1
|
Zingoni A, Antonangeli F, Sozzani S, Santoni A, Cippitelli M, Soriani A. The senescence journey in cancer immunoediting. Mol Cancer 2024; 23:68. [PMID: 38561826 PMCID: PMC10983694 DOI: 10.1186/s12943-024-01973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, 00185, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
- IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| | - Alessandra Soriani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
2
|
Ye M, Huang X, Wu Q, Liu F. Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices? Cancers (Basel) 2023; 15:cancers15071927. [PMID: 37046588 PMCID: PMC10093305 DOI: 10.3390/cancers15071927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Cellular senescence is a unique cellular state. Senescent cells enter a non-proliferative phase, and the cell cycle is arrested. However, senescence is essentially an active cellular phenotype, with senescent cells affecting themselves and neighboring cells via autocrine and paracrine patterns. A growing body of research suggests that the dysregulation of senescent stromal cells in the microenvironment is tightly associated with the development of a variety of complex cancers. The role of senescent stromal cells in impacting the cancer cell and tumor microenvironment has also attracted the attention of researchers. In this review, we summarize the generation of senescent stromal cells in the tumor microenvironment and their specific biological functions. By concluding the signaling pathways and regulatory mechanisms by which senescent stromal cells promote tumor progression, distant metastasis, immune infiltration, and therapy resistance, this paper suggests that senescent stromal cells may serve as potential targets for drug therapy, thus providing new clues for future related research.
Collapse
Affiliation(s)
- Minghan Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Xinyi Huang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
| | - Qianju Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361008, China
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Abstract
Exhaustion of T cells occurs in response to long-term exposure to self and foreign antigens. It limits T cell capacity to proliferate and produce cytokines, leading to an impaired ability to clear chronic infections or eradicate tumors. T-cell exhaustion is associated with a specific transcriptional, epigenetic, and metabolic program and characteristic cell surface markers' expression. Recent studies have begun to elucidate the role of T-cell exhaustion in transplant. Higher levels of exhausted T cells have been associated with better graft function in kidney transplant recipients. In contrast, reinvigorating exhausted T cells by immune checkpoint blockade therapies, while promoting tumor clearance, increases the risk of acute rejection. Lymphocyte depletion and high alloantigen load have been identified as major drivers of T-cell exhaustion. This could account, at least in part, for the reduced rates of acute rejection in organ transplant recipients induced with thymoglobulin and for the pro-tolerogenic effects of a large organ such as the liver. Among the drugs that are widely used for maintenance immunosuppression, calcineurin inhibitors have a contrasting inhibitory effect on exhaustion of T cells, while the influence of mTOR inhibitors is still unclear. Harnessing or encouraging the natural processes of exhaustion may provide a novel strategy to promote graft survival and transplantation tolerance.
Collapse
|
4
|
Zhu J, Wang L, Zhou Y, Hao J, Wang S, Liu L, Li J. Comprehensive analysis of the relationship between competitive endogenous RNA (ceRNA) networks and tumor infiltrating-cells in hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1381-1398. [PMID: 33457008 DOI: 10.21037/jgo-20-555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The innovation of immune checkpoint blockade (ICB) represents a promising shift in the treatment of advanced hepatocellular carcinoma (HCC). However, response to ICB has varied largely due to the high tumor heterogeneity and complex tumor microenvironment (TME). The competitive endogenous RNA (ceRNA) network also plays an important role in tumor occurrence and progression, but its relation with tumor-infiltrating immune cells (TICs) remains largely unexplored in HCC. The overriding objective of our study was thus to construct a prognosis-related risk model and to further evaluate the relationship between ceRNA networks and TICs. Methods Differentially expressed gene (DEG) analysis was performed to identify the differentially expressed RNAs. Lasso and multivariable Cox regression analyses were used to construct risk models, which were assessed by the area under the receiver operating characteristic curve (AUC of ROC) and Kaplan-Meier (K-M) curves. Then, a single-sample