1
|
Win SY, Chavalitsarot M, Eawsakul K, Ongtanasup T, Nasongkla N. Encapsulation of Cyclosporine A-Loaded PLGA Nanospheres in Alginate Microbeads for Anti-Inflammatory Application. ACS OMEGA 2024; 9:6901-6911. [PMID: 38371838 PMCID: PMC10870416 DOI: 10.1021/acsomega.3c08438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
The controlled release of cyclosporine A (CsA) microencapsulated in alginate microbeads is a novel drug delivery system for the treatment of inflammatory diseases. In this study, CsA-loaded nanospheres encapsulated in alginate microbeads were applied to evaluate their controlled release profile and anti-inflammatory activity. Initially, a controlled-release drug delivery system was created by encapsulating CsA-loaded PLGA nanospheres within alginate microbeads. CsA-loaded PLGA nanospheres had a diameter of 418.70 ± 59.08 nm, a zeta potential of -22 ± 0.57 mV, and a polydispersity index of 0.517 ± 0.010. CsA-loaded nanosphere-encapsulated alginate microbeads were stable for 37 days. After encapsulating CsA-loaded PLGA nanospheres in the alginate microbeads, 5.60% of CsA was released after 24 h, and approximately 85.90% of the drugs were diffused until day 64. The cytotoxic and anti-inflammatory properties of the CsA released from the microbeads were evaluated in vitro using a murine macrophage cell line (RAW 264.7 cells). CsA-loaded nanosphere-encapsulated alginate microbeads inhibited 39.47 ± 1.71% of nitric oxide production from the RAW 264.7 cells on day 3, whereas nanosphere-encapsulated alginate microbeads inhibited 18.45 ± 1.56% only. CsA released from CsA-loaded nanosphere-encapsulated alginate microbeads had a RAW cell viability of 82.73 ± 5.58% on day 3 compared to 87.59 ± 0.69% of nanosphere-encapsulated alginate microbeads. The efficacy of the CsA-loaded nanosphere-encapsulated alginate microbeads in protecting the immune system via a controlled drug delivery system was established through anti-inflammatory and cell viability evaluation. Based on this research, the controlled release of CsA-loaded nanosphere-encapsulated alginate microbeads provides an innovative treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Su Yee Win
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
- Thailand
Research Fund through the Royal Golden Jubilee Ph.D. Program, Phayathai, Bangkok 10400, Thailand
- Thailand
International Cooperation Agency (TICA), Thungsonghong Laksi District, Bangkok 10210, Thailand
| | - Mongkol Chavalitsarot
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Komgrit Eawsakul
- Department
of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tassanee Ongtanasup
- Department
of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Norased Nasongkla
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
2
|
Pioch T, Fischer T, Schneider M. Aspherical, Nano-Structured Drug Delivery System with Tunable Release and Clearance for Pulmonary Applications. Pharmaceutics 2024; 16:232. [PMID: 38399290 PMCID: PMC10891959 DOI: 10.3390/pharmaceutics16020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Addressing the challenge of efficient drug delivery to the lungs, a nano-structured, microparticulate carrier system with defined and customizable dimensions has been developed. Utilizing a template-assisted approach and capillary forces, particles were rapidly loaded and stabilized. The system employs a biocompatible alginate gel as a stabilizing matrix, facilitating the breakdown of the carrier in body fluids with the subsequent release of its nano-load, while also mitigating long-term accumulation in the lung. Different gel strengths and stabilizing steps were applied, allowing us to tune the release kinetics, as evaluated by a quantitative method based on a flow-imaging system. The micro-cylinders demonstrated superior aerodynamic properties in Next Generation Impactor (NGI) experiments, such as a smaller median aerodynamic diameter (MMAD), while yielding a higher fine particle fraction (FPF) than spherical particles similar in critical dimensions. They exhibited negligible toxicity to a differentiated macrophage cell line (dTHP-1) for up to 24 h of incubation. The kinetics of the cellular uptake by dTHP-1 cells was assessed via fluorescence microscopy, revealing an uptake-rate dependence on the aspect ratio (AR = l/d); cylinders with high AR were phagocytosed more slowly than shorter rods and comparable spherical particles. This indicates that this novel drug delivery system can modulate macrophage uptake and clearance by adjusting its geometric parameters while maintaining optimal aerodynamic properties and featuring a biodegradable stabilizing matrix.
Collapse
Affiliation(s)
| | | | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; (T.P.); (T.F.)
| |
Collapse
|
3
|
Seymour AJ, Kilian D, Navarro RS, Hull SM, Heilshorn SC. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels. Biomater Sci 2023; 11:7598-7615. [PMID: 37824082 PMCID: PMC10842430 DOI: 10.1039/d3bm00721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Microgel-based biomaterials have inherent porosity and are often extrudable, making them well-suited for 3D bioprinting applications. Cells are commonly introduced into these granular inks post-printing using cell infiltration. However, due to slow cell migration speeds, this strategy struggles to achieve depth-independent cell distributions within thick 3D printed geometries. To address this, we leverage granular ink modularity by combining two microgels with distinct functions: (1) structural, UV-crosslinkable microgels made from gelatin methacryloyl (GelMA) and (2) sacrificial, cell-laden microgels made from oxidized alginate (AlgOx). We hypothesize that encapsulating cells within sacrificial AlgOx microgels would enable the simultaneous introduction of void space and release of cells at depths unachievable through cell infiltration alone. Blending the microgels in different ratios produces a family of highly printable GelMA : AlgOx microgel inks with void fractions ranging from 0.03 to 0.35. As expected, void fraction influences the morphology of human umbilical vein endothelial cells (HUVEC) within GelMA : AlgOx inks. Crucially, void fraction does not alter the ideal HUVEC distribution seen throughout the depth of 3D printed samples. This work presents a strategy for fabricating constructs with tunable porosity and depth-independent cell distribution, highlighting the promise of microgel-based inks for 3D bioprinting.
Collapse
Affiliation(s)
- Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - David Kilian
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Renato S Navarro
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Nativel F, Smith A, Boulestreau J, Lépine C, Baron J, Marquis M, Vignes C, Le Guennec Y, Veziers J, Lesoeur J, Loll F, Halgand B, Renard D, Abadie J, Legoff B, Blanchard F, Gauthier O, Vinatier C, Rieux AD, Guicheux J, Le Visage C. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Mater Today Bio 2023; 19:100581. [PMID: 36896417 PMCID: PMC9988569 DOI: 10.1016/j.mtbio.2023.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.
