1
|
Kim S, Lee J, Park J. Cellular Membrane-Derived Nanovesicles Expressing hCD64 for Targeting Prostate Cancer. ACS APPLIED BIO MATERIALS 2024; 7:6941-6949. [PMID: 39316382 DOI: 10.1021/acsabm.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Extracellular vesicles are ideal therapeutic potentiators for various diseases. However, they commonly lack targeting capability and are rapidly cleared by phagocytes. This requires appropriate administration at high doses, which can lead to toxic and adverse reactions. To overcome these limitations, we developed bleb nanovesicles containing human Fcγ receptor I (hCD64), known for their strong affinity to monomeric IgG. In this study, we focused on prostate cancer, which has a specific membrane antigen. We have utilized the hCD64-expressing bleb nanovesicles attaching anti-prostate-specific membrane antigen (PSMA) antibodies and confirmed their targeting ability in PSMA-related cell lines and prostate cancer xenograft models. Our findings underscore the promising potential of nanovesicle Fcγ receptor-IgG as a platform for cancer diagnosis and therapy systems, inspiring further research.
Collapse
Affiliation(s)
- Sehan Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Jeonghyeon Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| | - Jaesung Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeong-buk 37673, Republic of Korea
| |
Collapse
|
2
|
Han Y, Wang L, Ye X, Gong X, Shao X. FcγRIIb Exacerbates LPS-Induced Neuroinflammation by Binding with the Bridging Protein DAP12 and Promoting the Activation of PI3K/AKT Signaling Pathway in Microglia. J Inflamm Res 2024; 17:41-57. [PMID: 38193040 PMCID: PMC10773454 DOI: 10.2147/jir.s428093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction This paper focuses on the expression and role of FcγRIIb in neuroinflammation, exploring the molecular mechanisms by which FcγRIIb interacts with the bridging protein DAP12 to regulate the PI3K-AKT signaling pathway that promote neuroinflammation and aggravate neuronal injury. Methods LPS-induced neuroinflammation models in vivo and in vitro were constructed to explore the role and mechanism of FcγRIIb in CNS inflammation. Subsequently, FcγRIIb was knocked down or overexpressed to observe the activation of BV2 cell and the effect on PI3K-AKT pathway. Then the PI3K-AKT pathway was blocked to observe its effect on cell activation and FcγRIIb expression. We analyzed the interaction between FcγRIIb and DAP12 by Immunoprecipitation technique. Then FcγRIIb was overexpressed while knocking down DAP12 to observe its effect on PI3K-AKT pathway. Finally, BV2 cell culture supernatant was co-cultured with neuronal cell HT22 to observe its effect on neuronal apoptosis and cell activity. Results In vivo and in vitro, we found that FcγRIIb expression was significantly increased and activated the PI3K-AKT pathway. Contrary to the results of overexpression of FcγRIIb, knockdown of FcγRIIb resulted in a significant low level of relevant inflammatory factors and suppressed the PI3K-AKT pathway. Furthermore, LPS stimulation induced an interaction between FcγRIIb and DAP12. Knockdown of DAP12 suppressed inflammation and activation of the PI3K-AKT pathway in BV2 cells, and meantime overexpression of FcγRIIb suppressed the level of FcγRIIb-induced AKT phosphorylation. Additionally, knockdown of FcγRIIb inhibited microglia activation, which induced neuronal apoptosis. Discussion Altogether, our experiments indicate that FcγRIIb interacts with DAP12 to promote microglia activation by activating the PI3K-AKT pathway while leading to neuronal apoptosis and exacerbating brain tissue injury, which may provide a new target for the treatment of inflammatory diseases in the central nervous system.
Collapse
Affiliation(s)
- YingWen Han
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Luyao Wang
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaokun Ye
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xue Gong
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaoyi Shao
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Typiak M, Rękawiecki B, Rębała K, Dubaniewicz A. Comparative Analysis of FCGR Gene Polymorphism in Pulmonary Sarcoidosis and Tuberculosis. Cells 2023; 12:cells12091221. [PMID: 37174624 PMCID: PMC10177102 DOI: 10.3390/cells12091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The clinical outcome of sarcoidosis (SA) is very similar to tuberculosis (TB); however, they are treated differently and should not be confused. In search for their biomarkers, we have previously revealed changes in the phagocytic activity of monocytes in sarcoidosis and tuberculosis. On these monocytes we found a higher expression of receptors for the Fc fragment of immunoglobulin G (FcγR) in SA and TB patients vs. healthy controls. FcγRs are responsible for the binding of immune complexes (ICs) to initiate an (auto)immune response and for ICs clearance. Surprisingly, our SA patients had a high blood level of ICs, despite the abundant presence of FcγRs. It pointed to FcγR disfunction, presumably caused by the polymorphism of their (FCGR) genes. Therefore, we present here an analysis of the occurrence of FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B variants in Caucasian SA and TB patients, and healthy individuals with the use of polymerase chain reaction (PCR) and real-time PCR. The presented data point to a possibility of supporting the differential diagnosis of SA and TB by analyzing FCGR2C, FCGR3A and FCGR3B polymorphism, while for severe stages of SA also by studying FCGR2A variants. Additionally, the genotyping of FCGR2A and FCGR3B might serve as a marker of SA progression.
Collapse
Affiliation(s)
- Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Krzysztof Rębała
- Department of Forensic Medicine, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Anna Dubaniewicz
- Department of Pulmonology, Medical University of Gdansk, 80-214 Gdansk, Poland
| |
Collapse
|
5
|
Rojas-Ortega DA, Rojas-Hernández S, Sánchez-Mendoza ME, Gómez-López M, Sánchez-Camacho JV, Rosales-Cruz E, Yépez MMC. Role of FcγRIII in the nasal cavity of BALB/c mice in the primary amebic meningoencephalitis protection model. Parasitol Res 2023; 122:1087-1105. [PMID: 36913025 PMCID: PMC10009362 DOI: 10.1007/s00436-023-07810-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Different mechanisms of the host immune response against the primary amebic meningoencephalitis (PAM) in the mouse protection model have been described. It has been proposed that antibodies opsonize Naegleria fowleri trophozoites; subsequently, the polymorphonuclear cells (PMNs) surround the trophozoites to avoid the infection. FcγRs activate signaling pathways of adapter proteins such as Syk and Hck on PMNs to promote different effector cell functions which are induced by the Fc portion of the antibody-antigen complexes. In this work, we analyzed the activation of PMNs, epithelial cells, and nasal passage cells via the expression of Syk and Hck genes. Our results showed an increment of the FcγRIII and IgG subclasses in the nasal cavity from immunized mice as well as Syk and Hck expression was increased, whereas in the in vitro assay, we observed that when the trophozoites of N. fowleri were opsonized with IgG anti-N. fowleri and interacted with PMN, the expression of Syk and Hck was also increased. We suggest that PMNs are activated via their FcγRIII, which leads to the elimination of the trophozoites in vitro, while in the nasal cavity, the adhesion and consequently infection are avoided.
Collapse
Affiliation(s)
- Diego Alexander Rojas-Ortega
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - María Elena Sánchez-Mendoza
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Modesto Gómez-López
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Jennifer Viridiana Sánchez-Camacho
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Diaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de Mexico, México
| | - Erika Rosales-Cruz
- Laboratorio de Investigación en Hematopatología, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | | |
Collapse
|
6
|
Osaka T, Yamamoto Y, Soma T, Yanagisawa N, Nagata S. Cross-Reactivity of Antibodies in Intravenous Immunoglobulin Preparation for Protection against SARS-CoV-2. Microorganisms 2023; 11:microorganisms11020471. [PMID: 36838436 PMCID: PMC9959286 DOI: 10.3390/microorganisms11020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Severe cases of COVID-19 continue to put pressure on medical operations by prolonging hospitalization, occupying intensive care beds, and forcing medical personnel to undergo harsh labor. The eradication of SARS-CoV-2 through vaccine development has yet to be achieved, mainly due to the appearance of multiple mutant-incorporating strains. The present study explored the utility of human intravenous immunoglobulin (IVIG) preparations in suppressing the aggravation of any COVID-19 infection using a SARS-CoV-2 pseudovirus assay. Our study revealed the existence of IgG antibodies in human IVIG preparations, which recognized the spike protein of SARS-CoV-2. Remarkably, the pretreatment of ACE2/TMPRSS2-expressing host cells (HEK293T cells) with IVIG preparations (10 mg/mL) inhibited approximately 40% entry of SARS-CoV-2 pseudovirus even at extremely low concentrations of IgG (0.16-1.25 mg/mL). In contrast, the antibody-dependent enhancement of viral entry was confirmed when SARS-CoV-2 pseudovirus was treated with some products at an IgG concentration of 10 mg/mL. Our data suggest that IVIG may contribute to therapy for COVID-19, including for cases caused by SARS-CoV-2 variants, since IVIG binds not only to the spike proteins of the virus, but also to human ACE2/TMPRSS2. An even better preventive effect can be expected with blood collected after the start of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Toshifumi Osaka
- Department of Microbiology and Immunology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Yoko Yamamoto
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., Osaka 563-0011, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence: ; Tel.: +81-3-3353-8111 (ext. 37560)
| |
Collapse
|
7
|
Zhang X, Cai J, Song F, Yang Z. Prognostic and immunological role of FCER1G in pan-cancer. Pathol Res Pract 2022; 240:154174. [DOI: 10.1016/j.prp.2022.154174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
|
8
|
Wu J, Ma Y, Nie Y, Wang J, Feng G, Hao L, Huang W, Li Y, Liu Z. Functional Characterization of Largemouth Bass ( Micropterus salmoides) Soluble FcγR Homolog in Response to Bacterial Infection. Int J Mol Sci 2022; 23:ijms232213788. [PMID: 36430268 PMCID: PMC9699129 DOI: 10.3390/ijms232213788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Fc receptors (FcRs) are key players in antibody-dependent cellular phagocytosis (ADCP) with their specific recognition of the Fc portion of an immunoglobulin. Despite reports of FcγR-mediated phagocytosis in mammals, little is known about the effects of soluble FcγRs on the immune response. In this study, FcγRIα was cloned from the largemouth bass (Micropterus salmoides) (MsFcγRIα). Without a transmembrane segment or a cytoplasmic tail, MsFcγRIα was identified as a soluble form protein and widely distributed in the spleen, head kidney, and intestine. The native MsFcγRIα was detected in the serum of Nocardia seriolae-infected largemouth bass and the supernatants of transfected HEK293 cells. Additionally, it was verified that the transfected cells' surface secreted MsFcRIα could bind to largemouth bass IgM. Moreover, the expression changes of MsFcγRIα, Syk, and Lyn indicated that MsFcγRIα was engaged in the acute phase response to bacteria, and the FcγR-mediated phagocytosis pathway was activated by Nocardia seriolae stimulation. Furthermore, recombinant MsFcγRIα could enhance both reactive oxygen species (ROS) and phagocytosis to Nocardia seriolae of leukocytes, presumably through the interaction of MsFcγRIα with a complement receptor. In conclusion, these findings provided a better understanding of the function of soluble FcγRs in the immune response and further shed light on the mechanism of phagocytosis in teleosts.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yifan Nie
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingya Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Feng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wen Huang
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (Z.L.)
