1
|
Alladina JW, Giacona FL, Haring AM, Hibbert KA, Medoff BD, Schmidt EP, Thompson T, Maron BA, Alba GA. Circulating Biomarkers of Endothelial Dysfunction Associated With Ventilatory Ratio and Mortality in ARDS Resulting From SARS-CoV-2 Infection Treated With Antiinflammatory Therapies. CHEST CRITICAL CARE 2024; 2:100054. [PMID: 39035722 PMCID: PMC11259037 DOI: 10.1016/j.chstcc.2024.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND The association of plasma biomarkers and clinical outcomes in ARDS resulting from SARS-CoV-2 infection predate the evidence-based use of immunomodulators. RESEARCH QUESTION Which plasma biomarkers are associated with clinical outcomes in patients with ARDS resulting from SARS-CoV-2 infection treated routinely with immunomodulators? STUDY DESIGN AND METHODS We collected plasma from patients with ARDS resulting from SARS-CoV-2 infection within 24 h of admission to the ICU between December 2020 and March 2021 (N = 69). We associated 16 total biomarkers of inflammation (eg, IL-6), coagulation (eg, D-dimer), epithelial injury (eg, surfactant protein D), and endothelial injury (eg, angiopoietin-2) with the primary outcome of in-hospital mortality and secondary outcome of ventilatory ratio (at baseline and day 3). RESULTS Thirty patients (43.5%) died within 60 days. All patients received corticosteroids and 6% also received tocilizumab. Compared with survivors, nonsurvivors demonstrated a higher baseline modified Sequential Organ Failure Assessment score (median, 8.5 [interquartile range (IQR), 7-9] vs 7 [IQR, 5-8]); P = .004), lower Pao2 to Fio2 ratio (median, 153 [IQR, 118-182] vs 184 [IQR, 142-247]; P = .04), and higher ventilatory ratio (median, 2.0 [IQR, 1.9-2.3] vs 1.5 [IQR, 1.4-1.9]; P < .001). No difference was found in inflammatory, coagulation, or epithelial biomarkers between groups. Nonsurvivors showed higher median neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) levels (median, 8.4 ng/mL [IQR, 7.0-11.2 ng/mL] vs 6.9 ng/mL [IQR, 5.5-8.0 ng/mL]; P = .0025), von Willebrand factor domain A2 levels (8.7 ng/mL [IQR, 7.9-9.7 ng/mL] vs 6.5 ng/mL [IQR, 5.7-8.7 ng/mL]; P = .007), angiopoietin-2 levels (9.0 ng/mL [IQR, 7.9-14.1 ng/mL] vs 7.0 ng/mL [IQR, 5.6-10.6 ng/mL]; P = .01), and syndecan-1 levels (15.9 ng/mL [IQR, 14.5-17.5 ng/mL] vs 12.6 ng/mL [IQR, 10.5-16.1 ng/mL]; P = .01). Only NEDD9 level met the adjusted threshold for significance (P < .003). Plasma NEDD9 level was associated with 60-day mortality (adjusted OR, 9.7; 95% CI, 1.6-60.4; P = .015). Syndecan-1 level correlated with both baseline (ρ = 0.4; P = .001) and day 3 ventilatory ratio (ρ = 0.5; P < .001). INTERPRETATION Biomarkers of inflammation, coagulation, and epithelial injury were not associated with clinical outcomes in a small cohort of patients with ARDS uniformly treated with immunomodulators. However, endothelial biomarkers, including plasma NEDD9, were associated with 60-day mortality.