gene set enrichment analysis (ssGSEA) algorithm was adopted to dissect the TICs in HCC samples. Nomograms were constructed and calibration curves were used to verify the discrimination and accuracy of the nomograms. Finally, integration analysis was performed to validate the correlation of ceRNA and TICs. Results In the study, 7 differentially expressed RNAs [5 messenger RNA s (mRNAs) and 2 micro RNAs (miRNAs)] were incorporated to construct a ceRNA risk model. The AUC of the 1-, 3-, and 5-year overall survival (OS) were 0.784, 0.685, and 0.691 respectively. Likewise, 7 types TICs were in the TICs signature model and the AUC of the 1-, 3-, and 5-year OS were 0.706, 0.731, and 0.721 respectively. The integration analysis showed that 7 pairs of mRNA-TICs and 1 pair of miRNA-TICs had a close relation (all correlation coefficients >0.2, P<0.001). Conclusions Through constructing two risk models based on ceRNA network and TICs, we identified the hub RNAs and key TICs in the progression and prognosis of HCC, and further explored the relationship between ceRNA and TME. Importantly, targeting these hub RNAs may facilitate the remodeling of the TME and be a potential therapeutic alternative to enhancing the response to ICB, thus improving the prognosis of HCC patients.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yifan Zhou
- Department of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jun Hao
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Invest 2020; 130:1073-1083. [PMID: 32118585 DOI: 10.1172/jci133679] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional state of the preexisting T cells in the tumor microenvironment is a key determinant for effective antitumor immunity and immunotherapy. Increasing evidence suggests that immunosenescence is an important state of T cell dysfunction that is distinct from exhaustion, a key strategy used by malignant tumors to evade immune surveillance and sustain the suppressive tumor microenvironment. Here, we discuss the phenotypic and functional characteristics of senescent T cells and their role in human cancers. We also explore the possible mechanisms and signaling pathways responsible for induction of T cell senescence by malignant tumors, and then discuss potential strategies to prevent and/or reverse senescence in tumor-specific T cells. A better understanding of these critical issues should provide novel strategies to enhance cancer immunotherapy.
Collapse
|
6
|
Battram AM, Bachiller M, Martín-Antonio B. Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword. Int J Mol Sci 2020; 21:ijms21124346. [PMID: 32570952 PMCID: PMC7352478 DOI: 10.3390/ijms21124346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.
Collapse
Affiliation(s)
- Anthony M. Battram
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Mireia Bachiller
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
- Department of Hematology, Hospital Clinic, IDIBAPS/Josep Carreras Leukaemia Research Institute, Carrer Rosselló 149-153, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-45-28; Fax: +34-93-312-94-07
| |
Collapse
|
7
|
Yu X, Zhang L, Chaudhry A, Rapaport AS, Ouyang W. Unravelling the heterogeneity and dynamic relationships of tumor-infiltrating T cells by single-cell RNA sequencing analysis. J Leukoc Biol 2020; 107:917-932. [PMID: 32272497 PMCID: PMC7317876 DOI: 10.1002/jlb.6mr0320-234r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are crucial for the success of immune-based cancer therapy. Reinvigorating antitumor T cell activity by blocking checkpoint inhibitory receptors has provided clinical benefits for many cancer patients. However, the efficacy of these treatments varies in cancer patients and the mechanisms underlying these diverse responses remain elusive. The density and status of tumor-infiltrating T cells have been shown to positively correlate with patient response to checkpoint blockades. Therefore, further understanding of the heterogeneity, clonal expansion, migration, and effector functions of tumor-infiltrating T cells will provide fundamental insights into antitumor immune responses. To this end, recent advances in single-cell RNA sequencing technology have enabled profound and extensive characterization of intratumoral immune cells and have improved our understanding of their dynamic relationships. Here, we summarize recent progress in single-cell RNA sequencing technology and current strategies to uncover heterogeneous tumor-infiltrating T cell subsets. In particular, we discuss how the coupling of deep transcriptome information with T cell receptor (TCR)-based lineage tracing has furthered our understanding of intratumoral T cell populations. We also discuss the functional implications of various T cell subsets in tumors and highlight the identification of novel T cell markers with therapeutic or prognostic potential.
