1
|
Chen X, Wu T, Bu Y, Yan H, Lin Q. Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review. Int J Mol Sci 2024; 25:7810. [PMID: 39063052 PMCID: PMC11277200 DOI: 10.3390/ijms25147810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, as a result of the frequent occurrence of accidental injuries and traumas such as bone damage, the number of people causing bone injuries or fractures is increasing around the world. The design and fabrication of ideal bone tissue engineering (BTE) materials have become a research hotspot in the scientific community, and thus provide a novel path for the treatment of bone diseases. Among the materials used to construct scaffolds in BTE, including metals, bioceramics, bioglasses, biomacromolecules, synthetic organic polymers, etc., natural biopolymers have more advantages against them because they can interact with cells well, causing natural polymers to be widely studied and applied in the field of BTE. In particular, alginate has the advantages of excellent biocompatibility, good biodegradability, non-immunogenicity, non-toxicity, wide sources, low price, and easy gelation, enabling itself to be widely used as a biomaterial. However, pure alginate hydrogel as a BTE scaffold material still has many shortcomings, such as insufficient mechanical properties, easy disintegration of materials in physiological environments, and lack of cell-specific recognition sites, which severely limits its clinical application in BTE. In order to overcome the defects of single alginate hydrogels, researchers prepared alginate composite hydrogels by adding one or more materials to the alginate matrix in a certain proportion to improve their bioapplicability. For this reason, this review will introduce in detail the methods for constructing alginate composite hydrogels, including alginate/polymer composite hydrogels, alginate/bioprotein or polypeptide composite hydrogels, alginate/bioceramic composite hydrogels, alginate/bioceramic composite hydrogels, and alginate/nanoclay composite hydrogels, as well as their biological application trends in BTE scaffold materials, and look forward to their future research direction. These alginate composite hydrogel scaffolds exhibit both unexceptionable mechanical and biochemical properties, which exhibit their high application value in bone tissue repair and regeneration, thus providing a theoretical basis for the development and sustainable application of alginate-based functional biomedical materials.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
2
|
dos Santos AC, Aroni MAT, Pigossi SC, Lopes MES, Cerri PS, Miguel FB, Santos SRDA, Cirelli JA, Rosa FP. A new hydroxyapatite-alginate-gelatin biocomposite favor bone regeneration in a critical-sized calvarial defect model. Braz Dent J 2024; 35:e245461. [PMID: 38775590 PMCID: PMC11086609 DOI: 10.1590/0103-6440202405461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/25/2024] Open
Abstract
This study aimed to evaluate the osteogenic potential of hydroxyapatite (HA), Alginate (Alg), and Gelatine (Gel) composite in a critical-size defect model in rats. Twenty-four male rats were divided into three groups: a negative control with no treatment (Control group), a positive control treated with deproteinized bovine bone mineral (DBBM group), and the experimental group treated with the new HA-Alg-Gel composite (HA-Alg-Gel group). A critical size defect (8.5mm) was made in the rat's calvaria, and the bone formation was evaluated by in vivo microcomputed tomography analysis (µCT) after 1, 15, 45, and 90 days. After 90 days, the animals were euthanized and histological and histomorphometric analyses were performed. A higher proportion of mineralized tissue/biomaterial was observed in the DBBM group when compared to the HA-Alg-Gel and Control groups in the µCT analysis during all analysis periods. However, no differences were observed in the mineralized tissue/biomaterial proportion observed on day 1 (immediate postoperative) in comparison to later periods of analysis in all groups. In the histomorphometric analysis, the HA-Alg-Gel and Control groups showed higher bone formation than the DBBM group. Moreover, in histological analysis, five samples of the HA-Alg-Gal group exhibited formed bone spicules adjacent to the graft granules against only two of eight samples in the DBBM group. Both graft materials ensured the maintenance of defect bone thickness, while a tissue thickness reduction was observed in the control group. In conclusion, this study demonstrated the osteoconductive potential of HA-Alg-Gel bone graft by supporting new bone formation around its particles.
