1
|
Slouma M, Kharrat L, Tezegdenti A, Dhahri R, Ghazouani E, Gharsallah I. Pro-inflammatory cytokines in spondyloarthritis: a case-control study. Expert Rev Clin Immunol 2024; 20:655-663. [PMID: 38205504 DOI: 10.1080/1744666x.2024.2304080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
OBJECTIVES We aimed to determine the discriminative values of pro-inflammatory cytokines to distinguish spondyloarthritis patients from healthy subjects and to assess the association between these cytokines and spondyloarthritis characteristics. METHODS We conducted a case-control study, including 144 subjects matched for age and sex: 72 spondyloarthritis patients(G1) and 72 controls (G2). The disease activity was assessed using ASDAS-CRP and BASDAI. Structural damage was assessed using BASRI. The levels of interleukin (IL) IL-1, IL-6, IL-8, IL-17, IL-23, and tumor necrosis factor α(TNFα) were measured. RESULTS Each group included 57 men. The mean age was 44.84 ± 13.42 years. Except for IL-8, all cytokine levels were significantly higher in patients compared to controls (IL-1: p = 0.05, IL-6: p = 0.021, TNFα: p = 0.039, IL-17 and IL-23: p < 0.001). Cutoff values of IL-17 and IL-23 distinguishing patients in G1 from those in G2 were 17.6 and 7.96 pg/mL, respectively. TNFα level correlated to BASDAI (p = 0.029) and BASRI (p = 0.002). Multivariate analysis showed that structural damage was associated with the male gender (p = 0.017), longer disease duration (p = 0.038), and high disease activity (p = 0.044). Disease activity was associated with longer disease duration (p = 0.012) and increased IL-6 levels (p = 0.05). CONCLUSION Our study showed that IL-17 was the ablest to distinguish between spondyloarthritis patients and controls, suggesting that IL-17 may be helpful for the diagnosis of spondyloarthritis.
Collapse
Affiliation(s)
- Maroua Slouma
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Faculté des sciences de Tunis, Mycology, pathologies, and biomarkers laboratory, Tunis, Tunisia
| | - Lobna Kharrat
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Aymen Tezegdenti
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Department of Immunology, Military Hospital, Tunis, Tunisia
| | - Rim Dhahri
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Ezzeddine Ghazouani
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Department of Immunology, Military Hospital, Tunis, Tunisia
| | - Imen Gharsallah
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
2
|
Nam B, Kim TH. The role of ixekizumab in the treatment of nonradiographic axial spondyloarthritis. Immunotherapy 2024; 16:569-580. [PMID: 38511247 PMCID: PMC11290369 DOI: 10.2217/imt-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Nonradiographic axial spondyloarthritis (nr-axSpA) is a subtype of SpA with undeveloped definite radiographic sacroiliitis. Tumor necrosis factor inhibitors have demonstrated effectiveness in nr-axSpA patients who do not respond to first-line therapy. More recently, accumulated data from genetic, experimental, and clinical studies revealed that IL-17 is a key player in the pathogenesis of SpA, leading to development of new biologics directly inhibiting IL-17. Among them, ixekizumab is a high-affinity monoclonal antibody that selectively targets IL-17A and has exhibited significant efficacy and acceptable safety profiles in the treatment of nr-axSpA. The aim of this paper is to narratively review the recent insights of IL-17 in the pathogenesis of axSpA and discuss the effectiveness and safety of ixekizumab in treatment of nr-axSpA.
Collapse
Affiliation(s)
- Bora Nam
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| |
Collapse
|
3
|
Martini V, Silvestri Y, Ciurea A, Möller B, Danelon G, Flamigni F, Jarrossay D, Kwee I, Foglierini M, Rinaldi A, Cecchinato V, Uguccioni M. Patients with ankylosing spondylitis present a distinct CD8 T cell subset with osteogenic and cytotoxic potential. RMD Open 2024; 10:e003926. [PMID: 38395454 PMCID: PMC10895246 DOI: 10.1136/rmdopen-2023-003926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVES Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease affecting mainly the axial skeleton. Peripheral involvement (arthritis, enthesitis and dactylitis) and extra-musculoskeletal manifestations, including uveitis, psoriasis and bowel inflammation, occur in a relevant proportion of patients. AS is responsible for chronic and severe back pain caused by local inflammation that can lead to osteoproliferation and ultimately spinal fusion. The association of AS with the human leucocyte antigen-B27 gene, together with elevated levels of chemokines, CCL17 and CCL22, in the sera of patients with AS, led us to study the role of CCR4+ T cells in the disease pathogenesis. METHODS CD8+CCR4+ T cells isolated from the blood of patients with AS (n=76) or healthy donors were analysed by multiparameter flow cytometry, and gene expression was evaluated by RNA sequencing. Patients with AS were stratified according to the therapeutic regimen and current disease score. RESULTS CD8+CCR4+ T cells display a distinct effector phenotype and upregulate the inflammatory chemokine receptors CCR1, CCR5, CX3CR1 and L-selectin CD62L, indicating an altered migration ability. CD8+CCR4+ T cells expressing CX3CR1 present an enhanced cytotoxic profile, expressing both perforin and granzyme B. RNA-sequencing pathway analysis revealed that CD8+CCR4+ T cells from patients with active disease significantly upregulate genes promoting osteogenesis, a core process in AS pathogenesis. CONCLUSIONS Our results shed light on a new molecular mechanism by which T cells may selectively migrate to inflammatory loci, promote new bone formation and contribute to the pathological ossification process observed in AS.
Collapse
Affiliation(s)
- Veronica Martini
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Ylenia Silvestri
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Adrian Ciurea
- Department of Rheumatology, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Burkhard Möller
- Department of Rheumatology and Immunology, Inselspital-University Hospital Bern, University of Bern, Bern, Switzerland
| | - Gabriela Danelon
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - David Jarrossay
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Ivo Kwee
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
4
|
Guo D, Liu J, Li S, Xu P. Analysis of m6A regulators related immune characteristics in ankylosing spondylitis by integrated bioinformatics and computational strategies. Sci Rep 2024; 14:2724. [PMID: 38302672 PMCID: PMC10834589 DOI: 10.1038/s41598-024-53184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as a common epigenetic modification, has been widely studied in autoimmune diseases. However, the role of m6A in the regulation of the immune microenvironment of ankylosing spondylitis (AS) remains unclear. Therefore, we aimed to investigate the effect of m6A modification on the immune microenvironment of AS. We first evaluated RNA modification patterns mediated by 26 m6A regulators in 52 AS samples and 20 healthy samples. Thereafter, an m6A related classifier composed of seven genes was constructed and could effectively distinguish healthy and AS samples. Then, the correlation between m6A regulators and immune characteristics were investigated, including infiltrating immunocytes, immune reactions activity, and human leukocyte antigen (HLA) genes expression. The results indicated that m6A regulators was closely correlated with immune characteristics. For example, EIF3A was significantly related to infiltrating immunocytes; IGF2BP2 and EIF3A were significant regulators in immune reaction of TGF-β family member, and the expression of HLA-DPA1 and HLA-E were affected by EIF3A and ALKBH5. Next, two distinct m6A expression patterns were identified through unsupervised clustering analysis, and diverse immune characteristics were found between them. A total of 5889 m6A phenotype-related genes were obtained between the two expression patterns, and their biological functions were revealed. Finally, we validated the expression status of m6A modification regulators using two additional datasets. Our findings illustrate that m6A modifications play a critical role in the diversity and complexity of the AS immune microenvironment.
Collapse
Affiliation(s)
- Da Guo
- Osteonecrosis and Joint Reconstruction Ward, Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiayi Liu
- Xinglin College, Liaoning University of Traditional Chinese Medicine, Shenyang, 110167, Liaoning, China
| | - Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Peng Xu
- Osteonecrosis and Joint Reconstruction Ward, Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
5
|
Rodolfi S, Davidson C, Vecellio M. Regulatory T cells in spondyloarthropathies: genetic evidence, functional role, and therapeutic possibilities. Front Immunol 2024; 14:1303640. [PMID: 38288110 PMCID: PMC10822883 DOI: 10.3389/fimmu.2023.1303640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Regulatory T cells (Tregs) are a very specialized subset of T lymphocytes: their main function is controlling immune responses during inflammation. T-regs involvement in autoimmune and immune-mediated rheumatic diseases is well-described. Here, we critically review the up-to-date literature findings on the role of Tregs in spondyloarthropathies, particularly in ankylosing spondylitis (AS), a polygenic inflammatory rheumatic disease that preferentially affects the spine and the sacroiliac joints. Genetics discoveries helped in elucidating pathogenic T-regs gene modules and functional involvement. We highlight T-regs tissue specificity as crucial point, as T-regs might have a distinct epigenomic and molecular profiling depending on the different site of tissue inflammation. Furthermore, we speculate about possible therapeutic interventions targeting, or enhancing, Treg cells in spondyloarthropathies.
Collapse
Affiliation(s)
- Stefano Rodolfi
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centro Ricerche Fondazione Italiana Ricerca Sull'Artrite (FIRA), Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| |
Collapse
|
6
|
Rosine N, Fogel O, Koturan S, Rogge L, Bianchi E, Miceli-Richard C. T cells in the pathogenesis of axial spondyloarthritis. Joint Bone Spine 2023; 90:105619. [PMID: 37487956 DOI: 10.1016/j.jbspin.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Axial spondyloarthritis (axSpA) is the prototype of the spondyloarthritis spectrum. The involvement of T cells in its pathogenesis has long been suspected on the basis of the association with the major histocompatibility complex I molecule HLA-B27 and the pivotal role of interleukin 17 in the inflammatory mechanisms associated with the disease. Moreover, the presence of unconventional or "innate-like" T cells within the axial enthesis suggests an important role for these cells in the pathophysiology of the disease. In this review, we describe the characteristics and the interleukin 17 secretion capacity of the T-cell subsets identified in axSpA. We discuss the genetic and epigenetic mechanisms that support the alteration of T-cell functions and promote their activation in axSpA. We also discuss recent data on T cells that could explain the extra-articular manifestations of the SpA spectrum.
