1
|
Amador-Martínez I, Aranda-Rivera AK, Martínez-Castañeda MR, Pedraza-Chaverri J. Mitochondrial quality control and stress signaling pathways in the pathophysiology of cardio-renal diseases. Mitochondrion 2025; 84:102040. [PMID: 40252890 DOI: 10.1016/j.mito.2025.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Mitochondria are essential organelles for cellular function and have become a broad field of study. In cardio-renal diseases, it has been established that mitochondrial dysfunction is a primary mechanism leading to these pathologies. Under stress, mitochondria can develop stress response mechanisms to maintain mitochondrial quality control (MQC) and functions. In contrast, the perturbation of these mechanisms has been associated with the pathogenesis of several diseases. Thus, targeting specific pathways within MQC could offer a therapeutic avenue for protecting mitochondrial integrity. However, the mechanisms related to MQC and mitochondrial stress signaling in the cardio-renal axis have been poorly explored. The primary limitations include the lack of reproducibility in the experimental models of cardio-renal disease, the incomplete knowledge of molecules that generate bidirectional damage, and the temporality of the study models. Therefore, we believe that integration of all of those limitations, along with recent advances in MQC mechanisms (i.e., mitophagy), stress signaling pathways (e.g., integrated stress response, mitochondrial unfolded protein response, and mitochondrial protein import), associated pharmacology, and targeted therapeutic approaches could reveal what the deregulation of these mechanisms is like and provide ideas for generating strategies that seek to avoid the progression of cardio-renal diseases.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ana Karina Aranda-Rivera
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mauricio Raziel Martínez-Castañeda
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Edificio B - 101, 1° Piso, Circuito de Posgrado, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
2
|
Mikołajczyk-Stecyna J, Zuk E, Chmurzynska A, Blatkiewicz M, Jopek K, Rucinski M. Exposure to a choline-deficient diet during pregnancy and lactation alters the liver transcriptome profile in offspring of dams with fatty liver. Clin Nutr ESPEN 2025; 66:9-23. [PMID: 39800134 DOI: 10.1016/j.clnesp.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND & AIMS The developmental origin of health and disease hypothesis shows that early adverse exposures can have lifelong health effects. Thus, the aim of this study was to analyze the impact of choline intake during pregnancy and/or lactation on gene expression profiles in the liver of 24-day-old male rat offspring from dams with non-alcoholic fatty liver disease (NAFLD). METHODS Phenotypic characteristic, histological examination and global transcriptome pattern of liver tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global gene expression profile was analyzed by using microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time polymerase chain reaction (qPCR). RESULTS The histological examination of rat liver sections indicated alternations typical for fatty liver in all analyzed groups with increased progression among groups deprived of choline. Choline deficiency in the maternal diet was associated with changes in body mass and composition but not with biochemical marker levels, except for the high density lipoprotein fraction of cholesterol (HDL). Enhanced expression of genes involved in oxidative stress, cell proliferation, activation of catabolic processes related to hepatocyte dysfunction and cell membrane composition were simultaneously observed in all choline-deficient groups. CONCLUSIONS An adequate amount of choline in the diet of a mother with fatty liver during pregnancy and/or lactation can regulate gene expression in the offspring's liver and contribute to a milder stage of the disease in the progeny. Moreover, proper choline supply during the postpartum period is as crucial as during the prenatal period.
Collapse
Affiliation(s)
- Joanna Mikołajczyk-Stecyna
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Ewelina Zuk
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Agata Chmurzynska
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Wojska Polskiego 31, 60-624 Poznań, Poland
| | | | - Karol Jopek
- University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Marcin Rucinski
- University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| |
Collapse
|
3
|
Garcia AM, Pietra AE, Turner ME, Da Silva JP, Baybayon-Grandgeorge AN, Sparagna GC, Jeffrey DA, Stauffer BL, Sucharov CC, Miyamoto SD. Impact of Serum Circulating Factors and PDE5 Inhibitor Therapy on Cardiomyocyte Metabolism in Single Ventricle Heart Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646497. [PMID: 40235974 PMCID: PMC11996461 DOI: 10.1101/2025.03.31.646497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background While operative and perioperative care continues to improve for single ventricle congenital heart disease (SV), long-term morbidities and mortality remain high. Importantly, phosphodiesterase-5 inhibitor therapies (PDE5i) are increasingly used, however, little is known regarding the direct myocardial effects of PDE5i therapy in the SV population. Objectives Our group has previously demonstrated that the failing SV myocardium is characterized by increased PDE5 activity and impaired mitochondrial bioenergetics. Here we sought to determine whether serum circulating factors contribute to pathological metabolic remodeling in SV, and whether PDE5i therapy abrogates these changes. Methods Using an established in vitro model whereby primary cardiomyocytes are treated with patient sera +/- PDE5i, we assessed the impact of circulating factors on cardiomyocyte metabolism. Mass spectrometry-based lipidomics and metabolomics were performed to identify phospholipid and metabolite changes. Mitochondrial bioenergetics were assessed using the Seahorse Bioanalyzer and a stable isotope based mitochondrial enzyme activity assay. Relative mitochondrial copy number was quantified using RT-qPCR. Results Our data suggest that serum circulating factors contribute to fundamental changes in cardiomyocyte bioenergetics, including impaired mitochondrial function associated with decreased cardiolipin and other phospholipid species, increased reactive oxygen species (ROS) generation, and altered metabolite milieu. Treatment with PDE5i therapy was sufficient to abrogate a number of these metabolic changes, including a rescue of phosphatidylglycerol levels, a reduction in ROS, improved energy production, and normalization of several key metabolic intermediates. Conclusions Together, these data suggest PDE5i therapy has direct cardiomyocyte effects and contributes to beneficial cardiomyocyte metabolic remodeling in SV failure.
Collapse
|
4
|
Iwama R. Phospholipid dynamics in Aspergillus species: relations between biological membrane composition and cellular morphology. Biosci Biotechnol Biochem 2025; 89:515-522. [PMID: 39533818 DOI: 10.1093/bbb/zbae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Biological membranes, primarily composed of phospholipid bilayers, are essential structures that compartmentalize the cell from the extracellular environment. The biosynthesis and regulation of membrane lipids have been extensively studied in model organisms such as Saccharomyces cerevisiae and mammalian cells. However, our understanding of biological membrane regulation in filamentous fungi, some of which are significant in medicine, pharmacy, and agriculture, remains limited. This minireview provides a comprehensive overview of the latest knowledge, focusing on filamentous fungi of Aspergillus species. Recent progress in understanding dynamic changes in membrane lipid profiles, driven by improvements in analytical techniques for lipidomics, is also presented. Furthermore, known that the cell morphology of filamentous fungi is closely linked to its harmful and beneficial characteristics, the influence of membrane composition on cell morphology is discussed. The integration of these findings will further enhance our understanding of the biological functions of membranes in filamentous fungi.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Li Q, Shao C, Hu Y, Chen K, Zhang J. Feasibility Evaluation of Dried Whole Egg Powder Application in Tadpole ( Lithobates catesbeianus) Feed: Effects on Growth, Metamorphosis Rate, Lipid Metabolism and Intestinal Flora. Animals (Basel) 2025; 15:584. [PMID: 40003064 PMCID: PMC11851411 DOI: 10.3390/ani15040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
At present, studies on tadpole nutrition and metabolism are scarce. This study aimed at comparing the influence of two protein sources, fishmeal (FM) and dried whole egg powder (DWEP), on tadpoles from the perspective of growth, the metamorphosis rate, lipid metabolism, antioxidant properties and the intestinal flora. In this experiment, the control diet was set to contain no FM or DWEP. Based on the control diet, 5% and 10% FM or DWEP were included, respectively. The results of the experiment indicated that FM or DWEP inclusion significantly enhanced the growth performance and metamorphosis rate (p < 0.05); activated hepatic lipid metabolism, as manifested by enhanced LPL and HL activity; upregulated lipid metabolism-related gene expression (fasn, acc, acadl and cpt1α) (p < 0.05); and distinctly elevated the activity of SOD, CAT and GPX (p < 0.05), suggesting improved antioxidant capabilities (p < 0.05). Moreover, the inclusion of FM or DWEP elevated the relative abundance of Actinobacteria and Actinomyces and reduced the relative abundance of Proteobacteria. Unexpectedly, no significant differences were observed between the FM and DWEP groups regarding the above detected indices. This indicates that using DWEP to replace FM is a viable option.