Collapse
Affiliation(s)
- Anderson Cunha dos Santos
- Instituto de Ciências da Saúde(ICS), Universidade Federal da Bahia(UFBA), Salvador- BA, Brasil
- Centro Universitário Maria Milza(UNIMAM), Governador Mangabeira- BA, Brasil
| | - Mauricio Andres Tinajero Aroni
- Departamento de Diagnóstico e Cirurgia - Periodontia, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, São Paulo, Brasil
- Universidad de Especialidades Espíritu Santo(UEES), Samborondón, Ecuador
| | - Suzane Cristina Pigossi
- Departamento de Periodontia e Implantodontia, Faculdade de Odontologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - Maria Eduarda Scordamaia Lopes
- Departamento de Diagnóstico e Cirurgia - Periodontia, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, São Paulo, Brasil
| | - Paulo Sergio Cerri
- Departamento de Morfologia e Clínica Infantil, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista - UNESP, Araraquara. São Paulo, Brasil
| | - Fúlvio Borges Miguel
- Instituto de Ciências da Saúde(ICS), Universidade Federal da Bahia(UFBA), Salvador- BA, Brasil
| | | | - Joni Augusto Cirelli
- Departamento de Diagnóstico e Cirurgia - Periodontia, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, São Paulo, Brasil
| | - Fabiana Paim Rosa
- Instituto de Ciências da Saúde(ICS), Universidade Federal da Bahia(UFBA), Salvador- BA, Brasil
| |
Collapse
|
3
|
Stachowiak N, Kowalonek J, Kozlowska J, Burkowska-But A. Stability Studies, Biodegradation Tests, and Mechanical Properties of Sodium Alginate and Gellan Gum Beads Containing Surfactant. Polymers (Basel) 2023; 15:polym15112568. [PMID: 37299365 DOI: 10.3390/polym15112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The excessive presence of single-use plastics is rapidly degrading our natural environment on a global scale due to their inherent resistance to decomposition. Wet wipes used for personal or household purposes contribute significantly to the accumulation of plastic waste. One potential solution to address this problem involves developing eco-friendly materials that possess the ability to degrade naturally while retaining their washing capabilities. For this purpose, the beads from sodium alginate, gellan gum, and a mixture of these natural polymers containing surfactant were produced using the ionotropic gelation method. Stability studies of the beads by observing their appearance and diameter were performed after incubation in solutions of different pH values. The images showed that macroparticles were reduced in size in an acidic medium and swelled in solution of pH-neutral phosphate-buffered saline. Moreover, all the beads first swelled and then degraded in alkaline conditions. The beads based on gellan gum and combining both polymers were the least sensitive to pH changes. The compression tests revealed that the stiffness of all macroparticles decreased with the increasing pH of the solutions in which they were immersed. The studied beads were more rigid in an acidic solution than in alkaline conditions. The biodegradation of macroparticles was assessed using a respirometric method in soil and seawater. It is important to note that the macroparticles degraded more rapidly in soil than in seawater.
Collapse
Affiliation(s)
- Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Jolanta Kowalonek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina St. 7, 87-100 Torun, Poland
| | - Aleksandra Burkowska-But
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska St. 1, 87-100 Torun, Poland
| |
Collapse
|
4
|
Roberge CL, Kingsley DM, Cornely LR, Spain CJ, Fortin AG, Corr DT. Viscoelastic Properties of Bioprinted Alginate Microbeads Compared to Their Bulk Hydrogel Analogs. J Biomech Eng 2023; 145:031002. [PMID: 36149022 PMCID: PMC9791675 DOI: 10.1115/1.4055757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/14/2022] [Indexed: 12/30/2022]
Abstract
Hydrogel microbeads are engineered spherical microgels widely used for biomedical applications in cell cultures, tissue engineering, and drug delivery. Their mechanical and physical properties (i.e., modulus, porosity, diffusion) heavily influence their utility by affecting encapsulated cellular behavior, biopayload elution kinetics, and stability for longer term cultures. There is a need to quantify these properties to guide microbead design for effective application. However, there are few techniques with the μN-level resolution required to evaluate these relatively small, compliant constructs. To circumvent mechanically testing individual microbeads, researchers often approximate microbead properties by characterizing larger bulk gel analogs of the same material formulation. This approach provides some insight into the hydrogel properties. However, bulk gels possess key structural and mechanical differences compared to their microbead equivalents, which may limit their accuracy and utility as analogs for estimating microbead properties. Herein, we explore how microbead properties are influenced by hydrogel formulation (i.e., alginate concentration, divalent cation crosslinker, and crosslinker concentration), and whether these trends are accurately reflected in bulk gel analogs. To accomplish this, we utilize laser direct-write bioprinting to create 12 × 12 arrays of alginate microbeads and characterize all 144 microbeads in parallel using a commercially available microcompression system. In this way, the compressive load is distributed across a large number of beads, thus amplifying sample signal. Comparing microbead properties to those of their bulk gel analogs, we found that their trends in modulus, porosity, and diffusion with hydrogel formulation are consistent, yet bulk gels exhibit significant discrepancies in their measured values.
