screening Department, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Kajetany, Poland; Heart Failure and Cardiac Rehabilitation Department, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland; Institute of Sensory Organs, Kajetany, Warsaw, Poland.
| | - Bartlomiej Krol
- Otorhinolaryngosurgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Kajetany, Poland
| | - Henryk Skarzynski
- Otorhinolaryngosurgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Kajetany, Poland
| | - Katarzyna B Cywka
- Otorhinolaryngosurgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Kajetany, Poland
| |
Collapse
|
20
|
Taheri Z, Rezvani MB, Bassir MM, Bakhtiari R, Norouzi M, Valizadeh S, Ghomsheh ET. Effect Of Nano-Bioactive Glass On Flexural Strength And Antimicrobial Activity Of Resin-Modified Glass Ionomer Cement Containing 58S Nano-Bioactive Glass. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2205231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Bioactive glass (BAG) is increasingly used in dentistry, aiming to provide superior mechanical properties, optimal chemical stability, and favorable antimicrobial activity in the oral environment. This study aimed to measure the flexural strength (FS) and antimicrobial activity of resin-modified glass ionomer (RMGI) cement containing 58S nano-BAG.
Materials and Methods:
In this in vitro study, 0wt (Weight) %, 10wt%, 20wt%, and 30wt% 58S nano-BAG particles were added to RMGI powder in groups 1 to 4, respectively (n=10). Forty specimens were fabricated in metal molds (2 x 25 x 2 mm), and their FS was measured by using a three-point bending test at a crosshead speed of 0.5 mm/min. The antibacterial activity of the materials against Streptococcus mutants was assessed by the disc diffusion test. In addition to the abovementioned experimental groups, one control group (n=10) containing 100% BAG was also considered. Data were analyzed by one-way ANOVA and Tukey’s test.
Results:
The mean (± standard deviation) FS was 38.71±8.84, 43.61±17.34, 45.62±15.89, and 54.71±14.25 MPa in groups 1 to 4, respectively. No significant difference was noted in FS among the groups (P=0.06). A significant difference was found in the diameter of the growth inhibition zone among the groups (P<0.05), and group 4 containing 30wt% BAG showed minimal bacterial growth.
Conclusion:
The addition of 10wt%, 20wt% and 30wt% nano-BAG to RMGI powder did not significantly change the FS but the addition of 30wt% nano-BAG to RMGI significantly inhibited the bacterial growth.
Collapse
|
21
|
Correia BL, Gomes ATPC, Noites R, Ferreira JMF, Duarte AS. New and Efficient Bioactive Glass Compositions for Controlling Endodontic Pathogens. NANOMATERIALS 2022; 12:nano12091577. [PMID: 35564288 PMCID: PMC9105659 DOI: 10.3390/nano12091577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
Endodontic treatment aims to conserve teeth through removing infected tissue, disinfecting, and filling/sealing the root canal. One of the most important treatment steps is the removal of microorganisms to avoid reinfection and consequent tooth loss. Due to increased resistance to intracanal medications, new alternative procedures are needed. Thus, an intracanal medication is suggested using three bioactive glass (BG) compositions (BG1, BG2, and BG3) produced by the sol–gel method, with different molar contents of bactericidal oxides. The BGs were morphologically and physically characterized. Their ability to inhibit the growth of two oral pathogens responsible for the failure of endodontic treatments (E. faecalis and C. albicans) was also studied. The results suggest that BG2 and BG3 can inhibit the growth of E. faecalis after 48 h of incubation, and all BG samples have a significant effect on C. albicans survival.
Collapse
Affiliation(s)
- Bruna L. Correia
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, Campus Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (B.L.C.); (J.M.F.F.)
| | - Ana T. P. C. Gomes
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
| | - Rita Noites
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, Campus Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (B.L.C.); (J.M.F.F.)
| | - Ana S. Duarte
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
- Correspondence: ; Tel.: +351-232-419-500
| |
Collapse
|
22
|
Wei YW, Sayed SM, Zhu WW, Xu KF, Wu FG, Xu J, Nie HP, Wang YL, Lu XL, Ma Q. Antibacterial and Fluorescence Staining Properties of an Innovative GTR Membrane Containing 45S5BGs and AIE Molecules In Vitro. NANOMATERIALS 2022; 12:nano12040641. [PMID: 35214970 PMCID: PMC8874606 DOI: 10.3390/nano12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to add two functional components-antibacterial 45S5BGs particles and AIE nanoparticles (TPE-NIM+) with bioprobe characteristics-to the guided tissue regeneration (GTR) membrane, to optimize the performance. The PLGA/BG/TPE-NIM+ membrane was synthesized. The static water contact angle, morphologies, and surface element analysis of the membrane were then characterized. In vitro biocompatibility was tested with MC3T3-E1 cells using CCK-8 assay, and antibacterial property was evaluated with Streptococcus mutans and Porphyromonas gingivalis by the LIVE/DEAD bacterial staining and dilution plating procedure. The fluorescence staining of bacteria was observed by Laser Scanning Confocal Microscope. The results showed that the average water contact angle was 46°. In the cytotoxicity test, except for the positive control group, there was no significant difference among the groups (p > 0.05). The antibacterial effect in the PLGA/BG/TPE-NIM+ group was significantly (p < 0.01), while the sterilization rate was 99.99%, better than that in the PLGA/BG group (98.62%) (p < 0.01). Confocal images showed that the membrane efficiently distinguished G+ bacteria from G- bacteria. This study demonstrated that the PLGA/BG/TPE-NIM+ membrane showed good biocompatibility, efficient sterilization performance, and surface mineralization ability and could be used to detect pathogens in a simple, fast, and wash-free protocol.
Collapse
Affiliation(s)
- Yu-Wen Wei
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Wei-Wen Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Jing Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - He-Peng Nie
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Yu-Li Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Xiao-Lin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
- Correspondence: (Q.M.); (X.-L.L.); Tel.: +86-13770963117 (Q.M.)
| | - Qian Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
- Correspondence: (Q.M.); (X.-L.L.); Tel.: +86-13770963117 (Q.M.)