Collapse
Affiliation(s)
| | | | | | - Kaijian Chen
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (C.S.); (Y.H.)
| | - Junzhi Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (Q.L.); (C.S.); (Y.H.)
| |
Collapse
|
6
|
López-Cabrera A, Piñero-Pérez R, Álvarez-Córdoba M, Cilleros-Holgado P, Gómez-Fernández D, Reche-López D, Romero-González A, Romero-Domínguez JM, de la Mata M, de Pablos RM, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Iron Accumulation and Lipid Peroxidation in Cellular Models of Nemaline Myopathies. Int J Mol Sci 2025; 26:1434. [PMID: 40003902 PMCID: PMC11855326 DOI: 10.3390/ijms26041434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
One of the most prevalent types of congenital myopathy is nemaline myopathy (NM), which is recognized by histopathological examination of muscle fibers for the presence of "nemaline bodies" (rods). Mutations in the actin alpha 1 (ACTA1) and nebulin (NEB) genes result in the most prevalent types of NM. Muscle weakness and hypotonia are the main clinical characteristics of this disease. Unfortunately, the pathogenetic mechanisms are still unknown, and there is no cure. In previous work, we showed that actin filament polymerization defects in patient-derived fibroblasts were associated with mitochondrial dysfunction. In this manuscript, we examined the pathophysiological consequences of mitochondrial dysfunction in patient-derived fibroblasts. We analyzed iron and lipofuscin accumulation and lipid peroxidation both at the cellular and mitochondrial level. We found that fibroblasts derived from patients harboring ACTA1 and NEB mutations showed intracellular iron and lipofuscin accumulation, increased lipid peroxidation, and altered expression levels of proteins involved in iron metabolism. Furthermore, we showed that actin polymerization inhibition in control cells recapitulates the main pathological alterations of mutant nemaline cells. Our results indicate that mitochondrial dysfunction is associated with iron metabolism dysregulation, leading to iron/lipofuscin accumulation and increased lipid peroxidation.
Collapse
Affiliation(s)
- Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mario de la Mata
- Departamento de Fisiología, Facultad de Ciencias de la Salud, Universidad de Granada, 51001 Ceuta, Spain;
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| |
Collapse
|
7
|
Yoo Y, Yeon M, Yoon MS, Seo YK. Role of cardiolipin in skeletal muscle function and its therapeutic implications. Cell Commun Signal 2025; 23:36. [PMID: 39833875 PMCID: PMC11749404 DOI: 10.1186/s12964-025-02032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Cardiolipin, a unique phospholipid predominantly present in the inner mitochondrial membrane, is critical for maintaining mitochondrial integrity and function. Its dimeric structure and role in supporting mitochondrial dynamics, energy production, and mitophagy make it indispensable for skeletal muscle health. This review provides a comprehensive overview of cardiolipin biosynthesis, remodeling processes, and essential functions within mitochondria. We explore the influences of cardiolipin on the stability of the mitochondrial complexes, cristae formation, and calcium handling, all of which are vital for efficient oxidative phosphorylation and muscle contraction. Skeletal muscle, with its high energy demands, is particularly dependent on cardiolipin for optimal performance. We discuss the impact of aging on cardiolipin levels, which correlates with a decline in mitochondrial function and muscle mass, contributing to conditions such as sarcopenia. Furthermore, we examined the relationship between cardiolipin and endurance exercise, highlighting the effects of exercise-induced increase in cardiolipin levels on the improvement of mitochondrial function and muscle health. The role of Crls1 in cardiolipin synthesis has been emphasized as a potential therapeutic target for the treatment of sarcopenia. Increasing cardiolipin levels through gene therapy, pharmacological interventions, or specific exercise and nutritional strategies holds promise for mitigating muscle atrophy and promoting muscle regeneration. By focusing on the multifaceted role of cardiolipin in mitochondria and muscle health, we aimed to provide new insights into therapeutic approaches for enhancing muscle function and combating age-related muscle decline.
Collapse
Affiliation(s)
- Youngbum Yoo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - MyeongHoon Yeon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| | - Young-Kyo Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Vassallo N. Poration of mitochondrial membranes by amyloidogenic peptides and other biological toxins. J Neurochem 2025; 169:e16213. [PMID: 39213385 DOI: 10.1111/jnc.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-β, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Tal-Qroqq, Malta
| |
Collapse
|
9
|
Chen X, Yang Y, Zhou Z, Yu H, Zhang S, Huang S, Wei Z, Ren K, Jin Y. Unraveling the complex interplay between Mitochondria-Associated Membranes (MAMs) and cardiovascular Inflammation: Molecular mechanisms and therapeutic implications. Int Immunopharmacol 2024; 141:112930. [PMID: 39146786 DOI: 10.1016/j.intimp.2024.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant public health concern because of their associations with inflammation, oxidative stress, and abnormal remodeling of the heart and blood vessels. In this review, we discuss the intricate interplay between mitochondria-associated membranes (MAMs) and cardiovascular inflammation, highlighting their role in key cellular processes such as calcium homeostasis, lipid metabolism, oxidative stress management, and ERS. We explored how these functions impact the pathogenesis and progression of various CVDs, including myocardial ischemia-reperfusion injury, atherosclerosis, diabetic cardiomyopathy, cardiovascular aging, heart failure, and pulmonary hypertension. Additionally, we examined current therapeutic strategies targeting MAM-related pathways and proteins, emphasizing the potential of MAMs as therapeutic targets. Our review aims to provide new insights into the mechanisms of cardiovascular inflammation and propose novel therapeutic approaches to improve cardiovascular health outcomes.
Collapse
Affiliation(s)
- Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zheng Zhou
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Haihan Yu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shuwei Zhang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Siyuan Huang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Ziqing Wei
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
10
|
Chen YX, Zhao AR, Wei TW, Wang H, Wang LS. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J Cardiovasc Transl Res 2024; 17:1097-1105. [PMID: 38647881 DOI: 10.1007/s12265-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.
Collapse
Affiliation(s)
- Yi-Xi Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - An-Ran Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
11
|
Larnac E, Méthot S, Pelchat F, Millette MA, Montoni A, Salesse C, Haydont V, Marrot L, Rochette PJ. Synergistic Toxicity of Pollutant and Ultraviolet Exposure from a Mitochondrial Perspective. Int J Mol Sci 2024; 25:9146. [PMID: 39273094 PMCID: PMC11394743 DOI: 10.3390/ijms25179146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Ultraviolet (UV) exposure and atmospheric pollution are both independently implicated in skin diseases such as cancer and premature aging. UVA wavelengths, which penetrate in the deep layers of the skin dermis, exert their toxicity mainly through chromophore photosensitization reactions. Benzo[a]pyrene (BaP), the most abundant polycyclic aromatic hydrocarbon originating from the incomplete combustion of organic matter, could act as a chromophore and absorb UVA. We and other groups have previously shown that BaP and UVA synergize their toxicity in skin cells, which leads to important oxidation. Even if mitochondria alterations have been related to premature skin aging and other skin disorders, no studies have focused on the synergy between UV exposure and pollution on mitochondria. Our study aims to investigate the combined effect of UVA and BaP specifically on mitochondria in order to assess the effect on mitochondrial membranes and the consequences on mitochondrial activity. We show that BaP has a strong affinity for mitochondria and that this affinity leads to an important induction of lipid peroxidation and membrane disruption when exposed to UVA. Co-exposure to UVA and BaP synergizes their toxicity to negatively impact mitochondrial membrane potential, mitochondrial metabolism and the mitochondrial network. Altogether, our results highlight the implication of mitochondria in the synergistic toxicity of pollution and UV exposure and the potential of this toxicity on skin integrity.