Collapse
Affiliation(s)
- Fabien Nativel
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Audrey Smith
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jeremy Boulestreau
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Charles Lépine
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Julie Baron
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Melanie Marquis
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Caroline Vignes
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Yoan Le Guennec
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Joelle Veziers
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Julie Lesoeur
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - François Loll
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Boris Halgand
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Denis Renard
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Jerome Abadie
- LabONIRIS, ONIRIS (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), F-44300 Nantes, France
| | - Benoit Legoff
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Frederic Blanchard
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Olivier Gauthier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de Recherche et D'investigation Préclinique (CRIP), F-44300 Nantes, France
| | - Claire Vinatier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Anne des Rieux
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jerome Guicheux
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Catherine Le Visage
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
5
|
Emerson AE, McCall AB, Brady SR, Slaby EM, Weaver JD. Hydrogel Injection Molding to Generate Complex Cell Encapsulation Geometries. ACS Biomater Sci Eng 2022; 8:4002-4013. [DOI: 10.1021/acsbiomaterials.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amy E. Emerson
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Alec B. McCall
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Sarah R. Brady
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Emily M. Slaby
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| | - Jessica D. Weaver
- School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange Street, Tempe, Arizona 85281, United States
| |
Collapse
|
6
|
Oral Bioavailability Enhancement of Melanin Concentrating Hormone, Development and In Vitro Pharmaceutical Assessment of Novel Delivery Systems. Pharmaceutics 2021; 14:pharmaceutics14010009. [PMID: 35056908 PMCID: PMC8778866 DOI: 10.3390/pharmaceutics14010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
The rapid progress in biotechnology over the past few decades has accelerated the large-scale production of therapeutic peptides and proteins, making them available in medical practice. However, injections are the most common method of administration; these procedures might lead to inconvenience. Non-invasive medications, such as oral administration of bio-compounds, can reduce or eliminate pain and increase safety. The aim of this project was to develop and characterize novel melanin concentrating hormone (MCH) formulations for oral administration. As a drug delivery system, penetration enhancer combined alginate beads were formulated and characterized. The combination of alginate carriers with amphiphilic surfactants has not been described yet. Due to biosafety having high priority in the case of novel pharmaceutical formulations, the biocompatibility of selected auxiliary materials and their combinations was evaluated using different in vitro methods. Excipients were selected according to the performed toxicity measurements. Besides the cell viability tests, physical properties and complex bioavailability assessments were performed as well. Our results suggest that alginate beads are able to protect melanin concentrating hormones. It has been also demonstrated that penetration enhancer combined alginate beads might play a key role in bioavailability improvement. These formulations were found to be promising tools for oral peptide delivery. Applied excipients and the performed delivery systems are safe and highly tolerable; thus, they can improve patients’ experience and promote adherence.
Collapse
|
7
|
Paz-Artigas L, Ziani K, Alcaine C, Báez-Díaz C, Blanco-Blázquez V, Pedraz JL, Ochoa I, Ciriza J. Benefits of cryopreservation as long-term storage method of encapsulated cardiosphere-derived cells for cardiac therapy: A biomechanical analysis. Int J Pharm 2021; 607:121014. [PMID: 34400275 DOI: 10.1016/j.ijpharm.2021.121014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Cardiosphere-derived cells (CDCs) encapsulated within alginate-poly-L-lysine-alginate (APA) microcapsules present a promising treatment alternative for myocardial infarction. However, clinical translatability of encapsulated CDCs requires robust long-term preservation of microcapsule and cell stability, since cell culture at 37 °C for long periods prior to patient implantation involve high resource, space and manpower costs, sometimes unaffordable for clinical facilities. Cryopreservation in liquid nitrogen is a well-established procedure to easily store cells with good recovery rate, but its effects on encapsulated cells are understudied. In this work, we assess both the biological response of CDCs and the mechanical stability of microcapsules after long-term (i.e., 60 days) cryopreservation and compare them to encapsulated CDCs cultured at 37 °C. We investigate for the first time the effects of cryopreservation on stiffness and topographical features of microcapsules for cell therapy. Our results show that functionality of encapsulated CDCs is optimum during 7 days at 37 °C, while cryopreservation seems to better guarantee the stability of both CDCs and APA microcapsules properties during longer storage than 15 days. These results point out cryopreservation as a suitable technique for long-term storage of encapsulated cells to be translated from the bench to the clinic.
Collapse
Affiliation(s)
- Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Kaoutar Ziani
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Claudia Báez-Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER CV), Spain
| | - Virginia Blanco-Blázquez
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER CV), Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain.
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain.
| |
Collapse
|
8
|
Sepúlveda-Rivas S, Leal MS, Pedrozo Z, Kogan MJ, Ocaranza MP, Morales JO. Nanoparticle-Mediated Angiotensin-(1-9) Drug Delivery for the Treatment of Cardiac Hypertrophy. Pharmaceutics 2021; 13:pharmaceutics13060822. [PMID: 34206106 PMCID: PMC8228229 DOI: 10.3390/pharmaceutics13060822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/19/2023] Open
Abstract
Ang-(1-9) peptide is a bioactive vasodilator peptide that prevents cardiomyocyte hypertrophy in vitro and in vivo as well as lowers blood pressure and pathological cardiovascular remodeling; however, it has a reduced half-life in circulation, requiring a suitable carrier for its delivery. In this work, hybrid nanoparticles composed of polymeric nanoparticles (pNPs) based on Eudragit® E/Alginate (EE/Alg), and gold nanospheres (AuNS), were developed to evaluate their encapsulation capacity and release of Ang-(1-9) under different experimental conditions. Hybrid pNPs were characterized by dynamic light scattering, zeta potential, transmission and scanning electron microscopy, size distribution, and concentration by nanoparticle tracking analysis. Nanometric pNPs, with good polydispersity index and colloidally stable, produced high association efficiency of Ang-(1-9) and controlled release. Finally, the treatment of neonatal cardiomyocytes in culture with EE/Alg/AuNS 2% + Ang-(1-9) 20% pNPs decreased the area and perimeter, demonstrating efficacy in preventing norepinephrine-induced cardiomyocyte hypertrophy. On the other hand, the incorporation of AuNS did not cause negative effects either on the cytotoxicity or on the association capacity of Ang-(1-9), suggesting that the hybrid carrier EE/Alg/AuNS pNPs could be used for the delivery of Ang-(1-9) in the treatment of cardiovascular hypertrophy.