Collapse
Affiliation(s)
- Jehan W Alladina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Francesca L Giacona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Alexis M Haring
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Bradley A Maron
- Department of Medicine; University of Maryland School of Medicine, Baltimore, University of Maryland-Institute for Health Computing, Bethesda, MD
| | - George A Alba
- Division of Pulmonary and Critical Care Medicine, Bethesda, MD, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
2
|
Camilli M, Viscovo M, Felici T, Maggio L, Ballacci F, Carella G, Bonanni A, Lamendola P, Tinti L, Di Renzo A, Coarelli G, Galli E, Liuzzo G, Burzotta F, Montone RA, Sorà F, Sica S, Hohaus S, Lanza GA, Crea F, Lombardo A, Minotti G. Inflammation and acute cardiotoxicity in adult hematological patients treated with CAR-T cells: results from a pilot proof-of-concept study. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:18. [PMID: 38532515 DOI: 10.1186/s40959-024-00218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
AIMS Chimeric Antigen Receptor-T (CAR-T) cell infusion is a rapidly evolving antitumor therapy; however, cardiovascular (CV) complications, likely associated with cytokine release syndrome (CRS) and systemic inflammation, have been reported to occur. The CARdio-Tox study aimed at elucidating incidence and determinants of cardiotoxicity related to CAR-T cell therapy. METHODS Patients with blood malignancies candidate to CAR-T cells were prospectively evaluated by echocardiography at baseline and 7 and 30 days after infusion. The study endpoints were i) incidence of cancer therapy-related cardiac dysfunction (CTRCD), CTRCD were also balanced for any grade CRS, but CTRCD occurred of Cardiology Guidelines on Cardio-Oncology (decrements of left ventricular ejection fraction (LVEF) or global longitudinal strain (GLS) and/or elevations of cardiac biomarkers (high sensitivity troponin I, natriuretic peptides) and ii), correlations of echocardiographic metrics with inflammatory biomarkers. RESULTS Incidence of CTRCD was high at 7 days (59,3%), particularly in subjects with CRS. The integrated definition of CTRCD allowed the identification of the majority of cases (50%). Moreover, early LVEF and GLS decrements were inversely correlated with fibrinogen and interleukin-2 receptor levels (p always ≤ 0.01). CONCLUSIONS There is a high incidence of early CTRCD in patients treated with CAR-T cells, and a link between CTRCD and inflammation can be demonstrated. Dedicated patient monitoring protocols are advised.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Marcello Viscovo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tamara Felici
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Maggio
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federico Ballacci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Carella
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Priscilla Lamendola
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Di Renzo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Coarelli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eugenio Galli
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Burzotta
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rocco Antonio Montone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Federica Sorà
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simona Sica
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefan Hohaus
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Minotti
- University Campus Bio-Medico, Rome, Italy
- Università e Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
3
|
Szabó BG, Reményi P, Tasnády S, Korózs D, Gopcsa L, Réti M, Várkonyi A, Sinkó J, Lakatos B, Szlávik J, Bekő G, Bobek I, Vályi-Nagy I. Extracorporeal Photopheresis as a Possible Therapeutic Approach for Adults with Severe and Critical COVID-19 Non-Responsive to Standard Treatment: A Pilot Investigational Study. J Clin Med 2023; 12:5000. [PMID: 37568402 PMCID: PMC10420323 DOI: 10.3390/jcm12155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Background: The optimal approach for adult patients hospitalized with severe and critical coronavirus disease 2019 (COVID-19), non-responsive to antiviral and immunomodulatory drugs, is not well established. Our aim was to evaluate feasibility and safety of extracorporeal photopheresis (ECP) in this setting. Methods: A prospective, single-center investigational study was performed between 2021 and 2022 at a tertiary referral center for COVID-19. Patients diagnosed with COVID-19 were screened, and cases with severe or critical disease fulfilling pre-defined clinical and biochemical criteria of non-response for >5 days, despite remdesivir, dexamethasone and immunomodulation (tocilizumab, baricitinib, ruxolitinib), were consecutively enrolled. After patient inclusion, two ECP sessions on two consecutive days per week for 2 weeks were applied. Patients were followed-up per protocol from study inclusion, and clinical, virological and radiological outcomes were assessed at the end of treatment (EOT) +28 days. Results: A total of seven patients were enrolled. At inclusion, four out of seven (57.1%) were admitted to the ICU, all patients had ongoing cytokine storm. Additionally, 3/7 (42.9%) had radiological progression on chest CT. At EOT+28 days, 2/7 (28.6%) patients died due to non-ECP-related causes. Among the survivors, no additional requirement for intensive care unit admission or radiological progression was observed, and invasive mechanical ventilation could be weaned off in 1/5 (20.0%). All patients achieved whole-blood SARS-CoV-2 RNAemia clearance, while 3/7 (42.9%) no longer showed detectable respiratory SARS-CoV-2 RNA. According to immune biomarker profiling, ECP mainly facilitated a decrease in plasma IL-6 and IL-17A levels, as well as the physiological regeneration of peripheral blood immunocyte subpopulations, notably CD8+/CD45RO+ memory T-cells. No safety signals were identified. Conclusions: ECP appears to be a safe and feasible option for adults hospitalized with severe or critical COVID-19 who do not respond to pharmacological interventions. Further trial data are warranted to assess its optimal use. Trial registration: ClinicalTrials.gov NCT05882331 (retrospectively registered).