Collapse
Affiliation(s)
- Eloïse Larnac
- Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale, Université Laval/LOEX, Québec, QC G1V 0A6, Canada
| | - Sébastien Méthot
- Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale, Université Laval/LOEX, Québec, QC G1V 0A6, Canada
| | - Frédéric Pelchat
- Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada
| | - Marc-Antoine Millette
- Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada
| | - Alicia Montoni
- Centre de Recherche en Organogénèse Expérimentale, Université Laval/LOEX, Québec, QC G1V 0A6, Canada
- Faculté de Médecine, Département d'Ophtalmologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Christian Salesse
- Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada
- Faculté de Médecine, Département d'Ophtalmologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Valérie Haydont
- Advanced Research, L'OREAL Research & Innovation, 93600 Aulnay-Sous-Bois, France
| | - Laurent Marrot
- Advanced Research, L'OREAL Research & Innovation, 93600 Aulnay-Sous-Bois, France
| | - Patrick J Rochette
- Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale, Université Laval/LOEX, Québec, QC G1V 0A6, Canada
- Faculté de Médecine, Département d'Ophtalmologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
13
|
Mikołajczyk-Stecyna J, Zuk E, Chmurzynska A, Blatkiewicz M, Jopek K, Rucinski M. The effects of exposure to and timing of a choline-deficient diet during pregnancy and early postnatal life on the skeletal muscle transcriptome of the offspring. Clin Nutr 2024; 43:1503-1515. [PMID: 38729079 DOI: 10.1016/j.clnu.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is related to muscle loss, but the precise mechanism underlying this association remains unclear. The aim of the present study was thus to determine the influence of maternal fatty liver and dietary choline deficiency during pregnancy and/or lactation periods on the skeletal muscle gene expression profile among 24-day-old male rat offspring. METHODS Histological examination of skeletal muscle tissue specimens obtained from offspring of dams suffering from fatty liver, provided with proper choline intake during pregnancy and lactation (NN), fed a choline-deficient diet during both periods (DD), deprived of choline only during pregnancy (DN), or only during lactation (ND), was performed. The global transcriptome pattern was assessed using a microarray approach (Affymetrix® Rat Gene 2.1 ST Array Strip). The relative expression of selected genes was validated by real-time PCR (qPCR). RESULTS Morphological differences in fat accumulation in skeletal muscle related to choline supply were observed. The global gene expression profile was consistent with abnormal morphological changes. Mettl21c gene was overexpressed in all choline-deficient groups compared to the NN group, while two genes, Cdkn1a and S100a4, were downregulated. Processes of protein biosynthesis were upregulated, and processes related to cell proliferation and lipid metabolism were inhibited in DD, DN, and ND groups compared to the NN group. CONCLUSIONS Prenatal and early postnatal exposure to fatty liver and dietary choline deficiency leads to changes in the transcriptome profile in skeletal muscle of 24-day old male rat offspring and is associated with muscle damage, but the mechanism of it seems to be different at different developmental stages of life. Adequate choline intake during pregnancy and lactation can prevent severe muscle disturbance in the progeny of females suffering from fatty liver.
Collapse
Affiliation(s)
| | - Ewelina Zuk
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Poznań, Poland
| | - Agata Chmurzynska
- Poznań University of Life Sciences, Department of Human Nutrition and Dietetics, Poznań, Poland
| | - Malgorzata Blatkiewicz
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Karol Jopek
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| | - Marcin Rucinski
- Poznań University of Medical Sciences, Department of Histology and Embryology, Poznań, Poland
| |
Collapse
|
14
|
Karasawa T, Hee Choi R, Meza CA, Maschek JA, Cox JE, Funai K. Skeletal muscle PGC-1α remodels mitochondrial phospholipidome but does not alter energy efficiency for ATP synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595374. [PMID: 38826268 PMCID: PMC11142218 DOI: 10.1101/2024.05.22.595374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Exercise training is thought to improve the mitochondrial energy efficiency of skeletal muscle. Some studies suggest exercise training increases the efficiency for ATP synthesis by oxidative phosphorylation (OXPHOS), but the molecular mechanisms are unclear. We have previously shown that exercise remodels the lipid composition of mitochondrial membranes, and some of these changes could contribute to improved OXPHOS efficiency (ATP produced by O2 consumed or P/O). Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a transcriptional co-activator that coordinately regulates exercise-induced adaptations including mitochondria. We hypothesized that increased PGC-1α activity is sufficient to remodel mitochondrial membrane lipids and promote energy efficiency. Methods Mice with skeletal muscle-specific overexpression of PGC-1α (MCK-PGC-1α) and their wildtype littermates were used for this study. Lipid mass spectrometry and quantitative PCR were used to assess muscle mitochondrial lipid composition and their biosynthesis pathway. The abundance of OXPHOS enzymes was determined by western blot assay. High-resolution respirometry and fluorometry analysis were used to characterize mitochondrial bioenergetics (ATP production, O2 consumption, and P/O) for permeabilized fibers and isolated mitochondria. Results Lipidomic analyses of skeletal muscle mitochondria from wildtype and MCK-PGC-1α mice revealed that PGC-1α increases the concentrations of cone-shaped lipids such as phosphatidylethanolamine (PE), cardiolipin (CL), and lysophospholipids, while decreases the concentrations of phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidic acid (PA). However, while PGC-1α overexpression increased the abundance of OXPHOS enzymes in skeletal muscle and the rate of O2 consumption (JO2), P/O values were unaffected with PGC-1α in permeabilized fibers or isolated mitochondria. Conclusions Collectively, overexpression of PGC-1α promotes the biosynthesis of mitochondrial PE and CL but neither PGC-1α nor the mitochondrial membrane lipid remodeling induced in MCK-PGC-1α mice is sufficient to increase the efficiency for mitochondrial ATP synthesis. These findings suggest that exercise training may increase OXPHOS efficiency by a PGC-1α-independent mechanism, and question the hypothesis that mitochondrial lipids directly affect OXPHOS enzymes to improve efficiency for ATP synthesis.
Collapse
Affiliation(s)
- Takuya Karasawa
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Utah, United States
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Ran Hee Choi
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Utah, United States
| | - Cesar A. Meza
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Utah, United States
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Metabolomics Core Research Facility, University of Utah, Utah, United States
| | - James E. Cox
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Metabolomics Core Research Facility, University of Utah, Utah, United States
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Utah, United States
| |
Collapse
|
15
|
Zheng BX, Long W, Zheng W, Zeng Y, Guo XC, Chan KH, She MT, Leung ASL, Lu YJ, Wong WL. Mitochondria-Selective Dicationic Small-Molecule Ligand Targeting G-Quadruplex Structures for Human Colorectal Cancer Therapy. J Med Chem 2024; 67:6292-6312. [PMID: 38624086 DOI: 10.1021/acs.jmedchem.3c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 μM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wende Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Yaoxun Zeng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Xiao-Chun Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Meng-Ting She
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
16
|
Nguyen SV, Levintov L, Planalp RP, Vashisth H. Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane. Bioconjug Chem 2024; 35:371-380. [PMID: 38404183 PMCID: PMC10961729 DOI: 10.1021/acs.bioconjchem.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π-π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.