Collapse
Affiliation(s)
- Sabrina Sepúlveda-Rivas
- Medical Technology School, Faculty of Sciences, Universidad Mayor, Camino la Piramide 5750, Huechuraba, Santiago 8580745, Chile;
| | - Matías S. Leal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile;
| | - Zully Pedrozo
- Red Para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Santiago 8380453, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile;
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marcelo J. Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile;
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile;
- División de Enfermedades Cardiovasculares, Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Center of New Drugs for Hypertension, Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile
- Correspondence: (M.P.O.); (J.O.M.)
| | - Javier O. Morales
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile;
- Center of New Drugs for Hypertension, Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
- Correspondence: (M.P.O.); (J.O.M.)
| |
Collapse
|
9
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Somo SI, Brown JM, Brey EM. Dual Crosslinking of Alginate Outer Layer Increases Stability of Encapsulation System. Front Chem 2020; 8:575278. [PMID: 33282827 PMCID: PMC7688585 DOI: 10.3389/fchem.2020.575278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
The current standard treatment for Type 1 diabetes is the administration of exogenous insulin to manage blood glucose levels. Cellular therapies are in development to address this dependency and allow patients to produce their own insulin. Studies have shown that viable, functional allogenic islets can be encapsulated inside alginate-based materials as a potential treatment for Type 1 diabetes. The capability of these grafts is limited by several factors, among which is the stability and longevity of the encapsulating material in vivo. Previous studies have shown that multilayer Alginate-Poly-L-Ornithine-Alginate (A-PLO-A) microbeads are effective in maintaining cellular function in vivo. This study expands upon the existing encapsulation material by investigating whether covalent crosslinking of the outer alginate layer increases stability. The alginate comprising the outer layer was methacrylated, allowing it to be covalently crosslinked. Microbeads with a crosslinked outer layer exhibited a consistent outer layer thickness and increased stability when exposed to chelating agents in vitro. The outer layer was maintained in vivo even in the presence of a robust inflammatory response. The results demonstrate a technique for generating A-PLO-A with a covalently crosslinked outer layer.
Collapse
Affiliation(s)
- Sami I. Somo
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, United States
| | - Jacob M. Brown
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
| | - Eric M. Brey
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Eric M. Brey
| |
Collapse
|
11
|
Li J, Wu H, Jiang K, Liu Y, Yang L, Park HJ. Alginate Calcium Microbeads Containing Chitosan Nanoparticles for Controlled Insulin Release. Appl Biochem Biotechnol 2020; 193:463-478. [PMID: 33026616 DOI: 10.1007/s12010-020-03420-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/11/2020] [Indexed: 11/29/2022]
Abstract
Effective delivery system for oral insulin administration is a promising way for diabetes therapy. Herein, we prepared alginate microbeads containing chitosan nanoparticles (CNP) for controlled release of insulin. CNP was developed by reaction between tripolyphosphate (TPP) and chitosan. The ratio of TPP to chitosan was optimized aiming with smaller and more unified distributed CNP. TEM and DLS analysis confirmed that CNP has size around 150 nm with low PDI value and strong surface charge. Encapsulate ability for bovine serum albumin, working as model protein, was 11.45%, and the encapsulate efficiency was 23.70%. To modify the release profile of protein suitable for oral insulin delivery, sodium alginate was applied to coat on the surface of CNP by electrostatic interaction. After that, CaCl2 was added to reinforce the alginate coating layer. FTIR analysis confirmed the interaction of alginate with chitosan and reaction with calcium ion. After reaction with Ca2+ ion, size measurement revealed that CNP was incorporated into alginate microbeads with mean diameter about 3.197 μm. Alginate microbeads presented irregular shape with small particles inside as revealed by optical microscope. Meanwhile, the release test demonstrated that protein release was pH-dependent. Acidic pH value retards protein release and neutral pH value promotes protein release. At last, insulin-loaded alginate microbeads were administrated to hyperglycemia model mice and blood glucose profile was monitored afterward. Insulin-loaded microbeads significantly lowered blood glucose level compared with mice treated with alginate microbeads without insulin. It is noted that insulin-loaded alginate microbeads could lower blood glucose level in much prolonged period of 96 h, indicating that insulin was released in controlled manner.
Collapse
Affiliation(s)
- Jinglei Li
- Engineering Research Center of Bioprocess, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Haishan Wu
- Engineering Research Center of Bioprocess, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Kexin Jiang
- Shaanxi Key Laboratory for Animal Conservation, and School of Life Science, Northwest University, Xi'an, China
| | - Yuting Liu
- Engineering Research Center of Bioprocess, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Liu Yang
- Engineering Research Center of Bioprocess, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
12
|
Boi S, Rouatbi N, Dellacasa E, Di Lisa D, Bianchini P, Monticelli O, Pastorino L. Alginate microbeads with internal microvoids for the sustained release of drugs. Int J Biol Macromol 2020; 156:454-461. [DOI: 10.1016/j.ijbiomac.2020.04.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022]
|
13
|
Abdellatif AAH, Ibrahim MA, Amin MA, Maswadeh H, Alwehaibi MN, Al-Harbi SN, Alharbi ZA, Mohammed HA, Mehany ABM, Saleem I. Cetuximab Conjugated with Octreotide and Entrapped Calcium Alginate-beads for Targeting Somatostatin Receptors. Sci Rep 2020; 10:4736. [PMID: 32170176 PMCID: PMC7069942 DOI: 10.1038/s41598-020-61605-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/29/2020] [Indexed: 12/25/2022] Open
Abstract
There is a need to formulate oral cetuximab (CTX) for targeting colorectal cancer, which is reported to express somatostatin receptors (SSTRs). Therefore, coating CTX with a somatostatin analogue such as octreotide (OCT) is beneficial. Alginate was used to coat CTX to facilitate delivery to the gastrointestinal tract (GIT). This study aimed to deliver CTX conjugated with OCT in the form of microparticles as a GIT-targeted SSTR therapy. Both CTX and OCT were conjugated using a solvent evaporation method and the conjugated CTX-OCT was then loaded onto Ca-alginate-beads (CTX-OCT-Alg), which were characterized for drug interactions using differential scanning calorimetry (DSC), and Fourier transform infrared spectra (FTIR). Moreover, the morphology of formulated beads was examined using a scanning electron microscope (SEM). The drug content and release profile were studied using UV spectroscopy. Finally, in vitro cytotoxicity of all compounds was evaluated. The results showed homogenous conjugated CTX-OCT with a diameter of 0.4 mm. DSC showed a delay in the OCT peak that appeared after 200 °C due to small polymer interaction that shifted the OCT peak. Moreover, FTIR showed no prominent interaction. SEM showed clear empty cavities in the plain Ca-alginate-beads, while CTX-OCT-Alg showed occupied beads without cavities. CTX-OCT-Alg had a negligible release in 0.1 N HCl, while the CTX-OCT was completely released after 300 min in phosphate buffer pH 7.4. All formulations showed good antiproliferative activity compared with free drugs. The formulated CTX-OCT-Alg are a promising platform for targeting colorectal cancer through GIT.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | - Mohamed A Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Amin