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (Y.L.); (Z.L.)
| |
Collapse
|
9
|
Philpott HT, Birmingham TB, Fiset B, Walsh LA, Coleman MC, Séguin CA, Appleton CT. Tensile strain and altered synovial tissue metabolism in human knee osteoarthritis. Sci Rep 2022; 12:17367. [PMID: 36253398 PMCID: PMC9576717 DOI: 10.1038/s41598-022-22459-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
Synovium is critical for maintaining joint homeostasis and may contribute to mechanobiological responses during joint movement. We investigated mechanobiological responses of whole synovium from patients with late-stage knee osteoarthritis (OA). Synovium samples were collected during total knee arthroplasty and assigned to histopathology or cyclic 10% tensile strain loading, including (1) static (control); (2) low-frequency (0.3 Hz); and iii) high-frequency (1.0 Hz) for 30-min. After 6-h incubation, tissues were bisected for RNA isolation and immunostaining (3-nitrotyrosine; 3-NT). RNA sequencing was analyzed for differentially expressed genes and pathway enrichment. Cytokines and lactate were measured in conditioned media. Compared to controls, low-frequency strain induced enrichment of pathways related to interferon response, Fc-receptor signaling, and cell metabolism. High-frequency strain induced enrichment of pathways related to NOD-like receptor signaling, high metabolic demand, and redox signaling/stress. Metabolic and redox cell stress was confirmed by increased release of lactate into conditioned media and increased 3-NT formation in the synovial lining. Late-stage OA synovial tissue responses to tensile strain include frequency-dependent increases in inflammatory signaling, metabolism, and redox biology. Based on these findings, we speculate that some synovial mechanobiological responses to strain may be beneficial, but OA likely disturbs synovial homeostasis leading to aberrant responses to mechanical stimuli, which requires further validation.
Collapse
Affiliation(s)
- Holly T. Philpott
- grid.39381.300000 0004 1936 8884Faculty of Health Sciences, Western University, London, ON N6G 1H1 Canada ,grid.39381.300000 0004 1936 8884Bone and Joint Institute, Western University, London, ON N6A 5B5 Canada
| | - Trevor B. Birmingham
- grid.39381.300000 0004 1936 8884Faculty of Health Sciences, Western University, London, ON N6G 1H1 Canada ,grid.39381.300000 0004 1936 8884Bone and Joint Institute, Western University, London, ON N6A 5B5 Canada
| | - Benoit Fiset
- grid.14709.3b0000 0004 1936 8649Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3 Canada
| | - Logan A. Walsh
- grid.14709.3b0000 0004 1936 8649Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, QC H3A 0C7 Canada
| | - Mitchell C. Coleman
- grid.214572.70000 0004 1936 8294Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
| | - Cheryle A. Séguin
- grid.39381.300000 0004 1936 8884Bone and Joint Institute, Western University, London, ON N6A 5B5 Canada ,grid.39381.300000 0004 1936 8884Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 Canada
| | - C. Thomas Appleton
- grid.39381.300000 0004 1936 8884Bone and Joint Institute, Western University, London, ON N6A 5B5 Canada ,grid.39381.300000 0004 1936 8884Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 Canada ,grid.39381.300000 0004 1936 8884Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 Canada ,SJHC Rheumatology Centre, 268 Grosvenor St., London, ON N6A 4V2 Canada
| |
Collapse
|
10
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
11
|
Identification of novel genes in Behcet's disease using integrated bioinformatic analysis. Immunol Res 2022; 70:461-468. [PMID: 35364782 PMCID: PMC9273552 DOI: 10.1007/s12026-022-09270-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
Behcet’s disease (BD) is a chronic vascular inflammatory disease. However, the etiology and molecular mechanisms underlying BD development have not been thoroughly understood. Gene expression data for BD were obtained from the Gene Expression Omnibus database. We used robust rank aggregation (RRA) to identify differentially expressed genes (DEGs) between patients with BD and healthy controls. Gene ontology functional enrichment was used to investigate the potential functions of the DEGs. Protein–protein interaction (PPI) network analysis was performed to identify the hub genes. Receiver operating characteristic analyses were performed to investigate the value of hub genes in the diagnosis of BD. GSE17114 and GSE61399 datasets were included, comprising 32 patients with BD and 26 controls. The RRA integrated analysis identified 44 significant DEGs among the GSE17114 and GSE61399 CD4 + T lymphocytes. Functional enrichment analysis revealed that protein tyrosine/threonine phosphatase activity and immunoglobulin binding were enriched in BD. PPI analysis identified FCGR3B as a hub gene in the CD4 + T lymphocytes of BD patients. Our bioinformatic analysis identified new genetic features, which will enable further understanding of the pathogenesis of BD.
Collapse
|
12
|
Wu J, Li Y, Rendahl A, Bhargava M. Novel Human FCGR1A Variants Affect CD64 Functions and Are Risk Factors for Sarcoidosis. Front Immunol 2022; 13:841099. [PMID: 35371020 PMCID: PMC8968912 DOI: 10.3389/fimmu.2022.841099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
CD64 (or FcγRIA) is the sole functional high affinity IgG Fc receptor coded by FCGR1A gene in humans. The FCGR1A genetics has not been comprehensively investigated and effects of human FCGR1A variants on immune functions remain unknown. In the current study, we identified three novel FCGR1A variants including the single nucleotide variant (SNV) rs1848781 (c.-131) in the proximal FCGR1A gene promoter region, the rs587598788 indel variant within the FCGR1A intron 5, and the non-synonymous SNV rs1050204 (c.970G>A or FcγRIA-p.D324N) in the FCGR1A coding region. Genotype-phenotype analyses revealed that SNV rs1848781 genotypes were significantly associated with CD64 expression levels. Promoter reporter assays show that rs1848781G allele had significantly higher promoter activity than the rs1848781C, confirming that the rs1848781 is a functional FCGR1A SNV affecting promoter activity and gene expression. The rs587598788 indel genotypes were also significantly associated with levels of CD64 expression. Moreover, the non-synonymous SNV rs1050204 (FcγRIA-p.D324N) alleles significantly affected CD64-mediated phagocytosis, degranulation, and pro-inflammatory cytokine productions. Genetic analyses revealed that FCGR1A genotypes were significantly associated with sarcoidosis susceptibility and severity. Our data suggest that FCGR1A genetic variants may affect immune responses and play a role in sarcoidosis.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
- *Correspondence: Jianming Wu, ; orcid.org/000-0001-9142-7066
| | - Yunfang Li
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Maneesh Bhargava
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Whyte A, Tejedor MT, Whyte J, Monteagudo LV, Bonastre C. Blood Parameters and Feline Tooth Resorption: A Retrospective Case Control Study from a Spanish University Hospital. Animals (Basel) 2021; 11:ani11072125. [PMID: 34359253 PMCID: PMC8300088 DOI: 10.3390/ani11072125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tooth resorption (TR) is a progressive destruction of hard dental tissues, leading to dental fractures. Our aims were to describe the TR clinical presentation on data from a university veterinary hospital (September 2018–May 2019; Northeastern Spain), and to study several blood parameters (34) for ascertaining potential systemic effects associated with TR. Cases (29) had positive radiographic TR diagnosis and controls (58) showed healthy mouths when presented for elective surgery; orthopedic surgery or soft tissues procedures. Blood parameters significantly different for cases and controls were chosen for multiple regression analysis (correction factor: age). TR was detected in 130/870 teeth (14.9%). TR stage 4 and 5; and types 1 and 2 were the most frequent. The status of LLP1, LRP1, and LLM1could be considered as TR sentinels. A significant association was found between TR stage and TR type (p < 0.001). TR presence was significantly associated with high creatinine levels and low urea nitrogen/creatinine and albumin/globulin ratios. A positive association was found between TR index and globulin levels. When affected by TR, systemic implication related to infection/inflammation or even kidney damage could be present; therefore, special care in these aspects must be provided in feline clinics. Abstract Tooth resorption (TR; progressive destruction of hard dental tissues) varies in prevalence according to population, age, and country (29–66.1%). Our objective was twofold: describing the TR clinical presentation in Northeastern Spain, and studying 34 blood parameters to ascertain potential systemic effects associated with TR. Cases (29; presented from September 2018 to May 2019) and controls (58) were considered. Non-parametric tests were carried out to compare cases and controls for each blood parameter; those showing significant differences were chosen for multiple regression analysis (binomial logistic and hierarchical multiple regressions). In case TR was detected in 130/870 teeth (14.9%), TR stage and type were correlated (p < 0.001). Increasing CREA values (p = 0.034) and decreasing BUN/CREA and ALB/GLOB values were associated with TR presence (p = 0.029 and p = 0.03, respectively). Increasing GLOB was associated with increasing severity of TR (p < 0.01). Type 1 TR (highly related to inflammation and periodontal disease PD) was the most frequently observed type; the association of TR and inflammation biomarkers (ALB/GLOB, GLOB) are explained by this fact. The concomitant presence of PD and TR in old cats would cause TR association with kidney damage biomarkers (CREA, BUN/CREA). When affected by TR, special care in these aspects must be provided to cats.