Collapse
Affiliation(s)
- Cassandra L. Roberge
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180
| | - David M. Kingsley
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180
| | - Lexie R. Cornely
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180
| | - Connor J. Spain
- Rensselaer Polytechnic Institute, Biomedical Engineering Department, 110 Eighth Street, Troy, NY 12180
| | - Aiyana G. Fortin
- Biomedical Engineering Department, University of Vermont, 590 Main Street, Burlington, VT 05401
| | - David T. Corr
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180
| |
Collapse
|
5
|
Gharacheh H, Guvendiren M. Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis. Polymers (Basel) 2022; 14:polym14183788. [PMID: 36145933 PMCID: PMC9503810 DOI: 10.3390/polym14183788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression.
Collapse
Affiliation(s)
- Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence:
| |
Collapse
|
6
|
Kumar R, Mohanty S. Hydroxyapatite: A Versatile Bioceramic for Tissue Engineering Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kim J, Choi YJ, Park H, Yun HS. Fabrication of multifunctional alginate microspheres containing hydroxyapatite powder for simultaneous cell and drug delivery. Front Bioeng Biotechnol 2022; 10:827626. [PMID: 36017354 PMCID: PMC9395714 DOI: 10.3389/fbioe.2022.827626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Novel alginate-hydroxyapatite hybrid microspheres were developed for simultaneous delivery of drugs and cells as a multifunctional bone substitute for osteoporotic bone tissue regeneration. The microspheres were used to enhance osteogenesis and to carry and deliver quercetin, a representative phytoestrogen that controls bone tissue regeneration metabolism in osteoporosis patients, through sustained release over a long period. To overcome quercetin’s hydrophobicity and low solubility in aqueous environments, we added it to the surface of hydroxyapatite (HAp) nanoparticles before mixing them with an alginate solution. The homogeneous distribution of the HAp nanoparticles in the alginate solution was essential for preventing nozzle clogging and achieving successfully fabricated hybrid microspheres. To this end, a 3D ultrasonic treatment was applied. Electrostatic microencapsulation was then used to fabricate hybrid alginate-HAp microspheres containing quercetin and cells. The microspheres were approximately 290.7 ± 42.5 μm (aspect ratio of 1). The sustained release of quercetin was confirmed during a test period of 20 weeks. The cells in the hybrid microspheres maintained good cell viability during the entire testing period, and their osteogenic differentiation behavior was boosted by the presence of HAp. Thus, osteogenic differentiation could be greatly improved by adding quercetin. These novel multi-biofunctional hybrid microspheres have great potential for the regeneration of osteoporotic bone tissue at indeterminate defect sites.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Advanced Materials Engineering, University of Science & Technology (UST), Daejeon, South Korea
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Yeong-Jin Choi
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Honghyun Park
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
- *Correspondence: Honghyun Park, ; Hui-suk Yun,
| | - Hui-suk Yun
- Department of Advanced Materials Engineering, University of Science & Technology (UST), Daejeon, South Korea
- Ceramic Materials Division, Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), Changwon, South Korea
- *Correspondence: Honghyun Park, ; Hui-suk Yun,
| |
Collapse
|
8
|
Zhang Z, He Y, Zhang Z. Micromanipulation and Automatic Data Analysis to Determine the Mechanical Strength of Microparticles. MICROMACHINES 2022; 13:mi13050751. [PMID: 35630220 PMCID: PMC9143736 DOI: 10.3390/mi13050751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Microparticles are widely used in many industrial sectors. A micromanipulation technique has been widely used to quantify the mechanical properties of individual microparticles, which is crucial to the optimization of their functionality and performance in end-use applications. The principle of this technique is to compress single particles between two parallel surfaces, and the force versus displacement data are obtained simultaneously. Previously, analysis of the experimental data had to be done manually to calculate the rupture strength parameters of each individual particle, which is time-consuming. The aim of this study is to develop a software package that enables automatic analysis of the rupture strength parameters from the experimental data to enhance the capability of the micromanipulation technique. Three algorithms based on the combination of the “three-sigma rule”, a moving window, and the Hertz model were developed to locate the starting point where onset of compression occurs, and one algorithm based on the maximum deceleration was developed to identify the rupture point where a single particle is ruptured. Fifty microcapsules each with a liquid core and fifty porous polystyrene (PS) microspheres were tested in order to produce statistically representative results of each sample, and the experimental data were analysed using the developed software package. It is found that the results obtained from the combination of the “3σ + window” algorithm or the “3σ + window + Hertz” algorithm with the “maximum-deceleration” algorithm do not show any significant difference from the manual results. The data analysis time for each sample has been shortened from 2 to 3 h manually to within 20 min automatically.