Collapse
Affiliation(s)
- Xin Yu
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Lei Zhang
- Beijing Advanced Innovation Center for GenomicsPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Ashutosh Chaudhry
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Aaron S. Rapaport
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Wenjun Ouyang
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol 2019; 17:27-35. [PMID: 31853000 DOI: 10.1038/s41423-019-0344-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The failure of a massive influx of tumor-infiltrating T lymphocytes to eradicate tumor cells in the tumor microenvironment is mainly due to the dysfunction of T cells hyporesponsive to tumors. T-cell exhaustion and senescence induced by malignant tumors are two important dysfunctional states that coexist in cancer patients, hindering effective antitumor immunity and immunotherapy and sustaining the suppressive tumor microenvironment. Although exhausted and senescent T cells share a similar dysfunctional role in antitumor immunity, they are distinctly different in terms of generation, development, and metabolic and molecular regulation during tumor progression. Here, we discuss the unique phenotypic and functional characteristics of these two types of dysfunctional T cells and their roles in tumor development and progression. In addition, we further discuss the potential molecular and metabolic signaling pathways responsible for the control of T-cell exhaustion and senescence in the suppressive tumor microenvironment. Understanding these critical and fundamental features should facilitate rethinking the unresponsiveness to current immunotherapies in clinical patients and lead to further development of novel and effective strategies that target different types of dysfunctional T cells to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
9
|
Bae J, Hideshima T, Zhang GL, Zhou J, Keskin DB, Munshi NC, Anderson KC. Identification and characterization of HLA-A24-specific XBP1, CD138 (Syndecan-1) and CS1 (SLAMF7) peptides inducing antigens-specific memory cytotoxic T lymphocytes targeting multiple myeloma. Leukemia 2018; 32:752-764. [PMID: 29089645 PMCID: PMC5953209 DOI: 10.1038/leu.2017.316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/17/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022]
Abstract
X-box binding protein 1 (XBP1), CD138 (Syndecan-1) and CS1 (SLAMF7) are highly expressed antigens in cancers including multiple myeloma (MM). Here, we identify and characterize immunogenic HLA-A24 peptides derived from these antigens for potential vaccination therapy of HLA-A24+ patients with MM. The identified immunogenic HLA-A24-specific XBP1 unspliced (UN)185-193 (I S P W I L A V L), XBP1 spliced (SP)223-231 (V Y P E G P S S L), CD138265-273 (I F A V C L V G F) and CS1240-248 (L F V L G L F L W) peptides induced antigen-specific CTL with anti-MM activity in an HLA-A24 restricted manner. Furthermore, a cocktail containing the four HLA-A24 peptides evoked MM-specific CTL with distinct phenotypic profiles (CD28, CD40L, 41BB, CD38, CD69) and anti-tumor activities, evidenced by perforin upregulation, CD107a degranulation (cytotoxicity) and Th1-type cytokines (IFN-γ/IL-2/TNF-α) production in response to HLA-A24+ MM cells. The multipeptide-specific CTL included antigen-specific memory CD8+ T cells expressing both T-cell activation (CD38, CD69) and immune checkpoints antigens (CTLA, PD-1, LAG-3, TIM-3). These results provide the framework for a multipeptide vaccination therapy to induce tumor-specific CTL in HLA-A24-positive patients with myeloma and other cancers expressing these antigens.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jun Zhou
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Derin B. Keskin
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil C. Munshi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kenneth C. Anderson
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
CD28neg. T lymphocytes of a melanoma patient harbor tumor immunity and a high frequency of germline-encoded and public TCRs. Immunol Res 2017; 66:79-86. [DOI: 10.1007/s12026-017-8976-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death Differ 2015; 22:1764-74. [PMID: 26434982 DOI: 10.1038/cdd.2015.21] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/14/2015] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Aging is the single biggest risk factor for malignant transformation. Among the most common age-associated malignancies are non-melanoma skin cancers, comprising the most common types of human cancer. Here we show that mutant H-Ras activation in mouse epidermis, a frequent event in cutaneous squamous cell carcinoma (SCC), elicits a differential outcome in aged versus young mice. Whereas H-Ras activation in the young skin results in hyperplasia that is mainly accompanied by rapid hair growth, H-Ras activation in the aged skin results in more dysplasia and gradual progression to in situ SCC. Progression is associated with increased inflammation, pronounced accumulation of immune cells including T cells, macrophages and mast cells as well as excessive cell senescence. We found not only an age-dependent increase in expression of several pro-inflammatory mediators, but also activation of a strong anti-inflammatory response involving enhanced IL4/IL10 expression and immune skewing toward a Th2 response. In addition, we observed an age-dependent increase in the expression of Pdl1, encoding an immune suppressive ligand that promotes cancer immune evasion. Moreover, upon switching off oncogenic H-Ras activity, young but not aged skin regenerates successfully, suggesting a failure of the aged epidermal stem cells to repair damaged tissue. Our findings support an age-dependent link between accumulation of senescent cells, immune infiltration and cancer progression, which may contribute to the increased cancer risk associated with old age.