Collapse
Affiliation(s)
- Nicolas Rosine
- Service de rhumatologie, université Angers, CHU d'Angers, Paris, France.
| | - Olivier Fogel
- Department of Rheumatology, EULAR Center of Excellence, hôpital Cochin, Assistance publique-Hôpitaux de Paris, Paris University, Paris, France
| | - Surya Koturan
- Faculty of Medicine, MRC London Institute of Medical Science, Institute of Clinical Sciences, Imperial College, W12 0NN London, United Kingdom
| | - Lars Rogge
- Immunoregulation Unit, Institut Pasteur, université Paris Cité, 75015 Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Unit, Institut Pasteur, université Paris Cité, 75015 Paris, France
| | - Corinne Miceli-Richard
- Department of Rheumatology, EULAR Center of Excellence, hôpital Cochin, Assistance publique-Hôpitaux de Paris, Paris University, Paris, France
| |
Collapse
|
7
|
Sonkodi B, Marsovszky L, Csorba A, Balog A, Kopper B, Keller-Pintér A, Nagy ZZ, Resch MD. Disrupted Neural Regeneration in Dry Eye Secondary to Ankylosing Spondylitis-With a Theoretical Link between Piezo2 Channelopathy and Gateway Reflex, WDR Neurons, and Flare-Ups. Int J Mol Sci 2023; 24:15455. [PMID: 37895134 PMCID: PMC10607705 DOI: 10.3390/ijms242015455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed at analyzing the corneal neural regeneration in ankylosing spondylitis patients using in vivo corneal confocal microscopy in correlation with Langerhans cell density, morphology, and dry eye parameters. Approximately 24 ankylosing spondylitis subjects and 35 age- and gender-matched control subjects were enrolled. Data analysis showed that all corneal nerve-fiber descriptives were lower in the ankylosing spondylitis group, implicating disrupted neural regeneration. Peripheral Langerhans cell density showed a negative correlation with nerve fiber descriptions. A negative correlation between tear film break-up time and corneal nerve fiber total branch density was detected. The potential role of somatosensory terminal Piezo2 channelopathy in the pathogenesis of dry eye disease and ankylosing spondylitis is highlighted in our study, exposing the neuroimmunological link between these diseases. We hypothesized earlier that spinal neuroimmune-induced sensitization due to this somatosensory terminal primary damage could lead to Langerhans cell activation in the cornea, in association with downregulated Piezo1 channels on these cells. This activation could lead to a Th17/Treg imbalance in dry eye secondary to ankylosing spondylitis. Hence, the corneal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could explain the disrupted neural regeneration. Moreover, the translation of our findings highlights the link between Piezo2 channelopathy-induced gateway to pathophysiology and the gateway reflex, not to mention the potential role of spinal wide dynamic range neurons in the evolution of neuropathic pain and the flare-ups in ankylosing spondylitis and dry eye disease.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - László Marsovszky
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Attila Balog
- Department of Rheumatology and Immunology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Miklós D. Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| |
Collapse
|
8
|
Min HK, Na HS, Jhun J, Lee SY, Choi SS, Park GE, Lee JS, Um IG, Lee SY, Seo H, Shin TS, Kim YK, Lee JJ, Kwok SK, Cho ML, Park SH. Identification of gut dysbiosis in axial spondyloarthritis patients and improvement of experimental ankylosing spondyloarthritis by microbiome-derived butyrate with immune-modulating function. Front Immunol 2023; 14:1096565. [PMID: 37143677 PMCID: PMC10152063 DOI: 10.3389/fimmu.2023.1096565] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Dysbiosis is an environmental factor that affects the induction of axial spondyloarthritis (axSpA) pathogenesis. In the present study, we investigated differences in the gut microbiota of patients with axSpA and revealed an association between specific gut microbiota and their metabolites, and SpA pathogenesis. Method Using 16S rRNA sequencing data derived from feces samples of 33 axSpA patients and 20 healthy controls (HCs), we examined the compositions of their gut microbiomes. Results As a result, axSpA patients were found to have decreased α-diversity compared to HCs, indicating that axSpA patients have less diverse microbiomes. In particular, at the species level, Bacteroides and Streptococcus were more abundant in axSpA patients than in HCs, whereas Faecalibacterium (F). prausnitzii, a butyrate-producing bacteria, was more abundant in HCs. Thus, we decided to investigate whether F. prausnitzii was associated with health conditions by inoculating F. prausnitzii (0.1, 1, and 10 μg/mL) or by administrating butyrate (0.5 mM) into CD4+ T cells derived from axSpA patients. The levels of IL-17A and IL-10 in the CD4+ T cell culture media were then measured. We also assessed osteoclast formation by administrating butyrate to the axSpA-derived peripheral blood mononuclear cells. The CD4+ IL-17A+ T cell differentiation, IL-17A levels were decreased, whereas IL-10 was increased by F. prausnitzii inoculation. Butyrate reduced CD4+ IL-17A+ T cell differentiation and osteoclastogenesis. Discussion We found that CD4+ IL-17A+ T cell polarization was reduced, when F. prausnitzii or butyrate were introduced into curdlan-induced SpA mice or CD4+ T cells of axSpA patient. Consistently, butyrate treatment was associated with the reduction of arthritis scores and inflammation levels in SpA mice. Taken together, we concluded that the reduced abundance of butyrate-producing microbes, particularly F. prausnitzii, may be associated with axSpA pathogenesis.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Yeong Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Go Eun Park
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong Su Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Gyu Um
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Yoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hochan Seo
- MD Healthcare Inc., Seoul, Republic of Korea
| | | | | | - Jennifer Jooha Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
De Stefano L, Pallavicini FB, Mauric E, Piccin V, Vismara EM, Montecucco C, Bugatti S. Tumor necrosis factor-α inhibitor-related immune disorders. Autoimmun Rev 2023; 22:103332. [PMID: 37062440 DOI: 10.1016/j.autrev.2023.103332] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Biotechnological monoclonal antibodies and receptor antagonists capable of targeting specific inflammatory actors, such as cytokines, cytokines receptors, co-stimulatory molecules or leukocyte populations, have emerged as an alternative to conventional therapies for treating systemic inflammatory diseases with immune pathogenesis. However, there is no doubt that, with a frequency that is not exceptionally high but also not negligible, immunotherapies can favour the development of systemic and organ-specific immune-mediated disorders. It has become increasingly evident that interference with a specific immune pathway may favour the activation of opposing compensatory signalling, which may exacerbate underlying subclinical disorders or cause immune-mediated diseases completely different from the underlying disease. The 'compensatory immunological switch' has emerged primarily in patients treated with tumor necrosis factor (TNF) -α inhibitors, the first biological drugs approved for treating systemic inflammatory diseases with immune pathogenesis. In this Review, we describe the clinical features and predisposing factors of the main TNF-α inhibitor-related immune disorders, organising them into subclinical serological autoimmunity, autoimmune disorders other than those for which TNF-α inhibitors are indicated, and paradoxical reactions. We also discuss the underlying pathogenetic mechanisms and precautions for use in the therapeutic management of these patients. Better understanding of the complex phenomenon of the 'compensatory immunological switch', which TNF-α inhibitors and other biological drugs might trigger, can help not only appropriately managing immune-mediated disorders, but also better interpreting the heterogeneity of the pathogenetic mechanisms underlying certain chronic inflammatory conditions that, although different from each other, are arbitrarily placed in the context of overly generic nosological entities.
Collapse
Affiliation(s)
- Ludovico De Stefano
- Department of Internal Medicine and Therapeutics, Università di Pavia, Italy; Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | | | - Eleonora Mauric
- Department of Internal Medicine and Therapeutics, Università di Pavia, Italy; Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Veronica Piccin
- Department of Internal Medicine and Therapeutics, Università di Pavia, Italy; Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Enrico Maria Vismara
- Department of Internal Medicine and Therapeutics, Università di Pavia, Italy; Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlomaurizio Montecucco
- Department of Internal Medicine and Therapeutics, Università di Pavia, Italy; Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Bugatti
- Department of Internal Medicine and Therapeutics, Università di Pavia, Italy; Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
10
|
van der Meer RG, Spoorenberg A, Brouwer E, Doornbos-van der Meer B, Boots AMH, Arends S, Abdulahad WH. Mucosal-associated invariant T cells in patients with axial spondyloarthritis. Front Immunol 2023; 14:1128270. [PMID: 36969157 PMCID: PMC10038212 DOI: 10.3389/fimmu.2023.1128270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundSeveral studies implicate Th17-cells and its cytokine (IL-17) in disease pathogenesis of spondyloarthritis (SpA), with available evidence supporting a pathogenic role of CD8+ T-cells. However, data on the involvement of CD8+ mucosal-associated invariant T-cells (MAIT) and their phenotypic characterization and inflammatory function including IL-17 and Granzyme A production in a homogenous population of SpA-patients with primarily axial disease (axSpA) are lacking.ObjectivesQuantify and characterize the phenotype and function of circulating CD8+MAIT-cells in axSpA-patients with primarily axial disease.MethodsBlood samples were obtained from 41 axSpA-patients and 30 age- and sex-matched healthy controls (HC). Numbers and percentages of MAIT-cells (defined as CD3+CD8+CD161highTCRVα7.2+) were determined, and production of IL-17 and Granzyme A (GrzA) by MAIT-cells were examined by flow cytometry upon in vitro stimulation. Serum IgG specific for CMV was measured by ELISA.ResultsNo significant differences in numbers and percentages of circulating MAIT-cells were found between axSpA-patients and HCr zijn meer resultaten de centrale memory CD8 T cellen. cellen van patirculating MAIT cells.. Further phenotypic analysis revealed a significant decrease in numbers of central memory MAIT-cells of axSpA-patients compared to HC. The decrease in central memory MAIT-cells in axSpA patients was not attributed to an alteration in CD8 T-cell numbers, but correlated inversely with serum CMV-IgG titers. Production of IL-17 by MAIT-cells was comparable between axSpA-patients and HC, whereas a significant decrease in the production of GrzA by MAIT-cells from axSpA-patients was observed.ConclusionsThe decrease in cytotoxic capability of circulating MAIT-cells in axSpA-patients might implicate that these cell types migrate to the inflamed tissue and therefore associate with the axial disease pathogenesis.
Collapse
Affiliation(s)
- Rienk Gerben van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Rienk Gerben van der Meer,
| | - Anneke Spoorenberg
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Moon DH, Kim A, Song BW, Kim YK, Kim GT, Ahn EY, So MW, Lee SG. High Baseline Neutrophil-to-Lymphocyte Ratio Could Serve as a Biomarker for Tumor Necrosis Factor-Alpha Blockers and Their Discontinuation in Patients with Ankylosing Spondylitis. Pharmaceuticals (Basel) 2023; 16:379. [PMID: 36986479 PMCID: PMC10055887 DOI: 10.3390/ph16030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND This study explores the association of neutrophil-to-lymphocyte (NLR), monocyte-to-lymphocyte (MLR), and platelet-to-lymphocyte (PLR) ratios with the 3-month treatment response and persistence of tumor necrosis factor-alpha (TNF-α) blockers in patients with ankylosing spondylitis (AS). METHODS This retrospective cohort study investigated 279 AS patients who were newly initiated on TNF-α blockers between April 2004 and October 2019 and 171 sex- and age-matched healthy controls. Response to TNF-α blockers was defined as a reduction in the Bath AS Disease Activity Index of ≥50% or 20 mm, and persistence referred to the time interval from the initiation to discontinuation of TNF-α blockers. RESULTS Patients with AS had significantly increased NLR, MLR, and PLR ratios as compared to controls. The frequency of non-response at 3 months was 3.7%, and TNF-α blockers' discontinuation occurred in 113 (40.5%) patients during the follow-up period. A high baseline NLR but not high baseline MLR and PLR showed an independently significant association with a higher risk of non-response at 3 months (OR = 12.3, p = 0.025) and non-persistence with TNF-α blockers (HR = 1.66, p = 0.01). CONCLUSIONS NLR may be a potential marker for predicting the clinical response and persistence of TNF-α blockers in AS patients.
Collapse
Affiliation(s)
- Dong-Hyuk Moon
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (D.-H.M.); (A.K.); (B.-W.S.)