Collapse
Affiliation(s)
- Zhihua Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
- Changzhou Institute of Advanced Manufacturing Technology, Changzhou 213164, China
| | - Yanping He
- School of Chemical Engineering, Kunming University of Science and Technology, Chenggong Campus, Kunming 650504, China;
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
- Correspondence:
| |
Collapse
|
9
|
Zafeiri I, Beri A, Linter B, Norton I. Mechanical properties of starch-filled alginate gel particles. Carbohydr Polym 2021; 255:117373. [PMID: 33436205 DOI: 10.1016/j.carbpol.2020.117373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022]
Abstract
The aim of this work was to investigate the mechanical behaviour of alginate-based composite particles. Alginate gel beads with entrapped starch were used as the replicates of storage cells of plant tissue. Beads were formulated using different ratios of both ingredients and were produced using two methods, resulting in particles in the macro- and micro-scale size range. Compression tests revealed an effect of bead size on mechanical properties and a dominant role of the alginate on the material properties. Starch was successfully encapsulated as native granules in the beads and once encompassed, it suffered restricted swelling, up to 45 % of its original size, after undergoing heating. Force versus displacement data were fitted to both an empirical and the Hertz model and Young's modulus was found to increase only with heated starch inclusions. Microscopy was deemed crucial for the interpretation of mechanical measurements.
Collapse
Affiliation(s)
- Ioanna Zafeiri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Akash Beri
- PepsiCo International Ltd, 4 Leycroft Rd, Leicester, LE4 1ET, UK
| | - Bruce Linter
- PepsiCo International Ltd, 4 Leycroft Rd, Leicester, LE4 1ET, UK
| | - Ian Norton
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
10
|
Du G, Zhang Z, He P, Zhang Z, Sun X. Determination of the mechanical properties of polymeric microneedles by micromanipulation. J Mech Behav Biomed Mater 2021; 117:104384. [PMID: 33592344 DOI: 10.1016/j.jmbbm.2021.104384] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 01/14/2023]
Abstract
Precise characterization of the mechanical properties of polymeric microneedles is crucial for their successful penetration into skin and delivery of the loaded active ingredients. However, most available strategies for this purpose are based on compression of the whole patch, which only provide the average rupture force of the needles and can not give information on the variations across individual microneedles in the patch. In this study, we determined the mechanical strength of individual microneedles of two types of hyaluronic acid microneedles with or without loaded model drugs using a micromanipulation technique. The applied force as a function of displacement of the microneedles was recorded, which was used to determine the rupture displacement, rupture force, and then to derive and calculate normal stress-deformation curve, rupture stress and Young's modulus of individual microneedles. The obtained data suggest that the molecular weight of the polymer and the loading of drug into the microneedles can significantly affect the rupture behavior and mechanical properties of the microneedles, which provides a foundation for preparing sufficiently strong microneedles for controlled drug delivery.