Collapse
Affiliation(s)
- Son V. Nguyen
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Lev Levintov
- Department
of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Roy P. Planalp
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
- Department
of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
17
|
Wu X, Xu H, Zeng N, Li H, Yao G, Liu K, Yan C, Wu L. Luteolin alleviates depression-like behavior by modulating glycerophospholipid metabolism in the hippocampus and prefrontal cortex of LOD rats. CNS Neurosci Ther 2024; 30:e14455. [PMID: 37715585 PMCID: PMC10916417 DOI: 10.1111/cns.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Late-onset depression (LOD) is defined as primary depression that first manifests after the age of 65. Luteolin (LUT) is a natural flavonoid that has shown promising antidepressant effects and improvement in neurological function in previous studies. AIMS In this study, we utilized UPLC-MS/MS non-targeted metabolomics techniques, along with molecular docking technology and experimental validation, to explore the mechanism of LUT in treating LOD from a metabolomics perspective. RESULTS The behavioral results of our study demonstrate that LUT significantly ameliorated anxiety and depression-like behaviors while enhancing cognitive function in LOD rats. Metabolomic analysis revealed that the effects of LUT on LOD rats were primarily mediated through the glycerophospholipid metabolic pathway in the hippocampus and prefrontal cortex. The levels of key lipid metabolites, phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), in the glycerophospholipid metabolic pathway were significantly altered by LUT treatment, with PC and PE showing significant correlations with behavioral indices. Molecular docking analysis indicated that LUT had strong binding activity with phosphatidylserine synthase 1 (PTDSS1), phosphatidylserine synthase 2 (PTDSS2), and phosphatidylserine decarboxylase (PISD), which are involved in the transformation and synthesis of PC, PE, and PS. Lastly, our study explored the reasons for the opposing trends of PC, PE, and PS in the hippocampus and prefrontal cortex from the perspective of autophagy, which may be attributable to the bidirectional regulation of autophagy in distinct brain regions. CONCLUSIONS Our results revealed significant alterations in the glycerophospholipid metabolism pathways in both the hippocampus and prefrontal cortex of LOD rats. Moreover, LUT appears to regulate autophagy disorders by specifically modulating glycerophospholipid metabolism in different brain regions of LOD rats, consequently alleviating depression-like behavior in these animals.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Hanfang Xu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Ningxi Zeng
- Department of Rehabilitation Medicine, The People's Hospital of Longhua DistrictShenzhenChina
| | - Huizhen Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive DysfunctionJiangxi University of Chinese MedicineNanchangChina
| | - Gaolei Yao
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Kaige Liu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Lili Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
18
|
Golla VK, Boyd KJ, May ER. Curvature sensing lipid dynamics in a mitochondrial inner membrane model. Commun Biol 2024; 7:29. [PMID: 38182788 PMCID: PMC10770132 DOI: 10.1038/s42003-023-05657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024] Open
Abstract
Membrane curvature is essential for many cellular structures and processes, and factors such as leaflet asymmetry, lipid composition, and proteins all play important roles. Cardiolipin is the signature lipid of mitochondrial membranes and is essential for maintaining the highly curved shapes of the inner mitochondrial membrane (IMM) and the spatial arrangement of membrane proteins. In this study, we investigate the partitioning behavior of various lipids present in the IMM using coarse-grained molecular dynamics simulations. This study explores curved bilayer systems containing phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CDL) in binary and ternary component mixtures. Curvature properties such as mean and Gaussian curvatures, as well as the distribution of lipids into the various curved regions of the cristae models, are quantified. Overall, this work represents an advance beyond previous studies on lipid curvature sensing by simulating these systems in a geometry that has the morphological features and scales of curvature consistent with regions of the IMM. We find that CDL has a stronger preference for accumulating in regions of negative curvature than PE lipids, in agreement with previous results. Furthermore, we find lipid partitioning propensity is dominated by sensitivity to mean curvature, while there is a weaker correlation with Gaussian curvature.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
- NVIDIA, 2860 County Hwy G4, Santa Clara, CA, 95051, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
19
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
20
|
Goyal S, Cambronne XA. Layered mechanisms regulating the human mitochondrial NAD+ transporter SLC25A51. Biochem Soc Trans 2023; 51:1989-2004. [PMID: 38108469 PMCID: PMC10802112 DOI: 10.1042/bst20220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
SLC25A51 is the primary mitochondrial NAD+ transporter in humans and controls many local reactions by mediating the influx of oxidized NAD+. Intriguingly, SLC25A51 lacks several key features compared with other members in the mitochondrial carrier family, thus its molecular mechanism has been unclear. A deeper understanding would shed light on the control of cellular respiration, the citric acid cycle, and free NAD+ concentrations in mammalian mitochondria. This review discusses recent insights into the transport mechanism of SLC25A51, and in the process highlights a multitiered regulation that governs NAD+ transport. The aspects regulating SLC25A51 import activity can be categorized as contributions from (1) structural characteristics of the transporter itself, (2) its microenvironment, and (3) distinctive properties of the transported ligand. These unique mechanisms further evoke compelling new ideas for modulating the activity of this transporter, as well as new mechanistic models for the mitochondrial carrier family.
Collapse
Affiliation(s)
- Shivansh Goyal
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Xiaolu A. Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
21
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
22
|
Luo Q, Sun W, Li Z, Sun J, Xiao Y, Zhang J, Zhu C, Liu B, Ding J. Biomaterials-mediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials 2023; 303:122368. [PMID: 37977009 DOI: 10.1016/j.biomaterials.2023.122368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Reperfusion therapy is widely used to treat acute myocardial infarction. However, its efficacy is limited by myocardial ischemia-reperfusion injury (MIRI), which occurs paradoxically due to the reperfusion therapy and contributes to the high mortality rate of acute myocardial infarction. Systemic administration of drugs, such as antioxidant and anti-inflammatory agents, to reduce MIRI is often ineffective due to the inadequate release at the pathological sites. Functional biomaterials are being developed to optimize the use of drugs by improving their targetability and bioavailability and reducing side effects, such as gastrointestinal irritation, thrombocytopenia, and liver damage. This review provides an overview of controlled drug delivery biomaterials for treating MIRI by triggering antioxidation, calcium ion overload inhibition, and/or inflammation regulation mechanisms and discusses the challenges and potential applications of these treatments clinically.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Sun
- Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Jinfeng Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Yu Xiao
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jichang Zhang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| |
Collapse
|
23
|
Kejík Z, Koubková N, Krčová L, Sýkora D, Abramenko N, Veselá K, Kaplánek R, Hajduch J, Houdová Megová M, Bušek P, Šedo A, Lacina L, Smetana K, Martásek P, Jakubek M. Combination of quinoxaline with pentamethinium system: Mitochondrial staining and targeting. Bioorg Chem 2023; 141:106816. [PMID: 37716274 DOI: 10.1016/j.bioorg.2023.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/18/2023]
Abstract
Pentamethinium indolium salts are promising fluorescence probes and anticancer agents with high mitochondrial selectivity. We synthesized two indolium pentamethinium salts: a cyclic form with quinoxaline directly incorporated in the pentamethinium chain (cPMS) and an open form with quinoxaline substitution in the γ-position (oPMS). To better understand their properties, we studied their interaction with mitochondrial phospholipids (cardiolipin and phosphatidylcholine) by spectroscopic methods (UV-Vis, fluorescence, and NMR spectroscopy). Both compounds displayed significant affinity for cardiolipin and phosphatidylcholine, which was associated with a strong change in their UV-Vis spectra. Nevertheless, we surprisingly observed that fluorescence properties of cPMS changed in complex with both cardiolipin and phosphatidylcholine, whereas those of oPMS only changed in complex with cardiolipin. Both salts, especially cPMS, display high usability in mitochondrial imaging and are cytotoxic for cancer cells. The above clearly indicates that conjugates of pentamethinium and quinoxaline group, especially cPMS, represent promising structural motifs for designing mitochondrial-specific agents.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Nela Koubková
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Lucie Krčová
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic
| | - Magdalena Houdová Megová
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Dermatovenerology, First Faculty of Medicine, Charles University and General University Hospital, CZ-128 08 Prague, Czech Republic; Institute of Anatomy, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Institute of Anatomy, First Faculty of Medicine, Charles University, Prague 2, CZ-120 00 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Milan Jakubek
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Prumyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague, Czech Republic.
| |
Collapse
|
24
|
Semenov AY, Tikhonov AN. Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment-Protein Complexes. MEMBRANES 2023; 13:866. [PMID: 37999352 PMCID: PMC10673362 DOI: 10.3390/membranes13110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed.
Collapse
Affiliation(s)
- Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
25
|
Amador-Martínez I, Aparicio-Trejo OE, Bernabe-Yepes B, Aranda-Rivera AK, Cruz-Gregorio A, Sánchez-Lozada LG, Pedraza-Chaverri J, Tapia E. Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4. Int J Mol Sci 2023; 24:15875. [PMID: 37958859 PMCID: PMC10650149 DOI: 10.3390/ijms242115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ana Karina Aranda-Rivera
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (I.A.-M.); (A.K.A.-R.)