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Aran Kim
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (D.-H.M.); (A.K.); (B.-W.S.)
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Byung-Wook Song
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (D.-H.M.); (A.K.); (B.-W.S.)
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Yun-Kyung Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Kosin University, Busan 49104, Republic of Korea; (Y.-K.K.); (G.-T.K.)
| | - Geun-Tae Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Kosin University, Busan 49104, Republic of Korea; (Y.-K.K.); (G.-T.K.)
| | - Eun-Young Ahn
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Yangsan Hospital, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.-Y.A.); (M.-W.S.)
| | - Min-Wook So
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Yangsan Hospital, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.-Y.A.); (M.-W.S.)
| | - Seung-Geun Lee
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (D.-H.M.); (A.K.); (B.-W.S.)
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|
12
|
Salaffi F, Siragusano C, Alciati A, Cassone G, D’Angelo S, Guiducci S, Favalli EG, Conti F, Gremese E, Iannone F, Caporali R, Sebastiani M, Ferraccioli GF, Lapadula G, Atzeni F. Axial Spondyloarthritis: Reshape the Future-From the "2022 GISEA International Symposium". J Clin Med 2022; 11:jcm11247537. [PMID: 36556152 PMCID: PMC9780899 DOI: 10.3390/jcm11247537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The term "axial spondyloarthritis" (axSpA) refers to a group of chronic rheumatic diseases that predominantly involve the axial skeleton and consist of ankylosing spondylitis, reactive arthritis, arthritis/spondylitis associated with psoriasis (PsA) and arthritis/spondylitis associated with inflammatory bowel diseases (IBD). Moreover, pain is an important and common symptom of axSpA. It may progress to chronic pain, a more complicated bio-psychosocial phenomena, leading to a significant worsening of quality of life. The development of the axSpA inflammatory process is grounded in the complex interaction between genetic (such as HLA B27), epigenetic, and environmental factors associated with a dysregulated immune response. Considering the pivotal contribution of IL-23 and IL-17 in axSpA inflammation, the inhibition of these cytokines has been evaluated as a potential therapeutic strategy. With this context, here we discuss the main pathogenetic mechanisms, therapeutic approaches and the role of pain in axSpA from the 2022 International GISEA/OEG Symposium.
Collapse
Affiliation(s)
- Fausto Salaffi
- Rheumatology Clinic, Ospedale Carlo Urbani, Università Politecnica delle Marche, 60035 Jesi, Italy
| | - Cesare Siragusano
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98125 Messina, Italy
| | - Alessandra Alciati
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, Como, and Humanitas Clinical and Research Centre, Rozzano, 20089 Milan, Italy
| | - Giulia Cassone
- Rheumatology Unit, Azienda Ospedaliera Policlinico di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Salvatore D’Angelo
- Rheumatology Institute of Lucania and Rheumatology Department of Lucania, San Carlo Hospital of Potenza, 85100 Potenza, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Ennio Giulio Favalli
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, 20122 Milan, Italy
| | - Fabrizio Conti
- Lupus Clinic, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisa Gremese
- Rheumatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Department of Emergency Surgery and Organ Transplantations, University of Bari, 70121 Bari, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, 20122 Milan, Italy
| | - Marco Sebastiani
- Rheumatology Unit, Azienda Ospedaliera Policlinico di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | | | - Giovanni Lapadula
- Rheumatology Unit, Department of Emergency Surgery and Organ Transplantations, University of Bari, 70121 Bari, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
13
|
Khabbazi A, Ahangari Maleki M, Soltani-Zangbar MS, Yousefi M, Malek Mahdavi A. Effects of synbiotic supplementation on regulatory T cells' response in patients with axial spondyloarthritis: a randomized double-masked placebo-controlled trial. Food Funct 2022; 13:12733-12741. [PMID: 36409223 DOI: 10.1039/d2fo01377k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study was conducted on samples from patients enrolled in a randomized double-masked placebo-controlled trial on the effect of synbiotic supplementation on the IL-17/IL-23 pathway and disease activity in patients with axial spondyloarthritis (axSpA) to investigate the effects of synbiotic supplementation on regulatory T (Treg) cells' response in these patients. Forty-eight axSpA patients were randomized to take one synbiotic capsule or placebo daily for 12 weeks. Treg cell proportion, gene expression of forkhead box protein P3 (Foxp3), microRNA (miRNA)-25, miRNA-106b, miRNA-146a, interleukin (IL)-10, and transforming growth factor (TGF)-β as well as serum IL-10 and TGF-β levels were assessed before and after the trial. Thirty-eight patients (19 in each group) completed the trial. The proportion of Treg cells (P < 0.001), the gene expression of FoxP3 (P < 0.001), IL-10 (P = 0.001), TGF-β (P < 0.001), and miRNA-146a (P < 0.001) and serum IL-10 (P = 0.003) and TGF-β (P = 0.002) levels significantly increased compared to the baseline in the synbiotic group. Additionally, a significant reduction in the gene expression of miRNA-25 (P < 0.001) and miRNA-106b (P < 0.001) was observed in the synbiotic group. Significant between-group differences were observed in the proportion of Treg cells (P = 0.024) and the gene expression of FoxP3 (P = 0.010), IL-10 (P = 0.002), TGF-β (P = 0.016), miRNA-25 (P = 0.008), miRNA-106b (P = 0.001), and miRNA-146a (P = 0.010). Differences in the serum levels of IL-10 and TGF-β between the groups were not significant. As a conclusion, synbiotic supplementation could modulate Treg cells' response in axSpA patients and thus can be promising as an adjunctive therapy. Additional investigations would help in further clarifying the subject.
Collapse
Affiliation(s)
- Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Ahangari Maleki
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breathe and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Kenyon M, Maguire S, Rueda Pujol A, O'Shea F, McManus R. The genetic backbone of ankylosing spondylitis: how knowledge of genetic susceptibility informs our understanding and management of disease. Rheumatol Int 2022; 42:2085-2095. [PMID: 35939079 PMCID: PMC9548471 DOI: 10.1007/s00296-022-05174-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
Ankylosing spondylitis (AS) is a seronegative, chronic inflammatory arthritis with high genetic burden. A strong association with HLA-B27 has long been established, but to date its contribution to disease aetiology remains unresolved. Recent insights through genome wide studies reveal an increasing array of immunogenetic risk variants extraneous to the HLA complex in AS cohorts. These genetic traits build a complex profile of disease causality, highlighting several molecular pathways associated with the condition. This and other evidence strongly implicates T-cell-driven pathology, revolving around the T helper 17 cell subset as an important contributor to disease. This prominence of the T helper 17 cell subset has presented the opportunity for therapeutic intervention through inhibition of interleukins 17 and 23 which drive T helper 17 activity. While targeting of interleukin 17 has proven effective, this success has not been replicated with interleukin 23 inhibition in AS patients. Evidence points to significant genetic diversity between AS patients which may, in part, explain the observed refractoriness among a proportion of patients. In this review we discuss the impact of genetics on our understanding of AS and its relationship with closely linked pathologies. We further explore how genetics can be used in the development of therapeutics and as a tool to assist in the diagnosis and management of patients. This evidence indicates that genetic profiling should play a role in the clinician’s choice of therapy as part of a precision medicine strategy towards disease management.
Collapse
Affiliation(s)
- Marcus Kenyon
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
| | - Sinead Maguire
- Department of Rheumatology, St James' Hospital, Dublin, Ireland
| | - Anna Rueda Pujol
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Finbar O'Shea
- Department of Rheumatology, St James' Hospital, Dublin, Ireland
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Zeng L, Yang T, Yang K, Yu G, Li J, Xiang W, Chen H. Efficacy and Safety of Curcumin and Curcuma longa Extract in the Treatment of Arthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Front Immunol 2022; 13:891822. [PMID: 35935936 PMCID: PMC9353077 DOI: 10.3389/fimmu.2022.891822] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
BackgroundModern pharmacological research found that the chemical components of Curcuma longa L. are mainly curcumin and turmeric volatile oil. Several recent randomized controlled trials (RCT) have shown that curcumin improves symptoms and inflammation in patients with arthritis.MethodsPubmed, Cochran Library, CNKI, and other databases were searched to collect the randomized controlled trials (RCTs). Then, the risk of bias of RCTs were assessed and data of RCTs were extracted. Finally, RevMan 5.3 was utilized for meta-analysis.ResultsTwenty-nine (29) RCTs involving 2396 participants and 5 types of arthritis were included. The arthritis included Ankylosing Spondylitis (AS), Rheumatoid Arthritis (RA), Osteoarthritis (OA), Juvenile idiopathic arthritis (JIA) and gout/hyperuricemia. Curcumin and Curcuma longa Extract were administered in doses ranging from 120 mg to 1500 mg for a duration of 4-36 weeks. In general, Curcumin and Curcuma longa Extract showed safety in all studies and improved the severity of inflammation and pain levels in these arthritis patients. However, more RCTs are needed in the future to elucidate the effect of Curcumin and Curcuma longa Extract supplementation in patients with arthritis, including RA, OA, AS and JIA.ConclusionCurcumin and Curcuma longa Extract may improve symptoms and inflammation levels in people with arthritis. However, due to the low quality and small quantity of RCTs, the conclusions need to be interpreted carefully.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Tiejun Yang
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang City, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha City, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Ganpeng Yu
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang City, China
| | - Jun Li
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang City, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde City, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| |
Collapse
|
16
|
|
17
|
Vitronectin-derived bioactive peptide prevents spondyloarthritis by modulating Th17/Treg imbalance in mice with curdlan-induced spondyloarthritis. PLoS One 2022; 17:e0262183. [PMID: 34986165 PMCID: PMC8730421 DOI: 10.1371/journal.pone.0262183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin (IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect via β1 and αvβ3 integrin signaling. SpA is associated with an increased risk of osteoporosis, and we investigated the effect of VnP-16 in mice with SpA. Methods SpA was induced by curdlan in SKG ZAP-70W163C mice, which were treated with vehicle, celecoxib, VnP-16, or VnP-16+celecoxib. The clinical score, arthritis score, spondylitis score, and proinflammatory cytokine expression of the spine were evaluated by immunohistochemical staining. Type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation in the spleen was evaluated by flow cytometry and in the spine by confocal staining. Splenocyte expression of signal transducer and activator of transcription (STAT) 3 and pSTAT3 was evaluated by in vitro Western blotting. Results The clinical score was significantly reduced in the VnP16+celecoxib group. The arthritis and spondylitis scores were significantly lower in the VnP-16 and VnP16+celecoxib groups than the vehicle group. In the spine, the levels of IL-1β, IL-6, tumor necrosis factor-α, and IL-17 expression were reduced and Th17/Treg imbalance was regulated in the VnP-16 alone and VnP-16+celecoxib groups. Flow cytometry of splenocytes showed increased polarization of Tregs in the VnP-16+celecoxib group. In vitro, VnP-16 suppressed pSTAT3. Conclusions VnP-16 plus celecoxib prevented SpA progression in a mouse model by regulating the Th17/Treg imbalance and suppressing the expression of proinflammatory cytokines.