| |
Collapse
|
23
|
Huang X, Xie J, Zhang M, Sun Z, Xu Y, Yang W, Guo L. Effect of 45S5 bioactive glass on the microshear bond strength of dental fluorosis. Microsc Res Tech 2021; 85:1663-1670. [PMID: 34904320 DOI: 10.1002/jemt.24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
The aim of this in vitro study was to estimate the effect of the species concentration of 45S5 bioactive glass (BAG) used as pretreatment on the microshear bond strength (MSBS) of dental fluorosis (DF). Based on the Thylstrup and Fejerskov index, 80 teeth were randomly divided equally into four groups: TFI 0, sound dentin; TFI 1-3, mild fluorosis; TFI 4-5, moderate fluorosis; and TFI 6-9, severe fluorosis. Each group was randomized into five subgroups. After preparing the dentin hypersensitivity model of DF, the dentin was pretreated as follows, Subgroup 1: deionized water (Control group); Subgroup 2: 1% BAG; Subgroup 3: 5% BAG; Subgroup 4: 10% BAG, and Subgroup 5: 20% BAG. Stochastically one specimen was selected from each subgroup for scanning electron microscope and energy dispersive spectrometer analysis. After being made of resin-tooth bonding samples, the remains were in water bath at 37 °C for 24 hr. Subsequently, samples from each subgroup were randomly selected to test MSBS without aging, or after a thermocycle of 5,000 and 10,000 times, respectively. The fracture modes were analyzed. Compared with the group of 1% BAG and Control, the exposure area of tubules in 5%, 10%, and 20% BAG group had significant difference (p < .05). MSBS results indicated that there were significant differences between 10% BAG with other groups. The 20% BAG group showed the lowest MSBS among all groups. Pretreatment of 10% BAG solution may be conductive to enhance the bond strength of DF, while 20% BAG solution adversely.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Xie
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Meifeng Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengfan Sun
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yao Xu
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Wanrong Yang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
24
|
Van Vugt TAG, Heidotting J, Arts JJ, Ploegmakers JJW, Jutte PC, Geurts JAP. Mid-term clinical results of chronic cavitary long bone osteomyelitis treatment using S53P4 bioactive glass: a multi-center study. J Bone Jt Infect 2021; 6:413-421. [PMID: 34804776 PMCID: PMC8600462 DOI: 10.5194/jbji-6-413-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022] Open
Abstract
Introduction: Chronic osteomyelitis is a challenging condition in the orthopedic practice and traditionally treated using local and systemic antibiotics in a two-stage surgical procedure. With the introduction of the antimicrobial biomaterial S53P4 bioactive glass (Bonalive®), chronic osteomyelitis can be treated in a one-stage procedure. This study evaluated the mid-term clinical results of patients treated with S53P4 bioactive glass for long bone chronic osteomyelitis. Methods: In this prospective multi-center study, patients from two different university medical centers in the Netherlands were included. One-stage treatment consisted of debridement surgery, implantation of S53P4 bioactive glass, and treatment with culture-based systemic antibiotics. If required, wound closure by a plastic surgeon was performed. The primary outcome was the eradication of infection, and a secondary statistical analysis was performed on probable risk factors for treatment failure. Results: In total, 78 patients with chronic cavitary long bone osteomyelitis were included. Follow-up was at least 12 months (mean 46; standard deviation, SD, 20), and 69 patients were treated in a one-stage procedure. Overall infection eradication was 85 %, and 1-year infection-free survival was 89 %. Primary closure versus local/muscular flap coverage is the only risk factor for treatment failure. Conclusion: With 85 % eradication of infection, S53P4 bioactive glass is an effective biomaterial in the treatment of chronic osteomyelitis in a one-stage procedure. A major risk factor for treatment failure is the necessity for local/free muscle flap coverage. These results confirm earlier published data, and together with the fundamentally different antimicrobial pathways without antibiotic resistance, S53P4 bioactive glass is a recommendable biomaterial for chronic osteomyelitis treatment and might be beneficial over other biomaterials.
Collapse
Affiliation(s)
- Tom A G Van Vugt
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Jeffrey Heidotting
- Department of Orthopedic Surgery, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jacobus J Arts
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands.,Department of Biomedical Engineering (research group Orthopaedic Biomechanics), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joris J W Ploegmakers
- Department of Orthopedic Surgery, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Paul C Jutte
- Department of Orthopedic Surgery, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jan A P Geurts
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
25
|
Sonatkar J, Kandasubramanian B. Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Cals F, van der Toom H, Metselaar R, van Linge A, van der Schroeff M, Pauw R. Postoperative surgical site infection in cholesteatoma surgery with and without mastoid obliteration, what can we learn? J Otol 2021; 17:25-30. [PMID: 35140756 PMCID: PMC8811380 DOI: 10.1016/j.joto.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
- F.L.J. Cals
- Corresponding author. Department of Otorhinolaryngology and head and neck surgery, Erasmus Medical Center, Room NT-310, Postbus 2040, 3000, CA, Rotterdam.
| | | | | | | | | | | |
Collapse
|
27
|
Hashemian A, Shahabi S, Behroozibakhsh M, Najafi F, Abdulrazzaq Jerri Al-Bakhakh B, Hajizamani H. A modified TEGDMA-based resin infiltrant using polyurethane acrylate oligomer and remineralising nano-fillers with improved physical properties and remineralisation potential. J Dent 2021; 113:103810. [PMID: 34530057 DOI: 10.1016/j.jdent.2021.103810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES This study aimed to modify an experimental triethylene glycol dimethacrylate (TEGDMA) based resin infiltrant using PUA oligomer and two remineralising fillers, including fluorohydroxyapatite (FHA) and fluoride-doped bioactive glass (FD-BG), to improve the mechanical and physical properties and induce remineralising potential. MATERIALS AND METHODS The polyurethane acrylate oligomer (PUA) was synthesised and characterised. Experimental resin infiltrant was prepared by mixing 10% of synthesised PUA with 88% TEGDMA. Water contact angle, penetration coefficient, and penetration depth were then measured. The FHA and FD-BG fillers were synthesised and characterised. To prepare nano-filled resin infiltrant, 5% of each powder was mixed with the prepared resin infiltrant. The prepared resin infiltrants were characterised to evaluate their degree of conversion, mechanical properties, water sorption, and solubility. The ion release of filled resin was also assessed. The non-infiltrated and infiltrated enamel specimens underwent fourteen days of pH-cycling, and a surface microhardness was done to assess the resistance to demineralisation. RESULTS The results showed that the addition of PUA to TEGDMA increased the mechanical properties and decreased water sorption and solubility. The addition of synthesised FD-BG fillers to resin infiltrant significantly improved the resistance to demineralisation of enamel samples compared with other groups (p ≤ 0.001). The FHA fillers also improved the resistance to demineralisation; however, the produced changes were not statistically meaningful (p > 0.05). CONCLUSIONS Based on the results, the PUA+TEGDMA+ FD-BG/FHA composite can be used as an alternative material for pure TEGDMA in enamel infiltration approaches owing to its better mechanical properties, lower water sorption and solubility, and also remineralisation potential. CLINICAL SIGNIFICANCE A resin infiltrant with remineralisation potential, lower water sorption and solubility and higher mechanical properties may enhance the management of early caries lesions.
Collapse
Affiliation(s)
- Atieh Hashemian
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences (TUMS), Ghods Street, Keshavarz Blvd., Tehran, Iran. 14176-14411, Tehran, Iran
| | - Sima Shahabi
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences (TUMS), Ghods Street, Keshavarz Blvd., Tehran, Iran. 14176-14411, Tehran, Iran
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences (TUMS), Ghods Street, Keshavarz Blvd., Tehran, Iran. 14176-14411, Tehran, Iran.