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (O.E.A.-T.); (L.G.S.-L.)
| |
Collapse
|
26
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
27
|
Xue D, Cheng Y, Pang T, Kuai Y, An Y, Wu K, Li Y, Lai M, Wang B, Wang S. Sodium butyrate alleviates deoxynivalenol-induced porcine intestinal barrier disruption by promoting mitochondrial homeostasis via PCK2 signaling. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132013. [PMID: 37467604 DOI: 10.1016/j.jhazmat.2023.132013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Deoxynivalenol (DON) is one of the most plentiful trichothecenes occurring in food and feed, which brings severe health hazards to both animals and humans. This study aims to investigate whether sodium butyrate (NaB) can protect the porcine intestinal barrier from DON exposure through promoting mitochondrial homeostasis. In a 4-week feeding experiment, 28 male piglets were allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including supplementation of DON (< 0.8 vs. 4.0 mg/kg) and NaB (0.0 vs. 2 g/kg) in a corn/soybean-based diet. Dietary NaB supplementation mitigated the damaged mitochondrial morphology within the jejunal mucosa and the disrupted gut epithelial tight junctions irritated by DON. In IPEC-J2 cells, we found efficient recovery of the intestinal epithelial barrier occurred following NaB administration. This intestinal barrier reparation was facilitated by NaB-induced PCK2-mediated glyceroneogenesis and restoration of mitochondrial structure and function. In conclusion, we elucidated a mechanism of PCK2-mediated improvement of mitochondrial function by NaB to repair porcine intestinal barrier disruption during chronic DON exposure. Our findings highlight the promise of NaB for use in protecting against DON-induced gut epithelial tight junction disruption in piglets.
Collapse
Affiliation(s)
- Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yating Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tiantian Pang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yunyi Kuai
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu An
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuqing Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengyu Lai
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bihan Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
28
|
Iwama R, Okahashi N, Suzawa T, Yang C, Matsuda F, Horiuchi H. Comprehensive analysis of the composition of the major phospholipids during the asexual life cycle of the filamentous fungus Aspergillus nidulans. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159379. [PMID: 37659899 DOI: 10.1016/j.bbalip.2023.159379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
Filamentous fungi undergo significant cellular morphological changes during their life cycle. It has recently been reported that deletions of genes that are involved in phospholipid synthesis led to abnormal hyphal morphology and differentiation in filamentous fungi. Although these results suggest the importance of phospholipid balance in their life cycle, comprehensive analyses of cellular phospholipids are limited. Here, we performed lipidomic analysis of A. nidulans during morphological changes in a liquid medium and of colonies on a solid medium. We observed that the phospholipid composition and transcription of the genes involved in phospholipid synthesis changed dynamically during the life cycle. Specifically, the levels of phosphatidylethanolamine, and highly unsaturated phospholipids increased during the establishment of polarity. Furthermore, we demonstrated that the phospholipid composition in the hyphae at colony margins is similar to that during conidial germination. Furthermore, we demonstrated that common and characteristic phospholipid changes occurred during germination in A. nidulans and A. oryzae, and that species-specific changes also occurred. These results suggest that the exquisite regulation of phospholipid composition is crucial for the growth and differentiation of filamentous fungi.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobuyuki Okahashi
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuki Suzawa
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chuner Yang
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumio Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
29
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim KY, Pasolli HA, Phan S, Lippincott-Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532310. [PMID: 36993370 PMCID: PMC10054968 DOI: 10.1101/2023.03.13.532310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Guadalupe C Garcia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92097
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn VA 20147
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
30
|
Cho YK, Lee S, Lee J, Doh J, Park JH, Jung YS, Lee YH. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med 2023; 55:1955-1973. [PMID: 37653032 PMCID: PMC10545718 DOI: 10.1038/s12276-023-01071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Li X, Yang H, Jin H, Turkez H, Ozturk G, Doganay HL, Zhang C, Nielsen J, Uhlén M, Borén J, Mardinoglu A. The acute effect of different NAD + precursors included in the combined metabolic activators. Free Radic Biol Med 2023; 205:77-89. [PMID: 37271226 DOI: 10.1016/j.freeradbiomed.2023.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
NAD+ and glutathione precursors are currently used as metabolic modulators for improving the metabolic conditions associated with various human diseases, including non-alcoholic fatty liver disease, neurodegenerative diseases, mitochondrial myopathy, and age-induced diabetes. Here, we performed a one-day double blinded, placebo-controlled human clinical study to assess the safety and acute effects of six different Combined Metabolic Activators (CMAs) with 1 g of different NAD+ precursors based on global metabolomics analysis. Our integrative analysis showed that the NAD+ salvage pathway is the main source for boosting the NAD+ levels with the administration of CMAs without NAD+ precursors. We observed that incorporation of nicotinamide (Nam) in the CMAs can boost the NAD+ products, followed by niacin (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), but not flush free niacin (FFN). In addition, the NA administration led to a flushing reaction, accompanied by decreased phospholipids and increased bilirubin and bilirubin derivatives, which could be potentially risky. In conclusion, this study provided a plasma metabolomic landscape of different CMA formulations, and proposed that CMAs with Nam, NMN as well as NR can be administered for boosting NAD+ levels to improve altered metabolic conditions.
Collapse
Affiliation(s)
- Xiangyu Li
- Bash Biotech Inc, 600 West Broadway, Suite 700, San Diego, CA, 92101, USA; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Han Jin
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Gurkan Ozturk
- Research Institute for Health Sciences and Technologies (SABITA), International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey.
| | - Hamdi Levent Doganay
- Gastroenterology and Hepatology Unit, VM Pendik Medicalpark Teaching Hospital, İstanbul, Turkey; Department of Internal Medicine, Bahçeşehir University (BAU), Istanbul, Turkey.
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
32
|
Zeleznik OA, Kang JH, Lasky-Su J, Eliassen AH, Frueh L, Clish CB, Rosner BA, Elze T, Hysi P, Khawaja A, Wiggs JL, Pasquale LR. Plasma metabolite profile for primary open-angle glaucoma in three US cohorts and the UK Biobank. Nat Commun 2023; 14:2860. [PMID: 37208353 PMCID: PMC10199010 DOI: 10.1038/s41467-023-38466-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Glaucoma is a progressive optic neuropathy and a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma is the most common form, and yet the etiology of this multifactorial disease is poorly understood. We aimed to identify plasma metabolites associated with the risk of developing POAG in a case-control study (599 cases and 599 matched controls) nested within the Nurses' Health Studies, and Health Professionals' Follow-Up Study. Plasma metabolites were measured with LC-MS/MS at the Broad Institute (Cambridge, MA, USA); 369 metabolites from 18 metabolite classes passed quality control analyses. For comparison, in a cross-sectional study in the UK Biobank, 168 metabolites were measured in plasma samples from 2,238 prevalent glaucoma cases and 44,723 controls using NMR spectroscopy (Nightingale, Finland; version 2020). Here we show higher levels of diglycerides and triglycerides are adversely associated with glaucoma in all four cohorts, suggesting that they play an important role in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Jae H Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lisa Frueh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tobias Elze
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Schepens Research Eye Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Pirro Hysi
- Department of Ophthalmology, King's College London, London, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
- St. Thomas' Hospital, London, UK
| | - Anthony Khawaja
- National Institute for Health and Care Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- National Institute for Health and Care Research Biomedical Research Centre, Institute of Ophthalmology, University College London, London, UK
| | - Janey L Wiggs
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Sassano ML, van Vliet AR, Vervoort E, Van Eygen S, Van den Haute C, Pavie B, Roels J, Swinnen JV, Spinazzi M, Moens L, Casteels K, Meyts I, Pinton P, Marchi S, Rochin L, Giordano F, Felipe-Abrio B, Agostinis P. PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. J Cell Biol 2023; 222:e202206008. [PMID: 36821088 PMCID: PMC9998969 DOI: 10.1083/jcb.202206008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Sofie Van Eygen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Chris Van den Haute
- Research Group for Neurobiology and Gene Therapy, Department of Neuroscience, Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | | | - Joris Roels
- VIB-bioimaging Center UGent, Ghent, Belgium
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marco Spinazzi
- Neuromuscular Reference Center, CHU Angers, Angers, France
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department for Development and Regeneration, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | | | - Blanca Felipe-Abrio
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
34
|
Johnson JM, Peterlin AD, Balderas E, Sustarsic EG, Maschek JA, Lang MJ, Jara-Ramos A, Panic V, Morgan JT, Villanueva CJ, Sanchez A, Rutter J, Lodhi IJ, Cox JE, Fisher-Wellman KH, Chaudhuri D, Gerhart-Hines Z, Funai K. Mitochondrial phosphatidylethanolamine modulates UCP1 to promote brown adipose thermogenesis. SCIENCE ADVANCES 2023; 9:eade7864. [PMID: 36827367 PMCID: PMC9956115 DOI: 10.1126/sciadv.ade7864] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/24/2023] [Indexed: 05/08/2023]
Abstract
Thermogenesis by uncoupling protein 1 (UCP1) is one of the primary mechanisms by which brown adipose tissue (BAT) increases energy expenditure. UCP1 resides in the inner mitochondrial membrane (IMM), where it dissipates membrane potential independent of adenosine triphosphate (ATP) synthase. Here, we provide evidence that phosphatidylethanolamine (PE) modulates UCP1-dependent proton conductance across the IMM to modulate thermogenesis. Mitochondrial lipidomic analyses revealed PE as a signature molecule whose abundance bidirectionally responds to changes in thermogenic burden. Reduction in mitochondrial PE by deletion of phosphatidylserine decarboxylase (PSD) made mice cold intolerant and insensitive to β3 adrenergic receptor agonist-induced increase in whole-body oxygen consumption. High-resolution respirometry and fluorometry of BAT mitochondria showed that loss of mitochondrial PE specifically lowers UCP1-dependent respiration without compromising electron transfer efficiency or ATP synthesis. These findings were confirmed by a reduction in UCP1 proton current in PE-deficient mitoplasts. Thus, PE performs a previously unknown role as a temperature-responsive rheostat that regulates UCP1-dependent thermogenesis.