Collapse
|
18
|
Shen J, Yang L, You K, Chen T, Su Z, Cui Z, Wang M, Zhang W, Liu B, Zhou K, Lu H. Indole-3-Acetic Acid Alters Intestinal Microbiota and Alleviates Ankylosing Spondylitis in Mice. Front Immunol 2022; 13:762580. [PMID: 35185872 PMCID: PMC8854167 DOI: 10.3389/fimmu.2022.762580] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Ankylosing spondylitis (AS) is a systemic, chronic, and inflammatory autoimmune disease associated with the disorder of intestinal microbiota. Unfortunately, effective therapies for AS are lacking. Recent evidence has indicated that indole-3-acetic acid (IAA), an important microbial tryptophan metabolite, can modulate intestinal homeostasis and suppress inflammatory responses. However, reports have not examined the in vivo protective effects of IAA against AS. In this study, we investigated the protective effects and underlying mechanisms through which IAA acts against AS. We constructed a proteoglycan (PG)-induced AS mouse model and administered IAA (50 mg/kg body weight) by intraperitoneal injection daily for 4 weeks. The effects of IAA on AS mice were evaluated by examining disease severity, intestinal barrier function, aryl hydrocarbon receptor (AhR) pathway, T-helper 17 (Th17)/T regulatory (Treg) balance, and inflammatory cytokine levels. The intestinal microbiota compositions were profiled through whole-genome sequencing. We observed that IAA decreased the incidence and severity of AS in mice, inhibited the production of pro-inflammatory cytokines (tumor necrosis factor α [TNF-α], interleukin [IL]-6, IL-17A, and IL-23), promoted the production of the anti-inflammatory cytokine IL-10, and reduced the ratios of pro-/anti- inflammatory cytokines. IAA ameliorated pathological changes in the ileum and improved intestinal mucosal barrier function. IAA also activated the AhR pathway, upregulated the transcription factor forehead box protein P3 (FoxP3) and increased Treg cells, and downregulated the transcription factors retinoic acid receptor–related orphan receptor gamma t (RORγt) and signal transducer and activator of transcription 3 (STAT3) and decreased Th17 cells. Furthermore, IAA altered the composition of the intestinal microbiota composition by increasing Bacteroides and decreasing Proteobacteria and Firmicutes, in addition to increasing the abundances of Bifidobacterium pseudolongum and Mucispirillum schaedleri. In conclusion, IAA exerted several protective effects against PG-induced AS in mice, which was mediated by the restoration of balance among the intestinal microbial community, activating the AhR pathway, and inhibiting inflammation. IAA might represent a novel therapeutic approach for AS.
Collapse
Affiliation(s)
- Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhihai Su
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhifei Cui
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Min Wang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Weicong Zhang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, First Affiliated Hospital (Shenzhen People’s Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- *Correspondence: Hai Lu,
| |
Collapse
|
19
|
Liao HT, Tsai CY, Lai CC, Hsieh SC, Sun YS, Li KJ, Shen CY, Wu CH, Lu CH, Kuo YM, Li TH, Chou CT, Yu CL. The Potential Role of Genetics, Environmental Factors, and Gut Dysbiosis in the Aberrant Non-Coding RNA Expression to Mediate Inflammation and Osteoclastogenic/Osteogenic Differentiation in Ankylosing Spondylitis. Front Cell Dev Biol 2022; 9:748063. [PMID: 35127698 PMCID: PMC8811359 DOI: 10.3389/fcell.2021.748063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) or radiographic axial spondyloarthritis is a chronic immune-mediated rheumatic disorder characterized by the inflammation in the axial skeleton, peripheral joints, and soft tissues (enthesis, fascia, and ligament). In addition, the extra-skeletal complications including anterior uveitis, interstitial lung diseases and aortitis are found. The pathogenesis of AS implicates an intricate interaction among HLA (HLA-B27) and non-HLA loci [endoplasmic reticulum aminopeptidase 1 (ERAP1), and interleukin-23 receptor (IL23R), gut dysbiosis, immune plasticity, and numerous environmental factors (infections, heavy metals, stress, cigarette smoking, etc.) The latter multiple non-genetic factors may exert a powerful stress on epigenetic regulations. These epigenetic regulations of gene expression contain DNA methylation/demethylation, histone modifications and aberrant non-coding RNAs (ncRNAs) expression, leading to inflammation and immune dysfunctions. In the present review, we shall discuss these contributory factors that are involved in AS pathogenesis, especially the aberrant ncRNA expression and its effects on the proinflammatory cytokine productions (TNF-α, IL-17 and IL-23), T cell skewing to Th1/Th17, and osteoclastogenic/osteogenic differentiation. Finally, some potential investigatory approaches are raised for solving the puzzles in AS pathogenesis.
Collapse
Affiliation(s)
- Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- *Correspondence: Chang-Youh Tsai, ; Chia-Li Yu,
| | - Chien-Chih Lai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Syuan Sun
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ko-Jen Li
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Hsun Lu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hao Li
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chung-Tei Chou
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chia-Li Yu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Chang-Youh Tsai, ; Chia-Li Yu,
| |
Collapse
|
20
|
Ding T, Li B, Su R, Su R, Wang Y, Gao C, Li X, Wang C. Elevated Th17 cells are associated with cardiovascular complications in ankylosing spondylitis. Rheumatology (Oxford) 2021; 61:3481-3490. [PMID: 34894210 DOI: 10.1093/rheumatology/keab888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Patients with ankylosing spondylitis (AS) carry an increased burden of cardiovascular diseases (CVD), but features denoting the development of CVD in AS are unclear. This study aimed to evaluate the percentage and absolute number of lymphocytes and CD4+T cells in AS patients complicated with CVD (AS-CVD) and determine whether circulating Th17 cells are associated with the development of CVD in AS. METHOD A total of 117 AS patients (46 had CVD and 71 had no CVD) were enrolled in this retrospective study. The percentage and absolute number of lymphocytes and CD4+T cells were determined by Flow cytometry. Associations between CVD and clinical markers were analyzed using logistic regression. RESULTS The ratio of Th17/Treg cells (0.30 vs 0.19, p = 0.014) and the absolute number of Th17 cells (7.27 cells/μL vs 4.34 cells/μL, p < 0.001) was significantly elevated in AS-CVD group compared with AS-no-CVD group. Multivariate logistic regression revealed that elevated Th17 cells (OR = 1.20, p = 0.016) were associated with CVD complications in AS. Receiver operating characteristic (ROC) curves showed a contribution of Th17 cell for distinguishing AS patients with CVD, with the areas under the ROC curve (AUCs) of 0.729 (95%CI: 0.632-0.825, p < 0.001). CONCLUSION Our findings provide evidence for the association between Th17 cells and increased cardiovascular risk in AS. Th17 cells may contribute to accelerated atherogenesis and increased cardiovascular burden in AS and be valuable for early assessment and management of AS-CVD.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Gulino GR, Van Mechelen M, Lories R. Cellular and molecular diversity in spondyloarthritis. Semin Immunol 2021; 58:101521. [PMID: 34763975 DOI: 10.1016/j.smim.2021.101521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The spondyloarthritides are a cluster of inflammatory rheumatic diseases characterized by different diagnostic entities with heterogeneous phenotypes. The current classification system groups spondyloarthritis patients in two main categories, axial and peripheral spondyloarthritis, providing a framework wherein the clinical picture guides the treatment. However, the heterogeneity of the clinical manifestations of the pathologies, even when residing in the same group, highlights the importance of analyzing the smallest features of each entity to understand how different cellular subsets evolve, what the underlying mechanisms are and what biological markers can be identified and validated to evaluate the stage of disease and the corresponding efficacy of treatments. In this review, we will focus mostly on axial spondyloarthritis, report current knowledge concerning the cellular populations involved in its pathophysiology, and their molecular diversity. We will discuss the implications of such a diversity, and their meaning in terms of patients' stratification.
Collapse
Affiliation(s)
- G R Gulino
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium
| | - M Van Mechelen
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium
| | - R Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium.
| |
Collapse
|
22
|
Jiang Y, Yang M, Zhang Y, Huang Y, Wu J, Xie Y, Wei Q, Liao Z, Gu J. Dynamics of Adaptive Immune Cell and NK Cell Subsets in Patients With Ankylosing Spondylitis After IL-17A Inhibition by Secukinumab. Front Pharmacol 2021; 12:738316. [PMID: 34721027 PMCID: PMC8551761 DOI: 10.3389/fphar.2021.738316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Anti-IL-17A therapy is generally effectively applied in patients with Ankylosing Spondylitis (AS) to achieve and maintain remission. However, the influence of anti-IL-17A on the composition of the immune system is not apparent. Our prospective study was to explore the changes in immune imbalance regarding T cell, B cell and natural killer (NK) cell subsets after secukinumab treatment in AS patients. Methods: Immune cell distribution of 43 AS patients treated with secukinumab for 12 weeks and 47 healthy controls (HC) were evaluated. Flow cytometry using monoclonal antibodies against 25 surface markers was accomplished to explore the frequencies of lineage subsets. The differences between HC, AS pre-treatment, and post-treatment were compared using the paired Wilcoxon test, Mann-Whitney U test, and ANOVA. Results: AS patients had altered immune cell distribution regarding T cell and B cell subsets. Apart from activated differentiation of CD4+ T cell, CD8+ T cell and B cell, higher levels of cytotoxic T (Tc) two cells and Tc17 cells were noted in AS patients. We confirmed that helper T (Th) one cell became decreased; however, Th17 cells and T follicular helper (Tfh) 17 cells went increased in AS. After 12 weeks of secukinumab therapy, CRP and ASDAS became significantly decreased, and meanwhile, the proportions of Th1 cells, Tfh17 cells and classic switched B cells were changed towards those of HC. A decreased CRP was positively correlated with a decrease in the frequency of naïve CD8+ T cells (p = 0.039) and B cells (p = 0.007) after secukinumab treatment. An elevated level of T cells at baseline was detected in patients who had a good response to secukinumab (p = 0.005). Conclusion: Our study confirmed that AS patients had significant multiple immune cell dysregulation. Anti-IL-17A therapy (Secukinumab) could reverse partial immune cell imbalance.