Collapse
Affiliation(s)
- Bálint Gergely Szabó
- Departmental Group of Infectious Diseases, Department of Haematology and Internal Medicine, Semmelweis University, H-1097 Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - Péter Reményi
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - Szabolcs Tasnády
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - Dorina Korózs
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - László Gopcsa
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - Marienn Réti
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - Andrea Várkonyi
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - János Sinkó
- Departmental Group of Infectious Diseases, Department of Haematology and Internal Medicine, Semmelweis University, H-1097 Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - Botond Lakatos
- Departmental Group of Infectious Diseases, Department of Haematology and Internal Medicine, Semmelweis University, H-1097 Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - János Szlávik
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - Gabriella Bekő
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - Ilona Bobek
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| | - István Vályi-Nagy
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Albert Florian út 5–7., H-1097 Budapest, Hungary
| |
Collapse
|
4
|
Yamaya M, Kikuchi A, Sugawara M, Nishimura H. Anti-inflammatory effects of medications used for viral infection-induced respiratory diseases. Respir Investig 2023; 61:270-283. [PMID: 36543714 PMCID: PMC9761392 DOI: 10.1016/j.resinv.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Respiratory viruses like rhinovirus, influenza virus, respiratory syncytial virus, and coronavirus cause several respiratory diseases, such as bronchitis, pneumonia, pulmonary fibrosis, and coronavirus disease 2019, and exacerbate bronchial asthma, chronic obstructive pulmonary disease, bronchiectasis, and diffuse panbronchiolitis. The production of inflammatory mediators and mucin and the accumulation of inflammatory cells have been reported in patients with viral infection-induced respiratory diseases. Interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor, and regulated on activation normal T-cell expressed and secreted are produced in the cells, including human airway and alveolar epithelial cells, partly through the activation of toll-like receptors, nuclear factor kappa B and p44/42 mitogen-activated protein kinase. These mediators are associated with the development of viral infection-induced respiratory diseases through the induction of inflammation and injury in the airway and lung, airway remodeling and hyperresponsiveness, and mucus secretion. Medications used to treat respiratory diseases, including corticosteroids, long-acting β2-agonists, long-acting muscarinic antagonists, mucolytic agents, antiviral drugs for severe acute respiratory syndrome coronavirus 2 and influenza virus, macrolides, and Kampo medicines, reduce the production of viral infection-induced mediators, including cytokines and mucin, as determined in clinical, in vivo, or in vitro studies. These results suggest that the anti-inflammatory effects of these medications on viral infection-induced respiratory diseases may be associated with clinical benefits, such as improvements in symptoms, quality of life, and mortality rate, and can prevent hospitalization and the exacerbation of chronic obstructive pulmonary disease, bronchial asthma, bronchiectasis, and diffuse panbronchiolitis.