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Muhammed N Alwehaibi
- Pharm. D. Student, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Sultan N Al-Harbi
- Pharm. D. Student, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Zayed A Alharbi
- Pharm. D. Student, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicnal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University James Parsons Building, Liverpool, UK
| |
Collapse
|
14
|
X-ray CT in Phase Contrast Enhancement Geometry of Alginate Microbeads in a Whole-Animal Model. Ann Biomed Eng 2020; 48:1016-1024. [DOI: 10.1007/s10439-019-02291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
15
|
Removal of Cadmium from Aqueous Solutions by Saccharomyces cerevisiae-Alginate System. MATERIALS 2019; 12:ma12244128. [PMID: 31835462 PMCID: PMC6947380 DOI: 10.3390/ma12244128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
The aim of this study was to determine the Cd2+ removal capacity of a biosorbent system formed by Saccharomyces cerevisiae in calcium alginate beads. The adsorption of Cd2+ by a S. cerevisiae–alginate system was tested either by batch or fixed-bed column experiments. The S. cerevisiae–alginate system was characterized using dynamic light scattering (DLS, zeta potential), size, hardness, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy. Beads of the S. cerevisiae–alginate system showed a spherical–elliptical morphology, diameter of 1.62 ± 0.02 mm, 96% moisture, negative surface charge (−29.3 ± 2.57 mV), and texture stability during storage at 4 °C for 20 days. In batch conditions, the system adsorbed 4.3 µg of Cd2+/g of yeast–alginate beads, using a Cd2+ initial concentration of 5 mg/L. Adsorption capacity increased to 15.4 µg/g in a fixed-bed column system, removing 83% of total Cd2+. In conclusion, the yeast–alginate system is an efficient option for the removal of cadmium at low concentrations in drinking water.
Collapse
|
16
|
Campbell KT, Wysoczynski K, Hadley DJ, Silva EA. Computational-Based Design of Hydrogels with Predictable Mesh Properties. ACS Biomater Sci Eng 2019; 6:308-319. [PMID: 33313390 DOI: 10.1021/acsbiomaterials.9b01520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrogel systems are an appealing class of therapeutic delivery vehicles, though it can be challenging to design hydrogels that maintain desired spatiotemporal presentation of therapeutic cargo. In this work, we propose a different approach in which computational tools are developed that creates a theoretical representation of the hydrogel polymer network to design hydrogels with predefined mesh properties critical for controlling therapeutic delivery. We postulated and confirmed that the computational model could incorporate properties of alginate polymers, including polymer content, monomer composition and polymer chain radius, to accurately predict cross-link density and mesh size for a wide range of alginate hydrogels. Additionally, the simulations provided a robust strategy to determine the mesh size distribution and identified properties to control the mesh size of alginate hydrogels. Furthermore, the model was validated for additional hydrogel systems and provided a high degree of correlation (R2 > 0.95) to the mesh sizes determined for both fibrin and polyethylene glycol (PEG) hydrogels. Finally, a full factorial and Box-Behnken design of experiments (DOE) approach utilized in combination with the computational model predicted that the mesh size of hydrogels could be varied from approximately 5 nm to 5 μm through controlling properties of the polymer network. Overall, this computational model of the hydrogel polymer network provides a rapid and accessible strategy to predict hydrogel mesh properties and ultimately design hydrogel systems with desired mesh properties for potential therapeutic applications.
Collapse
Affiliation(s)
- Kevin T Campbell
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Kajetan Wysoczynski
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Dustin J Hadley
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
17
|
Injectable cell-encapsulating composite alginate-collagen platform with inducible termination switch for safer ocular drug delivery. Biomaterials 2019; 201:53-67. [DOI: 10.1016/j.biomaterials.2019.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 01/20/2019] [Indexed: 12/18/2022]
|
18
|
Simultaneous spatiotemporal tracking and oxygen sensing of transient implants in vivo using hot-spot MRI and machine learning. Proc Natl Acad Sci U S A 2019; 116:4861-4870. [PMID: 30808810 DOI: 10.1073/pnas.1815909116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A varying oxygen environment is known to affect cellular function in disease as well as activity of various therapeutics. For transient structures, whether they are unconstrained therapeutic transplants, migrating cells during tumor metastasis, or cell populations induced by an immunological response, the role of oxygen in their fate and function is known to be pivotal albeit not well understood in vivo. To address such a challenge in the case of generation of a bioartificial pancreas, we have combined fluorine magnetic resonance imaging and unsupervised machine learning to monitor over time the spatial arrangement and the oxygen content of implants encapsulating pancreatic islets that are unconstrained in the intraperitoneal (IP) space of healthy and diabetic mice. Statistically significant trends in the postimplantation temporal dependence of oxygen content between aggregates of 0.5-mm or 1.5-mm alginate microcapsules were identified in vivo by looking at their dispersity as well as arrangement in clusters of different size and estimating oxygen content on a pixel-by-pixel basis from thousands of 2D images. Ultimately, we found that this dependence is stronger for decreased implant capsule size consistent with their tendency to also induce a larger immunological response. Beyond the bioartificial pancreas, this work provides a framework for the simultaneous spatiotemporal tracking and oxygen sensing of other cell populations and biomaterials that change over time to better understand and improve therapeutic design across diverse applications such as cellular transplant therapy, treatments preventing metastatic formation, and modulators for improving immunologic response, for all of which oxygen is a major mechanistic component.