Collapse
|
12
|
Bae J, Prabhala R, Voskertchian A, Brown A, Maguire C, Richardson P, Dranoff G, Anderson KC, Munshi NC. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 2014; 29:218-29. [PMID: 24935722 PMCID: PMC4237716 DOI: 10.1038/leu.2014.159] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
We evaluated a cocktail of HLA-A2-specific peptides including heteroclitic XBP1 US184-192 (YISPWILAV), heteroclitic XBP1 SP367-375 (YLFPQLISV), native CD138260-268 (GLVGLIFAV) and native CS1239-247 (SLFVLGLFL), for their ability to elicit multipeptide-specific cytotoxic T lymphocytes (MP-CTLs) using T cells from smoldering multiple myeloma (SMM) patients. Our results demonstrate that MP-CTLs generated from SMM patients' T cells show effective anti-MM responses including CD137 (4-1BB) upregulation, CTL proliferation, interferon-γ production and degranulation (CD107a) in an HLA-A2-restricted and peptide-specific manner. Phenotypically, we observed increased total CD3(+)CD8(+) T cells (>80%) and cellular activation (CD69(+)) within the memory SMM MP-CTL (CD45RO(+)/CD3(+)CD8(+)) subset after repeated multipeptide stimulation. Importantly, SMM patients could be categorized into distinct groups by their level of MP-CTL expansion and antitumor activity. In high responders, the effector memory (CCR7(-)CD45RO(+)/CD3(+)CD8(+)) T-cell subset was enriched, whereas the remaining responders' CTL contained a higher frequency of the terminal effector (CCR7(-)CD45RO(-)/CD3(+)CD8(+)) subset. These results suggest that this multipeptide cocktail has the potential to induce effective and durable memory MP-CTL in SMM patients. Therefore, our findings provide the rationale for clinical evaluation of a therapeutic vaccine to prevent or delay progression of SMM to active disease.
Collapse
Affiliation(s)
- J Bae
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - R Prabhala
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA [3] VA Boston Healthcare System, Boston, MA, USA
| | - A Voskertchian
- Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - A Brown
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - C Maguire
- Tufts University School of Medicine, Boston, MA, USA
| | - P Richardson
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - G Dranoff
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA
| | - N C Munshi
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [2] Harvard Medical School, Boston, MA, USA [3] VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
13
|
Salerno EP, Olson WC, McSkimming C, Shea S, Slingluff CL. T cells in the human metastatic melanoma microenvironment express site-specific homing receptors and retention integrins. Int J Cancer 2014; 134:563-74. [PMID: 23873187 DOI: 10.1002/ijc.28391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 06/20/2013] [Indexed: 01/09/2023]
Abstract
T-cell infiltration into the metastatic melanoma microenvironment (MME) correlates with improved patient survival. However, diffuse infiltration into tumor occurs in only 8% of melanoma metastases. Little is known about mechanisms governing T-cell infiltration into human melanoma metastases or about how those mechanisms may be altered therapeutically. We hypothesized that T cells in the MME would be enriched for chemokine receptors CCR4, CCR5, CXCR3 and homing receptors relevant to the tissue site. Viably cryopreserved single cell suspensions from nineteen melanoma metastases representing three metastatic sites (tumor-infiltrated lymph node, skin and small bowel) were evaluated by multiparameter flow cytometry and compared to benign lymph nodes and peripheral blood mononuclear cells from patients with Stage IIB-IV melanoma. T cells in the melanoma metastases contained large effector memory populations, high proportions of activated, moderately differentiated cells and few regulatory T cells. Site-specific homing was suggested in bowel, with high expression of CCR9. We neither encounter the anticipated enrichment of integrin α4β7 in bowel, cutaneous leukocyte antigen (CLA) in skin, nor integrin α4β1 or receptor CXCR3 in metastatic sites. Retention integrins αEβ7, α1β1 and α2β1 were significantly elevated in metastases. These data suggest limited tissue site-specific homing to human melanoma metastases, but a significant role for retention integrins in maintaining intratumoral T cells. Our findings also raise the possibility that T-cell homing, infiltration, and retention in melanoma metastases may be increased by increasing expression of ligands for CLA, α4β1 and CXCR3 on intratumoral endothelium.