Collapse
Affiliation(s)
- Yutong Jiang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingcan Yang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanli Zhang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yefei Huang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialing Wu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ya Xie
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zetao Liao
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Wielińska J, Świerkot J, Kolossa K, Bugaj B, Chaszczewska-Markowska M, Jeka S, Bogunia-Kubik K. Polymorphisms within Genes Coding for IL-17A and F and Their Receptor as Clinical Hallmarks in Ankylosing Spondylitis. Mediators Inflamm 2021; 2021:3125922. [PMID: 34744511 PMCID: PMC8566063 DOI: 10.1155/2021/3125922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
IL-17A and IL-17F together with their coreceptor (IL-17RA/RC) were reported to play a significant role in the pathogenesis of spondyloarthritis. The group of axial spondyloarthritis comprises ankylosing spondylitis (AS), a rheumatic disease characterized by chronic inflammation of the joints in the spine. This study is aimed at investigating IL-17A, IL-17F, IL-17RA, and IL-17RC polymorphisms as potential biomarkers of disease susceptibility, clinical parameters, and anti-TNF treatment outcome in a cohort of Polish ankylosing spondylitis patients. In total, 328 subjects, including 138 AS patients and 190 healthy volunteers, participated in the study. Genotyping of IL-17A rs2275913 (G/A), IL-17F rs763780 (A/G), IL-17RA rs4819554 (A/G), and IL-17RC rs708567 (G/A) was performed on real-time PCR instrument using LightSNiP assays. No significant differences were revealed in genotype and allele distribution between patients and controls despite the association of the IL-17RC rs708567 AA homozygosity with the earlier onset of the disease. Moreover, some relationships between IL-17F rs763780 and IL-17RA rs4819554 polymorphisms with clinical parameters related to the disease activity and anti-TNF treatment outcome were observed. IL-17F rs763780 G allele was found to be associated with high disease activity and BASDAI after 6 months and poor response to the treatment while higher VAS values were more common among IL-17RA rs4819554 G variant carriers. In conclusion, the IL-17F rs763780 polymorphism should be considered as a promising biomarker of disease activity and anti-TNF treatment outcome. The IL-17RA rs48419554 G allele may serve as a potential marker of disease severity in Polish AS patients.
Collapse
Affiliation(s)
- Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Katarzyna Kolossa
- Department of Rheumatology and Connective Tissue Diseases, Jan Biziel University Hospital No. 2, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Bartosz Bugaj
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Sławomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, Jan Biziel University Hospital No. 2, Ujejskiego 75, 85-168 Bydgoszcz, Poland
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellońska 15, 85-067 Bydgoszcz, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
24
|
Zheng Y, Cai B, Ren C, Xu H, Du W, Wu Y, Lin F, Zhang H, Quan R. Identification of immune related cells and crucial genes in the peripheral blood of ankylosing spondylitis by integrated bioinformatics analysis. PeerJ 2021; 9:e12125. [PMID: 34589304 PMCID: PMC8432305 DOI: 10.7717/peerj.12125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023] Open
Abstract
Background Ankylosing spondylitis (AS) is a progressive rheumatic disease and studies reveal that the immune system is critical for the pathogenesis of AS. In the present study, various bioinformatics analysis methods were comprehensively applied, designed to identify potential key genes and inflammation states of AS. Methods The transcriptome profiles of GSE25101 and GSE73754 obtained from the Gene Expression Omnibus (GEO) database were merged for subsequent analyses. The differentially expressed genes (DEGs) were identified using the Bioconductor package Limma and threshold values. Functional enrichment and pathway enrichment analyses were performed using the clusterProfiler package and Gene Set Enrichment Analysis (GSEA). Next, protein-protein interaction (PPI) network of the identified DEGs was constructed by the online database, the Search Tool for the Retrieval of Interacting Genes (STRING), visualization and analysis were performed through Cytoscape software. Subsequently, we applied CIBERSORT algorithm to identify subpopulation proportions of immune cells in peripheral blood samples. Finally, we validated the hub genes with the GSE18781 dataset. Samples were collected from patients to validate gene and protein expression using qRT-PCR and ELISA. Results A total of 334 DEGs were identified, including 182 upregulated and 152 downregulated DEGs, between AS patients and normal human controls, which were primarily involved in immune response, autophagy, and natural killer cell-mediated cytotoxicity. The most prominent module and candidate biomarkers were identified from the PPI network. Biomarkers were selected for validation and their expressions were significantly decreased in peripheral blood samples which was consistent with transcriptome sequencing results. Nine genes with AUC > 0.70 were considered to be AS hub genes for ROC curve analysis, including GZMA, GZMK, PRF1, GNLY, NKG7, KLRB1, KLRD1, IL2RB and CD247. Furthermore, CIBERSORT results suggest that AS contained a higher proportion of CD8+ T cells, naive CD4+ T cells, neutrophils, and lower levels of gamma delta T cells compared with the normal controls. Conclusion In this study, we identified DEGs combined with their closely related biological functions and propose that granule-associated proteins and immune infiltration maybe involved in the progression of ankylosing spondylitis. These validated hub genes may provide new perspectives for understanding the molecular mechanisms of ankylosing spondylitis.
Collapse
Affiliation(s)
- Yang Zheng
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingbing Cai
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Conglin Ren
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haipeng Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weibin Du
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yijiang Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Fu Lin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Helou Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Renfu Quan
- Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China.,Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Bellando-Randone S, Della-Torre E, Balanescu A. The role of interleukin-17 in the pathogenesis of systemic sclerosis: Pro-fibrotic or anti-fibrotic? JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:227-235. [PMID: 35387209 PMCID: PMC8922653 DOI: 10.1177/23971983211039421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 06/29/2024]
Abstract
Systemic sclerosis is characterized by widespread fibrosis of the skin and internal organs, vascular impairment, and dysregulation of innate and adaptive immune system. Growing evidence indicates that T-cell proliferation and cytokine secretion play a major role in the initiation of systemic sclerosis, but the role of T helper 17 cells and of interleukin-17 cytokines in the development and progression of the disease remains controversial. In particular, an equally distributed body of literature supports both pro-fibrotic and anti-fibrotic effects of interleukin-17, suggesting a complex and nuanced role of this cytokine in systemic sclerosis pathogenesis that may vary depending on disease stage, target cells in affected organs, and inflammatory milieu. Although interleukin-17 already represents an established therapeutic target for several immune-mediated inflammatory diseases, more robust experimental evidence is required to clarify whether it may become an attractive therapeutic target for systemic sclerosis as well.
Collapse
Affiliation(s)
- Silvia Bellando-Randone
- Department of Experimental and
Clinical Medicine, Division of Rheumatology, University of Florence and
Department of Geriatric Medicine, Division of Rheumatology AOUC, Florence,
Italy
| | - Emanuel Della-Torre
- Università Vita-Salute San
Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Unit of Immunology, Rheumatology,
Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute,
Milan, Italy
| | - Andra Balanescu
- “Carol Davila” University of
Medicine and Pharmacy, Department of Internal Medicine and Rheumatology,
“Sf. Maria” Hospital, Bucharest, Romania
| |
Collapse
|
26
|
Harkins P, Burke E, Swales C, Silman A. 'All disease begins in the gut'-the role of the intestinal microbiome in ankylosing spondylitis. Rheumatol Adv Pract 2021; 5:rkab063. [PMID: 34557624 PMCID: PMC8452999 DOI: 10.1093/rap/rkab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Ankylosing spondylitis is a chronic, debilitating arthritis with a predilection for the axial skeleton. It has a strong genetic predisposition, but the precise pathogenetic mechanisms involved in its development have not yet been fully elucidated. This has implications both for early diagnosis and for effective management. Recently, alterations in the intestinal microbiome have been implicated in disease pathogenesis. In this review, we summarize studies assessing the intestinal microbiome in AS pathogenesis, in addition to synthesizing the literature exploring the postulated mechanisms by which it exerts it pathogenic potential. Finally, we review studies analysing manipulation of the microbiome as a potential therapeutic avenue in AS management.
Collapse
Affiliation(s)
- Patricia Harkins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eoghan Burke
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Catherine Swales
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alan Silman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Perrotta FM, Lories R, Lubrano E. To move or not to move: the paradoxical effect of physical exercise in axial spondyloarthritis. RMD Open 2021; 7:rmdopen-2020-001480. [PMID: 33547227 PMCID: PMC7871344 DOI: 10.1136/rmdopen-2020-001480] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
In the last years, new researches focused on the role of biomechanical stress and microdamage in the pathogenesis of inflammatory arthritis and, in particular, in axial spondyloarthritis (axSpA). Animal models showed how entheseal stress and physical exercise could contribute to the development of inflammation and new bone formation at entheseal and articular sites, by activating innate immune system and the release of cytokines. Furthermore, clues of the involvement of biomechanical stress in the development of axSpA are present in clinical experiences. However, rehabilitation and exercise programmes are the cornerstone of treatment for axSpA, reducing disease activity and improving spinal function and quality of life. The concept of mechanical stress as a contributor to disease development and progression represents, potentially, a conceptual challenge for this approach. The aim of this review is to discuss the current evidence on the intriguing contribution of the biomechanical stress to the pathogenesis of inflammation and new bone formation and to evaluate and reflect on the role of exercise in the treatment and in the management of the disease, considering both the beneficial effects and its possible paradoxical action.
Collapse
Affiliation(s)
- Fabio Massimo Perrotta
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Universita degli Studi del Molise, Campobasso, Italy
| | - Rik Lories
- Skeletal Biology and Engineering Research Centre, Catholic University College Leuven Department of Development and Regeneration, Leuven, Belgium
| | - Ennio Lubrano
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Universita degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
28
|
Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021; 17:487-504. [PMID: 34226727 DOI: 10.1038/s41584-021-00639-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Collapse
|
29
|
Liu D, Liu B, Lin C, Gu J. Imbalance of Peripheral Lymphocyte Subsets in Patients With Ankylosing Spondylitis: A Meta-Analysis. Front Immunol 2021; 12:696973. [PMID: 34295337 PMCID: PMC8291033 DOI: 10.3389/fimmu.2021.696973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Ankylosing spondylitis is a complicated consequence of genetic predisposition and environmental factors. Enthesitis is believed to be the hallmark of ankylosing spondylitis, and the chronic inflammatory state of this disease is perpetuated by the disturbances of both the innate immune system and the acquired immune system. To clarify the alteration of immune system in patients with AS, we conducted a meta-analysis concerning the proportions of major lymphocyte subsets in the peripheral blood of AS patients. We systematically searched PubMed and China National Knowledge Infrastructure (CNKI) for articles related to this subject. A total of 95 articles involving 4,020 AS patients and 3,065 healthy controls were included in the analysis. This meta-analysis is performed on R platform using R package "meta", and Egger's tests were used to determine the presence of publication bias. Results showed that the percentages of T cells, NK cells and NKT cells were not significantly different between AS patients and healthy controls, but B cells were significantly increased. Among the subsets of T cells, the proportions of CD4+ T cells, Th17 cells, Tfh cells as well as Th1/Th2 ratio were significantly increased, while Tregs were significantly decreased. Subgroup analysis showed that the proportions of Th17 among both PBMCs, T cells and CD4+ T cells were significantly elevated, while Tregs were only significantly lower in PBMCs. Subgroup analysis also demonstrated that Tregs defined by "CD4+CD25+FoxP3+", "CD4+CD25+CD127low"or "CD4+CD25+CD127-"were significantly downregulated, indicating that the selection of markers could be critical. Further study is warranted in order to elucidate the complicated interactions between different lymphocyte subsets in AS patients. This study implied that the disequilibrium between Th17 and Tregs, as well as between Th1 and Th2 could contribute to the pathogenesis of ankylosing spondylitis, further cementing the understanding that ankylosing spondylitis is a consequence of disrupted balance of innate immune system and acquired immune system.