Collapse
Affiliation(s)
- Jordan M. Johnson
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Alek D. Peterlin
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Utah Center for Clinical and Translational Research, University of Utah, Salt Lake City, UT, USA
| | - Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Elahu G. Sustarsic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - J. Alan Maschek
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - Marisa J. Lang
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Alejandro Jara-Ramos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Vanja Panic
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey T. Morgan
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Claudio J. Villanueva
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alejandro Sanchez
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jared Rutter
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - James E. Cox
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
35
|
Heine KB, Parry HA, Hood WR. How does density of the inner mitochondrial membrane influence mitochondrial performance? Am J Physiol Regul Integr Comp Physiol 2023; 324:R242-R248. [PMID: 36572555 PMCID: PMC9902215 DOI: 10.1152/ajpregu.00254.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Our current understanding of variation in mitochondrial performance is incomplete. The production of ATP via oxidative phosphorylation is dependent, in part, on the structure of the inner mitochondrial membrane. Morphology of the inner membrane is crucial for the formation of the proton gradient across the inner membrane and, therefore, ATP synthesis. The inner mitochondrial membrane is dynamic, changing shape and surface area. These changes alter density (amount per volume) of the inner mitochondrial membrane within the confined space of the mitochondrion. Because the number of electron transport system proteins within the inner mitochondrial membrane changes with inner mitochondrial membrane area, a change in the amount of inner membrane alters the capacity for ATP production within the organelle. This review outlines the evidence that the association between ATP synthases, inner mitochondrial membrane density, and mitochondrial density (number of mitochondria per cell) impacts ATP production by mitochondria. Furthermore, we consider possible constraints on the capacity of mitochondria to produce ATP by increasing inner mitochondrial membrane density.
Collapse
Affiliation(s)
- Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Hailey A Parry
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
36
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
37
|
A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun 2022; 13:7430. [PMID: 36473860 PMCID: PMC9726889 DOI: 10.1038/s41467-022-35158-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.
Collapse
|
38
|
Bennett CF, Latorre-Muro P, Puigserver P. Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 2022; 23:817-835. [PMID: 35804199 PMCID: PMC9926497 DOI: 10.1038/s41580-022-00506-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
39
|
Antonelo DS, Dos Santos-Donado PR, Ferreira CR, Colnago LA, Ocampos FMM, Ribeiro GH, Ventura RV, Gerrard DE, Delgado EF, Contreras-Castillo CJ, Balieiro JCC. Exploratory lipidome and metabolome profiling contributes to understanding differences in high and normal ultimate pH beef. Meat Sci 2022; 194:108978. [PMID: 36116280 DOI: 10.1016/j.meatsci.2022.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The aim of this work was to compare the lipidome and metabolome profiling in the Longissimus thoracis muscle early and late postmortem from high and normal ultimate pH (pHu) beef. Lipid profiling discriminated between high and normal pHu beef based on fatty acid metabolism and mitochondrial beta-oxidation of long chain saturated fatty acids at 30 min postmortem, and phospholipid biosynthesis at 44 h postmortem. Metabolite profiling also discriminated between high and normal pHu beef, mainly through glutathione, purine, arginine and proline, and glycine, serine and threonine metabolisms at 30 min postmortem, and glycolysis, TCA cycle, glutathione, tyrosine, and pyruvate metabolisms at 44 h postmortem. Lipid and metabolite profiles showed reduced glycolysis and increased use of alternative energy metabolic processes that were central to differentiating high and normal pHu beef. Phospholipid biosynthesis modification suggested high pHu beef experienced greater oxidative stress.
Collapse
Affiliation(s)
- Daniel S Antonelo
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil.
| | | | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Luiz A Colnago
- EMBRAPA Instrumentation, Sao Carlos, SP 13560-970, Brazil
| | | | | | - Ricardo V Ventura
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eduardo F Delgado
- Department of Animal Science, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | | - Julio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| |
Collapse
|
40
|
Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1. Antioxidants (Basel) 2022; 11:antiox11122314. [PMID: 36552523 PMCID: PMC9774536 DOI: 10.3390/antiox11122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.
Collapse
|
41
|
Prola A, Pilot-Storck F. Cardiolipin Alterations during Obesity: Exploring Therapeutic Opportunities. BIOLOGY 2022; 11:1638. [PMID: 36358339 PMCID: PMC9687765 DOI: 10.3390/biology11111638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 08/13/2023]
Abstract
Cardiolipin is a specific phospholipid of the mitochondrial inner membrane that participates in many aspects of its organization and function, hence promoting proper mitochondrial ATP production. Here, we review recent data that have investigated alterations of cardiolipin in different tissues in the context of obesity and the related metabolic syndrome. Data relating perturbations of cardiolipin content or composition are accumulating and suggest their involvement in mitochondrial dysfunction in tissues from obese patients. Conversely, cardiolipin modulation is a promising field of investigation in a search for strategies for obesity management. Several ways to restore cardiolipin content, composition or integrity are emerging and may contribute to the improvement of mitochondrial function in tissues facing excessive fat storage. Inversely, reduction of mitochondrial efficiency in a controlled way may increase energy expenditure and help fight against obesity and in this perspective, several options aim at targeting cardiolipin to achieve a mild reduction of mitochondrial coupling. Far from being just a victim of the deleterious consequences of obesity, cardiolipin may ultimately prove to be a possible weapon to fight against obesity in the future.
Collapse
Affiliation(s)
- Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Fanny Pilot-Storck
- Team Relaix, INSERM, IMRB, Université Paris-Est Créteil, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
| |
Collapse
|
42
|
Muylle E, Jiang H, Johnsen C, Byeon SK, Ranatunga W, Garapati K, Zenka RM, Preston G, Pandey A, Kozicz T, Fang F, Morava E. TRIT1 defect leads to a recognizable phenotype of myoclonic epilepsy, speech delay, strabismus, progressive spasticity, and normal lactate levels. J Inherit Metab Dis 2022; 45:1039-1047. [PMID: 36047296 PMCID: PMC9826177 DOI: 10.1002/jimd.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
TRIT1 defect is a rare, autosomal-recessive disorder of transcription, initially described as a condition with developmental delay, myoclonic seizures, and abnormal mitochondrial function. Currently, only 13 patients have been reported. We reviewed the genetic, clinical, and metabolic aspects of the disease in all known patients, including two novel, unrelated TRIT1 cases with abnormalities in oxidative phosphorylation complexes I and IV in fibroblasts. Taken together the features of all 15 patients, TRIT1 defect could be identified as a potentially recognizable syndrome including myoclonic epilepsy, speech delay, strabismus, progressive spasticity, and variable microcephaly, with normal lactate levels. Half of the patients had oxidative phosphorylation complex measurements and had multiple complex abnormalities.