Collapse
Affiliation(s)
- Ana Whyte
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (A.W.); (C.B.)
| | - María Teresa Tejedor
- Department of Anatomy, Embryology and Animal Genetics, Faculty of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain;
- CIBER CV (University of Zaragoza—IIS), Faculty of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Jaime Whyte
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, C/Domingo Miral, s/n, 50009 Zaragoza, Spain;
| | - Luis Vicente Monteagudo
- Department of Anatomy, Embryology and Animal Genetics, Faculty of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain;
- Correspondence:
| | - Cristina Bonastre
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (A.W.); (C.B.)
| |
Collapse
|
14
|
Illouz T, Nicola R, Ben-Shushan L, Madar R, Biragyn A, Okun E. Maternal antibodies facilitate Amyloid-β clearance by activating Fc-receptor-Syk-mediated phagocytosis. Commun Biol 2021; 4:329. [PMID: 33712740 PMCID: PMC7955073 DOI: 10.1038/s42003-021-01851-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal antibodies (MAbs) protect against infections in immunologically-immature neonates. Maternally transferred immunity may also be harnessed to target diseases associated with endogenous protein misfolding and aggregation, such as Alzheimer's disease (AD) and AD-pathology in Down syndrome (DS). While familial early-onset AD (fEOAD) is associated with autosomal dominant mutations in the APP, PSEN1,2 genes, promoting cerebral Amyloid-β (Aβ) deposition, DS features a life-long overexpression of the APP and DYRK1A genes, leading to a cognitive decline mediated by Aβ overproduction and tau hyperphosphorylation. Although no prenatal screening for fEOAD-related mutations is in clinical practice, DS can be diagnosed in utero. We hypothesized that anti-Aβ MAbs might promote the removal of early Aβ accumulation in the central nervous system of human APP-expressing mice. To this end, a DNA-vaccine expressing Aβ1-11 was delivered to wild-type female mice, followed by mating with 5xFAD males, which exhibit early Aβ plaque formation. MAbs reduce the offspring's cortical Aβ levels 4 months after antibodies were undetectable, along with alleviating short-term memory deficits. MAbs elicit a long-term shift in microglial phenotype in a mechanism involving activation of the FcγR1/Syk/Cofilin pathway. These data suggest that maternal immunization can alleviate cognitive decline mediated by early Aβ deposition, as occurs in EOAD and DS.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
| | - Raneen Nicola
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
| | - Linoy Ben-Shushan
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman faculty of Life sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ravit Madar
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman faculty of Life sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
- The Paul Feder Laboratory on Alzheimer's disease research, Bar-Ilan University, Ramat Gan, Israel.
- The Mina and Everard Goodman faculty of Life sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
15
|
Batley KC, Sandoval-Castillo J, Kemper CM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Whole genomes reveal multiple candidate genes and pathways involved in the immune response of dolphins to a highly infectious virus. Mol Ecol 2021; 30:6434-6448. [PMID: 33675577 DOI: 10.1111/mec.15873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.
Collapse
Affiliation(s)
- Kimberley C Batley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ikuko Tomo
- South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Vaartjes D, Klaczkowska D, Cragg MS, Nandakumar KS, Bäckdahl L, Holmdahl R. Genetic dissection of a major haplotype associated with arthritis reveal FcγR2b and FcγR3 to act additively. Eur J Immunol 2021; 51:682-693. [PMID: 33244759 PMCID: PMC7984332 DOI: 10.1002/eji.202048605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
A haplotype with tightly linked Fc gamma receptor (FcγR) genes is known as a major locus controlling immune responses and autoimmune diseases, including arthritis. Here, we split a congenic fragment derived from the NOD mouse (Cia9) to study its effect on immune response and arthritis in mice. We found that arthritis susceptibility was indeed controlled by the FcγR gene cluster and a recombination between the FcγR2b and FcγR3 loci gave us the opportunity to separately study their impact. We identified the NOD-derived FcγR2b and FcγR3 alleles as disease-promoting for arthritis development without impact on antibody secretion. We further found that macrophage-mediated phagocytosis was directly correlated to FcγR3 expression in the congenic mice. In conclusion, we positioned FcγR2b and FcγR3 alleles as disease regulatory and showed that their genetic polymorphisms independently and additively control innate immune cell activation and arthritis.
Collapse
Affiliation(s)
- Daniëlle Vaartjes
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dorota Klaczkowska
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Mark S Cragg
- Antibody and Vaccine GroupCentre for Cancer ImmunologyUniversity of Southampton Faculty of MedicineSouthamptonUK
| | - Kutty Selva Nandakumar
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Liselotte Bäckdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
- SMU‐KI United Medical Inflammation CenterSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
17
|
Nimmerjahn F, Werner A. Sweet Rules: Linking Glycosylation to Antibody Function. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:365-393. [PMID: 34687017 DOI: 10.1007/978-3-030-76912-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Erlangen, Germany.
| | - Anja Werner
- Chair of Genetics, Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Implication of VDR Rs7975232 and FCGR2A Rs1801274 Gene Polymorphisms in the Risk and the Prognosis of autoimmune Thyroid Diseases in the Tunisian Population. Balkan J Med Genet 2020; 23:69-76. [PMID: 32953412 PMCID: PMC7474221 DOI: 10.2478/bjmg-2020-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are autoimmune thyroid diseases (AITD) that cause hypothyroidism and hyperthyroidism, respectively. The vitamin D receptor (VDR) and the Fey receptor IIA (FcγRIIA), are implicated in the etiology of AITD. This study was conducted to examine the implication of VDR rs7975232 and FCGR2A rs 1801274 variations in the susceptibility and the prognosis of AITD in the Tunisian population. The rs7975232 and rs1801274 (R131H) polymorphisms were analyzed in 162 controls and 162 AITD patients (106 HT and 56 GD) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification of refractory mutation system-PCR (ARMS-PCR), respectively. No significant difference was demonstrated for the rs7975232 between patients and controls. However, a significant association was shown between the rs1801274 polymorphism and AITD or HT in the dominant (p = 0.03 or p = 0.01), codominant (p = 0.019 or p = 0.026) and allelic (p = 0.011 or p = 0.012) models. The rs7975232 was associated with the absence or the presence of anti-thyroglobulin antibody, with the age of AITD and GD patients during the first diagnosis (p = 0.01 and p = 0.009, respectively) and with a high T4 level at the beginning of HT disease. However, the FCGR2A gene polymorphism was associated with a low T4 level at the beginning of GD disease. In conclusion, this study indicates that only the FCGR2A variation could be related to AITD and HT susceptibility and that VDR and FCGR2A gene variations constitute factors to prognosticate the severity of AITD, HT and GD.
Collapse
|
19
|
Niemiec B, Gawor J, Nemec A, Clarke D, McLeod K, Tutt C, Gioso M, Steagall PV, Chandler M, Morgenegg G, Jouppi R. World Small Animal Veterinary Association Global Dental Guidelines. J Small Anim Pract 2020; 61:E36-E161. [PMID: 32715504 DOI: 10.1111/jsap.13132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental, oral, and maxillofacial diseases are some of the most common problems in small animal veterinary practice. These conditions create significant pain as well as localized and potentially systemic infection. As such, the World Small Animal Veterinary Association (WSAVA) believes that un- and under treated oral and dental diseases pose a significant animal welfare concern. Dentistry is an area of veterinary medicine which is still widely ignored and is subject to many myths and misconceptions. Effective teaching of veterinary dentistry in the veterinary school is the key to progression in this field of veterinary medicine, and to the improvement of welfare for all our patients globally. These guidelines were developed to provide veterinarians with the information required to understand best practices for dental therapy and create realistic minimum standards of care. Using the three-tiered continuing education system of WSAVA, the guidelines make global equipment and therapeutic recommendations and highlight the anaesthetic and welfare requirements for small animal patients. This document contains information on common oral and dental pathologies, diagnostic procedures (an easily implementable and repeatable scoring system for dental health, dental radiography and radiology) and treatments (periodontal therapy, extractions). Further, there are sections on anaesthesia and pain management for dental procedures, home dental care, nutritional information, and recommendations on the role of the universities in improving veterinary dentistry. A discussion of the deleterious effects of anaesthesia free dentistry (AFD) is included, as this procedure is ineffective at best and damaging at worst. Throughout the document the negative effects of undiagnosed and/or treated dental disease on the health and well-being of our patients, and how this equates to an animal welfare issue, is discussed.