Collapse
Affiliation(s)
- Dong Liu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Budian Liu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Churong Lin
- Radiology Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Atzeni F, Carriero A, Boccassini L, D’Angelo S. Anti-IL-17 Agents in the Treatment of Axial Spondyloarthritis. Immunotargets Ther 2021; 10:141-153. [PMID: 33977094 PMCID: PMC8104974 DOI: 10.2147/itt.s259126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Axial spondyloarthritis (axSpA) describes a group of chronic inflammatory rheumatic diseases primarily involving the axial skeleton. IL-17 is involved in the pathogenesis of numerous inflammatory diseases, including inflammatory arthritis. Until a few years ago, the only biological agents licensed for the treatment of axSpA and nr-axSpA were TNF inhibitors. However, as some patients did not respond to TNF inhibition or experienced secondary failure, the introduction of the first two IL-17 inhibitors (secukinumab [SEC] and ixekizumab [IXE]) has extended the treatment options, and there are now three others (bimekizumab, brodalumab and netakimab) in various stages of clinical development. The last ten years have seen the development of a number of therapeutic recommendations that aimed at improving the management of axSpA patients. The aim of this narrative review of the published literature concerning the role of IL-17 in the pathogenesis of SpA, and the role of IL-17 inhibitors in the treatment of axSpA, is to provide a comprehensive picture of the clinical efficacy and safety of the drugs themselves, and the treatment strategies recommended in the international guidelines.
Collapse
Affiliation(s)
- Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Carriero
- Rheumatology Institute of Lucania (IReL), Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
- Translational and Clinical Medicine, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Laura Boccassini
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, University School of Medicine, Milan, Italy
| | - Salvatore D’Angelo
- Rheumatology Institute of Lucania (IReL), Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| |
Collapse
|
31
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Novel approaches to develop biomarkers predicting treatment responses to TNF-blockers. Expert Rev Clin Immunol 2021; 17:331-354. [PMID: 33622154 DOI: 10.1080/1744666x.2021.1894926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Chronic inflammatory diseases (CIDs) cause significant morbidity and are a considerable burden for the patients in terms of pain, impaired function, and diminished quality of life. Important progress in CID treatment has been obtained with biological therapies, such as tumor-necrosis-factor blockers. However, more than a third of the patients fail to respond to these inhibitors and are exposed to the side effects of treatment, without the benefits. Therefore, there is a strong interest in developing tools to predict response of patients to biologics. Areas covered: The authors searched PubMed for recent studies on biomarkers for disease assessment and prediction of therapeutic responses, focusing on the effect of TNF blockers on immune responses in spondyloarthritis (SpA), and other CID, in particular rheumatoid arthritis and inflammatory bowel disease. Conclusions will be drawn about the possible development of predictive biomarkers for response to treatment. Expert opinion: No validated biomarker is currently available to predict treatment response in CID. New insight could be generated through the development of new bioinformatic modeling approaches to combine multidimensional biomarkers that explain the different genetic, immunological and environmental determinants of therapeutic responses.
Collapse
Affiliation(s)
- Ikram Mezghiche
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Université De Paris, Sorbonne Paris Cité, Paris, France
| | - Hanane Yahia-Cherbal
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Fondation AP-HP, Paris, France
| | - Lars Rogge
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France
| | - Elisabetta Bianchi
- Department of Immunology, Immunoregulation Unit, Institut Pasteur, Paris, France.,Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France
| |
Collapse
|
32
|
Kuca-Warnawin E, Janicka I, Bonek K, Kontny E. Modulatory Impact of Adipose-Derived Mesenchymal Stem Cells of Ankylosing Spondylitis Patients on T Helper Cell Differentiation. Cells 2021; 10:cells10020280. [PMID: 33573252 PMCID: PMC7912699 DOI: 10.3390/cells10020280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The domination of pro-inflammatory Th subsets (Th1, Th17) is characteristic of ankylosing spondylitis (AS). Mesenchymal stem cells (MSC) were reported to normalize Th imbalance, but whether MSCs from AS adipose tissue (AS/ASCs) possess such properties is unknown. We examined AS/ASCs' impact on Th-cell differentiation, using healthy donors ASCs (HD/ASCs) as a control. The assessment of the expression of transcription factors defining Th1 (T-bet), Th2 (GATA3), Th17 (RORc), and Treg (FoxP3) subsets by quantitative RT-PCR, the concentrations of subset-specific cytokines by ELISA, and Treg (CD4+CD25highFoxP3+) formation by flow cytometry, were performed in the co-cultures of ASCs with activated CD4+ T cells or peripheral blood mononuclear cells (PBMCs). AS/ASCs and HD/ASCs exerted similar immunomodulatory effects. Acting directly on CD4+ T cells, ASCs decreased the T-bet/GATA3 and RORc/FoxP3 ratios, diminished Treg formation, but increase IFNγ and IL-17AF production, while ASCs co-cultured with PBMCs enhanced Treg generation and reduced IFNγ release. ASCs failed to up-regulate the anti-inflammatory IL-10 and TGFβ. AS/ASCs' impact on allogeneic and autologous PBMCs was similar. In conclusion, to shift Th differentiation to a functional anti-inflammatory direction, ASCs require accessory cell support, whereas their direct effect may be pro-inflammatory. Because ASCs neither inhibit IL-17AF nor up-regulate anti-inflammatory cytokines, their usefulness for AS patients' treatment remains uncertain.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (I.J.); (E.K.)
- Correspondence: ; Tel.: +48-22-6-709-260
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (I.J.); (E.K.)
| | - Krzysztof Bonek
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland;
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (I.J.); (E.K.)
| |
Collapse
|
33
|
Papagoras C, Chrysanthopoulou A, Mitsios A, Ntinopoulou M, Tsironidou V, Batsali AK, Papadaki HA, Skendros P, Ritis K. IL-17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation toward bone-forming cells in ankylosing spondylitis. Eur J Immunol 2021; 51:930-942. [PMID: 33340091 DOI: 10.1002/eji.202048878] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease characterized by excessive bone formation. We investigated the presence of neutrophil extracellular traps (NETs) in AS and how they are involved in the osteogenic capacity of bone marrow mesenchymal stem cells (MSCs) through interleukin-17A (IL-17A). Peripheral neutrophils and sera were obtained from patients with active AS and healthy controls. NET formation and neutrophil/NET-associated proteins were studied using immunofluorescence, immunoblotting, qPCR, and ELISA. In vitro co-culture systems of AS NET structures and MSCs isolated from controls were deployed to examine the role of NETs in the differentiation of MSCs toward osteogenic cells. Analysis was performed using specific staining and qPCR. Neutrophils from patients with AS were characterized by enhanced formation of NETs carrying bioactive IL-17A and IL-1β. IL-17A-enriched AS NETs mediated the differentiation of MSCs toward bone-forming cells. The neutrophil expression of IL-17A was positively regulated by IL-1β. Blocking IL-1β signaling on neutrophils with anakinra or dismantling NETs using DNase-I disrupted osteogenesis driven by IL-17A-bearing NETs. These findings propose a novel role of neutrophils in AS-related inflammation, linking IL-17A-decorated NETs with the differentiation of MSCs toward bone-forming cells. Moreover, IL-1β triggers the expression of IL-17A on NETs offering an additional therapeutic target in AS.
Collapse
Affiliation(s)
- Charalampos Papagoras
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Mitsios
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Ntinopoulou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aristea K Batsali
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
| | - Helen A Papadaki
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece.,Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
34
|
Groen SS, Sinkeviciute D, Bay-Jensen AC, Thudium CS, Karsdal MA, Thomsen SF, Schett G, Nielsen SH. Exploring IL-17 in spondyloarthritis for development of novel treatments and biomarkers. Autoimmun Rev 2021; 20:102760. [PMID: 33485992 DOI: 10.1016/j.autrev.2021.102760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Spondyloarthritis (SpA) is an umbrella term describing a family of chronic inflammatory rheumatic diseases. These diseases are characterised by inflammation of the axial skeleton, peripheral joints, and entheseal insertion sites throughout the body which can lead to structural joint damage including formation of axial syndesmophytes and peripheral osteophytes. Genetic evidence, preclinical and clinical studies indicate a clear role of interleukin (IL)- 23 and IL-17 as mediators in SpA pathogenesis. Targeting the IL-23/-17 pathways seems an efficient strategy for treatment of SpA patients, and despite the remaining challenges the pathway holds great promise for further advances and improved therapeutic opportunities. Much research is focusing on serological markers and imaging strategies to correctly diagnose patients in the early stages of SpA. Biomarkers may facilitate personalised medicine tailored to each patient's specific disease to optimise treatment efficacy and to monitor therapeutic response. This narrative review focuses on the IL-17 pathway in SpA-related diseases with emphasis on its role in pathogenesis, current approved IL-17 inhibitors, and the need for biomarkers reflecting core disease pathways for early diagnosis and measurement of disease activity, prognosis, and response to therapy.
Collapse
Affiliation(s)
- Solveig Skovlund Groen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Dovile Sinkeviciute
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Department of Clinical Sciences Lund, University of Lund, Lund, Sweden
| | | | | | | | - Simon Francis Thomsen
- Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Signe Holm Nielsen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
35
|
The growing role of precision medicine for the treatment of autoimmune diseases; results of a systematic review of literature and Experts' Consensus. Autoimmun Rev 2020; 20:102738. [PMID: 33326854 DOI: 10.1016/j.autrev.2020.102738] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases (AIDs) share similar serological, clinical, and radiological findings, but, behind these common features, there are different pathogenic mechanisms, immune cells dysfunctions, and targeted organs. In this context, multiple lines of evidence suggest the application of precision medicine principles to AIDs to reduce the treatment failure. Precision medicine refers to the tailoring of therapeutic strategies to the individual characteristics of each patient, thus it could be a new approach for management of AIDS which considers individual variability in genes, environmental exposure, and lifestyle. Precision medicine would also assist physicians in choosing the right treatment, the best timing of administration, consequently trying to maximize drug efficacy, and, possibly, reducing adverse events. In this work, the growing body of evidence is summarized regarding the predictive factors for drug response in patients with AIDs, applying the precision medicine principles to provide high-quality evidence for therapeutic opportunities in improving the management of these patients.
Collapse
|
36
|
Xie J, Wang Z, Wang W. Semaphorin 4D Induces an Imbalance of Th17/Treg Cells by Activating the Aryl Hydrocarbon Receptor in Ankylosing Spondylitis. Front Immunol 2020; 11:2151. [PMID: 33013906 PMCID: PMC7505929 DOI: 10.3389/fimmu.2020.02151] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/07/2020] [Indexed: 02/05/2023] Open
Abstract
Objectives Semaphorin 4D (Sema4D) is constitutively expressed on T cells and osteoclasts, and regulates T cell proliferation and bone remodeling. In addition, several studies have shown that Sema4D is involved in the pathogenesis of autoimmunity. We undertook this study to investigate the mechanism by which Sema4D affects the pathogenic progress of ankylosing spondylitis (AS). Methods Soluble Sema4D (sSema4D) levels in serum were analyzed by enzyme-linked immunosorbent assay. The cell surface levels and transcripts of Sema4D were evaluated in CD4 + and CD19 + cells from the AS patients and healthy individuals. The mRNA expression levels were assessed by quantitative polymerase chain reaction (qPCR). The proportions of Treg cells and IL-17-producing T-cells (Th17 cells) differentiated from CD4 + T cells were analyzed by flow cytometric analysis. The aryl hydrocarbon receptor (AhR) agonistic effect of Sema4D was detected by analyzing the activation of downstream signaling pathways and target genes using Luciferase and EROD assay. Results Levels of sSema4D were elevated in both serum from AS patients, and clinical features markers were correlated with serum sSema4D levels. Sema4D facilitated CD4 + T cells proliferation and Th17 cells differentiation and inhibited Treg cells differentiation by enhancing RORγt expression and reducing Foxp3 expression, with increasing expression and secretion of IL-17 and IL-22. It induced the expression and activity of AhR target gene CYP1A1 and XRE reporter activity via interaction with CD72. Conclusion These findings indicate that Sema4D as a potent activator of T cells in the immune response contributes to the inflammation of AS by inducing imbalance in Th17 and Treg cell populations in an AhR-dependent manner, suggesting it is a crucial participant in AS pathogenesis.