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box:16765-564, Tehran, Iran
| | | | - Hamidreza Hajizamani
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences (TUMS), Ghods Street, Keshavarz Blvd., Tehran, Iran. 14176-14411, Tehran, Iran
| |
Collapse
|
28
|
Crovace MC, Soares VO, Rodrigues ACM, Peitl O, Raucci LM, de Oliveira PT, Zanotto ED. Understanding the mixed alkali effect on the sinterability and in vitro performance of bioactive glasses. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Golda-Cepa M, Brzychczy-Wloch M, Menaszek E, Kopec A, Cholewa-Kowalska K. PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation. Bioact Mater 2021; 6:1811-1826. [PMID: 34632164 PMCID: PMC8484899 DOI: 10.1016/j.bioactmat.2020.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
In this work, polymeric and bioactive glass (BG)-modified composite films were successfully loaded with polyphenols (PPh) extracted from sage. It was hypothesized that PPh, alone and in combination with BGs particles, would affect physicochemical and biological properties of the films. Furthermore, sol-gel-derived BG particles would serve as an agent for control the release of the polyphenolic compounds, and other important properties related to the presence of PPh. The results showed that polyphenolic compounds significantly modified numerous material properties and also acted as biologically active substances. On the one hand, PPh can be considered as plasticizers for PCL, on the other hand, they can act as coupling agent in composite materials, improving their mechanical performance. The presence of PPh in materials improved their hydrophilicity and apatite-forming ability, and also provided antioxidant activity. What is important is that the aforementioned properties and kinetics of PPh release can be modulated by the use of various concentrations of PPh, and by the modification of PCL matrix with sol-gel-derived BG particles, capable of binding PPh. The films containing the lowest concentration of PPh exhibited cytocompatibility, significantly increased alkaline phosphatase activity and the expression of bone extracellular matrix proteins (osteocalcin and osteopontin) in human normal osteoblasts, while they reduced intracellular reactive oxygen species production in macrophages. Furthermore, materials loaded with PPh showed antibiofilm properties against Gram positive and Gram negative bacteria. The results suggest that obtained materials represent potential multifunctional biomaterials for bone tissue engineering with a wide range of tunable properties.
Collapse
Affiliation(s)
- Michal Dziadek
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa St., 30-387, Krakow, Poland
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Kinga Dziadek
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, 122 Balicka St., 30-149, Krakow, Poland
| | - Kamila Checinska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Barbara Zagrajczuk
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Monika Golda-Cepa
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa St., 30-387, Krakow, Poland
| | - Monika Brzychczy-Wloch
- Jagiellonian University, Medical College, Department of Molecular Medical Microbiology, 18 Czysta St., 31-121, Krakow, Poland
| | - Elzbieta Menaszek
- Jagiellonian University, Medical College, Department of Cytobiology, 9 Medyczna St., 30-688, Krakow, Poland
| | - Aneta Kopec
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, 122 Balicka St., 30-149, Krakow, Poland
| | - Katarzyna Cholewa-Kowalska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| |
Collapse
|
30
|
Sarin J, Vuorenmaa M, Vallittu PK, Grénman R, Boström P, Riihilä P, Nissinen L, Kähäri VM, Pulkkinen J. The Viability and Growth of HaCaT Cells After Exposure to Bioactive Glass S53P4-Containing Cell Culture Media. Otol Neurotol 2021; 42:e559-e567. [PMID: 33577242 DOI: 10.1097/mao.0000000000003057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS Bioactive glass (BG) S53P4 reduces the viability of epidermal keratinocyte-derived immortalized cell line, HaCaT in sufficient concentrations in vitro. BACKGROUND Although used in mastoid obliteration surgery, there is no data available on whether BG S53P4 granules have an inhibitory or excitatory effect on keratinocytes, found in normal skin and ear cholesteatoma in vivo. METHODS HaCaT cell cultures were incubated with a direct BG S53P4 granule contact. Microscopic evaluation of the cultures was performed and interleukin-6 (IL-6) and -8 (IL-8) concentrations were measured from the medium samples. In addition, BG granules were incubated in two cell culture media for 6 days and the pure media were used in confluent HaCaT cultures preceding cell viability assay. Finally, a scratch assay test was performed to reveal the possible BG effect on HaCaT cultures. RESULTS Eight to ten cell thick layers of dead HaCaT cells were noticed after a 2-day BG granule contact. With a BG concentration of 2.5%, IL-6 and IL-8 concentrations were smaller compared with the control group without BG after 2 days' incubation. Overall, HaCaT cell viability decreased when BG was incubated in keratinocyte growth medium, but did not change in Dulbecco's modified Eagle's medium. In a scratch assay test, cell regrowth in the scratch area was notable in cultures without BG. CONCLUSIONS BG S53P4 seems to have an inhibitory effect on HaCaT cell growth. Although further studies are needed, this observation seems advantageous for cholesteatoma treatment.
Collapse
Affiliation(s)
- Jussi Sarin
- Department of Otorhinolaryngology-Head and Neck Surgery.,Department of Medical Biochemistry and Genetics, Institute of Biomedicine
| | - Minna Vuorenmaa
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine
| | - Pekka K Vallittu
- BioCity, Turku Biomaterials Research Program, Turku Clinical Biomaterials Centre - TCBC.,Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku.,City of Turku Welfare Division, Oral Health Care
| | | | | | - Pilvi Riihilä
- Department of Dermatology, Turku University Hospital and University of Turku.,FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, Turku University Hospital and University of Turku.,FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, Turku University Hospital and University of Turku.,FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | | |
Collapse
|
31
|
Król B, Cywka KB, Skarżyńska MB, Skarżyński PH. Implantation of the Bonebridge BCI 602 after Mastoid Obliteration with S53P4 Bioactive Glass: A Safe Method of Treating Difficult Anatomical Conditions-Preliminary Results. Life (Basel) 2021; 11:life11050374. [PMID: 33921929 PMCID: PMC8143467 DOI: 10.3390/life11050374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/26/2023] Open
Abstract
This study presents the preliminary results of a new otosurgical method in patients after canal wall down (CWD) surgery; it involves the implantation of the Bonebridge BCI 602 implant after obliteration of the mastoid cavity with S53P4 bioactive glass. The study involved eight adult patients who had a history of chronic otitis media with cholesteatoma in one or both ears and who had had prior radical surgery. The mean follow-up period was 12 months, with routine follow-up visits according to the schedule. The analysis had two aspects: a surgical aspect in terms of healing, development of bacterial flora, the impact on the inner ear or labyrinth, recurrence of cholesteatoma, and possible postoperative complications (firstly, after obliteration of the mastoid cavity with S53P4 bioactive glass, then after implantation). The second was an audiological aspect which assessed audiometric results and the patient’s satisfaction based on questionnaires. During the follow-up period, we did not notice any serious postoperative complications. Studies demonstrated significantly improved hearing thresholds and speech recognition in quiet and noise using the Bonebridge BCI 602. Data collected after six months of use showed improved audiological thresholds and patient satisfaction. Based on the preliminary results, we believe that the proposed two-stage surgical method using bioactive glass S53P4 is a safe and effective way of implanting the Bonebridge BCI 602 in difficult anatomical conditions. This makes it possible to treat a larger group of patients with the device.
Collapse
Affiliation(s)
- Bartłomiej Król
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (B.K.); (K.B.C.); (M.B.S.)
| | - Katarzyna Beata Cywka
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (B.K.); (K.B.C.); (M.B.S.)
| | - Magdalena Beata Skarżyńska
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (B.K.); (K.B.C.); (M.B.S.)
- Institute of Sensory Organs, 05-830 Kajetany, Poland
- Center of Hearing and Speech Medincus, 05-830 Kajetany, Poland
| | - Piotr Henryk Skarżyński
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (B.K.); (K.B.C.); (M.B.S.)