Collapse
Affiliation(s)
- Elise P Salerno
- Division of Surgical Oncology, Department of Surgery, University of Virginia, Charlottesville, VA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of proinflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has farreaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad.
Collapse
Affiliation(s)
- Jennifer P Chou
- Dept of Pathology &Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | |
Collapse
|
15
|
Tougeron D, Maby P, Elie N, Fauquembergue E, Le Pessot F, Cornic M, Sabourin JC, Michel P, Frébourg T, Latouche JB. Regulatory T lymphocytes are associated with less aggressive histologic features in microsatellite-unstable colorectal cancers. PLoS One 2013; 8:e61001. [PMID: 23613769 PMCID: PMC3626697 DOI: 10.1371/journal.pone.0061001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
Background Colorectal cancers (CRCs) with microsatellite instability (MSI) are associated with a good prognosis and a high density of tumor-infiltrating lymphocytes (TILs). We have undertaken to determine the link between TIL densities and MSI CRC histologic features. Patients and Methods Using tissue microarrays, T-cell sub-population infiltration, including T cells (CD3), cytotoxic T cells (CD8) and regulatory T cells (FoxP3) were studied in 86 MSI CRCs. We separately analyzed TILs of the stromal and epithelial compartments in the tumor center, the tumoral invasion margin and associated normal tissue. Results For FoxP3+ TIL density in the tumor center stromal compartment, we found a strong negative correlation with T4 stage (p = 0.01), node invasion (p<0.001) and VELIPI (vascular emboli, lymphatic invasion and perinervous invasion) criteria (p = 0.002). Conclusion The strong correlation between regulatory T cell density and the absence of VELIPI criteria suggests that this sub-group of T cells is preferentially associated with less invasive tumors.
Collapse
Affiliation(s)
- David Tougeron
- Inserm, U1079, Faculty of Medicine, Institute for Medical Research, Rouen University Hospital, Rouen, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chou JP, Effros RB. T cell replicative senescence in human aging. Curr Pharm Des 2013; 19:1680-98. [PMID: 23061726 PMCID: PMC3749774 DOI: 10.2174/138161213805219711] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of proinflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has farreaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad.
Collapse
Affiliation(s)
- Jennifer P Chou
- Dept of Pathology &Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | |
Collapse
|
17
|
Toh B, Nardin A, Dai X, Keeble J, Chew V, Abastado JP. Detection, enumeration, and characterization of immune cells infiltrating melanoma tumors. Methods Mol Biol 2013; 961:261-277. [PMID: 23325650 DOI: 10.1007/978-1-62703-227-8_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tumor-infiltrating immune cells have long been thought to affect tumor growth. In recent years, large retrospective studies have shown that the nature and polarization of the immune cells found within the tumor microenvironment impact not only the growth of the primary tumor, but also disease progression and patient survival. This has triggered considerable interest for an in depth analysis of the tumoral immune microenvironment and has created a need for standardized methods to characterize tumor-infiltrating immune cells. Here, we describe three approaches that can be used in mouse and human melanoma tumors.