Collapse
Affiliation(s)
- Jianmin Xie
- Department of Rheumatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zitao Wang
- Department of Rheumatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Wang
- Department of Rheumatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Tsukazaki H, Kaito T. The Role of the IL-23/IL-17 Pathway in the Pathogenesis of Spondyloarthritis. Int J Mol Sci 2020; 21:E6401. [PMID: 32899140 PMCID: PMC7504446 DOI: 10.3390/ijms21176401] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
Spondyloarthritis (SpA) is a subset of seronegative rheumatic-related autoimmune diseases that consist of ankylosing spondylitis (AS), psoriatic spondylitis (PsA), reactive spondylitis (re-SpA), inflammatory bowel disease (IBD)-associated spondylitis, and unclassifiable spondylitis. These subsets share clinical phenotypes such as joint inflammation and extra-articular manifestations (uveitis, IBD, and psoriasis [Ps]). Inflammation at the enthesis, where ligaments and tendons attach to bones, characterizes and distinguishes SpA from other types of arthritis. Over the past several years, genetic, experimental, and clinical studies have accumulated evidence showing that the IL-23/IL-17 axis plays a critical role in the pathogenesis of SpA. These discoveries include genetic association and the identification of IL-23- and IL-17-producing cells in the tissue of mouse models and human patients. In this review, we summarize the current knowledge of the pathomechanism by focusing on the IL-23/IL-17 pathway and examine the recent clinical studies of biological agents targeting IL-23 and IL-17 in the treatment of SpA.
Collapse
Affiliation(s)
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
38
|
Voruganti A, Bowness P. New developments in our understanding of ankylosing spondylitis pathogenesis. Immunology 2020; 161:94-102. [PMID: 32696457 PMCID: PMC7496782 DOI: 10.1111/imm.13242] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common immune‐mediated inflammatory arthritis with a strong genetic predisposition. We review recent data from genetic and animal studies highlighting the importance of Type 17 immune responses. Furthermore, the efficacy (or lack thereof) of different anti‐cytokine monoclonal antibodies has highlighted the diversity of Type 17 immune cells and cytokines critical to AS and related spondyloarthritis pathogenesis. Recent studies have strongly implicated the gut microbiome in AS. Finally, we propose that the local metabolic environment of the joint may have a key role in driving AS, and present a novel model of AS pathogenesis.
Collapse
Affiliation(s)
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science (NDORMS), Botnar Research Centre, University of Oxford, Headington, Oxford, UK
| |
Collapse
|
39
|
Copsel SN, Malek TR, Levy RB. Medical Treatment Can Unintentionally Alter the Regulatory T-Cell Compartment in Patients with Widespread Pathophysiologic Conditions. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2000-2012. [PMID: 32745461 DOI: 10.1016/j.ajpath.2020.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are non-redundant mediators of immune tolerance that are critical to prevent autoimmune disease and promote an anti-inflammatory tissue environment. Many individuals experience chronic diseases and physiologic changes associated with aging requiring long-term medication. Unfortunately, adverse effects accompany every pharmacologic intervention and may affect overall outcomes. We focus on medications typically prescribed during the treatment of prevalent chronic diseases and disorders, including cardiovascular disease, autoimmune disease, and menopausal symptoms, that affect >200 million individuals in the United States. Increasing studies continue to report that treatment of patients with estrogen, metformin, statins, vitamin D, and tumor necrosis factor blockers are unintentionally modulating the Treg compartment. Effects of these medications likely comprise direct and/or indirect interaction with Tregs via other immune and parenchymal populations. Differing and sometimes opposing effects on the Treg compartment have been observed using the same medication. The length of treatment, dosing regimen and stage of disease, patient age, ethnicity, and sex may account for such findings and determine the specific signaling pathways affected by the medication. Enhancing the Treg compartment can skew the patient's immune system toward an anti-inflammatory phenotype and therefore could provide unanticipated benefit. Currently, multiple medicines prescribed to large numbers of patients influence the Treg compartment; however, how such effects affect their disease outcome and long-term health remains unclear.
Collapse
Affiliation(s)
- Sabrina N Copsel
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Robert B Levy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
40
|
Shi H, Chen L, Ridley A, Zaarour N, Brough I, Caucci C, Smith JE, Bowness P. GM-CSF Primes Proinflammatory Monocyte Responses in Ankylosing Spondylitis. Front Immunol 2020; 11:1520. [PMID: 32765525 PMCID: PMC7378736 DOI: 10.3389/fimmu.2020.01520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/09/2020] [Indexed: 01/31/2023] Open
Abstract
Objectives: GM-CSF is a pro-inflammatory cytokine with multiple actions predominantly on myeloid cells. Enhanced GM-CSF expression by lymphocytes from patients with Ankylosing Spondylitis (AS) has recently been described, however, its potential pathogenic role(s) in AS are unknown. Methods: The effects of GM-CSF on TNF, IL-23, and CCL17 production by blood, PBMCs and isolated CD14+ monocytes from AS patients and healthy controls (HCs) were studied using ELISA. Serum CCL17 and GM-CSF and T cell GM-CSF production were studied in AS patients including pre-and on TNFi therapy. Results: GM-CSF markedly increased TNF production by LPS-stimulated whole blood, peripheral blood mononuclear cells (PBMC) and purified monocytes from AS patients, with 2 h GM-CSF exposure sufficient for monocyte "priming." Blocking of GM-CSF significantly reduced the production of TNF by whole blood from AS patients but not HCs. GM-CSF priming increased IL-23 production from LPS-stimulated AS and HC whole blood 5-fold, with baseline and stimulated IL-23 levels being significantly higher in AS whole blood. GM-CSF also stimulated CCL17 production from AS and HC blood and CCL17 levels were elevated in AS plasma. GM-CSF could be detected in plasma from 14/46 (30%) AS patients compared to 3/18 (17%) HC. Conclusion: We provide evidence that GM-CSF primes TNF and IL-23 responses in myeloid cells from AS patients and HC. We also show CCL17 levels, downstream of GM-CSF, were elevated in plasma samples of AS patients. Taken together these observations are supportive of GM-CSF neutralization as a potential novel therapeutic approach for the treatment of AS.
Collapse
Affiliation(s)
- Hui Shi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anna Ridley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Nancy Zaarour
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - India Brough
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Cherilyn Caucci
- Bioanalysis, Immunogenicity & Biomarkers, GlaxoSmithKline, Collegeville, PA, United States
| | - Julia E Smith
- Adaptive Immunity, GlaxoSmithKline, Stevenage, United Kingdom
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Lorenzin M, Ometto F, Ortolan A, Felicetti M, Favero M, Doria A, Ramonda R. An update on serum biomarkers to assess axial spondyloarthritis and to guide treatment decision. Ther Adv Musculoskelet Dis 2020; 12:1759720X20934277. [PMID: 32636944 PMCID: PMC7315656 DOI: 10.1177/1759720x20934277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
Axial spondyloarthritis (axSpA) is a group of debilitating, chronic, rheumatic conditions characterized by inflammation and new bone formation, mainly involving the spine and the sacroiliac joints. The lack of biomarkers in axSpA is well known. Despite significant treatment advances in recent years thanks to the introduction of drugs with a new mode of action, such as new biologic and targeted synthetic disease-modifying antirheumatic drugs, no relevant improvement in the identification of disease biomarkers has been achieved. Common parameters, such as erythrocyte sedimentation rate and C-reactive protein, which are routinely used to measure systemic inflammation, are the sole markers available to date and are not adequate to assess disease activity in all patients. The aim of this study is to review the most promising serum biomarkers that may help treatment decision in axSpA via a proper assessment of disease activity and identification of negative prognostic factors.
Collapse
Affiliation(s)
- Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine -DIMED, University of Padova, Padova, Italy
| | - Francesca Ometto
- Rheumatology Unit, Department of Medicine -DIMED, University of Padova, Padova, Italy
| | - Augusta Ortolan
- Rheumatology Unit, Department of Medicine -DIMED, University of Padova, Padova, Italy
| | - Mara Felicetti
- Rheumatology Unit, Department of Medicine -DIMED, University of Padova, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine -DIMED, University of Padova, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine -DIMED, University of Padova, Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine -DIMED, University of Padova, Via Giustiniani 2, Padova, 35128, Italy
| |
Collapse
|
42
|
Kondo M, Murakawa Y, Honda M, Yanagawa T, Nagasaki M, Moriyama M, Watanabe Y, Kakimaru H. A case of rheumatoid arthritis with multiple lung rheumatoid nodules successfully treated with tofacitinib. Mod Rheumatol Case Rep 2020; 5:1-5. [PMID: 33269655 DOI: 10.1080/24725625.2020.1777677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sporadic cases of rheumatoid nodules (RNs) in the lung during treatment with tumour necrosis factor (TNF) inhibitors have been reported, but no treatment has been established. Here, we report a case of symptomatic lung RNs refractory to abatacept (ABT) and intravenous cyclophosphamide (IVCY) that improved with tofacitinib (TOF) treatment. A 75-year-old Japanese woman with a 10-year history of rheumatoid arthritis (RA) presented with a cough and haemoptysis during treatment with etanercept (ETN). Radiographic examinations revealed multiple nodules that were diagnosed as lung RNs via biopsy. The ETN was discontinued and ABT followed by IVCY was introduced; however, neither was sufficiently effective against the lung RNs. Thereafter, TOF was started and the lung RNs improved rapidly. The precise mechanisms that induce RNs during treatment with TNF inhibitors are unknown. Cytokines (IL-23 and IL-6) are suspected to be involved. TOF may be a reasonable strategy for treating symptomatic lung RNs.