- Institute of Sensory Organs, 05-830 Kajetany, Poland
- Center of Hearing and Speech Medincus, 05-830 Kajetany, Poland
- Heart Failure and Cardiac Rehabilitation Department, Second Faculty of Medicine, Medical University of Warsaw, 03-242 Warsaw, Poland
- Correspondence:
| |
Collapse
|
32
|
Kurtuldu F, Mutlu N, Michálek M, Zheng K, Masar M, Liverani L, Chen S, Galusek D, Boccaccini AR. Cerium and gallium containing mesoporous bioactive glass nanoparticles for bone regeneration: Bioactivity, biocompatibility and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112050. [PMID: 33947544 DOI: 10.1016/j.msec.2021.112050] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
In recent years, mesoporous bioactive glass nanoparticles (MBGNPs) have generated great attention in biomedical applications. In this study, cerium and gallium doped MBGNPs were prepared by microemulsion assisted sol-gel method in the binary SiO2-CaO system. MBGNPs with spheroidal and pineal shaped morphology were obtained. Nitrogen sorption analysis elucidated the mesoporous structure of synthesized nanoparticles with high specific surface area. X-ray diffraction analysis confirmed the amorphous nature of the nanoparticles. The chemical compositions of all samples were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES), which revealed that the contents of cerium and gallium could be tailored by adjusting the concentrations of the precursors used for the synthesis. All MBGNPs exhibited in vitro bioactivity when immersed in simulated body fluid, except the particles doped with higher amounts than 1 mol% of cerium. MBGNPs showed antibacterial activity against S. aureus and E. coli without exhibiting cytotoxicity towards MG-63 osteoblast-like cells. Mentioned features of the obtained Ce and Ga-doped MBGNPs make them useful for multifunctional applications such as drug delivery carriers or bioactive fillers for bone tissue engineering applications.
Collapse
Affiliation(s)
- Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Nurshen Mutlu
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Martin Michálek
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Kai Zheng
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Milan Masar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| | - Liliana Liverani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Si Chen
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Dušan Galusek
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnU AD and FChFT STU, Centre for Functional and Surface Functionalized Glass, TnU AD, Trenčín, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
33
|
Król B, Cywka KB, Skarżyńska MB, Skarżyński PH. Mastoid obliteration with S53P4 bioactive glass after canal wall down mastoidectomy: Preliminary results. Am J Otolaryngol 2021; 42:102895. [PMID: 33429176 DOI: 10.1016/j.amjoto.2020.102895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bioactive glass (S53P4), abbreviated BG, currently seems to be the best material for reconstructing the posterior wall of the auditory canal and obliterating the postoperative cavity. PURPOSE The aim of the study was to report preliminary results of otosurgery involving obliteration of the mastoid cavity after canal wall down mastoidectomy. METHODS 11 adult patients who had had a history of chronic otitis media with cholesteatoma in one or both ears and previous canal wall down mastoidectomy. The duration of the follow-up was 6 months, with routine visits after 7 days, then 1, 3, and 6 months after surgery. The patient's medical history, noting other diseases potentially affecting the healing process, was analyzed. Healing, audiometric results, reduction of the volume of the cavity after surgery, and reduction of bacterial flora growth were assessed. RESULTS There was not worsening in the audiological evaluation. Healing period was uneventful. There was a reduction in volume of the postoperative cavity, no development of pathological flora, and no recurrence of cholesteatoma. CONCLUSION Obliteration of the mastoid process with S53P4 bioactive glass is a safe and effective method of treatment. Such a procedure should be considered as a treatment for patients after canal wall down surgery (CWD).
Collapse
Affiliation(s)
- B Król
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland; Oto-Rhino-Laryngology Surgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - K B Cywka
- World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - M B Skarżyńska
- Institute of Sensory Organs, Kajetany, Poland; World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland; Center of Hearing and Speech Medincus, Kajetany, Poland
| | - P H Skarżyński
- Institute of Sensory Organs, Kajetany, Poland; World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland; Heart Failure and Cardiac Rehabilitation Department, 2nd Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland; Center of Hearing and Speech Medincus, Kajetany, Poland.
| |
Collapse
|
34
|
Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial Biofilms in the Food Industry-A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042014. [PMID: 33669645 PMCID: PMC7922197 DOI: 10.3390/ijerph18042014] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Biofilms, present as microorganisms and surviving on surfaces, can increase food cross-contamination, leading to changes in the food industry’s cleaning and disinfection dynamics. Biofilm is an association of microorganisms that is irreversibly linked with a surface, contained in an extracellular polymeric substance matrix, which poses a formidable challenge for food industries. To avoid biofilms from forming, and to eliminate them from reversible attachment and irreversible stages, where attached microorganisms improve surface adhesion, a strong disinfectant is required to eliminate bacterial attachments. This review paper tackles biofilm problems from all perspectives, including biofilm-forming pathogens in the food industry, disinfectant resistance of biofilm, and identification methods. As biofilms are largely responsible for food spoilage and outbreaks, they are also considered responsible for damage to food processing equipment. Hence the need to gain good knowledge about all of the factors favouring their development or growth, such as the attachment surface, food matrix components, environmental conditions, the bacterial cells involved, and electrostatic charging of surfaces. Overall, this review study shows the real threat of biofilms in the food industry due to the resistance of disinfectants and the mechanisms developed for their survival, including the intercellular signalling system, the cyclic nucleotide second messenger, and biofilm-associated proteins.
Collapse
Affiliation(s)
- Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
- Correspondence: (C.C.); (A.R.)
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, 55142 Apartado, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (C.C.); (A.R.)
| |
Collapse
|
35
|
Geurts JAP, van Vugt TAG, Arts JJC. Use of contemporary biomaterials in chronic osteomyelitis treatment: Clinical lessons learned and literature review. J Orthop Res 2021; 39:258-264. [PMID: 33098587 PMCID: PMC7894567 DOI: 10.1002/jor.24896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
Chronic osteomyelitis has always been a therapeutic challenge for patient and surgeon due to the specific problems related with bone infection and bacterial biofilm eradication. Other than being the cause of infection or facilitating spread or persistence of infection, biomaterials are also becoming a tool in the treatment of infection. Certain novel biomaterials have unique and ideal properties that render them perfectly suited to combat infection and are therefore used more and more in the treatment of chronic bone infections. In case of infection treatment, there is still debate whether these properties should be focused on bone regeneration and/or their antimicrobial properties. These properties will be of even greater importance with the challenge of emerging antimicrobial resistance. This review highlights indications for use and specific material properties of some commonly used contemporary biomaterials for this indication as well as clinical experience and a literature overview.