Collapse
Affiliation(s)
- Ewout Muylle
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Huafang Jiang
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | | | - Seul Kee Byeon
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | - Kishore Garapati
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Institute of Bioinformatics, International Technology ParkBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Roman M. Zenka
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Graeme Preston
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Tamas Kozicz
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Fang Fang
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Eva Morava
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Department of Medical GeneticsUniversity of Pecs Medical SchoolPecsHungary
- Department of BiophysicsUniversity of Pecs Medical SchoolPecsHungary
| |
Collapse
|
43
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
44
|
Eftekharpour E, Fernyhough P. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Antioxid Redox Signal 2022; 37:578-596. [PMID: 34416846 DOI: 10.1089/ars.2021.0152] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: This review highlights the many intracellular processes generating reactive oxygen species (ROS) in the peripheral nervous system in the context of type 1 diabetes. The major sources of superoxide and hydrogen peroxide (H2O2) are described, and scavenging systems are explained. Important roles of ROS in regulating normal redox signaling and in a disease setting, such as diabetes, contributing to oxidative stress and cellular damage are outlined. The primary focus is the role of hyperglycemia in driving elevated ROS production and oxidative stress contributing to neurodegeneration in diabetic neuropathy (within the dorsal root ganglia [DRG] and peripheral nerve). Recent Advances: Contributors to ROS production under high intracellular glucose concentration such as mitochondria and the polyol pathway are discussed. The primarily damaging impact of ROS on multiple pathways including mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and epigenetic signaling is covered. Critical Issues: There is a strong focus on mechanisms of diabetes-induced mitochondrial dysfunction and how this may drive ROS production (in particular superoxide). The mitochondrial sites of superoxide/H2O2 production via mitochondrial metabolism and aerobic respiration are reviewed. Future Directions: Areas for future development are highlighted, including the need to clarify diabetes-induced changes in autophagy and ER function in neurons and Schwann cells. In addition, more clarity is needed regarding the sources of ROS production at mitochondrial sites under high glucose concentration (and lack of insulin signaling). New areas of study should be introduced to investigate the role of ROS, nuclear lamina function, and epigenetic signaling under diabetic conditions in peripheral nerve.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology and Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
45
|
Zhou Y, Yu H, Tang Y, Chen R, Luo J, Shi C, Tang S, Li X, Shen X, Chen R, Zhang Y, Lu Y, Ye Z, Guo L, Ouyang B. Critical roles of mitochondrial fatty acid synthesis in tomato development and environmental response. PLANT PHYSIOLOGY 2022; 190:576-591. [PMID: 35640121 PMCID: PMC9434154 DOI: 10.1093/plphys/kiac255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 05/30/2023]
Abstract
Plant mitochondrial fatty acid synthesis (mtFAS) appears to be important in photorespiration based on the reverse genetics research from Arabidopsis (Arabidopsis thaliana) in recent years, but its roles in plant development have not been completely explored. Here, we identified a tomato (Solanum lycopersicum) mutant, fern-like, which displays pleiotropic phenotypes including dwarfism, yellowing, curly leaves, and increased axillary buds. Positional cloning and genetic and heterozygous complementation tests revealed that the underlying gene FERN encodes a 3-hydroxyl-ACP dehydratase enzyme involved in mtFAS. FERN was causally involved in tomato morphogenesis by affecting photorespiration, energy supply, and the homeostasis of reactive oxygen species. Based on lipidome data, FERN and the mtFAS pathway may modulate tomato development by influencing mitochondrial membrane lipid composition and other lipid metabolic pathways. These findings provide important insights into the roles and importance of mtFAS in tomato development.
Collapse
Affiliation(s)
- Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Tang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinying Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyan Shen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Guo
- Author for correspondence: (B.O.), (L.G.)
| | - Bo Ouyang
- Author for correspondence: (B.O.), (L.G.)
| |
Collapse
|
46
|
Panda SP, Dhurandhar Y, Agrawal M. The interplay of epilepsy with impaired mitophagy and autophagy linked dementia (MAD): A review of therapeutic approaches. Mitochondrion 2022; 66:27-37. [PMID: 35842181 DOI: 10.1016/j.mito.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 12/28/2022]
Abstract
The duration and, age of dementia have been linked to a higher risk of seizures. The exact mechanism that drives epileptogenesis in impaired mitophagy and autophagy linked dementia (MAD) is fully defined after reviewing the Scopus, Publon, and Pubmed databases. The epileptogenesis in patients with Alzheimer's disease dementia (ADD) and Parkinson's disease dementia (PDD) is due to involvement of amyloid plaques (Aβ), phosphorylated tau (pTau), Parkin, NF-kB and NLRP3 inflammasome. Microglia, the prime protective and inflammatory cells in the brain exert crosstalk between mitophagy and inflammation. Several researchers believed that the inflammatory brain cells microglia could be a therapeutic target for the treatment of a MAD associated epilepsy. There are conventional antiepileptic drugs such as gabapentin, lamotrigine, phenytoin sodium, carbamazepine, oxcarbazepine, felbamate, lamotrigine, valproate sodium, and topiramate are prescribed by a psychiatrist to suppress seizure frequency. Also, the conventional drugs generate serious adverse effects and synergises dementia characteristics. The adverse effect of carbamazepine is neurotoxic and also, damages haemopoietic system and respiratory tract. The phenytoin treatment causes cerebellar defect and anemia. Dementia and epilepsy have a complicated relationship, thus targeting mitophagy for cure of epileptic dementia makes sense. Complementary and alternative medicine (CAM) is one of the rising strategies by many patients of the world, not only to suppress seizure frequency but also to mitigate dementia characteristics of patients. Therefore our present review focus on the interplay between epilepsy and MAD and their treatment with CAM approaches.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Yogita Dhurandhar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Mehak Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
47
|
Lin H, Chen X, Pan J, Ke J, Zhang A, Liu Y, Wang C, Chang ACY, Gu J. Secretion of miRNA-326-3p by senescent adipose exacerbates myocardial metabolism in diabetic mice. J Transl Med 2022; 20:278. [PMID: 35729559 PMCID: PMC9210699 DOI: 10.1186/s12967-022-03484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Adipose tissue homeostasis is at the heart of many metabolic syndromes such as diabetes. Previously it has been demonstrated that adipose tissues from diabetic patients are senescent but whether this contributes to diabetic cardiomyopathy (DCM) remains to be elucidated. METHODS The streptozotocin (STZ) type 1 diabetic mice were established as animal model, and adult mouse ventricular myocytes (AMVMs) isolated by langendorff perfusion as well as neonatal mouse ventricular myocytes (NMVMs) were used as cell models. Senescent associated β galactosidase (SA-β-gal) staining and RT-qPCR were used to identify the presence of adipose senescence in diabetic adipose tissue. Senescent adipose were removed either by surgery or by senolytic treatment. Large extracellular vesicles (LEVs) derived from adipose tissue and circulation were separated by ultracentrifugation. Cardiac systolic and diastolic function was evaluated through cardiac ultrasound. Cardiomyocytes contraction function was evaluated by the Ionoptix HTS system and live cell imaging, mitochondrial morphology and functions were evaluated by transmission electron microscope, live cell fluorescent probe and seahorse analysis. RNA-seq for AMVMs and miRNA-seq for LEVs were performed, and bioinformatic analysis combined with RT-qPCR and Western blot were used to elucidate underlying mechanism that senescent adipose derives LEVs exacerbates myocardial metabolism. RESULTS SA-β-gal staining and RT-qPCR identified the presence of adipose tissue senescence in STZ mice. Through surgical as well as pharmacological means we show that senescent adipose tissue participates in the pathogenesis of DCM in STZ mice by exacerbates myocardial metabolism through secretion of LEVs. Specifically, expression of miRNA-326-3p was up-regulated in LEVs isolated from senescent adipose tissue, circulation, and cardiomyocytes of STZ mice. Up-regulation of miRNA-326-3p coincided with myocardial transcriptomic changes in metabolism. Functionally, we demonstrate that miRNA-326-3p inhibited the expression of Rictor and resulted in impaired mitochondrial and contractile function in cardiomyocytes. CONCLUSION We demonstrate for the first time that senescent adipose derived LEVs exacerbates myocardial metabolism through up-regulated miRNA-326-3p which inhibits Rictor in cardiomyocytes. Furthermore, reducing senescence burden in adipose tissue is capable of relieving myocardial metabolism disorder in diabetes mellitus.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaonan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiahan Ke
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yangyang Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Zhang J, Shi Y. In Search of the Holy Grail: Toward a Unified Hypothesis on Mitochondrial Dysfunction in Age-Related Diseases. Cells 2022; 11:cells11121906. [PMID: 35741033 PMCID: PMC9221202 DOI: 10.3390/cells11121906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiolipin (CL) is a mitochondrial signature phospholipid that plays a pivotal role in mitochondrial dynamics, membrane structure, oxidative phosphorylation, mtDNA bioenergetics, and mitophagy. The depletion or abnormal acyl composition of CL causes mitochondrial dysfunction, which is implicated in the pathogenesis of aging and age-related disorders. However, the molecular mechanisms by which mitochondrial dysfunction causes age-related diseases remain poorly understood. Recent development in the field has identified acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1), an acyltransferase upregulated by oxidative stress, as a key enzyme that promotes mitochondrial dysfunction in age-related diseases. ALCAT1 catalyzes CL remodeling with very-long-chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA). Enrichment of DHA renders CL highly sensitive to oxidative damage by reactive oxygen species (ROS). Oxidized CL becomes a new source of ROS in the form of lipid peroxides, leading to a vicious cycle of oxidative stress, CL depletion, and mitochondrial dysfunction. Consequently, ablation or the pharmacological inhibition of ALCAT1 have been shown to mitigate obesity, type 2 diabetes, heart failure, cardiomyopathy, fatty liver diseases, neurodegenerative diseases, and cancer. The findings suggest that age-related disorders are one disease (aging) manifested by different mitochondrion-sensitive tissues, and therefore should be treated as one disease. This review will discuss a unified hypothesis on CL remodeling by ALCAT1 as the common denominator of mitochondrial dysfunction, linking mitochondrial dysfunction to the development of age-related diseases.