Collapse
|
20
|
Lewis BJ, Branch DR. Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Fc Receptor-Targeting Biologics. Pharmacology 2020; 105:618-629. [DOI: 10.1159/000508239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation, swelling, and pain in the joints and involves systemic complications. Mouse models of RA have been extensively used to model the pathogenesis of RA and to develop effective therapies. Although many components of the immune system have been studied in these models, the role of crystallizable fragment (Fc) gamma receptors (FcγRs) in RA has been sorely neglected. The aim of this review was to introduce the different mouse models of RA and to describe the different drug development strategies that have been tested in these models to target FcγR function, with the focus being on drugs that have been made from the Fc of immunoglobulin G (IgG). <b><i>Summary:</i></b> Evidence suggests that FcγRs play a major role in immune complex-induced inflammation in autoimmune diseases, such as RA. However, there is limited knowledge on the importance of FcγRs in the human disease even though there has been extensive work in mouse models of RA. Numerous mouse models of RA are available, with each model depicting certain aspects of the disease. Induced models of RA have nonspecific immune activation with cartilage-directed autoimmunity, whereas spontaneous models of RA develop without immunization, which results in a more chronic form of arthritis. These models have been used to test FcγR-targeting monoclonal antibodies, intravenous immunoglobulin (IVIg), subcutaneously administered IVIg, and recombinant Fcs for their ability to interact with and modify FcγR function. Recombinant Fcs avidly bind FcγRs and exhibit enhanced therapeutic efficacy in mouse models of RA. <b><i>Key Message:</i></b> The therapeutic utility of targeting FcγRs with recombinant Fcs is great and should be explored in human clinical trials for autoimmune diseases, such as RA.
Collapse
|
21
|
Reprogramming the Constant Region of Immunoglobulin G Subclasses for Enhanced Therapeutic Potency against Cancer. Biomolecules 2020; 10:biom10030382. [PMID: 32121592 PMCID: PMC7175108 DOI: 10.3390/biom10030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
The constant region of immunoglobulin (Ig) G antibodies is responsible for their effector immune mechanism and prolongs serum half-life, while the fragment variable (Fv) region is responsible for cellular or tissue targeting. Therefore, antibody engineering for cancer therapeutics focuses on both functional efficacy of the constant region and tissue- or cell-specificity of the Fv region. In the functional aspect of therapeutic purposes, antibody engineers in both academia and industry have capitalized on the constant region of different IgG subclasses and engineered the constant region to enhance therapeutic efficacy against cancer, leading to a number of successes for cancer patients in clinical settings. In this article, we review IgG subclasses for cancer therapeutics, including (i) IgG1, (ii) IgG2, 3, and 4, (iii) recent findings on Fc receptor functions, and (iv) future directions of reprogramming the constant region of IgG to maximize the efficacy of antibody drug molecules in cancer patients.
Collapse
|
22
|
Hamdan TA, Lang PA, Lang KS. The Diverse Functions of the Ubiquitous Fcγ Receptors and Their Unique Constituent, FcRγ Subunit. Pathogens 2020; 9:pathogens9020140. [PMID: 32093173 PMCID: PMC7168688 DOI: 10.3390/pathogens9020140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/03/2023] Open
Abstract
Fc gamma receptors (FcγRs) are widely expressed on a variety of immune cells and play a myriad of regulatory roles in the immune system because of their structural diversity. Apart from their indispensable role in specific binding to the Fc portion of antibody subsets, FcγRs manifest diverse biological functions upon binding to their putative ligands. Examples of such manifestation include phagocytosis, presentation of antigens, mediation of antibody-dependent cellular cytotoxicity, anaphylactic reactions, and the promotion of apoptosis of T cells and natural killer cells. Functionally, the equilibrium between activating and inhibiting FcγR maintains the balance between afferent and efferent immunity. The γ subunit of the immunoglobulin Fc receptor (FcRγ) is a key component of discrete immune receptors and Fc receptors including the FcγR family. Furthermore, FcγRs exert a key role in terms of crosslinking the innate and adaptive workhorses of immunity. Ablation of one of these receptors might positively or negatively influence the immune response. Very recently, we discovered that FcRγ derived from natural cytotoxicity triggering receptor 1 (NCR1) curtails CD8+ T cell expansion and thereby turns an acute viral infection into a chronic one. Such a finding opens a new avenue for targeting the FcγRs as one of the therapeutic regimens to boost the immune response. This review highlights the structural heterogeneity and functional diversity of the ubiquitous FcγRs along with their featured subunit, FcRγ.
Collapse
Affiliation(s)
- Thamer A. Hamdan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Correspondence:
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Karl S. Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
23
|
Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med 2019; 51:1-9. [PMID: 31735912 PMCID: PMC6859160 DOI: 10.1038/s12276-019-0345-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most widely used drug platforms for infectious diseases or cancer therapeutics because they selectively target pathogens, infectious cells, cancerous cells, and even immune cells. In this way, they mediate the elimination of target molecules and cells with fewer side effects than other therapeutic modalities. In particular, cancer therapeutic mAbs can recognize cell-surface proteins on target cells and then kill the targeted cells by multiple mechanisms that are dependent upon a fragment crystallizable (Fc) domain interacting with effector Fc gamma receptors, including antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis. Extensive engineering efforts have been made toward tuning Fc functions by either reinforcing (e.g. for targeted therapy) or disabling (e.g. for immune checkpoint blockade therapy) effector functions and prolonging the serum half-lives of antibodies, as necessary. In this report, we review Fc engineering efforts to improve therapeutic potency, and propose future antibody engineering directions that can fulfill unmet medical needs. Fine-tuning the function of monoclonal antibodies (mAbs) holds promise for developing new therapeutic agents. Antibodies bind to pathogens or cancer cells, flagging them with Fc (fragment crystallizable) domain for destruction by the immune system. mAbs attached only to specific target cells enable lower side effect than other conventional drugs. Sang Taek Jung at Korea University and Tae Hyun Kang at Kookmin University, both in Seoul, reviewed recent developments in engineering therapeutic potency of mAbs. They report that mAbs can be engineered to activate effective immune cell types to treat a particular disease. Engineering can also increase mAbs’ persistence in the blood, enabling less frequent administration. Antibodies engineered to bind to two different antigens at once can also improve therapeutic efficacy. Applying these techniques could help developing new treatments against cancer, and infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
The activation of immunoglobulin G Fc receptors (FcγRs) with immunoreceptor tyrosine-based activation motifs (ITAMs) promotes cognitive impairment in aged rats with diabetes. Exp Gerontol 2019; 125:110660. [PMID: 31319129 DOI: 10.1016/j.exger.2019.110660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/10/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023]
Abstract
AIMS Although immunoglobulin G Fc receptors with immunoreceptor tyrosine-based activation motifs (ITAM-FcγRs) have been implicated in the mediation of inflammatory responses, the importance of these receptors in the pathogenesis of cognitive impairment in geriatric diabetes remains unclear. The present study investigated the potential role of ITAM-FcγRs in cognitive impairment in geriatric diabetes. METHODS Diabetes was induced by streptozotocin (STZ) in aged Wistar rats, and cognitive function and cerebral injury were assessed 8 weeks later using the Morris water maze (MWM), real-time PCR and Western blot. In vitro, the inhibition of ITAM-FcγRs was investigated using rat chromaffin cells cultured with high glucose. RESULTS Aged rats with diabetes exhibited marked and persistent learning and memory impairments. Enhanced cerebral inflammation in the diabetic aged rats was associated with the overactivation of the nuclear factor κB (NF-κB) signaling pathway and the upregulation of inflammatory cytokines (interleukin-6 (IL-6) and tumor nuclear factor-α (TNF-α)) in the hippocampus. Compared to no treatment, the knockdown of FcγRIV (the main isoform of ITAM-FcγRs) markedly attenuated cognitive impairment as well as histologic and ultrastructural pathologic changes in the diabetic rats. The increased expression of inflammatory cytokines and the overactivation of the NF-κB signaling pathway were also significantly alleviated. In vitro, high glucose concentrations significantly activated the NF-κB signaling pathway and increased the expression of inflammatory cytokines. The inhibition of FcγR expression by a small interfering RNA and/or a FcγRI- and FcγRIII-neutralizing antibody significantly ameliorated the effects mediated by high glucose. CONCLUSION The enhanced activation of the NF-κB signalling pathway may be the mechanism by which ITAM-FcγRs promote cerebral inflammation and cognitive impairment in diabetes. ITAM-FcγRs may be viewed as a potential target for preventative intervention for cognitive impairment in older adults with diabetes.