Collapse
Affiliation(s)
| | | | - Jacobus J. C. Arts
- Department of Orthopedic SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
36
|
Hoikkala NPJ, Siekkinen M, Hupa L, Vallittu PK. Behaviour of different bioactive glasses incorporated in polydimethylsiloxane endodontic sealer. Dent Mater 2021; 37:321-327. [PMID: 33441248 DOI: 10.1016/j.dental.2020.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/06/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the behavior of different bioactive glass fillers (BAGs) embedded in a polydimethylsiloxane matrix of an endodontic sealer. METHODS Three different endodontic sealers were fabricated using S53P4, 45S5 and 18-06 glass fillers. Endodontic sealer Guttaflow Bioseal consisting of polydimethylsiloxane (PDMS) matrix was used as base of the experimental sealers. Behaviors of different glass fillers leaching from polymer matrix was studied in vitro for 14 days by measuring static ion dissolution profiles of Si, Na, Ca and P -ions. In addition, pH of the simulated bodyfluid (SBF) was monitored during the 14 days and all the sealer samples was examined with SEM/EDX analysis on the surface. Identical but non-glass filler containing polydimethylsiloxane-based sealer was used as a control material. RESULTS By the time point of 24 h sealer with 45S5 had released twice as much of Si-ions compared to sealer with S53P4. No statistical differences of Na, Ca and P -ions dissolution were observed in the first 168 h for any groups whereas concentrations of Ca and P -ions decreased with 45S5 significantly after 336 h. Highest pH was measured for sealers with glass filler 45S5 and S53P4 (7.64-7.65). Visible mineral precipitation was observed only on sealer surfaces after 336 h' time period with groups of 45S5 and S53P4. However, presence of calcium and phosphorus oxides was confirmed only with 45S5. SIGNIFICANCE Bioactive glass type 45S5 outperforms S53P4 and 18-06 by acting more dynamically in vitro set-up.
Collapse
Affiliation(s)
- Niko-Pekka J Hoikkala
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, FI-20520 Turku, Finland.
| | - Minna Siekkinen
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, FI-20520 Turku, Finland; City of Turku Welfare Division, Oral Health Care, Turku, Finland
| |
Collapse
|
37
|
Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater Sci Eng 2020; 6:5399-5430. [PMID: 33320556 DOI: 10.1021/acsbiomaterials.0c00528] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The morbidity, mortality, and burden of burn victims and patients with severe diabetic wounds are still high, which leads to an extensively growing demand for novel treatments with high clinical efficacy. Biomaterial-based wound treatment approaches have progressed over time from simple cotton wool dressings to advanced skin substitutes containing cells and growth factors; however, no wound care approach is yet completely satisfying. Bioactive glasses are materials with potential in many areas that exhibit unique features in biomedical applications. Today, bioactive glasses are not only amorphous solid structures that can be used as a substitute in hard tissue but also are promising materials for soft tissue regeneration and wound healing applications. Biologically active elements such as Ag, B, Ca, Ce, Co, Cu, Ga, Mg, Se, Sr, and Zn can be incorporated in glass networks; hence, the superiority of these multifunctional materials over current materials results from their ability to release multiple therapeutic ions in the wound environment, which target different stages of the wound healing process. Bioactive glasses and their dissolution products have high potency for inducing angiogenesis and exerting several biological impacts on cell functions, which are involved in wound healing and some other features that are valuable in wound healing applications, namely hemostatic and antibacterial properties. In this review, we focus on skin structure, the dynamic process of wound healing in injured skin, and existing wound care approaches. The basic concepts of bioactive glasses are reviewed to better understand the relationship between glass structure and its properties. We illustrate the active role of bioactive glasses in wound repair and regeneration. Finally, research studies that have used bioactive glasses in wound healing applications are summarized and the future trends in this field are elaborated.
Collapse
Affiliation(s)
- Tina Mehrabi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Abdorreza S Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Zahra Mohammadi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
38
|
Dai LL, Mei ML, Chu CH, Lo ECM. Antibacterial effect of a new bioactive glass on cariogenic bacteria. Arch Oral Biol 2020; 117:104833. [DOI: 10.1016/j.archoralbio.2020.104833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
|
39
|
Grønseth T, Vestby LK, Nesse LL, von Unge M, Silvola JT. Bioactive glass S53P4 eradicates Staphylococcus aureus in biofilm/planktonic states in vitro. Ups J Med Sci 2020; 125:217-225. [PMID: 32552165 PMCID: PMC7720983 DOI: 10.1080/03009734.2020.1765908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Background: Increasing antimicrobial resistance to antibiotics is a substantial health threat. Bioactive glass S53P4 (BAG) has an antimicrobial effect that can reduce the use of antibiotics. The aim of this study was to evaluate the antimicrobial efficacy of BAG in vitro on staphylococci in biofilm and in planktonic form. Secondary aims were to investigate whether supernatant fluid primed from BAG retains the antibacterial capacity and if ciprofloxacin enhances the effect.Methods: BAG-S53P4 granules, <45 µm, primed in tryptic soy broth (TSB) were investigated with granules present in TSB (100 mg/mL) and after removal of granules (100, 200, and 400 mg/mL). The efficacy of BAG to eradicate Staphylococcus aureus biofilm in vitro was tested using 10 different clinical strains and 1 reference strain in three test systems: the biofilm-oriented antiseptic test based on metabolic activity, the biofilm bactericidal test based on culturing surviving bacteria, and confocal laser scanning microscopy (CLSM) combined with LIVE/DEAD staining.Results: Exposure to 48 h primed BAG granules (100 mg/mL) produced bactericidal effects in 11/11 strains (p = 0.001), and CLSM showed reduction of viable bacteria in biofilm (p = 0.001). Supernatant primed 14 days, 400 mg/mL, reduced metabolic activity (p < 0.001), showed bactericidal effects for 11/11 strains (p = 0.001), and CLSM showed fewer viable bacteria (p = 0.001). The supernatant primed for 48 h, or in concentrations lower than 400 mg/mL at 14 days, did not completely eradicate biofilm.Conclusion: Direct exposure to BAG granules, or primed supernatant fluid, effectively eradicated S. aureus in biofilm. The anti-biofilm effect is time- and concentration-dependent. When BAG had reached its full antimicrobial effect, ciprofloxacin had no additional effect.
Collapse
Affiliation(s)
- Torstein Grønseth
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital, Oslo, Norway
- CONTACT Torstein Grønseth Øre- nese og halsavdelingene, Oslo universitetssykehus HF, Postboks 4950 Nydalen, Oslo, 0424, Norway
| | - Lene K. Vestby
- Department of Analysis and Diagnostic, Norwegian Veterinary Institute, Oslo, Norway
| | - Live L. Nesse
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Magnus von Unge
- Department of Otolaryngology, Head and Neck Surgery, Akershus University Hospital, Akershus and Oslo, Norway
- Center for Clinical Research, Uppsala University, Västerås, Sweden
| | - Juha T. Silvola
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital, Oslo, Norway
- Department of Otolaryngology, Head and Neck Surgery, Akershus University Hospital, Akershus and Oslo, Norway
| |
Collapse
|
40
|
Thijssen EGJ, van Gestel NAP, Bevers R, Hofmann S, Geurts J, van Loo IHM, Arts JJ. Assessment of Growth Reduction of Five Clinical Pathogens by Injectable S53P4 Bioactive Glass Material Formulations. Front Bioeng Biotechnol 2020; 8:634. [PMID: 32676498 PMCID: PMC7333246 DOI: 10.3389/fbioe.2020.00634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
The one-stage treatment of chronic osteomyelitis with S53P4 bioactive glass (BAG) granules has shown excellent results. However, these granules possess suboptimal handling properties. Therefore, new injectable S53P4 putty materials have been developed by the incorporation of a synthetic binder to contain glass granules. The goal of the current study was to assess their potential to eradicate five clinically relevant pathogens: methicillin sensitive Staphylococcus aureus (MSSA), methicillin resistant Staphylococcus aureus (MRSA), Enterococcus coli (E. coli), Enterococcus faecalis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa). As a control, S53P4 granules (500–800 μm) and S66 glass (< 45 μm) were used. To evaluate the antimicrobial properties, the materials were cultured with the pathogens in a Müller-Hinton II broth for a week with daily colony forming unit (CFU) counting. One of the tested putty formulations was observed to reduce the number of CFU/mL compared to a negative control (no material, only pathogen in broth) for E. coli, E. faecalis and P. aeruginosa. However, none of the tested putty formulations was able to completely eradicate the pathogens in the broths, which would be needed for safe infection treatment. The results obtained for the control materials were unexpected. S66 glass showed full eradication of P. aeruginosa and reduced the number of CFUs of other pathogens, while the S53P4 granules did not show eradication. The observations on the loose S53P4 granules in this study contradict available literature, which needs further investigation. The results obtained in this study also stretch the importance for a better understanding of the underlying antimicrobial mechanism of S53P4 BAG and how this is related to the dosage. In addition, it should be elucidated how these antimicrobial properties are affected by changes in the material formulation, for example by addition of binders to improve the handling properties or by changing the surface area.