Collapse
|
19
|
Noverraz F, Montanari E, Pimenta J, Szabó L, Ortiz D, Gonelle-Gispert C, Bühler LH, Gerber-Lemaire S. Antifibrotic Effect of Ketoprofen-Grafted Alginate Microcapsules in the Transplantation of Insulin Producing Cells. Bioconjug Chem 2018; 29:1932-1941. [DOI: 10.1021/acs.bioconjchem.8b00190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- François Noverraz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| | - Elisa Montanari
- University Hospitals of Geneva, Surgical Research Unit, CMU-1, CH-1211 Geneva, Switzerland
| | - Joël Pimenta
- University Hospitals of Geneva, Surgical Research Unit, CMU-1, CH-1211 Geneva, Switzerland
| | - Luca Szabó
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, SSMI, Batochime, CH-1015 Lausanne, Switzerland
| | - Carmen Gonelle-Gispert
- University Hospitals of Geneva, Surgical Research Unit, CMU-1, CH-1211 Geneva, Switzerland
| | - Léo H. Bühler
- University Hospitals of Geneva, Surgical Research Unit, CMU-1, CH-1211 Geneva, Switzerland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Natural and Synthetic Biodegradable Polymers: Different Scaffolds for Cell Expansion and Tissue Formation. Int J Artif Organs 2018. [DOI: 10.5301/ijao.5000307] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of tissue produced by implanted cells is influenced greatly by the scaffold onto which they are seeded. In the long term it is often preferable to use a biodegradable material scaffold so that all the implanted materials will disappear, leaving behind only the generated tissue. Research in this area has identified several natural biodegradable materials. Among them, hydrogels are receiving increasing attention due to their ability to retain a great quantity of water, their good biocompatibility, their low interfacial tension, and the minimal mechanical and frictional irritation that they cause. Biocompatibility is not an intrinsic property of materials; rather it depends on the biological environment and the tolerability that exists with respect to specific polymer-tissue interactions. The most often utilized biodegradable synthetic polymers for 3D scaffolds in tissue engineering are saturated poly-a-hydroxy esters, including poly(lactic acid) (PLA) and poly(glycolic acid) (PGA), as well as poly(lactic-co-lycolide) (PLGA) copolymers. Hard materials provide compressive and torsional strength; hydrogels and other soft composites more effectively promote cell expansion and tissue formation. This review focuses on the future potential for understanding the characteristics of the biomaterials considered evaluated for clinical use in order to repair or to replace a sizable defect by only harvesting a small tissue sample.
Collapse
|
21
|
Somo SI, Langert K, Yang CY, Vaicik MK, Ibarra V, Appel AA, Akar B, Cheng MH, Brey EM. Synthesis and evaluation of dual crosslinked alginate microbeads. Acta Biomater 2018; 65:53-65. [PMID: 29101016 PMCID: PMC5902406 DOI: 10.1016/j.actbio.2017.10.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022]
Abstract
Alginate hydrogels have been investigated for a broad variety of medical applications. The ability to assemble hydrogels at neutral pH and mild temperatures makes alginate a popular choice for the encapsulation and delivery of cells and proteins. Alginate has been studied extensively for the delivery of islets as a treatment for type 1 diabetes. However, poor stability of the encapsulation systems after implantation remains a challenge. In this paper, alginate was modified with 2-aminoethyl methacrylate hydrochloride (AEMA) to introduce groups that can be photoactivated to generate covalent bonds. This enabled formation of dual crosslinked structure upon exposure to ultraviolet light following initial ionic crosslinking into bead structures. The degree of methacrylation was varied and in vitro stability, long term swelling, and cell viability examined. At low levels of the methacrylation, the beads could be formed by first ionic crosslinks followed by exposure to ultraviolet light to generate covalent bonds. The methacrylated alginate resulted in more stable beads and cells were viable following encapsulation. Alginate microbeads, ionic (unmodified) and dual crosslinked, were implanted into a rat omentum pouch model. Implantation was performed with a local injection of 100 µl of 50 µg/ml of Lipopolysaccharide (LPS) to stimulate a robust inflammatory challenge in vivo. Implants were retrieved at 1 and 3 weeks for analysis. The unmodified alginate microbeads had all failed by week 1, whereas the dual-crosslinked alginate microbeads remained stable up through 3 weeks. The modified alginate microbeads may provide a more stable alternative to current alginate-based systems for cell encapsulation. STATEMENT OF SIGNIFICANCE Alginate, a naturally occurring polysaccharide, has been used for cell encapsulation to prevent graft rejection of cell transplants for people with type I diabetes. Although some success has been observed in clinical trials, the lack of reproducibility and failure to reach insulin dependence for longer periods of time indicates the need for improvements in the procedure. A major requirement for the long-term function of alginate encapsulated cells is the mechanical stability of microcapsules. Insufficient mechanical integrity of the capsules can lead to immunological reactions in the recipients. In this work, alginate was modified to allow photoactivatable groups in order to allow formation of covalent crosslinks in addition to ionic crosslinking. The dual crosslinking design prevents capsule breakdown following implantation in vivo.
Collapse
Affiliation(s)
- Sami I Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Kelly Langert
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Chin-Yu Yang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Marcella K Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Banu Akar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines, Jr. VA. Hospital, Hines, IL, USA
| | - Ming-Huei Cheng
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
22
|
Bijan Nejad D, Azandeh S, Habibi R, Mansouri E, Bayati V, Ahmadi Angali K. Investigation of the role of alginate containing high guluronic acid on osteogenic differentiation capacity of human umbilical cord Wharton’s jelly mesenchymal stem cells. J Microencapsul 2017; 34:732-743. [DOI: 10.1080/02652048.2017.1393115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Darioush Bijan Nejad
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Saeed Azandeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Rezvan Habibi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Kambiz Ahmadi Angali
- Department of Statistics and Epidemiology, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| |
Collapse
|
23
|
Passemard S, Szabó L, Noverraz F, Montanari E, Gonelle-Gispert C, Bühler LH, Wandrey C, Gerber-Lemaire S. Synthesis Strategies to Extend the Variety of Alginate-Based Hybrid Hydrogels for Cell Microencapsulation. Biomacromolecules 2017; 18:2747-2755. [PMID: 28742341 DOI: 10.1021/acs.biomac.7b00665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The production of hydrogel microspheres (MS) for cell immobilization, maintaining the favorable properties of alginate gels but presenting enhanced performance in terms of in vivo durability and physical properties, is desirable to extend the therapeutic potential of cell transplantation. A novel type of hydrogel MS was produced by straightforward functionalization of sodium alginate (Na-alg) with heterotelechelic poly(ethylene glycol) (PEG) derivatives equipped with either end thiol or 1,2-dithiolane moieties. Activation of the hydroxyl moieties of the alginate backbone in the form of imidazolide intermediate allowed for fast conjugation to PEG oligomers through a covalent carbamate linkage. Evaluation of the modified alginates for the preparation of MS combining fast ionic gelation ability of the alginate carboxylate groups and slow covalent cross-linking provided by the PEG-end functionalities highlighted the influence of the chemical composition of the PEG-grafting units on the physical characteristics of the MS. The mechanical properties of the MS (resistance and shape recovery) and durability of PEG-grafted alginates in physiological environment can be adjusted by varying the nature of the end functionalities and the length of the PEG chains. In vitro cell microencapsulation studies and preliminary in vivo assessment suggested the potential of these hydrogels for cell transplantation applications.