Collapse
|
25
|
Cavalcante P, Mizrachi T, Barzago C, Scandiffio L, Bortone F, Bonanno S, Frangiamore R, Mantegazza R, Bernasconi P, Brenner T, Vaknin-Dembinsky A, Antozzi C. MicroRNA signature associated with treatment response in myasthenia gravis: A further step towards precision medicine. Pharmacol Res 2019; 148:104388. [PMID: 31401213 DOI: 10.1016/j.phrs.2019.104388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission currently treated with chronic immunosuppression. Inter-subject variation in treatment response and side effects highlight the need for personalized therapies by identification of biomarkers predictive of drug efficacy in individual patients, still lacking in MG. MicroRNAs (miRNAs) play a key role in immune response and drug metabolism modulation. This study, part of an Italian-Israeli collaborative project, aimed to identify specific miRNAs as biomarkers associated with immunosuppressive treatment response in MG patients. Whole miRNome sequencing, followed by miRNA validation by real-time PCR, was performed in peripheral blood from Italian MG patients (n = 40) classified as responder and non-responder to immunosuppressive therapies. MiRNA sequencing identified 41 miRNAs differentially expressed in non-responder compared to responder Italian MG patients. Validation phase pointed out three miRNAs, miR-323b-3p, -409-3p, and -485-3p, clustered on chromosome 14q32.31, the levels of which were significantly decreased in non-responder versus responder patients, whereas miR-181d-5p and -340-3p showed an opposite trend. ROC curve analysis showed sensitivity and specificity performance results indicative of miR-323b-3p, -409-3p, and -485-3p predictive value for responsiveness to immunosuppressive drugs in MG. Validated miRNAs were further analyzed in blood from responder and non-responder MG patients of the Israeli population (n = 33), confirming a role for miR-323b-3p, -409-3p, -485-3p, -181d-5p and -340-3p as biomarkers of drug efficacy. Gene Ontology enrichment analysis, mRNA target prediction, and in silico modeling for function of the identified miRNAs disclosed functional involvement of the five miRNAs, and their putative target genes, in both immune (i.e. neurotrophin TRK and Fc-epsilon receptor signaling pathways) and drug metabolism processes. Our overall findings thus revealed a blood "miR-323b-3p, -409-3p, -485-3p, -181d-5p, and -340-3p" signature associated with drug responsiveness in MG patients. Its identification sets the basis for precision medicine approaches based on "pharmacomiRs" as biomarkers of drug responsiveness in MG, promising to improve therapeutic success in a cost/effective manner.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Tehila Mizrachi
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel.
| | - Claudia Barzago
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Letizia Scandiffio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Federica Bortone
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Rita Frangiamore
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Talma Brenner
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel.
| | - Adi Vaknin-Dembinsky
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel.
| | - Carlo Antozzi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
26
|
Qiao J, Dunne E, Wines B, Kenny D, McCarthy GM, Hogarth PM, Xu K, Andrews RK, Gardiner EE. Plasma levels of the soluble form of the FcγRIIa receptor vary with receptor polymorphisms and are elevated in rheumatoid arthritis. Platelets 2019; 31:392-398. [DOI: 10.1080/09537104.2019.1647527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jianlin Qiao
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Eimear Dunne
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bruce Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Dermot Kenny
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - P. Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Kailin Xu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Robert K. Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
27
|
Wang Y, Zhang R, Zhang J, Liu F. MicroRNA-326-3p ameliorates high glucose and ox-LDL-IC- induced fibrotic injury in renal mesangial cells by targeting FcγRIII. Nephrology (Carlton) 2019; 23:1031-1038. [PMID: 28921768 DOI: 10.1111/nep.13168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 02/05/2023]
Abstract
AIM The aim of the present study was to identify the regulatory relationship between miR-326-3p and FcγRIII, and to explore the involvement of miR-326-3p/FcγRIII/TGF-β/Smad signalling pathway in fibrotic injury, which was induced by the high glucose (HG) and oxidized low density lipoprotein immune complex (ox-LDL-IC) in mouse glomerular mesangial cells (GMCs). METHODS Dual-luciferase reporter system and real time PCR (RT-PCR) were used to identify FcγRIII as a target gene of miR-326-3p. Lentiviral transduction was used to construct different expression of miR-326-3p in GMCs, which were divided into three groups: miR-326-3p mimics group (miR-326-3p group), miR-326-3p inhibitor group (miR-326-3p-inhibit group) and scramble control group (control group). Then, each group was stimulated by normal glucose (NG), HG, ox-LDL-IC and HG + ox-LDL-IC, respectively. RT-PCR and western blot were used to measure the expressions of Col-I, CTGF, α-SMA, TGF-β, Smad2/3 and pSmad2/3. RESULTS FcγRIII was regulated negatively by miR-326-3p in GMCs under the condition of HG and ox-LDL-IC, which implied FcγRIII as a target gene of miR-326-3p. Furthermore, compared with normal glucose group, the expressions of Col-I, CTGF, α-SMA, TGF-β and pSmad2/3 were higher under the condition of HG, ox-LDL-IC and HG + ox-LDL-IC (P < 0.05). In particular, miR-326-3p-inhibit groups exhibited the most significant increase (P < 0.05), while miR-326-3p could attenuate the increase (P < 0.05). CONCLUSION FcγRIII was identified as a target gene of miR-326-3p. MiR-326-3p/FcγRIII/TGF-β/Smad signaling pathway was investigated to be involved in the pathophysiology of renal fibrosis of DKD.
Collapse
Affiliation(s)
- Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Anania JC, Trist HM, Palmer CS, Tan PS, Kouskousis BP, Chenoweth AM, Kent SJ, Mackay GA, Hoi A, Koelmeyer R, Slade C, Bryant VL, Hodgkin PD, Aui PM, van Zelm MC, Wines BD, Hogarth PM. The Rare Anaphylaxis-Associated FcγRIIa3 Exhibits Distinct Characteristics From the Canonical FcγRIIa1. Front Immunol 2018; 9:1809. [PMID: 30177930 PMCID: PMC6109644 DOI: 10.3389/fimmu.2018.01809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/23/2018] [Indexed: 02/04/2023] Open
Abstract
FcγRIIa is an activating FcγR, unique to humans and non-human primates. It induces antibody-dependent proinflammatory responses and exists predominantly as FcγRIIa1. A unique splice variant, we designated FcγRIIa3, has been reported to be associated with anaphylactic reactions to intravenous immunoglobulins (IVIg) therapy. We aim to define the functional consequences of this FcγRIIa variant associated with adverse responses to IVIg therapy and evaluate the frequency of associated SNPs. FcγRIIa forms from macaque and human PBMCs were investigated for IgG-subclass specificity, biochemistry, membrane localization, and functional activity. Disease-associated SNPs were analyzed by sequencing genomic DNA from 224 individuals with immunodeficiency or autoimmune disease. FcγRIIa3 was identified in macaque and human PBMC. The FcγRIIa3 is distinguished from the canonical FcγRIIa1 by a unique 19-amino acid cytoplasmic insertion and these two FcγRIIa forms responded distinctly to antibody ligation. Whereas FcγRIIa1 was rapidly internalized, FcγRIIa3 was retained longer at the membrane, inducing greater calcium mobilization and cell degranulation. Four FCGR2A SNPs were identified including the previously reported intronic SNP associated with anaphylaxis, but in only 1 of 224 individuals. The unique cytoplasmic element of FcγRIIa3 delays internalization and is associated with enhanced cellular activation. The frequency of the immunodeficiency-associated SNP varies between disease populations but interestingly occurred at a lower frequency than previously reported. None-the-less enhanced FcγRIIa3 function may promote a proinflammatory environment and predispose to pathological inflammatory responses.
Collapse
Affiliation(s)
- Jessica C Anania
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Halina M Trist
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Catherine S Palmer
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Peck Szee Tan
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Betty P Kouskousis
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Alicia M Chenoweth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia.,Melbourne Sexual Health Centre, Central Clinical School, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Graham A Mackay
- Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Alberta Hoi
- Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Rachel Koelmeyer
- Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Charlotte Slade
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, VIC, Australia.,Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, VIC, Australia.,Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Philip D Hodgkin
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Pei Mun Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Katsuyama T, Tsokos GC, Moulton VR. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1088. [PMID: 29868033 PMCID: PMC5967272 DOI: 10.3389/fimmu.2018.01088] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to "self" leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.
Collapse
Affiliation(s)
| | | | - Vaishali R. Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Katzenmeyer KN, Szott LM, Bryers JD. Artificial opsonin enhances bacterial phagocytosis, oxidative burst and chemokine production by human neutrophils. Pathog Dis 2018; 75:3934653. [PMID: 28859309 DOI: 10.1093/femspd/ftx075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
Here, we describe the application of an 'artificial opsonin' to stimulate the innate immune response against Gram-positive bacteria. The artificial opsonin comprises a poly(L-lysine)-graft-poly(ethylene glycol) backbone displaying multiple copies of vancomycin and human IgG-Fc. The vancomycin targets bacteria by recognizing d-Ala-d-Ala-terminated peptides present in the bacterial cell wall. The human IgG-Fc antibody fragments serve as phagocyte recognition moieties that recognize the Fcγ cell surface receptors expressed by professional human phagocytes. Staphylococcus epidermidis RP62A, a biofilm-forming, methicillin-resistant strain, was utilized to investigate the effects of opsonization on phagocytosis, oxidative burst and IL-8 chemokine production by human neutrophils. Results show that opsonization of S. epidermidis RP62A with the artificial opsonin resulted in an ∼2-fold increase in neutrophil phagocytosis. Analysis of the cell supernatant found a 2- to 3-fold increase in neutrophil IL-8 secretion. The neutrophil oxidative burst was investigated using the oxidation-sensitive fluorophore dihydrorhodamine-123. Bacterial opsonization resulted in a 20% increase in fluorescence intensity, indicating a significant increase in the production of reactive oxygen species by the neutrophils. These studies suggest that artificial opsonins may be a novel immunostimulation therapeutic strategy to control infections caused by Gram-positive bacteria, particularly those that are known to be immune evasive and/or antibiotic resistant.