Collapse
Affiliation(s)
- Mutsuo Yamaya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan; Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Akiko Kikuchi
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Mitsuru Sugawara
- Department of Otolaryngology, Tohoku Kosai Hospital, Sendai 980-0803, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| |
Collapse
|
5
|
Koike-Ieki M, Kagoya R, Toma-Hirano M, Sasajima Y, Ito K. Improvement of eosinophilic chronic rhinosinusitis after infection with severe acute respiratory syndrome corona virus 2 during dupilumab therapy: A case report. FRONTIERS IN ALLERGY 2023; 4:1053777. [PMID: 36819831 PMCID: PMC9932033 DOI: 10.3389/falgy.2023.1053777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS) is an intractable type 2 inflammatory disease of the paranasal sinuses that persists even after endoscopic sinus surgery (ESS) and systemic corticosteroid therapy. Dupilumab, a monoclonal antibody against the shared receptor components of interleukin (IL)-4 and IL-13, is a novel and effective treatment option for ECRS. Herein, an atypical case of ECRS that improved after infection with severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) during dupilumab therapy is reported. A 40-year-old man with a history of ESS for ECRS visited our hospital with complaints of nasal congestion and dysosmia. Nasal endoscopy revealed bilateral nasal polyps occupying the nasal cavity. Computed tomography (CT) revealed a soft tissue density lesion filling all sinuses on both sides. Based on these findings, ECRS recurrence was confirmed; however, 3 years of subsequent corticosteroid therapy did not improve disease activity. Accordingly, dupilumab therapy was initiated, although 6 months of therapy resulted in only slight improvement in ECRS. Eight months after the initiation of dupilumab therapy, the patient was infected with SARS-CoV-2; thereafter, he noticed an improvement in smell. Nasal endoscopy and sinus CT revealed a marked reduction in nasal polyps and soft tissue density lesions of the sinuses, respectively. With continued dupilumab therapy, no re-exacerbation of ECRS was confirmed at the 6-month follow-up from SARS-CoV-2 infection. Currently, there are no reports describing the impact of SARS-CoV-2 infection on ECRS. As such, careful follow-up and accumulation of cases are necessary.
Collapse
Affiliation(s)
- Mariko Koike-Ieki
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, Tokyo, Japan
| | - Ryoji Kagoya
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, Tokyo, Japan,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Correspondence: Ryoji Kagoya
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, Tokyo, Japan
| | - Yuko Sasajima
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ken Ito
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
6
|
An impedimetric immunosensor based on PAMAM decorated electrospun polystyrene fibers for detection of interleukin-10 cytokine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Alshammary AF, Alsughayyir JM, Alharbi KK, Al-Sulaiman AM, Alshammary HF, Alshammary HF. T-Cell Subsets and Interleukin-10 Levels Are Predictors of Severity and Mortality in COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:852749. [PMID: 35572964 PMCID: PMC9096099 DOI: 10.3389/fmed.2022.852749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023] Open
Abstract
Background Many COVID-19 patients reveal a marked decrease in their lymphocyte counts, a condition that translates clinically into immunodepression and is common among these patients. Outcomes for infected patients vary depending on their lymphocytopenia status, especially their T-cell counts. Patients are more likely to recover when lymphocytopenia is resolved. When lymphocytopenia persists, severe complications can develop and often lead to death. Similarly, IL-10 concentration is elevated in severe COVID-19 cases and may be associated with the depression observed in T-cell counts. Accordingly, this systematic review and meta-analysis aims to analyze T-cell subsets and IL-10 levels among COVID-19 patients. Understanding the underlying mechanisms of the immunodepression observed in COVID-19, and its consequences, may enable early identification of disease severity and reduction of overall morbidity and mortality. Methods A systematic search was conducted covering PubMed MEDLINE, Scopus, Web of Science, and EBSCO databases for journal articles published from December 1, 2019 to March 14, 2021. In addition, we reviewed bibliographies of relevant reviews and the medRxiv preprint server for eligible studies. Our search covered published studies reporting laboratory parameters for T-cell subsets (CD4/CD8) and IL-10 among confirmed COVID-19 patients. Six authors carried out the process of data screening, extraction, and quality assessment independently. The DerSimonian-Laird random-effect model was performed for this meta-analysis, and the standardized mean difference (SMD) and 95% confidence interval (CI) were calculated for each parameter. Results A total of 52 studies from 11 countries across 3 continents were included in this study. Compared with mild and survivor COVID-19 cases, severe and non-survivor cases had lower counts of CD4/CD8 T-cells and higher levels of IL-10. Conclusion Our findings reveal that the level of CD4/CD8 T-cells and IL-10 are reliable predictors of severity and mortality in COVID-19 patients. The study protocol is registered with the International Prospective Register of Systematic Reviews (PROSPERO); registration number CRD42020218918. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020218918, identifier: CRD42020218918.