Collapse
Affiliation(s)
- Solène Passemard
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| | - Luca Szabó
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| | - François Noverraz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| | - Elisa Montanari
- University Hospital of Geneva, Surgical Research Unit , CMU-1, rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- University Hospital of Geneva, Surgical Research Unit , CMU-1, rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Léo H Bühler
- University Hospital of Geneva, Surgical Research Unit , CMU-1, rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Christine Wandrey
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LSPN, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Chen KY, Zeng SY. Preparation and Characterization of Quaternized Chitosan Coated Alginate Microspheres for Blue Dextran Delivery. Polymers (Basel) 2017; 9:E210. [PMID: 30970889 PMCID: PMC6432057 DOI: 10.3390/polym9060210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 01/06/2023] Open
Abstract
In this study, 2-[(Acryloyloxy)ethyl]trimethylammonium chloride was graft polymerized onto chitosan (CS) to form quaternary ammonium CS (QAC) by using ammonium persulfate as a redox initiator. Alginate (ALG) microspheres loaded with a water-soluble macromolecular model drug, blue dextran (BD), were obtained by corporation of coaxial gas-flow method and ionic gelation process. CS and QAC were then coated on the surfaces of ALG microspheres to generate core/shell structured CS/ALG and QAC/ALG microspheres, respectively. The experiment result showed that QAC/ALG microspheres had a smaller particle size due to the stronger electrostatic interactions between QAC and ALG molecules. In vitro drug release studies at pH 7.4 and pH 9.0 exhibited that the release rate of BD was significantly decreased after ALG microspheres coating with CS and QAC. Moreover, ALG microspheres coated with QAC showed a prolonged release profile for BD at pH 9.0. Therefore, QAC/ALG microspheres may be a promising hydrophilic macromolecular drug carrier for a prolonged and sustained delivery.
Collapse
Affiliation(s)
- Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Si-Ying Zeng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
25
|
Olubamiji AD, Zhu N, Chang T, Nwankwo CK, Izadifar Z, Honaramooz A, Chen X, Eames BF. Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ. Tissue Eng Part C Methods 2017; 23:156-168. [DOI: 10.1089/ten.tec.2016.0368] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Adeola D. Olubamiji
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Ning Zhu
- Canadian Light Source Inc., Saskatoon, Canada
| | - Tuanjie Chang
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | | | - Zohreh Izadifar
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - B. Frank Eames
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
26
|
Abstract
Alginate hydrogels have been used for a broad variety of medical applications. The ability to assemble alginate gels at neutral pH and mild temperatures makes alginate a promising choice for the encapsulation and delivery of cells and proteins. This chapter covers the basics of cell encapsulation and protein delivery using two different variations of alginate microbeads, single layered and multilayer systems. The first section describes a method for encapsulating cells within alginate microbeads coated with a permselective polymer layer. The second section describes a multilayer alginate microbead system that allows simultaneous encapsulation of cells and delivery of growth factors. The primary goal of the systems described is for encapsulation of islets as a treatment for type I diabetes. However, these microbeads can be used for a broad variety of applications in tissue engineering, cell encapsulation, and regenerative medicine.
Collapse
Affiliation(s)
- Sami I Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Omaditya Khanna
- Chicago Medical School at Rosalind Franklin, University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL, 60616, USA.
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA.
| |
Collapse
|
27
|
Samak YO, El Massik M, Coombes AGA. A Comparison of Aerosolization and Homogenization Techniques for Production of Alginate Microparticles for Delivery of Corticosteroids to the Colon. J Pharm Sci 2016; 106:208-216. [PMID: 27693300 DOI: 10.1016/j.xphs.2016.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
Abstract
Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl2, diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Yassmin O Samak
- Department of Pharmaceutics, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Magda El Massik
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| | - Allan G A Coombes
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
28
|
Henke S, Leijten J, Kemna E, Neubauer M, Fery A, van den Berg A, van Apeldoorn A, Karperien M. Enzymatic Crosslinking of Polymer Conjugates is Superior over Ionic or UV Crosslinking for the On-Chip Production of Cell-Laden Microgels. Macromol Biosci 2016; 16:1524-1532. [PMID: 27440382 DOI: 10.1002/mabi.201600174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/25/2016] [Indexed: 01/07/2023]
Abstract
Cell-laden micrometer-sized hydrogels (microgels) hold great promise for improving high throughput ex-vivo drug screening and engineering biomimetic tissues. Microfluidics is a powerful tool to produce microgels. However, only a limited amount of biomaterials have been reported to be compatible with on-chip microgel formation. Moreover, these biomaterials are often associated with mechanical instability, cytotoxicity, and cellular senescence. To resolve this challenge, dextran-tyramine has been explored as a novel biomaterial for on-chip microgel formation. In particular, dextran-tyramine is compared with two commonly used biomaterials, namely, polyethylene-glycol diacrylate (PEGDA) and alginate, which crosslink through enzymatic reaction, UV polymerization, and ionic interaction, respectively. Human mesenchymal stem cells (hMSCs) encapsulated in dextran-tyramine microgels demonstrate significantly higher (95%) survival as compared to alginate (81%) and PEGDA (69%). Long-term cell cultures demonstrate that hMSCs in PEGDA microgels become senescent after 7 d. Alginate microgels dissolve within 7 d due to Ca2+ loss. In contrast, dextran-tyramine based microgels remain stable, sustain hMSCs metabolic activity, and permit for single-cell level analysis for at least 28 d of culture. In conclusion, enzymatically crosslinking dextran-tyramine conjugates represent a novel biomaterial class for the on-chip production of cell-laden microgels, which possesses unique advantages as compared to the commonly used UV and ionic crosslinking biomaterials.