Collapse
Affiliation(s)
- Kristy N Katzenmeyer
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Luisa M Szott
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - James D Bryers
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
31
|
A Cross-Sectional Study of the Association between Autoantibodies and Qualitative Ultrasound Index of Bone in an Elderly Sample without Clinical Autoimmune Disease. J Immunol Res 2018; 2018:9407971. [PMID: 29854851 PMCID: PMC5952466 DOI: 10.1155/2018/9407971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/05/2018] [Accepted: 03/17/2018] [Indexed: 12/15/2022] Open
Abstract
Bone loss is characteristic of the ageing process and a common complication of many autoimmune diseases. Research has highlighted a potential role of autoantibodies in pathologic bone loss. The confounding effects of immunomodulatory drugs make it difficult to establish the contribution of autoantibodies amongst autoimmune disease sufferers. We attempted to examine the relationship between autoantibodies and bone mass in a population of 2812 elderly participants without clinical autoimmune disease. Serum samples were assayed for a panel of autoantibodies (anti-nuclear, extractable nuclear antigen, anti-neutrophil cytoplasmic, thyroid peroxidase, tissue transglutaminase, anti-cardiolipin, rheumatoid factor, and cyclic citrullinated peptide). Bone mass was measured using quantitative ultrasound (QUS) of the calcaneus. The relationship between each autoantibody and bone mass was determined using linear regression models. Anti-nuclear autoantibodies were the most prevalent, positive in approximately 11%, and borderline in roughly 23% of our sample. They were also the only autoantibody observed to be significantly associated with QUS index in the univariate analysis (n = 1628; r = -0.20; 95% CI: -0.40-0.00; p = 0.046). However, statistical significance was lost after adjustment for various other potential confounders. None of the other autoantibodies was associated with QUS index in either univariate or multivariate analysis. We are limited by the cross-sectional nature of the study and the low prevalence of autoantibodies in our nonclinical sample.
Collapse
|
32
|
Zheng LC, Wang XQ, Lu K, Deng XL, Zhang CW, Luo H, Xu XD, Chen XM, Yan L, Wang YQ, Shi SL. Ephrin-B2/Fc promotes proliferation and migration, and suppresses apoptosis in human umbilical vein endothelial cells. Oncotarget 2018; 8:41348-41363. [PMID: 28489586 PMCID: PMC5522204 DOI: 10.18632/oncotarget.17298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 01/12/2023] Open
Abstract
Tumor growth and metastasis are angiogenesis dependent. Angiogenic growth involves endothelial cell proliferation, migration, and invasion. Ephrin-B2 is a ligand for Eph receptor tyrosine kinases and is an important mediator in vascular endothelial growth factor-mediated angiogenesis. However, research offer controversial information regarding effects of ephrin-B2 on vascular endothelial cells. In this paper, proteome analyses showed that ephrin-B2/Fc significantly activates multiple signaling pathways related to cell proliferation, survival, and migration and suppresses apoptosis and cell death. Cytological experiments further confirm that ephrin-B2/Fc stimulates endothelial cell proliferation, triggers dose-dependent migration, and suppresses cell apoptosis. Results demonstrate that soluble dose-dependent ephrinB2 can promote proliferation and migration and inhibit apoptosis of human umbilical vein endothelial cells. These results also suggest that ephrinB2 prevents ischemic disease and can potentially be a new therapeutic target for treating angiogenesis-related diseases and tumors.
Collapse
Affiliation(s)
- Li-Chun Zheng
- Medical College of Xiamen University, Jinshan Community Health Service Center, Xiamen Traditional Chinese Medical Hospital, Xiamen 361000, P.R. China.,Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xiao-Qing Wang
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Kun Lu
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Xiao-Ling Deng
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Cheng-Wei Zhang
- Department of Cardiology, Affiliated Dongnan Hospital of Xiamen University, Zhangzhou 363000, P.R. China
| | - Hong Luo
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xu-Dong Xu
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Xiao-Man Chen
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Lu Yan
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen 361102, P.R. China
| | - Yi-Qing Wang
- Xiamen Heart Center, Medical College of Xiamen University, Xiamen 361000, P.R. China
| | - Song-Lin Shi
- Department of Basic Medicine, Medical College of Xiamen University, Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
33
|
Analysis of the association between Fc receptor family gene polymorphisms and ocular Behçet's disease in Han Chinese. Sci Rep 2018; 8:4850. [PMID: 29555961 PMCID: PMC5859267 DOI: 10.1038/s41598-018-23222-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/07/2018] [Indexed: 11/09/2022] Open
Abstract
Fc receptors are known to have a pivotal role in the initiation and regulation of many immunological and inflammatory processes. This study aimed to investigate the association of Fc receptor family gene polymorphisms with ocular Behçet's disease (BD) in Han Chinese. A two stage case-control study was performed in 1022 BD cases and 1803 healthy controls. Twenty-three SNPs were genotyped using the MassARRAY system (Sequenom), TaqMan SNP Genotyping Assay and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The expression of FCGR3A was examined by real-time PCR and cytokine production was measured by enzyme linked immunosorbent assay (ELISA). A significantly higher frequency of the FCGR3A/rs428888 CT genotype (Pc = 1.96 × 10-7, OR = 1.897) and a lower frequencies of CC genotype and C allele (Pc = 1.96 × 10-7, OR = 0.527; Pc = 7.22 × 10-7, OR = 0.554 respectively) were found in ocular BD as compared with controls. Functional experiments showed an increased FCGR3A expression (P = 0.005) and increased cytokine protein expressions of MCP-1, IL-1β and TNF-α by LPS stimulated PBMCs in CT carriers of FCGR3A rs428888 compared to CC carriers (P = 0.034; P = 0.025; P = 0.04; respectively). Our findings demonstrate that FCGR3A/rs428888 confers genetic susceptibility for ocular BD in Han Chinese.
Collapse
|
34
|
FcγRIIa defunctioning polymorphism in paediatric patients with renal allograft. Cent Eur J Immunol 2017; 42:363-369. [PMID: 29472814 PMCID: PMC5820981 DOI: 10.5114/ceji.2017.72817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022] Open
Abstract
Introduction Fc gamma receptor (FcγR) IIa is considered the most widely distributed of the three classes of Fc receptors, and it expresses an allelic polymorphism. This type of polymorphism may modify the immune response and may be an important factor for some diseases. The aim of the study reported herein was to evaluate the association between the FcγRIIa polymorphism and susceptibility to both end-stage renal disease (ESRD) and acute kidney graft rejection (AR) in children who have undergone renal transplantation. Material and methods The study evaluated 70 children who had undergone transplantation and 60 healthy subjects. AR was observed in 25 children. Results FcγRIIa genotypes and alleles were significantly different between transplantation patients and the control group. The assessment for FcγR of the groups in which AR was present showed that there was only a risk of having an acute rejection in homozygous genotype RR. Conclusions FcγRIIa RR genotype and allele frequency was increased in paediatric renal transplant recipients. The present findings showed that FcγRIIa genotype may be related to ESRD disease susceptibility, and FcγRIIa polymorphisms seemed to affect AR.
Collapse
|
35
|
Iseme RA, Mcevoy M, Kelly B, Agnew L, Walker FR, Attia J. Is osteoporosis an autoimmune mediated disorder? Bone Rep 2017; 7:121-131. [PMID: 29124082 PMCID: PMC5671387 DOI: 10.1016/j.bonr.2017.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/01/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022] Open
Abstract
The last two decades have marked a growing understanding of the interaction occurring between bone and immune cells. The chronic inflammation and immune system dysfunction commonly observed to occur during the ageing process and as part of a range of other pathological conditions, commonly associated with osteoporosis has led to the recognition of these processes as important determinants of bone disease. This is further supported by the recognition that the immune and bone systems in fact share regulatory mechanisms and progenitor molecules. Research into this complex synergy has provided a better understanding of the immunopathogenesis underlying bone diseases such as osteoporosis. However, existing research has largely focussed on delineating the role played by inflammation in pathogenic bone destruction, despite increasing evidence implicating autoantibodies as important drivers of osteoporosis. This review shall attempt to provide a comprehensive overview of existing research examining the role played by autoantibodies in osteoporosis in order to determine the potential for further research in this area. Autoantibodies represent promising targets for the improved treatment and diagnosis of inflammatory bone loss.
Collapse
Affiliation(s)
- Rosebella A. Iseme
- Department of Population and Reproductive Health, School of Public Health, Kenyatta University, P.O. Box 43844 –, 00100, Nairobi, Kenya
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mark Mcevoy
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Brain and Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Linda Agnew
- Brain Behaviour Research Group, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Frederick R. Walker
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Laboratory of Affective Neuroscience, The University of Newcastle, Callaghan, NSW, Australia
- University of Newcastle, Medical Sciences MS413, University Drive, Callaghan, NSW 2308, Australia
| | - John Attia
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
- Department of General Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|
36
|
Nonclassical FCGR2C haplotype is associated with protection from red blood cell alloimmunization in sickle cell disease. Blood 2017; 130:2121-2130. [PMID: 28899854 DOI: 10.1182/blood-2017-05-784876] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/06/2017] [Indexed: 01/21/2023] Open
Abstract
Red blood cell (RBC) transfusions are of vital importance in patients with sickle cell disease (SCD). However, a major complication of transfusion therapy is alloimmunization. The low-affinity Fcγ receptors, expressed on immune cells, are important regulators of antibody responses. Genetic variation in FCGR genes has been associated with various auto- and alloimmune diseases. The aim of this study was to evaluate the association between genetic variation of FCGR and RBC alloimmunization in SCD. In this case-control study, DNA samples from 2 cohorts of transfused SCD patients were combined (France and The Netherlands). Cases had a positive history of alloimmunization, having received ≥1 RBC unit. Controls had a negative history of alloimmunization, having received ≥20 RBC units. Single nucleotide polymorphisms and copy number variation of the FCGR2/3 gene cluster were studied in a FCGR-specific multiplex ligation-dependent probe amplification assay. Frequencies were compared using logistic regression. Two hundred seventy-two patients were included (130 controls, 142 cases). The nonclassical open reading frame in the FCGR2C gene (FCGR2C.nc-ORF) was strongly associated with a decreased alloimmunization risk (odds ratio [OR] 0.26, 95% confidence [CI] 0.11-0.64). This association persisted when only including controls with exposure to ≥100 units (OR 0.30, CI 0.11-0.85) and appeared even stronger when excluding cases with Rh or K antibodies only (OR 0.19, CI 0.06-0.59). In conclusion, SCD patients with the FCGR2Cnc-ORF polymorphism have over a 3-fold lower risk for RBC alloimmunization in comparison with patients without this mutation. This protective effect was strongest for exposure to antigens other than the immunogenic Rh or K antigens.