Collapse
Affiliation(s)
- Guangsheng Du
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhihua Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Penghui He
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Xun Sun
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Gulli J, Yunker P, Rosenzweig F. Matrices (re)loaded: Durability, viability, and fermentative capacity of yeast encapsulated in beads of different composition during long-term fed-batch culture. Biotechnol Prog 2020; 36:e2925. [PMID: 31587494 PMCID: PMC7027564 DOI: 10.1002/btpr.2925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/08/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Encapsulated microbes have been used for decades to produce commodities ranging from methyl ketone to beer. Encapsulated cells undergo limited replication, which enables them to more efficiently convert substrate to product than planktonic cells and which contributes to their stress resistance. To determine how encapsulated yeast supports long-term, repeated fed-batch ethanologenic fermentation, and whether different matrices influence that process, fermentation and indicators of matrix durability and cell viability were monitored in high-dextrose, fed-batch culture over 7 weeks. At most timepoints, ethanol yield (g/g) in encapsulated cultures exceeded that in planktonic cultures. And frequently, ethanol yield differed among the four matrices tested: sodium alginate crosslinked with Ca2+ and chitosan, sodium alginate crosslinked with Ca2+ , Protanal alginate crosslinked with Ca2+ and chitosan, Protanal alginate crosslinked with Ca2+ , with the last of these consistently demonstrating the highest values. Young's modulus and viscosity were higher for matrices crosslinked with chitosan over the first week; thereafter values for both parameters declined and were indistinguishable among treatments. Encapsulated cells exhibited greater heat shock tolerance at 50°C than planktonic cells in either stationary or exponential phase, with similar thermotolerance observed across all four matrix types. Altogether, these data demonstrate the feasibility of re-using encapsulated yeast to convert dextrose to ethanol over at least 7 weeks.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgia
- Parker Petit Institute for Bioengineering and BiosciencesGeorgia Institute of TechnologyAtlantaGeorgia
| | - Peter Yunker
- Parker Petit Institute for Bioengineering and BiosciencesGeorgia Institute of TechnologyAtlantaGeorgia
- School of PhysicsGeorgia Institute of TechnologyAtlantaGeorgia
| | - Frank Rosenzweig
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgia
- Parker Petit Institute for Bioengineering and BiosciencesGeorgia Institute of TechnologyAtlantaGeorgia
| |
Collapse
|
12
|
Stößlein S, Grunwald I, Stelten J, Hartwig A. In-situ determination of time-dependent alginate-hydrogel formation by mechanical texture analysis. Carbohydr Polym 2019; 205:287-294. [DOI: 10.1016/j.carbpol.2018.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
|
13
|
Parameswaran-Thankam A, Al-Anbaky Q, Al-Karakooly Z, RanguMagar AB, Chhetri BP, Ali N, Ghosh A. Fabrication and characterization of hydroxypropyl guar-poly (vinyl alcohol)-nano hydroxyapatite composite hydrogels for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2083-2105. [PMID: 29962278 DOI: 10.1080/09205063.2018.1494437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biocompatible bone implants composed of natural materials are highly desirable in orthopedic reconstruction procedures. In this study, novel and ecofriendly bionanocomposite hydrogels were synthesized using a blend of hydroxypropyl guar (HPG), poly vinyl alcohol (PVA), and nano-hydroxyapatite (n-HA) under freeze-thaw and mild reaction conditions. The hydrogel materials were characterized using various techniques. TGA studies indicate that both composites, HPG/PVA and HPG/PVA/n-HA, have higher thermal stability compared to HPG alone whereas HPG/PVA/n-HA shows higher stability compared to PVA alone. The HPG/PVA hydrogel shows porous morphology as revealed by the SEM, which is suitable for bone tissue regeneration. Additionally, the hydrogels were found to be transparent and flexible in nature. In vitro biomineralization study performed in simulated body fluid shows HPG/PVA/n-HA has an apatite like structure. The hydrogel materials were employed as extracellular matrices for biocompatibility studies. In vitro cell viability studies using mouse osteoblast MC3T3 cells were performed by MTT, Trypan blue exclusion, and ethidium bromide/acridine orange staining methods. The cell viability studies reveal that composite materials support cell growth and do not show any signs of cytotoxicity compared to pristine PVA. Osteoblastic activity was confirmed by an increased alkaline phosphatase enzyme activity in MC3T3 bone cells grown on composite hydrogel matrices.