Collapse
Affiliation(s)
- Benjamin Toh
- Singapore Immunology Network, BMSI, A-STAR, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Balasubramanian P, Longo VD. Aging, nutrient signaling, hematopoietic senescence, and cancer. Crit Rev Oncog 2013; 18:559-71. [PMID: 24579735 DOI: 10.1615/critrevoncog.2013010596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well known that cancer is one of the main causes of mortality in the aged population. Recent studies suggest that oncogenic pathways, such as the insulin-like growth factor-1 (IGF-I), Ras, and Akt/PKB, can contribute to both aging and cancer not only by promoting growth and preventing apoptosis, but also by promoting DNA damage and genomic instability. Epidemiological studies suggest that the chronic, low-grade inflammation that accompanies aging also contributes to tissue damage and tumor progression. Coupled with the accumulation of senescent cells and declining immune function, this leads to the generation and survival of cancer cells, possibly explaining why advanced age is the primary risk factor for cancer.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Andrus Gerontology Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA
| | - Valter D Longo
- Andrus Gerontology Center, the Molecular and Computational Biology Department, and the Norris Cancer Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA
| |
Collapse
|
19
|
Yoneda A, Ito S, Susumu S, Matsuo M, Taniguchi K, Tajima Y, Eguchi S, Kanematsu T, Nagata Y. Immunological milieu in the peritoneal cavity at laparotomy for gastric cancer. World J Gastroenterol 2012; 18:1470-8. [PMID: 22509078 PMCID: PMC3319942 DOI: 10.3748/wjg.v18.i13.1470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/03/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the immunological repertoire in the peritoneal cavity of gastric cancer patients.
METHODS: The peritoneal cavity is a compartment in which immunological host-tumor interactions can occur. However, the role of lymphocytes in the peritoneal cavity of gastric cancer patients is unclear. We observed 64 patients who underwent gastrectomy for gastric cancer and 11 patients who underwent laparoscopic cholecystectomy for gallstones and acted as controls. Lymphocytes isolated from both peripheral blood and peritoneal lavage were analyzed for surface markers of lymphocytes and their cytokine production by flow cytometry. CD4+CD25high T cells isolated from the patient’s peripheral blood were co-cultivated for 4 d with the intra-peritoneal lymphocytes, and a cytokine assay was performed.
RESULTS: At gastrectomy, CCR7- CD45RA- CD8+ effector memory T cells were observed in the peritoneal cavity. The frequency of CD4+ CD25 high T cells in both the peripheral blood and peritoneal cavity was elevated in patients at advanced stage [control vs stage IV in the peripheral blood: 6.89 (3.39-10.4) vs 15.34 (11.37-19.31), P < 0.05, control vs stage IV in the peritoneal cavity: 8.65 (5.28-12.0) vs 19.56 (14.81-24.32), P < 0.05]. On the other hand, the suppression was restored with CD4+ CD25high T cells from their own peripheral blood. This study is the first to analyze lymphocyte and cytokine production in the peritoneal cavity in patients with gastric cancer. Immune regulation at advanced stage is reversible at the point of gastrectomy.
CONCLUSION: The immunological milieu in the peritoneal cavity of patients with advanced gastric cancer elicited a Th2 response even at gastrectomy, but this response was reversible.
Collapse
|
20
|
Wieërs G, Demotte N, Godelaine D, van der Bruggen P. Immune suppression in tumors as a surmountable obstacle to clinical efficacy of cancer vaccines. Cancers (Basel) 2011; 3:2904-54. [PMID: 24212939 PMCID: PMC3759179 DOI: 10.3390/cancers3032904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 02/07/2023] Open
Abstract
Human tumors are usually not spontaneously eliminated by the immune system and therapeutic vaccination of cancer patients with defined antigens is followed by tumor regressions only in a small minority of the patients. The poor vaccination effectiveness could be explained by an immunosuppressive tumor microenvironment. Because T cells that infiltrate tumor metastases have an impaired ability to lyse target cells or to secrete cytokine, many researchers are trying to decipher the underlying immunosuppressive mechanisms. We will review these here, in particular those considered as potential therapeutic targets. A special attention will be given to galectins, a family of carbohydrate binding proteins. These lectins have often been implicated in inflammation and cancer and may be useful targets for the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Grégoire Wieërs
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Nathalie Demotte
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Danièle Godelaine
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| |
Collapse
|
21
|
Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K, Squifflet JL, Weynand B, Carrasco J, Lurquin C, Courtoy PJ, van der Bruggen P. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res 2010; 70:7476-88. [PMID: 20719885 DOI: 10.1158/0008-5472.can-10-0761] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human CD8(+) tumor-infiltrating T lymphocytes (TIL), in contrast with CD8(+) blood cells, show impaired IFN-γ secretion on ex vivo restimulation. We have attributed the impaired IFN-γ secretion to a decreased mobility of T-cell receptors on trapping in a lattice of glycoproteins clustered by extracellular galectin-3. Indeed, we have previously shown that treatment with N-acetyllactosamine, a galectin ligand, restored this secretion. We strengthened this hypothesis here by showing that CD8(+) TIL treated with an anti-galectin-3 antibody had an increased IFN-γ secretion. Moreover, we found that GCS-100, a polysaccharide in clinical development, detached galectin-3 from TIL and boosted cytotoxicity and secretion of different cytokines. Importantly, we observed that not only CD8(+) TIL but also CD4(+) TIL treated with GCS-100 secreted more IFN-γ on ex vivo restimulation. In tumor-bearing mice vaccinated with a tumor antigen, injections of GCS-100 led to tumor rejection in half of the mice, whereas all control mice died. In nonvaccinated mice, GCS-100 had no effect by itself. These results suggest that a combination of galectin-3 ligands and therapeutic vaccination may induce more tumor regressions in cancer patients than vaccination alone.