Collapse
|
37
|
Han YY, Zhao LJ, Lin Y, He H, Tian Q, Zhu W, Shen H, Chen XD, Deng HW. Multiple analyses indicate the specific association of NR1I3, C6 and TNN with low hip BMD risk. J Genet Genomics 2017. [PMID: 28629900 DOI: 10.1016/j.jgg.2017.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ying-Ying Han
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lan-Juan Zhao
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yong Lin
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hao He
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Wei Zhu
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xiang-Ding Chen
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Wen Deng
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, China; Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
38
|
Gordon RA, Herter JM, Rosetti F, Campbell AM, Nishi H, Kashgarian M, Bastacky SI, Marinov A, Nickerson KM, Mayadas TN, Shlomchik MJ. Lupus and proliferative nephritis are PAD4 independent in murine models. JCI Insight 2017; 2:92926. [PMID: 28515361 DOI: 10.1172/jci.insight.92926] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
Though recent reports suggest that neutrophil extracellular traps (NETs) are a source of antigenic nucleic acids in systemic lupus erythematosus (SLE), we recently showed that inhibition of NETs by targeting the NADPH oxidase complex via cytochrome b-245, β polypeptide (cybb) deletion exacerbated disease in the MRL.Faslpr lupus mouse model. While these data challenge the paradigm that NETs promote lupus, it is conceivable that global regulatory properties of cybb and cybb-independent NETs confound these findings. Furthermore, recent reports indicate that inhibitors of peptidyl arginine deiminase, type IV (Padi4), a distal mediator of NET formation, improve lupus in murine models. Here, to clarify the contribution of NETs to SLE, we employed a genetic approach to delete Padi4 in the MRL.Faslpr model and used a pharmacological approach to inhibit PADs in both the anti-glomerular basement membrane model of proliferative nephritis and a human-serum-transfer model of SLE. In contrast to prior inhibitor studies, we found that deletion of Padi4 did not ameliorate any aspect of nephritis, loss of tolerance, or immune activation. Pharmacological inhibition of PAD activity had no effect on end-organ damage in inducible models of glomerulonephritis. These data provide a direct challenge to the concept that NETs promote autoimmunity and target organ injury in SLE.
Collapse
Affiliation(s)
- Rachael A Gordon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jan M Herter
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Florencia Rosetti
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hiroshi Nishi
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony Marinov
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin M Nickerson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunobiology.,Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Lehmann CHK, Baranska A, Heidkamp GF, Heger L, Neubert K, Lühr JJ, Hoffmann A, Reimer KC, Brückner C, Beck S, Seeling M, Kießling M, Soulat D, Krug AB, Ravetch JV, Leusen JHW, Nimmerjahn F, Dudziak D. DC subset-specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo. J Exp Med 2017; 214:1509-1528. [PMID: 28389502 PMCID: PMC5413326 DOI: 10.1084/jem.20160951] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Lehmann et al. targeted antigens to Fcγ receptors expressed on various antigen-presenting cells. Induced CD4+ and CD8+ T cell responses were solely dependent on CD11b+ and CD8+ DC subsets, respectively, but independent of receptor intrinsic ITAM or ITIM signaling domains. Dendritic cells (DCs) are efficient antigen-presenting cells equipped with various cell surface receptors for the direct or indirect recognition of pathogenic microorganisms. Interestingly, not much is known about the specific expression pattern and function of the individual activating and inhibitory Fcγ receptors (FcγRs) on splenic DC subsets in vivo and how they contribute to the initiation of T cell responses. By targeting antigens to select activating and the inhibitory FcγR in vivo, we show that antigen uptake under steady-state conditions results in a short-term expansion of antigen-specific T cells, whereas under inflammatory conditions especially, the activating FcγRIV is able to induce superior CD4+ and CD8+ T cell responses. Of note, this effect was independent of FcγR intrinsic activating signaling pathways. Moreover, despite the expression of FcγRIV on both conventional splenic DC subsets, the induction of CD8+ T cell responses was largely dependent on CD11c+CD8+ DCs, whereas CD11c+CD8− DCs were critical for priming CD4+ T cell responses.
Collapse
Affiliation(s)
- Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique, 13288 Marseille-Luminy, France
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kirsten Neubert
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katharina C Reimer
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christin Brückner
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Simone Beck
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michaela Seeling
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Melissa Kießling
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Jeffrey V Ravetch
- Leonard Wagner Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 Utrecht, Netherlands
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany .,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany .,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
40
|
Qi Y, Zhou X, Bu D, Hou P, Lv J, Zhang H. Low copy numbers of FCGR3A and FCGR3B associated with Chinese patients with SLE and AASV. Lupus 2017; 26:1383-1389. [PMID: 28355982 DOI: 10.1177/0961203317700485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Low-affinity Fcγ receptors (FcγR) act as key mediators of the pathogenic effects of autoantibodies. In this study, we aimed to determine whether copy number variations (CNVs) in FCGR3A and FCGR3B were associated with systemic lupus nephritis (SLE) and ANCA-associated systemic vasculitis (AASV) in Chinese individuals. A total of 1118 individuals were enrolled, including 415 SLE patients, 139 AASV patients, and 564 healthy controls. FCGR3A and FCGR3B copy numbers (CNs) were determined by both a paralogue ratio test and TaqMan quantitative PCR assay. In the susceptibility associations, a low FCGR3B CN was significantly associated with SLE ( p = 5.01 × 10-3; odds ratio (OR) 1.71; 95% confidence interval (CI) 1.17-2.48) and AASV ( p = 0.04; OR = 1.72; 95% CI 1.02-2.88). A low FCGR3A CN was also significantly associated with SLE ( p = 6.02 × 10-3; OR 2.72; 95% CI 1.30-5.71) and AASV ( p = 0.042; OR 2.64; 95% CI 1.00-6.93). Further subphenotype analysis revealed that low CNs of FCGR3A and FCGR3B were significantly associated with clinical manifestations in SLE and AASV patients. Therefore, in this case-control study, we identified low CNs of FCGR2A and FCGR3B to be common risk factors for SLE and AASV.
Collapse
Affiliation(s)
- Y Qi
- 1 Renal Division, Peking University First Hospital, People's Republic of China.,2 Peking University Institute of Nephrology, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - X Zhou
- 1 Renal Division, Peking University First Hospital, People's Republic of China.,2 Peking University Institute of Nephrology, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - D Bu
- 5 Research Central Institute, Peking University First Hospital, Beijing, People's Republic of China
| | - P Hou
- 1 Renal Division, Peking University First Hospital, People's Republic of China.,2 Peking University Institute of Nephrology, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - J Lv
- 1 Renal Division, Peking University First Hospital, People's Republic of China.,2 Peking University Institute of Nephrology, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - H Zhang
- 1 Renal Division, Peking University First Hospital, People's Republic of China.,2 Peking University Institute of Nephrology, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
41
|
Dhole P, Nakayama EE, Saito A, Limkittikul K, Phanthanawiboon S, Shioda T, Kurosu T. Sequence diversity of dengue virus type 2 in brain and thymus of infected interferon receptor ko mice: implications for dengue virulence. Virol J 2016; 13:199. [PMID: 27903277 PMCID: PMC5129197 DOI: 10.1186/s12985-016-0658-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that a clinical isolate of dengue virus (DENV) is capable of causing acute-phase systemic infection in mice harboring knockouts of the genes encoding type-I and -II interferon IFN receptors (IFN-α/β/γR KO mice); in contrast, other virulent DENV isolates exhibited slow disease progression in this mice, yielding lethal infection around 20 days post-infection (p.i.). In the present study, we sought to clarify the dynamics of slow disease progression by examining disease progression of a type-2 DENV clinical isolate (DV2P04/08) in mice. METHODS The tissue distributions of DV2P04/08 in several organs of infeted mice were examined at different time points. Whole genome viral sequences from organs were determined. RESULTS At day 6 p.i., high levels of viral RNA (vRNA) were detected in non-neuronal organs (including peritoneal exudate cells (PECs), spleen, kidney, liver, lung, and bone marrow) but not in brain. By day 14 p.i, vRNA levels subsequently decreased in most organs, with the exception of thymus and brain. Sequence analysis of the whole genome of the original P04/08 and those of viruses recovered from mouse brain and thymus demonstrated the presence of both synonymous and non-synonymous mutations. Individual mice showed different virus populations in the brain. The vRNA sequence derived from brain of one mouse was nearly identical to the original DV2P04/08 inoculum, suggesting that there was no need for adaptation of DV2P04/08 for growth in the brain. However, quasispecies (that is, mixed populations, detected as apparent nucleotide mixtures during sequencing) were observed in the thymus of another mouse, and interestingly only mutant population invaded the brain at a late stage of infection. CONCLUSIONS These results suggested that the mouse nearly succeeded in eliminating virus from non-neuronal organs but failed to do so from brain. Although the cause of death by DV2P04/08 infection is likely to be the result of virus invasion to brain, its processes to the death are different in individual mice. This study will provide a new insight into disease progression of DENV in mice.