Collapse
Affiliation(s)
- Eline G J Thijssen
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Nicole A P van Gestel
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Raymond Bevers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jan Geurts
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Inge H M van Loo
- Department of Medical Microbiology, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, Netherlands
| | - J J Arts
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, Netherlands.,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
41
|
Skoulakis C, Koltsidopoulos P, Iyer A, Kontorinis G. Mastoid Obliteration with Synthetic Materials: A Review of the Literature. J Int Adv Otol 2020; 15:400-404. [PMID: 31846919 DOI: 10.5152/iao.2019.7038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Canal wall down mastoidectomy is a surgical technique used for the eradication of middle ear disease. The remaining large mastoid bowl is associated with a number of issues; one of the main techniques that have been developed in order to avoid such problems is the obliteration of the mastoid cavity. The materials used for this reason are either biological or synthetic. The purpose of this survey is to review the published literature related to the therapeutic value of mastoid obliteration with synthetic materials. We searched Web of Science, PubMed, and MEDLINE from 2008 to 2018 using the criteria mastoid obliteration, canal wall down mastoidectomy, chronic otitis media, and cholesteatoma. The search focused on papers concerning the mastoid obliteration with synthetic material, as we focused on looking for outcomes and reported complications. Out of a total of 244 citations, 15 articles were identified, where patients underwent mastoid obliteration with synthetic materials. Most authors used bioactive glass as a filler material. Mastoid obliteration resulted in a decrease in the complications associated with the open mastoid cavity. On the basis of the available limited literature, it seems that mastoid obliteration with synthetic materials is a valuable and safe surgical technique for patients who undergo canal wall down mastoidectomy. The bioactive glass appears to be the most reliable synthetic material.
Collapse
Affiliation(s)
| | | | - Arunachalam Iyer
- Department of Otorhinolaryngology, Monklands Hospital, Airdrie, Glasgow, United Kingdom
| | - Georgios Kontorinis
- Department of Otorhinolaryngology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| |
Collapse
|
42
|
Deng Y, Wang L, Chen Y, Long Y. Optimization of staining with SYTO 9/propidium iodide: interplay, kinetics and impact on Brevibacillus brevis. Biotechniques 2020; 69:88-98. [PMID: 32393121 DOI: 10.2144/btn-2020-0036] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorophores SYTO 9 and propidium iodide (PI) are extensively applied in medicine, food industry and environmental monitoring to assess the viability of bacteria. However, the actual performance of these dyes remains largely unknown. In addition, their effects on the physiology of cells have not been elucidated. Here we characterized the effects of these two dyes on Brevibacillus brevis under optimized staining. We found that SYTO 9 entered cells continuously while PI tended to adhere to the cell wall before entering the cell. In addition, results showed that a high amount of the dyes altered the physicochemical properties of membranes, improving their breakthrough. These results provide new perspectives and ideas for improving the characterization of bacterial viability using flow cytometry.
Collapse
Affiliation(s)
- Ying Deng
- Guangdong Key Laboratory of Environmental Pollution & Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lili Wang
- Guangdong Key Laboratory of Environmental Pollution & Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yujia Chen
- Guangdong Key Laboratory of Environmental Pollution & Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan Long
- Guangdong Key Laboratory of Environmental Pollution & Health, School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
43
|
Remangeon F, Lahlou G, Alciato L, Tankere F, Mosnier I, Sterkers O, Pyatigorskaya N, Bernardeschi D. Management of tegmen defects with mastoid and epitympanic obliteration using S53P4 bioactive glass. Laryngoscope Investig Otolaryngol 2020; 5:297-304. [PMID: 32337361 PMCID: PMC7178447 DOI: 10.1002/lio2.374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To evaluate the surgical results and complications in a cohort of patients operated on to repair a tegmen bony defect using either transmastoid approach with obliteration using S53P4 bioactive glass granules (TMA-O), or the classic middle cranial fossa approach (MCFA). STUDY DESIGN A retrospective monocentric study. METHODS Twenty-five cases (24 patients) were included. Data regarding patient demographics, etiology, intraoperative findings, complications, recurrences, audiometric data, and follow-up were analyzed. RESULTS Seven patients were operated with MCFA and 17 patients with TMA-O. One patient was operated on using a combined approach (MCFA + TMA-O). In the preoperative HRCT scan, the size of the defect was estimated to be 6 ± 3.8 mm in the TMA-O group and 6 ± 3.5 mm in the MCFA group (P = .969). Intraoperatively, in the MCFA group, the location of the defect was mostly anterior (86%) with an intact ossicular chain (86%). A discontinuous chain was observed in 15 patients (88%) in the TMA-O group. The mean follow-up time was 22 ± 14 months in the TMA-O group and 24 ± 15 months in the MCFA group (P = .762). In both groups, there were no early postoperative complications or recurrences during follow-up. CONCLUSION Repair of a tegmen bony defect with S53P4 bioactive glass granules seems to be safe and effective, limiting the use of the middle cranial fossa approach to cases with epitympanic defects and with an intact ossicular chain, and it could be used whatever the size of the defect and/or the presence of meningoencephalocele. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- Françoise Remangeon
- APHPDépartement d'Otologie, d'implants auditifs et de base du crâne, auditory Groupe Hospitalo‐Universitaire Pitié‐SalpêtrièreParisFrance
| | - Ghizlene Lahlou
- APHPDépartement d'Otologie, d'implants auditifs et de base du crâne, auditory Groupe Hospitalo‐Universitaire Pitié‐SalpêtrièreParisFrance
| | - Lauranne Alciato
- APHPDépartement d'Otologie, d'implants auditifs et de base du crâne, auditory Groupe Hospitalo‐Universitaire Pitié‐SalpêtrièreParisFrance
| | - Frederic Tankere
- APHPDépartement d'Otologie, d'implants auditifs et de base du crâne, auditory Groupe Hospitalo‐Universitaire Pitié‐SalpêtrièreParisFrance
| | - Isabelle Mosnier
- APHPDépartement d'Otologie, d'implants auditifs et de base du crâne, auditory Groupe Hospitalo‐Universitaire Pitié‐SalpêtrièreParisFrance
| | - Olivier Sterkers
- APHPDépartement d'Otologie, d'implants auditifs et de base du crâne, auditory Groupe Hospitalo‐Universitaire Pitié‐SalpêtrièreParisFrance
| | - Nadya Pyatigorskaya
- APHP, Département de NeuroradiologieGroupe Hospitalo‐Universitaire Pitié‐SalpêtrièreParisFrance
| | - Daniele Bernardeschi
- APHPDépartement d'Otologie, d'implants auditifs et de base du crâne, auditory Groupe Hospitalo‐Universitaire Pitié‐SalpêtrièreParisFrance
| |
Collapse
|
44
|