Collapse
Affiliation(s)
- Sieger Henke
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Evelien Kemna
- BIOS Lab on a Chip group, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Martin Neubauer
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e.V. (Leibniz Institute of Polymer Research Dresden), Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 1079, Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technische Universität Dresden, 1079, Dresden, Germany
| | - Albert van den Berg
- BIOS Lab on a Chip group, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Aart van Apeldoorn
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands.
| |
Collapse
|
29
|
Ibarra V, Appel AA, Anastasio MA, Opara EC, Brey EM. This paper is a winner in the Undergraduate category for the SFB awards: Evaluation of the tissue response to alginate encapsulated islets in an omentum pouch model. J Biomed Mater Res A 2016; 104:1581-90. [PMID: 27144389 PMCID: PMC5897127 DOI: 10.1002/jbm.a.35769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/02/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Islet transplantation is currently in clinical use as a treatment for type I diabetes, but donor shortages and long-term immunosuppression limit broad application. Alginate microcapsules coated with poly-l-ornithine can be used to encapsulate islets in an environment that allows diffusion of glucose, insulin, nutrients, and waste products while inhibiting cells and antibodies. While clinical trials are ongoing using islets encapsulated in alginate microbeads, there are concerns in regards to long-term stability. Evaluation of the local tissue response following implantation provides insight into the underlying mechanisms contributing to biomaterial failure, which can be used to the design of new material strategies. Macrophages play an important role in driving the response. In this study, the stability of alginate microbeads coated with PLO containing islets transplanted in the omentum pouch model was investigated. Biomaterial structure and the inflammatory response were characterized by X-ray phase contrast (XPC) μCT imaging, histology, and immunostaining. XPC allowed evaluation of microbead 3D structure and identification of failed and stable microbeads. A robust inflammatory response characterized by high cell density and the presence of pro-inflammatory macrophages was found around the failed grafts. The results obtained provide insight into the local tissue response and possible failure mechanisms for alginate microbeads. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1581-1590, 2016.
Collapse
Affiliation(s)
- Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Alyssa A Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, Illinois
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Ines, IL
| |
Collapse
|
30
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Li Y, Zhou J, Yang X, Jiang Y, Gui J. Intermittent hydrostatic pressure maintains and enhances the chondrogenic differentiation of cartilage progenitor cells cultivated in alginate beads. Dev Growth Differ 2016; 58:180-93. [PMID: 26771816 DOI: 10.1111/dgd.12261] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023]
Abstract
The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad-derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real-time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte-related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering.
Collapse
Affiliation(s)
- Yang Li
- Orthopedics Laboratory of Nanjing First Hospital, Nanjing Medical University, 169 Gongyuan Road, Nanjing, China
| | - Jianxin Zhou
- Department of Orthopedics, Wujiang People's Hospital, 169 Gongyuan Road, Wujiang, Suzhou, China
| | - Xiaofei Yang
- Orthopedics Laboratory of Nanjing First Hospital, Nanjing Medical University, 169 Gongyuan Road, Nanjing, China
| | - Yiqiu Jiang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jianchao Gui
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
32
|
In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs) via Hepatic Injection in a Mouse Model. PLoS One 2015; 10:e0138184. [PMID: 26372641 PMCID: PMC4570793 DOI: 10.1371/journal.pone.0138184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
Objective Adipose tissue derived stem cells (ADSCs) transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model. Methods The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT) transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one). Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two). Results Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted ADSCs underwent hepatogenic differentiation to become cells expressing albumin in the liver. These findings improve our understanding of the interplay between ADSCs (donor cells), alginate (biomaterial), and local microenvironment in a hepatectomized mouse model, and might improve the strategy of in situ transplantation of ADSCs in treating liver diseases.
Collapse
|
33
|
Workman VL, Tezera LB, Elkington PT, Jayasinghe SN. Controlled Generation of Microspheres Incorporating Extracellular Matrix Fibrils for Three-Dimensional Cell Culture. ADVANCED FUNCTIONAL MATERIALS 2014; 24:2648-2657. [PMID: 25411575 PMCID: PMC4233144 DOI: 10.1002/adfm.201303891] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A growing body of evidence suggests that studying cell biology in classical two-dimensional formats, such as cell culture plasticware, results in misleading, non-physiological findings. For example, some aspects of cancer biology cannot be observed in 2D, but require 3D culture methods to recapitulate observations in vivo. Therefore, we developed a microsphere-based model to permit 3D cell culture incorporating physiological extracellular matrix components. Bio-electrospraying was chosen as it is the most advanced method to produce microspheres, with THP-1 cells as a model cell line. Bio-electrospraying parameters, such as nozzle size, polymer flow rate, and voltage, were systematically optimized to allow stable production of size controlled microspheres containing extracellular matrix material and human cells. We investigated the effect of bio-electrospraying parameters, alginate type and cell concentration on cell viability using trypan blue and propidium iodide staining. Bio-electrospraying had no effect on cell viability nor the ability of cells to proliferate. Cell viability was similarly minimally affected by encapsulation in all types of alginate tested (MVM, MVG, chemical- and food-grade). Cell density of 5 × 106 cells ml-1 within microspheres was the optimum for cell survival and proliferation. The stable generation of microspheres incorporating cells and extracellular matrix for use in a 3D cell culture will benefit study of many diverse diseases and permit investigation of cellular biology within a 3D matrix.
Collapse
Affiliation(s)
- Victoria L. Workman
- BioPhysics Group, UCL Institute of Biomedical Engineering, UCL Centre for Stem Cells and Regenerative Medicine and Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Liku B. Tezera
- Clinical and Experimental Sciences, Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Paul T. Elkington
- Clinical and Experimental Sciences, Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Suwan N. Jayasinghe
- BioPhysics Group, UCL Institute of Biomedical Engineering, UCL Centre for Stem Cells and Regenerative Medicine and Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
34
|
Kingsley DM, Dias AD, Chrisey DB, Corr DT. Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads. Biofabrication 2013; 5:045006. [PMID: 24192221 PMCID: PMC3890439 DOI: 10.1088/1758-5082/5/4/045006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alginate can be used to encapsulate mammalian cells and for the slow release of small molecules. Packaging alginate as microbead structures allows customizable delivery for tissue engineering, drug release, or contrast agents for imaging. However, state-of-the-art microbead fabrication has a limited range in achievable bead sizes, and poor control over bead placement, which may be desired to localize cellular signaling or delivery. Herein, we present a novel, laser-based method for single-step fabrication and precise planar placement of alginate microbeads. Our results show that bead size is controllable within 8%, and fabricated microbeads can remain immobilized within 2% of their target placement. Demonstration of this technique using human breast cancer cells shows that cells encapsulated within these microbeads survive at a rate of 89.6%, decreasing to 84.3% after five days in culture. Infusing rhodamine dye into microbeads prior to fluorescent microscopy shows their 3D spheroidal geometry and the ability to sequester small molecules. Microbead fabrication and patterning is compatible with conventional cellular transfer and patterning by laser direct-write, allowing location-based cellular studies. While this method can also be used to fabricate microbeads en masse for collection, the greatest value to tissue engineering and drug delivery studies and applications lies in the pattern registry of printed microbeads.