Collapse
Affiliation(s)
- Priya Dhole
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akatsuki Saito
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Takeshi Kurosu
- Department of Virology I, National Institute for Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE) and cannot be fully explained by traditional cardiovascular risk factors. Recent immunologic discoveries have outlined putative pathways in SLE that may also accelerate the development of atherosclerosis. RECENT FINDINGS Aberrant innate and adaptive immune responses implicated in lupus pathogenesis may also contribute to the development of accelerated atherosclerosis in these patients. Defective apoptosis, abnormal lipoprotein function, autoantibodies, aberrant neutrophil responses, and a dysregulated type I interferon pathway likely contribute to endothelial dysfunction. SLE macrophages have an inflammatory phenotype that may drive progression of plaque. SUMMARY Recent discoveries have placed increased emphasis on the immunology of atherosclerotic cardiovascular disease. Understanding the factors that drive the increased risk for cardiovascular disease in SLE patients may provide selective therapeutic targets for reducing inflammation and improving outcomes in atherosclerosis.
Collapse
Affiliation(s)
- Laura B. Lewandowski
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Mula RVR, Machiah D, Holland L, Wang X, Parihar H, Sharma AC, Selvaraj P, Shashidharamurthy R. Immune Complex-Induced, Nitric Oxide-Mediated Vascular Endothelial Cell Death by Phagocytes Is Prevented with Decoy FcγReceptors. PLoS One 2016; 11:e0153620. [PMID: 27101012 PMCID: PMC4839578 DOI: 10.1371/journal.pone.0153620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
Autoimmune vasculitis is an endothelial inflammatory disease that results from the deposition of immune-complexes (ICs) in blood vessels. The interaction between Fcgamma receptors (FcγRs) expressed on inflammatory cells with ICs is known to cause blood vessel damage. Hence, blocking the interaction of ICs and inflammatory cells is essential to prevent the IC-mediated blood vessel damage. Thus we tested if uncoupling the interaction of FcγRs and ICs prevents endothelium damage. Herein, we demonstrate that dimeric FcγR-Igs prevented nitric oxide (NO) mediated apoptosis of human umbilical vein endothelial cells (HUVECs) in an in vitro vasculitis model. Dimeric FcγR-Igs significantly inhibited the IC-induced upregulation of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) release by murine monocytic cell line. However, FcγR-Igs did not affect the exogenously added NO-induced upregulation of pro-apoptotic genes such as Bax (15 fold), Bak (35 fold), cytochrome-C (11 fold) and caspase-3 (30 fold) in HUVECs. In conclusion, these data suggest that IC-induced NO could be one of the major inflammatory mediator promoting blood vessel inflammation and endothelial cell death during IC-mediated vasculitis which can be effectively blocked by dimeric decoy FcγRs.
Collapse
Affiliation(s)
- Ramanjaneya V. R. Mula
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Deepa Machiah
- Department of Molecular Pathology Laboratory, Yerkes National Primate Research Centre, Atlanta, Georgia, United States of America
| | - Lauren Holland
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Harish Parihar
- Department of Pharmacy Practice, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Avadhesh C. Sharma
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rangaiah Shashidharamurthy
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Caaveiro JMM, Kiyoshi M, Tsumoto K. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design. Immunol Rev 2015; 268:201-21. [DOI: 10.1111/imr.12365] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jose M. M. Caaveiro
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
| | - Masato Kiyoshi
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
- Division of Biological Chemistry and Biologicals; National Institute of Health Sciences; Tokyo Japan
| | - Kouhei Tsumoto
- Department of Bioengineering; School of Engineering; The University of Tokyo; Tokyo Japan
- Institute of Medical Science; The University of Tokyo; Tokyo Japan
| |
Collapse
|
45
|
Wang L, Yang X, Cai G, Xin L, Xia Q, Zhang X, Li X, Wang M, Wang K, Xia G, Xu S, Xu J, Zou Y, Pan F. Association study of copy number variants in FCGR3A and FCGR3B gene with risk of ankylosing spondylitis in a Chinese population. Rheumatol Int 2015; 36:437-42. [DOI: 10.1007/s00296-015-3384-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/07/2015] [Indexed: 01/17/2023]
|
46
|
Swisher JFA, Haddad DA, McGrath AG, Boekhoudt GH, Feldman GM. IgG4 can induce an M2-like phenotype in human monocyte-derived macrophages through FcγRI. MAbs 2015; 6:1377-84. [PMID: 25484046 DOI: 10.4161/19420862.2014.975657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered "activating." However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI. To understand the implications of this in the context of therapeutic antibodies, we assessed individual IgG subclasses to determine their ability to deliver this anti-inflammatory signal in monocyte-derived macrophages. Like IgG1, we found that IgG4 is fully capable of inhibiting IFNγ-mediated events. In addition, F(ab')2 fragments that interfere with FcγRI signaling reversed this effect. For mAbs developed with either an IgG1 or an IgG4 constant region for indications where inflammation is undesirable, further examination of a potential Fc-dependent contribution to their mechanism of action is warranted.
Collapse
Affiliation(s)
- Jennifer F A Swisher
- a Laboratory of Molecular and Developmental Immunology; Division of Monoclonal Antibodies; Office of Biotechnology Products; Center for Drug Evaluation and Research; Food and Drug Administration ; Bethesda , MD USA
| | | | | | | | | |
Collapse
|
47
|
Structural basis for binding of human IgG1 to its high-affinity human receptor FcγRI. Nat Commun 2015; 6:6866. [PMID: 25925696 PMCID: PMC4423232 DOI: 10.1038/ncomms7866] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/08/2015] [Indexed: 12/12/2022] Open
Abstract
Cell-surface Fcγ receptors mediate innate and adaptive immune responses. Human Fcγ receptor I (hFcγRI) binds IgGs with high affinity and is the only Fcγ receptor that can effectively capture monomeric IgGs. However, the molecular basis of hFcγRI's interaction with Fc has not been determined, limiting our understanding of this major immune receptor. Here we report the crystal structure of a complex between hFcγRI and human Fc, at 1.80 Å resolution, revealing an unique hydrophobic pocket at the surface of hFcγRI perfectly suited for residue Leu235 of Fc, which explains the high affinity of this complex. Structural, kinetic and thermodynamic data demonstrate that the binding mechanism is governed by a combination of non-covalent interactions, bridging water molecules and the dynamic features of Fc. In addition, the hinge region of hFcγRI-bound Fc adopts a straight conformation, potentially orienting the Fab moiety. These findings will stimulate the development of novel therapeutic strategies involving hFcγRI. FcγRs are cell-surface receptors for IgGs that play key roles in the humoral and cellular immune response to infection. Here, the authors present a high-resolution crystal structure of the hFcγRI-Fc complex to reveal the molecular mechanisms underlying the high specificity of this important immunological interaction.
Collapse
|
48
|
Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui-Tei K, Takeshita T, Matsubara S, Takizawa T. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med 2015; 35:1273-89. [PMID: 25778799 PMCID: PMC4380207 DOI: 10.3892/ijmm.2015.2141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
The human placental transfer of maternal IgG is crucial for fetal and newborn immunity. Low-affinity immunoglobulin gamma Fc region receptor IIb2 (FCGR2B2 or FcγRIIb2) is exclusively expressed in an IgG-containing, vesicle-like organelle (the FCGR2B2 compartment) in human placental endothelial cells; thus, we hypothesized that the FCGR2B2 compartment functions as an IgG transporter. In this study, to examine this hypothesis, we performed in vitro bio-imaging analysis of IgG trafficking by FCGR2B2 compartments using human umbilical vein endothelial cells transfected with a plasmid vector containing enhanced GFP-tagged FCGR2B2 (pFCGR2B2-EGFP). FCGR2B2-EGFP signals were detected as intracellular vesicular structures similar to FCGR2B2 compartments in vivo. The internalization and transcytosis of IgG was significantly higher in the pFCGR2B2-EGFP-transfected cells than in the mock-transfected cells, and the majority of the internalized IgG was co-localized with the FCGR2B2-EGFP signals. Furthermore, we isolated FCGR2B2 compartments from the human placenta and found that the Rab family of proteins [RAS-related protein Rab family (RABs)] were associated with FCGR2B2 compartments. Among the RABs, RAB3D was expressed predominantly in placental endothelial cells. The downregulation of RAB3D by small interfering RNA (siRNA) resulted in a marked reduction in the FCGR2B2-EGFP signals at the cell periphery. Taken together, these findings suggest that FCGR2B2 compartments participate in the transcytosis of maternal IgG across the human placental endothelium and that RAB3D plays a role in regulating the intracellular dynamics of FCGR2B2 compartments.
Collapse
Affiliation(s)
- Tomoko Ishikawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Jun Iwaki
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takuya Mishima
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
49
|
Immunological mechanisms controlling hepatitis C virus infection. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(14)60633-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Chauhan AK, Chen C, Moore TL, DiPaolo RJ. Induced expression of FcγRIIIa (CD16a) on CD4+ T cells triggers generation of IFN-γhigh subset. J Biol Chem 2015; 290:5127-5140. [PMID: 25556651 DOI: 10.1074/jbc.m114.599266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Whether or not CD4(+) T-cells express low affinity receptor FcγRIIIa (CD16a) in disease pathology has not been examined in great detail. In this study, we show that a subset of activated CD4(+) T-cells in humans express FcγRIIIa. The ligation of FcγRIIIa by immune complexes (ICs) in human CD4(+) T-cells produced co-stimulatory signal like CD28 that triggered IFN-γ production. The induced expression of FcγRIIIa on CD4(+) helper T-cells is an important finding since these receptors via ITAM contribute to intracellular signaling. The induced expression of FcγRIIIa on CD4(+) T helper cells and their ability to co-stimulate T-cell activation are important and novel findings that may reveal new pathways to regulate adaptive immune responses during inflammation and in autoimmunity.
Collapse
Affiliation(s)
- Anil K Chauhan
- From the Division of Adult and Pediatric Rheumatology and; Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104.
| | - Chen Chen
- From the Division of Adult and Pediatric Rheumatology and
| | - Terry L Moore
- From the Division of Adult and Pediatric Rheumatology and
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|