Collapse
Affiliation(s)
| | - Yuguang Shi
- Correspondence: ; Tel.: +1-210-450-1363; Fax: +1-210-562-6150
| |
Collapse
|
49
|
Wang R, Liu F, Huang P, Zhang Y, He J, Pang X, Zhang D, Guan Y. Ozone preconditioning protects rabbit heart against global ischemia-reperfusion injury in vitro by up-regulating HIF-1α. Biomed Pharmacother 2022; 150:113033. [PMID: 35658224 DOI: 10.1016/j.biopha.2022.113033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 12/07/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a major factor that leads to cardiac dysfunction in cardiovascular surgery during extracorporeal circulation. Recent studies have found that ozone (O3) has protective effect on MIRI caused by the anterior descending branch of the ligated left coronary artery. However, whether O3 preconditioning has the same protective effect on global MIRI and the mechanism underlying this clinical treatment remains elusive. Here, we hypothesized that O3 preconditioning (O3P) could protect rabbit heart against global MIRI in vitro by up-regulating HIF-1α. Rabbits were treated intraperitoneally with O2/O3 mixture with different concentrations and then injected with YC-1 (inhibitor of HIF-1α) before the establishment of the global MIRI model using the Langendorff isolated heart perfusion apparatus. We investigated the effects of O3 preconditioning on cardiac systolic function, myocardial infarction, inflammatory response, mitochondrial function, myocardial pathological changes and arrhythmias. We found that the heart with O3 preconditioning significantly increased HR, LVDP and IL-10 expression, and decreased IL-6 expression, CK-MB, cTnT and cTnI concentration, myocardial infarction area, myocardial pathological injury and the occurrence of ventricular tachycardia and ventricular fibrillation. Meanwhile, the level of HIF-1α was significantly increased. However, after treatment of specific inhibitor of HIF-1α, the protective effect of O3 preconditioning was reversed completely. Our data indicates that O3 preconditioning has protective effect on MIRI and this protective effect is positively associated with dosage of O3. Energy metabolism disorder is the initial stage of MIRI and up-regulation of HIF-1α plays an important role in reducing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Rui Wang
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China; School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fengjin Liu
- Department of Emergency, Yantai Yuhuangding Hospital, Shandong, China
| | - Puxidan Huang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yu Zhang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun He
- Department of Anesthesiology, Beijing Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China
| | - Xiaolin Pang
- Department of Anesthesiology, Beijing Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China
| | - Dongya Zhang
- Department of Anesthesiology, Beijing Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China.
| | - Yuan Guan
- Department of Anesthesiology, Beijing Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China.
| |
Collapse
|
50
|
Doolittle LM, Binzel K, Nolan KE, Craig K, Rosas LE, Bernier MC, Joseph LM, Woods PS, Knopp MV, Davis IC. CDP-choline Corrects Alveolar Type II Cell Mitochondrial Dysfunction in Influenza-infected Mice. Am J Respir Cell Mol Biol 2022; 66:682-693. [PMID: 35442170 PMCID: PMC9163648 DOI: 10.1165/rcmb.2021-0512oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Development of ARDS in influenza A virus (IAV)-infected mice is associated with inhibition of alveolar type II (ATII) epithelial cell de novo phosphatidylcholine synthesis and administration of the phosphatidylcholine precursor CDP-choline attenuates IAV-induced ARDS in mice. We hypothesized inhibition of phosphatidylcholine synthesis would also impact the function of ATII cell mitochondria. To test this hypothesis, adult C57BL/6 mice of both sexes were inoculated intranasally with 10,000 p.f.u./mouse influenza A/WSN/33 (H1N1). Controls were mock-infected with virus diluent. Mice were treated with saline vehicle or CDP-choline (100 μg/mouse, i.p.) once daily from 1-5 days post-inoculation (dpi). ATII cells were isolated by a standard lung digestion protocol at 6 dpi for analysis of mitochondrial function. IAV infection increased uptake of the glucose analog 18F-FDG by the lungs and caused a switch from oxidative phosphorylation to aerobic glycolysis as a primary means of ATII cell ATP synthesis by 6 dpi. Infection also induced ATII cell mitochondrial depolarization and shrinkage, upregulation of PGC-1α, decreased cardiolipin content, and reduced expression of mitofusin 1, OPA1, DRP1, Complexes I and IV of the electron transport chain, and enzymes involved in cardiolipin synthesis. Daily CDP-choline treatment prevented the declines in oxidative phosphorylation, mitochondrial membrane potential, and cardiolipin synthesis resulting from IAV infection but did not fully reverse the glycolytic shift. CDP-choline also did not prevent the alterations in mitochondrial protein expression resulting from infection. Taken together, our data show ATII cell mitochondrial dysfunction following IAV infection results from impaired de novo phospholipid synthesis, but the glycolytic shift does not.
Collapse
Affiliation(s)
- Lauren M Doolittle
- OHIO STATE UNIVERSITY, COLLEGE OF VETERINARY MEDICINE, Columbus, Ohio, United States
| | - Katherine Binzel
- OHIO STATE UNIVERSITY, Wright Center of Innovation in Biomedical Imaging, Columbus, Ohio, United States
| | - Katherine E Nolan
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Kelsey Craig
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Lucia E Rosas
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Matthew C Bernier
- The Ohio State University, 2647, CCIC Mass Spectrometry & Proteomics Facility, Columbus, Ohio, United States
| | - Lisa M Joseph
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Parker S Woods
- The Ohio State University, 2647, Veterinary Biosciences, Columbus, Ohio, United States
| | - Michael V Knopp
- OHIO STATE UNIVERSITY, Wright Center of Innovation in Biomedical Imaging, Columbus, Ohio, United States
| | - Ian C Davis
- OHIO STATE UNIVERSITY, COLLEGE OF VETERINARY MEDICINE, Columbus, Ohio, United States;
| |
Collapse
|