Kirchhoff L, Arweiler-Harbeck D, Arnolds J, Hussain T, Hansen S, Bertram R, Buer J, Lang S, Steinmann J, Höing B. Imaging studies of bacterial biofilms on cochlear implants-Bioactive glass (BAG) inhibits mature biofilm. PLoS One 2020; 15:e0229198. [PMID: 32084198 PMCID: PMC7034800 DOI: 10.1371/journal.pone.0229198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/31/2020] [Indexed: 01/09/2023] Open
Abstract
The capability of Pseudomonas aeruginosa and Staphylococcus aureus to form biofilm on varying CI component materials differs in the presence and absence of bioactive glass (BAG). The application of BAG induces significant changes in biofilm morphology which can be visualized via scanning electron microscopy (SEM). Bacterial biofilm formation on medical devices, such as cochlear implants (CI), can lead to chronic infections. Interestingly, BAG of type S53P4 seems to be a promising tool for use in the reduction of biofilm development. Primarily, four bacterial species known to cause implant-related infections, P.aeruginosa (ATCC9027), S. aureus (ATCC6538), Staphylococcus epidermidis (ATCC12228) and Streptococcus pyogenes (ATCC19615) were analyzed regarding their capacity to form biofilm on CI components manufactured from three kinds of material: silicone, platinum and titanium. Subsequently, P. aeruginosa and S. aureus biofilms were visualized using scanning electron microscopy, comparing BAG-treated biofilm with non-treated biofilm. The four bacterial species presented biofilm-forming capabilities in a species and surface dependent manner. Metal CI components allowed for the greatest proliferation of biofilm. S. aureus and P. aeruginosa showed the highest rate of biofilm formation on polystyrene surfaces. For both species, SEM revealed altered biofilm morphology after treatment of S53P4 BAG. This study indicates that bacterial biofilm formation and structure on CI components is dependent on the surface composition, altering between metal and silicone surfaces. After application of BAG, changes in biofilm morphology on CI components were observed. These data highlight the impact of BAG on bacterial biofilm morphology.
Collapse
Affiliation(s)
- Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Diana Arweiler-Harbeck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Arnolds
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Timon Hussain
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Hansen
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ralph Bertram
- Institute of Clinical Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical University, Klinikum Nuernberg, Nuremberg, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical University, Klinikum Nuernberg, Nuremberg, Germany
| | - Benedikt Höing
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Seyedmajidi S, Rajabnia R, Seyedmajidi M. Evaluation of antibacterial properties of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as a cellular scaffold of bone tissue. J Lab Physicians 2020; 10:265-270. [PMID: 30078960 PMCID: PMC6052815 DOI: 10.4103/jlp.jlp_167_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIMS AND OBJECTIVES: Infection is a serious problem for patients after implantation surgery, which is difficult to treat with antibiotic therapy. The present study was developed to evaluate and compare the antibacterial properties of hydroxyapatite/bioactive glass (HA/BG) and fluorapatite/bioactive glass (FA/BG) nanocomposite foams as a cellular scaffold for use in bone defects by two macrodilution and disk diffusion methods. MATERIALS AND METHODS: Staphylococcus aureus, Enterococcus faecalis, and Streptococcus mutans were cultured in brain heart infusion broth medium with nanocomposite powder for 5 days, and their bioactivity levels were evaluated by daily culturing on solid agar medium plates. To carry out the disk diffusion test, a disc form of nanocomposite foams was used on agar medium with 48 h incubation. RESULTS: None of two nanocomposites even at their highest concentration (200 mg/mL) did not prevent the growth of two Staphylococcus aureus and Enterococcus faecalis microorganisms. However, HA/BG nanocomposite on the 3rd day at a concentration of 200 mg/mL and on 4th and 5th day at a concentration of 100 mg/mL and FA/BG nanocomposite on the 4th day at a concentration of 100 mg/mL and on the 5th day at a concentration of 50 mg/mL could be able to kill Streptococcus mutans microorganism. In the disc diffusion test, none of the nanocomposites could create a nongrowth zone. Both tested biomaterials showed increased antibacterial properties over time and concentration increase. CONCLUSION: HA/BG and FA/BG nanocomposites, due to their biocompatibility and antimicrobial properties, are good choices for implantation instead of damaged bone tissue in tissue engineering.
Collapse
Affiliation(s)
- Seyedali Seyedmajidi
- Dental Materials Research Center, Institute of Health, Babol University of Medical Silences, Babol, Iran
| | - Ramazan Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Institute of Health, Babol University of Medical Silences, Babol, Iran
| | - Maryam Seyedmajidi
- Dental Materials Research Center, Institute of Health, Babol University of Medical Silences, Babol, Iran
| |
Collapse
|
46
|
Gonzalez Moreno M, Butini ME, Maiolo EM, Sessa L, Trampuz A. Antimicrobial activity of bioactive glass S53P4 against representative microorganisms causing osteomyelitis - Real-time assessment by isothermal microcalorimetry. Colloids Surf B Biointerfaces 2020; 189:110853. [PMID: 32058256 DOI: 10.1016/j.colsurfb.2020.110853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 11/30/2022]
Abstract
Bioactive glass (BAG) is a synthetic bone substitute with intrinsic antimicrobial properties, used for bone defect filling. We evaluated the antimicrobial activity of two formulations of BAG S53P4 against representative pathogens of osteomyelitis: Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli and Candida albicans. Antimicrobial activity of BAG S53P4 was assessed by isothermal microcalorimetry, a highly sensitive assay measuring metabolic-related microbial heat production in real-time. Standard CFUs-counting was performed in parallel. BAG granules (diameter 500-800 μm) and powder (<45 μm) were evaluated in two concentrations (400 and 800 mg/ml). Isothermal microcalorimetry was performed in glass ampoules containing growth medium, BAG and test microorganism, heat production was measured for 24 h. BAG S53P4 inhibited heat production of most-tested microorganisms with heat reduction of 60%-98% compared to positive control after 24 h of exposure to the highest-tested concentration (800 mg/ml). BAG S53P4 in powder formulation (<45 μm) inhibited more microbial growth than in granule formulation (500-800 μm), with the exception of C. albicans for which both formulations presented similar inhibition rates ranging between 87 % and 97 %. The BAG inhibitory ratios estimated from the variation in the growth rate constants of each microorganism compared to the growth control ranged between 2.55 % and 100 %. Comparable results were obtained by CFUs-counting, with complete reduction in cell viability of most microorganisms after ≤ 24 h of microbial exposure to BAG S53P4 powder. In summary, BAG S53P4 demonstrated efficient inhibition of microbial growth, especially in powder formulation.