Collapse
Affiliation(s)
- DM Kingsley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA
| | - AD Dias
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA
| | - DB Chrisey
- Department of Physics, Tulane University, 6823 St. Charles Avenue New Orleans, LA 70118, USA
| | - DT Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA
| |
Collapse
|
35
|
Mitropoulou G, Nedovic V, Goyal A, Kourkoutas Y. Immobilization technologies in probiotic food production. J Nutr Metab 2013; 2013:716861. [PMID: 24288597 PMCID: PMC3830840 DOI: 10.1155/2013/716861] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 12/14/2022] Open
Abstract
Various supports and immobilization/encapsulation techniques have been proposed and tested for application in functional food production. In the present review, the use of probiotic microorganisms for the production of novel foods is discussed, while the benefits and criteria of using probiotic cultures are analyzed. Subsequently, immobilization/encapsulation applications in the food industry aiming at the prolongation of cell viability are described together with an evaluation of their potential future impact, which is also highlighted and assessed.
Collapse
Affiliation(s)
- Gregoria Mitropoulou
- Applied Microbiology and Molecular Biotechnology Research Group, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Viktor Nedovic
- Faculty of Agriculture, Department of Food Technology, University of Belgrade, Nemanjina 6, Zemun, 11081 Belgrade, Serbia
| | - Arun Goyal
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Yiannis Kourkoutas
- Applied Microbiology and Molecular Biotechnology Research Group, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
36
|
Kadir A, Mokhtar MTM, Wong TW. Nanoparticulate assembly of mannuronic acid- and guluronic acid-rich alginate: oral insulin carrier and glucose binder. J Pharm Sci 2013; 102:4353-63. [PMID: 24258282 DOI: 10.1002/jps.23742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/31/2013] [Accepted: 09/12/2013] [Indexed: 11/05/2022]
Abstract
The relationship of high and low molecular weight mannuronic acid (M)- and guluronic acid (G)-rich alginate nanoparticles as oral insulin carrier was elucidated. Nanoparticles were prepared through ionotropic gelation using Ca(2+) , and then in vitro physicochemical attributes and in vivo antidiabetic characteristics were examined. The alginate nanoparticles had insulin release retarded when the matrices had high alginate-to-insulin ratio or strong alginate-insulin interaction via OH moiety. High molecular weight M-rich alginate nanoparticles were characterized by assemblies of long polymer chains that enabled insulin encapsulation with weaker polymer-drug interaction than nanoparticles prepared from other alginate grades. They were able to encapsulate and yet release and have insulin absorbed into systemic circulation, thereby lowering rat blood glucose. High molecular weight G- and low molecular weight M-rich alginate nanoparticles showed remarkable polymer-insulin interaction. This retarded the drug release and negated its absorption. Blood glucose lowering was, however, demonstrated in vivo with insulin-free matrices of these nanoparticles because of the strong alginate-glucose binding that led to intestinal glucose retention. Alginate nanoparticles can be used as oral insulin carrier or glucose binder in the treatment of diabetes as a function of its chemical composition. High molecular weight M-rich alginate nanoparticles are a suitable vehicle for future development into oral insulin carrier.
Collapse
Affiliation(s)
- Aminah Kadir
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | | | | |
Collapse
|
37
|
Khanna O, Huang JJ, Moya ML, Wu CW, Cheng MH, Opara EC, Brey EM. FGF-1 delivery from multilayer alginate microbeads stimulates a rapid and persistent increase in vascular density. Microvasc Res 2013; 90:23-9. [PMID: 23978335 DOI: 10.1016/j.mvr.2013.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
In recent years, great advances have been made in the use of islet transplantation as a treatment for type I diabetes. Indeed, it is possible that stimulation of local neovascularization upon transplantation could improve functional graft outcomes. In the present study, we investigate the use of multilayered alginate microbeads to provide a sustained delivery of FGF-1, and whether this results in increased neovascularization in vivo. Multilayered alginate microbeads, loaded with either 150ng or 600ng of FGF-1 in the outer layer, were surgically implanted into rats using an omentum pouch model and compared to empty microbead implants. Rats were sacrificed at 4days, 1week, and 6weeks. Staining for CD31 showed that both conditions of FGF-1 loaded microbeads resulted in a significantly higher vessel density at all time points studied. Moreover, at 6weeks, alginate microbeads containing 600ng FGF-1 provided a greater vascular density compared to both the control group and the microbeads loaded with 150ng FGF-1. Omenta analyzed via staining for smooth muscle alpha actin showed no variation in mural cell density at either 4days or 1week. At 6weeks, however, omenta exposed to microbeads loaded with 600ng FGF-1 showed an increase in mural cell staining compared to controls. These results suggest that the sustained delivery of FGF-1 from multilayered alginate microbeads results in a rapid and persistent vascular response. An increase in the local blood supply could reduce the number of islets required for transplantation in order to achieve clinical efficacy.
Collapse
Affiliation(s)
- Omaditya Khanna
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Crosstalk between Fibroblast Growth Factor (FGF) Receptor and Integrin through Direct Integrin Binding to FGF and Resulting Integrin-FGF-FGFR Ternary Complex Formation. Med Sci (Basel) 2013. [DOI: 10.3390/medsci1010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
39
|
Abstract
Therapeutic stimulation of vessel growth to improve tissue perfusion has shown promise in many regenerative medicine and tissue engineering applications. Alginate-based biomaterial systems have been investigated for growth factor and/or cell delivery as tools for modulating vessel assembly. Growth factor encapsulation allows for a sustained release of protein and protection from degradation. Implantation of growth factor-loaded alginate constructs typically shows an increase in capillary density but without vascular stabilization. Delivery of multiple factors may improve these outcomes. Cell delivery approaches focus on stimulating vascularization either via cell release of soluble factors, cell proliferation and incorporation into new vessels or alginate prevascularization prior to implantation. These methods have shown some promise but routine clinical application has not been achieved. In this review, current research on the application of alginate for therapeutic neovascularization is presented, shortcomings are addressed and the future direction of these systems discussed.
Collapse
|
40
|
Abstract
Islet transplantation is the most exciting treatment option for individuals afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles for the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets with biopolymers for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this chapter, we provide a detailed description of the microencapsulation process.
Collapse
|