Collapse
Affiliation(s)
- Nathalie Demotte
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guillaume P, Baumgaertner P, Neff L, Rufer N, Wettstein P, Speiser DE, Luescher IF. Novel soluble HLA-A2/MELAN-A complexes selectively stain a differentiation defective subpopulation of CD8+ T cells in patients with melanoma. Int J Cancer 2010; 127:910-23. [PMID: 19998338 DOI: 10.1002/ijc.25099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multimeric MHC I-peptide complexes containing phycoerythrin-streptavidin are widely used to detect and investigate antigen-specific CD8+ (and CD4+) T cells. Because such reagents are heterogeneous, we compared their binding characteristics with those of monodisperse dimeric, tetrameric and octameric complexes containing linkers of variable length and flexibility on Melan-A-specific CD8+ T cell clones and peripheral blood mononuclear cells (PBMC) from HLA-A*0201(+) melanoma patients. Striking binding differences were observed for different defined A2/Melan-A(26-35) complexes on T cells depending on their differentiation stage. In particular, short dimeric but not octameric A2/Melan-A(26-35) complexes selectively and avidly stained incompletely differentiated effector-memory T cells clones and populations expressing CD27 and CD28 and low levels of cytolytic mediators (granzymes and perforin). This subpopulation was found in PBMC from all six melanoma patients analyzed and proliferated on peptide stimulation with only modest phenotypic changes. By contrast influenza matrix(58-66) -specific CD8+ PBMC from nine HLA-A*0201(+) healthy donors were efficiently stained by A2/Flu matrix(58-61) multimers, but not dimer and upon peptide stimulation proliferated and differentiated from memory into effector T cells. Thus PBMC from melanoma patients contain a differentiation defective sub-population of Melan-A-specific CD8+ T cells that can be selectively and efficiently stained by short dimeric A2/Melan- A(26-35) complexes, which makes them directly accessible for longitudinal monitoring and further investigation.
Collapse
Affiliation(s)
- Philippe Guillaume
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Umansky V, Abschuetz O, Osen W, Ramacher M, Zhao F, Kato M, Schadendorf D. Melanoma-specific memory T cells are functionally active in Ret transgenic mice without macroscopic tumors. Cancer Res 2008; 68:9451-8. [PMID: 19010920 DOI: 10.1158/0008-5472.can-08-1464] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that bone marrows of breast cancer patients contained tumor antigen-specific CD8(+) T cells with central or effector memory phenotype. Using a recently developed ret transgenic mouse melanoma model, we now show that bone marrows and tumors of transgenic mice contain high frequencies of CD8(+) T cells specific for the melanoma antigen tyrosinase-related protein 2 and showing mostly effector memory phenotype. Moreover, increased numbers of bone marrow tyrosinase-related protein-2-specific effector memory CD8(+) T cells are also detected in transgenic animals older than 20 weeks with disseminated melanoma cells in the bone marrow and lymph nodes but showing no visible skin tumors and no further melanoma progression. After a short-term coincubation with dendritic cells generated from the bone marrow and pulsed with melanoma lysates, bone marrow memory T cells from mice without macroscopic melanomas produced IFN-gamma in vitro and exerted antitumor activity in vivo after adoptive transfer into melanoma-bearing mice. Our data indicate that functionally active bone marrow-derived melanoma-specific memory T cells are detectable at the phase of microscopic tumor load, suggesting that thereby they could control disseminated melanoma cells.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center and University Hospital Mannheim, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ebelt K, Babaryka G, Figel AM, Pohla H, Buchner A, Stief CG, Eisenmenger W, Kirchner T, Schendel DJ, Noessner E. Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate carcinoma. Prostate 2008; 68:1-10. [PMID: 17948280 DOI: 10.1002/pros.20661] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate cancer is the most common cancer of men in the Western world. Despite the over-expression of tumor-associated antigens, like PSA or PSMA, immune activation is inefficient. The goal of this investigation was to assess in situ characteristics of prostate cancer-infiltrating lymphocytes and to determine their activation status and effector function. METHODS We compared 17 carcinoma containing tissues, four benign prostatic hyperplasia tissues and eight healthy prostate tissues regarding lymphocyte subset composition, locoregional distribution, and functional status using immunohistological staining of cryopreserved tissues. For determination of lymphocyte subsets, serial sections were stained with CD3, CD4, and CD8 antibodies. Activation status and effector function were studied using CD69, interferon-gamma (IFN gamma), perforin, and CD3 zeta chain antibodies. T-cell-receptor repertoire (TCR) analysis was made to determine the complexity of infiltrating lymphocytes. RESULTS CD3+, CD4+, and CD69+ T lymphocytes were prominent in tissues derived from patients with prostate carcinoma. CD8+ lymphocytes were significantly less than CD4+ lymphocytes. IFN gamma and perforin were downregulated on infiltrating lymphocytes compared to cells of healthy prostate tissue. Very few lymphocytes were detected within cancerous lesions whereas surrounding tissues showed extensive lymphocyte cluster formation. The TCR repertoire of infiltrating lymphocytes was broad and similar to that of healthy prostate tissue, giving no evidence for specific lymphocyte recruitment. CONCLUSIONS In the prostate cancer microenvironment, CD4+ T lymphocytes dominated while CD8+ T cells were sparse. The lymphocytes exhibited signs of disturbed effector function. Consequently, the immune response against autologous tumor cells is likely to be inefficient in controlling tumor growth.
Collapse
Affiliation(s)
- Kathleen Ebelt
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Norian LA, Allen PM. Rapid maturation of effector T cells in tumors, but not lymphoid organs, during tumor regression. PLoS One 2007; 2:e821. [PMID: 17786193 PMCID: PMC1950566 DOI: 10.1371/journal.pone.0000821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 08/09/2007] [Indexed: 12/18/2022] Open
Abstract
Increasing the efficacy of adoptively transferred, tumor antigen specific T cells is a major goal of immunotherapy. Clearly, a more thorough understanding of the effector phase of T cell responses, within the tumor site itself, would be beneficial. To examine this issue, we adoptively transferred tumor antigen-specific effector T cells into tumor-bearing mice, then performed kinetic evaluations of their phenotype, function, and survival in tumors, draining lymph nodes (dLNs), and spleens during regression of murine fibrosarcomas. Effector function in tumors was quantitated through the use of a novel intratumoral cytolytic assay. This approach revealed dynamic changes in the phenotype, cytolytic capacity, and viability of tumor infiltrating effector T cells during the course of tumor regression. Over a period of days, T cells within tumors rapidly transitioned from a CD25(hi)/CD27(hi) to a CD25(low)/CD27(low) phenotype and displayed an increase in cytolytic capacity, indicative of effector maturation. Simultaneously, however, the viability of maturing T cells within tumors diminished. In contrast, transferred T cells trafficking through lymphoid organs were much more static, as they maintained a stable phenotype, robust cytolytic activity, and high viability. Therefore, there exists a marked phenotypic and functional divergence between tumor-infiltrating effector T cells and their counterparts in lymphoid organs. Our results indicate that the population of tumor-infiltrating T cells is unique in experiencing rapid effector maturation post-transfer, and suggest that strategies aimed at prolonging the survival of CD25(low)/CD27(low) full effectors, which displayed the highest levels of intratumoral cytolytic activity, should enhance the efficacy of T cell based tumor immunotherapies.
Collapse
Affiliation(s)
- Lyse A Norian
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| | | |
Collapse
|