Collapse
Affiliation(s)
- Anil Parameswaran-Thankam
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Qudes Al-Anbaky
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Zeiyad Al-Karakooly
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Ambar B RanguMagar
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Bijay P Chhetri
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Nawab Ali
- b Department of Biology , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| | - Anindya Ghosh
- a Department of Chemistry , University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , AR , USA
| |
Collapse
|
14
|
Ivancic A. Recent Trends in Alginate, Chitosan and Alginate-Chitosan Antimicrobial Systems. CHEMISTRY JOURNAL OF MOLDOVA 2016. [DOI: 10.19261/cjm.2016.11(2).03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Unser AM, Mooney B, Corr DT, Tseng YH, Xie Y. 3D brown adipogenesis to create "Brown-Fat-in-Microstrands". Biomaterials 2015; 75:123-134. [PMID: 26496384 DOI: 10.1016/j.biomaterials.2015.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/19/2023]
Abstract
The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. In addition, three-dimensional (3D) cell culture systems are needed to better understand the role of brown adipocytes in energy balance and treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells, and brown preadipocytes as a positive control. Brown adipocyte differentiation within microstrands was confirmed by immunocytochemistry and qPCR analysis of the expression of the brown adipocyte-defining marker uncoupling protein 1 (UCP1), as well as other general adipocyte markers. Cells within microstrands were responsive to a β-adrenergic agonist with an increase in gene expression of thermogenic UCP1, indicating that these "Brown-Fat-in-Microstrands" are functional. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Bridget Mooney
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA.
| |
Collapse
|
16
|
Westhrin M, Xie M, Olderøy MØ, Sikorski P, Strand BL, Standal T. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices. PLoS One 2015; 10:e0120374. [PMID: 25769043 PMCID: PMC4358956 DOI: 10.1371/journal.pone.0120374] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/22/2015] [Indexed: 01/04/2023] Open
Abstract
Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.
Collapse
Affiliation(s)
- Marita Westhrin
- Kristian Gerhard Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Minli Xie
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magnus Ø. Olderøy
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Berit L. Strand
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Kristian Gerhard Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
17
|
Shah R, Saha N, Kitano T, Saha P. Preparation of CaCO3-based biomineralized polyvinylpyrrolidone-carboxymethylcellulose hydrogels and their viscoelastic behavior. J Appl Polym Sci 2013. [DOI: 10.1002/app.40237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rushita Shah
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin; nam. T. G. Masaryka 275 Zlin 762 72 Czech Republic
| | - Nabanita Saha
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin; nam. T. G. Masaryka 275 Zlin 762 72 Czech Republic
- Centre of Polymer Systems, University Institute; Tomas Bata University in Zlin; Nad Ovcirnou 3685 760 01 Zlin Czech Republic
| | - Takeshi Kitano
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin; nam. T. G. Masaryka 275 Zlin 762 72 Czech Republic
- Centre of Polymer Systems, University Institute; Tomas Bata University in Zlin; Nad Ovcirnou 3685 760 01 Zlin Czech Republic
| | - Petr Saha
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin; nam. T. G. Masaryka 275 Zlin 762 72 Czech Republic
- Centre of Polymer Systems, University Institute; Tomas Bata University in Zlin; Nad Ovcirnou 3685 760 01 Zlin Czech Republic
| |
Collapse
|
18
|
Alginate-Based Biomaterials for Regenerative Medicine Applications. MATERIALS 2013; 6:1285-1309. [PMID: 28809210 PMCID: PMC5452316 DOI: 10.3390/ma6041285] [Citation(s) in RCA: 711] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/19/2013] [Accepted: 03/19/2013] [Indexed: 02/07/2023]
Abstract
Alginate is a natural polysaccharide exhibiting excellent biocompatibility and biodegradability, having many different applications in the field of biomedicine. Alginate is readily processable for applicable three-dimensional scaffolding materials such as hydrogels, microspheres, microcapsules, sponges, foams and fibers. Alginate-based biomaterials can be utilized as drug delivery systems and cell carriers for tissue engineering. Alginate can be easily modified via chemical and physical reactions to obtain derivatives having various structures, properties, functions and applications. Tuning the structure and properties such as biodegradability, mechanical strength, gelation property and cell affinity can be achieved through combination with other biomaterials, immobilization of specific ligands such as peptide and sugar molecules, and physical or chemical crosslinking. This review focuses on recent advances in the use of alginate and its derivatives in the field of biomedical applications, including wound healing, cartilage repair, bone regeneration and drug delivery, which have potential in tissue regeneration applications.
Collapse
|