Collapse
Affiliation(s)
- Mercedes Gonzalez Moreno
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Musculoskeletal Surgery, Charitéplatz 1, 10117 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maria Eugenia Butini
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Musculoskeletal Surgery, Charitéplatz 1, 10117 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elena Maryka Maiolo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Musculoskeletal Surgery, Charitéplatz 1, 10117 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Laura Sessa
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Andrej Trampuz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Musculoskeletal Surgery, Charitéplatz 1, 10117 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
47
|
Moghanian A, Portillo-Lara R, Shirzaei Sani E, Konisky H, Bassir SH, Annabi N. Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. J Tissue Eng Regen Med 2020; 14:66-81. [PMID: 31850689 PMCID: PMC6992487 DOI: 10.1002/term.2964] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/07/2022]
Abstract
Orthopedic surgical procedures based on the use of conventional biological graft tissues are often associated with serious post-operative complications such as immune rejection, bacterial infection, and poor osseointegration. Bioresorbable bone graft substitutes have emerged as attractive alternatives to conventional strategies because they can mimic the composition and mechanical properties of the native bone. Among these, bioactive glasses (BGs) hold great potential to be used as biomaterials for bone tissue engineering owing to their biomimetic composition and high biocompatibility and osteoinductivity. Here, we report the development of a novel composite biomaterial for bone tissue engineering based on the incorporation of a modified strontium- and lithium-doped 58S BG (i.e., BG-5/5) into gelatin methacryloyl (GelMA) hydrogels. We characterized the physicochemical properties of the BG formulation via different analytical techniques. Composite hydrogels were then prepared by directly adding BG-5/5 to the GelMA hydrogel precursor, followed by photocrosslinking of the polymeric network via visible light. We characterized the physical, mechanical, and adhesive properties of GelMA/BG-5/5 composites, as well as their in vitro cytocompatibility and osteoinductivity. In addition, we evaluated the antimicrobial properties of these composites in vitro, using a strain of methicillin-resistant Staphylococcus Aureus. GelMA/BG-5/5 composites combined the functional characteristics of the inorganic BG component, with the biocompatibility, biodegradability, and biomimetic composition of the hydrogel network. This novel biomaterial could be used for developing osteoinductive scaffolds or implant surface coatings with intrinsic antimicrobial properties and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Amirhossein Moghanian
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Mexico
| | - Ehsan Shirzaei Sani
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
| | - Hailey Konisky
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Seyed Hossein Bassir
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
48
|
Toivonen J, Björkqvist M, Minn H, Vallittu PK, Rekola J. Scattering of therapeutic radiation in the presence of craniofacial bone reconstruction materials. J Appl Clin Med Phys 2019; 20:119-126. [PMID: 31782897 PMCID: PMC6909125 DOI: 10.1002/acm2.12776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/05/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Radiation scattering from bone reconstruction materials can cause problems from prolonged healing to osteoradionecrosis. Glass fiber reinforced composite (FRC) has been introduced for bone reconstruction in craniofacial surgery but the effects during radiotherapy have not been previously studied. The purpose of this study was to compare the attenuation and back scatter caused by different reconstruction materials during radiotherapy, especially FRC with bioactive glass (BG) and titanium. Methods The effect of five different bone reconstruction materials on the surrounding tissue during radiotherapy was measured. The materials tested were titanium, glass FRC with and without BG, polyether ether ketone (PEEK) and bone. The samples were irradiated with 6 MV and 10 MV photon beams. Measurements of backscattering and dose changes behind the sample were made with radiochromic film and diamond detector dosimetry. Results An 18% dose enhancement was measured with a radiochromic film on the entrance side of irradiation for titanium with 6 MV energy while PEEK and FRC caused an enhancement of 10% and 4%, respectively. FRC‐BG did not cause any measurable enhancement. The change in dose immediately behind the sample was also greatest with titanium (15% reduction) compared with the other materials (0–1% enhancement). The trend is similar with diamond detector measurements, titanium caused a dose enhancement of up to 4% with a 1 mm sample and a reduction of 8.5% with 6 MV energy whereas FRC, FRC‐BG, PEEK or bone only caused a maximum dose reduction of 2.2%. Conclusions Glass fiber reinforced composite causes less interaction with radiation than titanium during radiotherapy and could provide a better healing environment after bone reconstruction.
Collapse
Affiliation(s)
- Joonas Toivonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland.,Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| | - Mikko Björkqvist
- Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital and University of Turku, Turku, Finland
| | - Heikki Minn
- Department of Oncology and Radiotherapy, Turku University Hospital and University of Turku, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland.,City of Turku, Welfare Division, Turku, Finland
| | - Jami Rekola
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku, Finland.,Department of Biomaterials Science, Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| |
Collapse
|
49
|
Bioactive Glass Granules Inhibit Mature Bacterial Biofilms on the Surfaces of Cochlear Implants. Otol Neurotol 2019; 39:e985-e991. [PMID: 30334871 DOI: 10.1097/mao.0000000000002021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS Biofilm formation on cochlear implant (CI) surfaces differs between bacterial species and can be reduced by the application of S53P4 bioactive glass. BACKGROUND The formation of bacterial biofilms on medical devices, such as cochlear implants, can lead to chronic infections resulting in the need for implant removal. In this study, various surfaces of three CI implant kits from different manufacturers were examined for bacterial biofilm formation and reduction of a pre-existing biofilm by the application of bioactive glass. METHODS Biofilm formations of 4 bacterial species causing implant-related infections were tested on 17 different surfaces: Pseudomonas aeruginosa (ATCC9027), Staphylococcus aureus (ATCC6538), Staphylococcus epidermidis (ATCC12228), and Streptococcus pyogenes (ATCC19615). For P. aeruginosa and S. aureus biofilm reduction after application of S53P4 bioactive glass was evaluated. RESULTS All tested microbial species formed biofilms on the examined CI surfaces in a strain-dependent manner. For S. aureus, a significantly higher biofilm formation on metal components compared with silicone was found whereas the other strains did not show a material specific biofilm formation. Application of S53P4 bioactive glass resulted in a significant reduction of P. aeruginosa and S. aureus mature biofilm. CONCLUSION The four bacteria species displayed biofilm formation on the CI surfaces in a species- and material-specific manner. The results show that bioactive glass can reduce biofilm formation on CI materials in vitro. Future studies are necessary to confirm the results in vivo.
Collapse
|
50
|
The Implantation of Bioactive Glass Granules Can Contribute the Load-Bearing Capacity of Bones Weakened by Large Cortical Defects. MATERIALS 2019; 12:ma12213481. [PMID: 31652996 PMCID: PMC6862453 DOI: 10.3390/ma12213481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022]
Abstract
Bioactive glass (BAG) granules (S53P4) have shown good clinical results in one-stage treatment of osteomyelitis. During this treatment, a cortical window is created, and infected bone is debrided, which results in large defects that affect the mechanical properties of the bone. This study aimed to evaluate the role of BAG granules in load-bearing bone defect grafting. First, the influence of the geometry of the cortical window on the bone bending stiffness and estimated failure moments was evaluated using micro finite element analysis (µFE). This resulted in significant differences between the variations in width and length. In addition, µFE analysis showed that BAG granules contribute to bearing loads in simulated compression of a tibia with a defect grafted with BAG and a BAG and bone morsel mixture. These mixtures potentially can unload the cortical bone that is weakened by a large defect directly after the operation by up to approximately 25%, but only in case of optimal load transfer through the mixture.
Collapse
|