Collapse
Affiliation(s)
- Masahiro Kondo
- Department of Rheumatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Yohko Murakawa
- Department of Rheumatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Manabu Honda
- Department of Rheumatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Takashi Yanagawa
- Department of Pulmonary Medicine, National Hospital Organization Hamada Medical Center, Hamada, Shimane, Japan
| | - Makoto Nagasaki
- Department of Pathology, National Hospital Organization Hamada Medical Center, Hamada, Shimane, Japan
| | - Mayuko Moriyama
- Department of Rheumatology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Yohei Watanabe
- Department of Orthopedics, National Hospital Organization Hamada Medical Center, Hamada, Shimane, Japan
| | - Hiroyuki Kakimaru
- Department of Orthopedics, National Hospital Organization Hamada Medical Center, Hamada, Shimane, Japan
| |
Collapse
|
43
|
Immunological and oxidative stress biomarkers in Ankylosing Spondylitis patients with or without metabolic syndrome. Cytokine 2020; 128:155002. [DOI: 10.1016/j.cyto.2020.155002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
|
44
|
|
45
|
Defining the phenotype, pathogenesis and treatment of Crohn's disease associated spondyloarthritis. J Gastroenterol 2020; 55:667-678. [PMID: 32367294 PMCID: PMC7297835 DOI: 10.1007/s00535-020-01692-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 02/04/2023]
Abstract
Peripheral and axial spondyloarthritis are the most common extra-intestinal manifestations reported in patients with Crohn's disease. Despite the frequency of Crohn's disease associated spondyloarthritis, clinical diagnostic tools are variably applied in these cohorts and further characterization with validated spondyloarthritis disease activity indexes are needed. In addition, the pathogenesis of Crohn's disease associated spondyloarthritis is not well understood. Evidence of shared genetic, cellular, and microbial mechanisms underlying both Crohn's disease and spondyloarthritis highlight the potential for a distinct clinicopathologic entity. Existing treatment paradigms for Crohn's disease associated spondyloarthritis focus on symptom control and management of luminal inflammation. A better understanding of the underlying pathogenic mechanisms in Crohn's disease associated spondyloarthritis and the link between the gut microbiome and systemic immunity will help pave the way for more targeted and effective therapies. This review highlights recent work that has provided a framework for clinical characterization and pathogenesis of Crohn's disease associated spondyloarthritis and helps identify critical gaps that will help shape treatment paradigms.
Collapse
|
46
|
Park PR, Jo S, Jin SH, Kim TJ. MicroRNA-10b Plays a Role in Bone Formation by Suppressing Interleukin-22 in Ankylosing Spondylitis. JOURNAL OF RHEUMATIC DISEASES 2020. [DOI: 10.4078/jrd.2020.27.1.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Pu-Reum Park
- Department of Rheumatology, Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Sungsin Jo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - So-Hee Jin
- Department of Rheumatology, Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, Korea
| |
Collapse
|
47
|
Treg-promoted New Bone Formation Through Suppressing TH17 by Secreting Interleukin-10 in Ankylosing Spondylitis. Spine (Phila Pa 1976) 2019; 44:E1349-E1355. [PMID: 31348182 DOI: 10.1097/brs.0000000000003169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective single-center study. OBJECTIVE We want to know whether interleukin (IL)-10-secreting regulatory T cells (Treg) promote the new bone formation (NBF) through suppressing TH17 in ankylosing spondylitis (AS). SUMMARY OF BACKGROUND DATA NBF in AS is unknown. Since there are balances of bone remodeling in human body and proinflammatory helper T cells TH17 promoted bone resorption. METHODS Eighteen AS patients with or without NBF (both nine cases) and nine healthy individuals were selected and the demographic data, Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), MRI sacroiliitis score (MRISIS), and computer tomography sacroiliitis score (CTSIS) were recorded. Removed hip ligament tissue in the lesions after arthroplasty was collected and the lymphocytes and the peripheral blood mononuclear cells were prepared. Second, pathological section in hematoxylin-eosin stain were analyzed and flow cytometry and quantitative polymerase chain reaction analyses were carried out to detect the levels of TH17, Treg, IL-10, and nuclear factor (NF)-κB, and the relevance between them. The effect of Treg on TH17 was further analyzed by using Transwell coculturing. RESULTS Compared to AS patients without NBF, AS patients with NBF had significantly higher CTSIS and complications (P < 0.05 and 0.01, respectively), but significantly lower BASDAI (3.0 ± 0.4) and MRISIS (3.3 ± 0.8) (P < 0.01 and 0.05, respectively) and no acute inflammation in HE stain for hip joint. Compared to healthy donors, the ratio of TH17/Treg was significantly higher in AS patients without NBF and lower in AS patient with NBF (both P < 0.01) in flow cytometry analysis (FCA). Furthermore, TH17 significantly decreased after indirectly coculturing with Treg in FCA (P < 0.01). Finally, IL-10 had significantly higher mRNA expression in AS patients with NBF (P < 0.01), and NF-κB had significantly higher mRNA expression in AS patients without NBF (P < 0.05) than healthy donors. Only the mRNA expression of IL-10 was significantly correlated to the ratio of TH17/Treg (r = -0.93, P < 0.01). CONCLUSION Treg-induced NBF of AS through suppressing TH17 by secreting IL10 and declining of the ratio of TH17/Treg indicated the development of NBF. This is important not only for screening development of NBF, but also for control of NBF of AS by immune therapy. LEVEL OF EVIDENCE N/A.
Collapse
|
48
|
Lai NL, Zhang SX, Wang J, Zhang JQ, Wang CH, Gao C, Li XF. The Proportion of Regulatory T Cells in Patients with Ankylosing Spondylitis: A Meta-Analysis. J Immunol Res 2019; 2019:1058738. [PMID: 31772947 PMCID: PMC6854227 DOI: 10.1155/2019/1058738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/19/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Accumulating evidence indicates that regulatory T cells (Tregs) may be involved in the pathogenesis of ankylosing spondylitis (AS). As different markers have been used to identify Tregs, some studies on the proportions of Tregs in AS patients have generated considerable controversy. To clarify the status of Tregs in such patients, we determine the proportion changes of peripheral Tregs during development of the disease, with different cellular markers. METHODS We systematically searched Embase, PubMed, Cochrane, Web of Knowledge, FDA.gov, and Clinical Trials.gov for the studies reporting the proportion of Tregs in AS patients. Using the PRISMA guidelines, we performed a random-effects meta-analysis of the frequencies of peripheral Tregs defined in different ways. Inconsistency was evaluated using the I-squared index (I 2), and publication bias was assessed by examining funnel plot asymmetry using the Begger and Egger tests. RESULTS A total 29 studies involving 1732 participants were included in the meta-analysis. Their conclusions of using the diversity of Tregs surface markers were inconsistent with each other. No significant difference in the proportions of Tregs was evident regardless of the definitions used [-0.709, (-1.455, 0.037, p = 0.063), I 2 = 97.3%]. Six studies used "single CD25-positive" cells as Tregs, which revealed a significant increase in AS patients compared with healthy blood donors [0.736, (0.138, 1.334), p = 0.016, I 2 = 80.7%]. Notably, the proportions of "CD4+CD25+FOXP3+," "CD4+CD25highCD127low/-," or "CD4+CD25+CD127low" T cells were lower in AS patients [-2.856, (-4.645, -1.066), p = 0.002; -1.812, (-2.648, -0.977), p < 0.001; -1.12, (-1.605, -0.635), p < 0.001]. Tregs defined as "CD25high," "CD25bright," "CD25bright/highCD127low/-," "CD4+FOXP3+," "CD4+CD25highFOXP3+," and "CD4+CD25+CD127-" did not differ in proportion between AS patients and healthy blood donors. CONCLUSIONS The levels of Tregs varied based on the cellular identification markers used. The proportions of CD4+CD25+FOXP3+Tregs, CD4+CD25highCD127low/-, or CD4+CD25+CD127low in blood of AS patients were significantly decreased as compared with those in healthy blood donors, and our findings lend support to the idea that the Treg status of AS patients is important. And we recommend the above as the best definition of Tregs when evaluating the status of such patients.
Collapse
Affiliation(s)
- Na-Lin Lai
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Jia-Qian Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Cai-Hong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| |
Collapse
|
49
|
Abstract
Spondyloarthritis (SpA) is a term that refers to a group of inflammatory diseases that includes psoriatic arthritis, axial SpA and nonradiographic axial SpA, reactive arthritis, enteropathic arthritis and undifferentiated SpA. The disease subtypes share clinical and immunological features, including joint inflammation (peripheral and axial skeleton); skin, gut and eye manifestations; and the absence of diagnostic autoantibodies (seronegative). The diseases also share genetic factors. The aetiology of SpA is still the subject of research by many groups worldwide. Evidence from genetic, experimental and clinical studies has accumulated to indicate a clear role for the IL-17 pathway in the pathogenesis of SpA. The IL-17 family consists of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F, of which IL-17A is the best studied. IL-17A is a pro-inflammatory cytokine that also has the capacity to promote angiogenesis and osteoclastogenesis. Of the six family members, IL-17A has the strongest homology with IL-17F. In this Review, we discuss how IL-17A and IL-17F and their cellular sources might contribute to the immunopathology of SpA.
Collapse
|
50
|
Lorenzin M, Ortolan A, Felicetti M, Favero M, Vio S, Zaninotto M, Polito P, Cosma C, Scapin V, Lacognata C, Ramonda R. Serological Biomarkers in Early Axial Spondyloarthritis During 24-Months Follow Up (Italian Arm of Space Study). Front Med (Lausanne) 2019; 6:177. [PMID: 31440510 PMCID: PMC6692922 DOI: 10.3389/fmed.2019.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives: The study aimed to evaluate biomarkers facilitating early axial-spondyloarthritis (axSpA) diagnosis and disease activity and imaging indices correlated. Materials and Methods: Seventy-five patients with low back pain (LBP) (≥3 months, ≤2 years, onset ≤45 years) participating in the Italian arm of the SpondyloArthritis-Caught-Early (SPACE) study underwent a physical examination, questionnaires, laboratory tests, spine, and sacroiliac joints (SIJ) X-rays and magnetic resonance imaging (MRI) at baseline and during a 24-months follow-up. Two expert rheumatologists formulated axSpA diagnosis and assessed fulfillment of Assessment of SpondyloArthritis International Society (ASAS) criteria. Disease activity and physical functioning were assessed using imaging, clinical, and serological indices. Spine and SIJ MRI and X-rays were scored independently by 2 readers following the Spondyloarthritis Research Consortium of Canada (SPARCC), mSASSS, and mNY-criteria. Patients were classified in accordance to ASAS criteria as: 21 patients classified according to axSpA imaging arm; 29 patients classified according to axSpA clinical ± imaging arm; 25 patients not fulfilling ASAS criteria. Results: At baseline biomarker levels were not significantly increased in any of the patient groups. Instead, a significant decrease of all functional and disease activity indices from baseline to 24 months was observed in all the three groups. In the same period, there were no significant variation in the serological markers values within each group. The correlations between IL-17 and IL-23 and clinical and functional indices were not significant. On the other hand, significant correlations were found between IL-22 and Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Patient Global Score (BASG1), Health Assessment Questionnaire (HAQ), Visual Analog Scale (VAS pain); MMP3 and mSASSS; MMP3 and hsCRP. Conclusions: Although not significantly higher in any of the cohorts, IL-22, MMP3, and hsCRP values correlated with some disease activity indices and with mSASSS. Further studies are warranted to confirm these preliminary findings.
Collapse
Affiliation(s)
- Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Augusta Ortolan
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Mara Felicetti
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Stefania Vio
- Radiology Unit, University of Padova, Padova, Italy
| | | | - Pamela Polito
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Chiara Cosma
- Medicine of Laboratory, University of Padova, Padova, Italy
| | - Vanna Scapin
- Radiology Unit, University of Padova, Padova, Italy
| | | | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|