Collapse
Affiliation(s)
- Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher M. Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid K. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Haifa F. Alshammary
- College of Applied Medical Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | | |
Collapse
|
8
|
Kocherlakota C, Nagaraju B, Arjun N, Srinath A, Kothapalli KSD, Brenna JT. Inhalation of nebulized omega-3 fatty acids mitigate LPS-induced acute lung inflammation in rats: Implications for treatment of COPD and COVID-19. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102426. [PMID: 35381532 PMCID: PMC8964507 DOI: 10.1016/j.plefa.2022.102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Many current treatment options for lung inflammation and thrombosis come with unwanted side effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and antithrombotic. O3FA are always administered orally and occasionally by intravenous (IV) infusion. The main goal of this study is to determine if O3FA administered by inhalation of a nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats. Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour post-injection, rats received nebulized treatments consisting of egg lecithin emulsified O3, Budesonide and Montelukast, and blends of O3 and Melatonin or Montelukast or Cannabidiol; O3 was in the form of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines were determined in n = 3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis severity scores half or less than that of the disease control (Cd) treated with LPS and saline only inhalation. IL-6, TNF-α, TGF-β, and IL-10 were attenuated in all O3FA groups. IL-1β was attenuated in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed. These preclinical data suggest that O3FA formulations should be further investigated as treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic obstructive pulmonary disease, lung cancer and acute respiratory distress such as COVID-19.
Collapse
Affiliation(s)
| | - Banda Nagaraju
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Narala Arjun
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Akula Srinath
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| |
Collapse
|
9
|
Narayanan P, Nair S, Balwani M, Malinis M, Mistry P. The clinical spectrum of SARS-CoV-2 infection in Gaucher disease: Effect of both a pandemic and a rare disease that disrupts the immune system. Mol Genet Metab 2022; 135:115-121. [PMID: 34412940 PMCID: PMC8361210 DOI: 10.1016/j.ymgme.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The impact of SARS-CoV-2 in rare disease populations has been underreported. Gaucher disease (GD) is a prototype rare disease that shares with SARS-CoV-2 a disruption of the lysosomal pathway. MATERIALS-METHODS Retrospective analysis of 11 patients with Type 1 GD who developed COVID-19 between March 2020 and March 2021. RESULTS Seven male and 4 female patients with Type 1 GD developed COVID-19. One was a pediatric patient (8 years old) while the remainder were adults, median age of 44 years old (range 21 to 64 years old). Two patients required hospitalization though none required intensive care or intubation. All 11 patients recovered from COVID-19 and there were no reported deaths. CONCLUSIONS Our case series suggests that GD patients acquired COVID-19 at a similar frequency as the general population, though experienced a milder overall course despite harboring underlying immune system dysfunction and other known co-morbidities that confer high risk of adverse outcomes from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Praveena Narayanan
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America.
| | - Shiny Nair
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - Maricar Malinis
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America.
| | - Pramod Mistry
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States of America.
| |
Collapse
|
10
|
Ponthieux F, Dauby N, Maillart E, Fils JF, Smet J, Claus M, Besse-Hammer T, Bels DD, Corazza F, Nagant C. Tocilizumab-Induced Unexpected Increase of Several Inflammatory Cytokines in Critically Ill COVID-19 Patients: The Anti-Inflammatory Side of IL-6. Viral Immunol 2022; 35:60-70. [PMID: 35085462 DOI: 10.1089/vim.2021.0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Early evidence during the coronavirus disease 2019 (COVID-19) pandemic indicated high levels of interleukin (IL)-6 in patients with severe COVID-19. This led to the off-label use of tocilizumab (TCZ) during the first wave of the pandemic. While the monoclonal antibody blocks IL-6 pathway, its effect on other inflammatory cytokines remains poorly described. To better understand the effect of TCZ on the biological inflammatory profile, we monitored a large panel of inflammatory cytokines in critically ill COVID-19 patients receiving off-label TCZ. Twenty-three patients with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were included in the study, among which 15 patients received TCZ and 8 patients did not. Serum samples were collected for 8 days, before and following TCZ administration or hospital admission for the control group. Serum profile of 12 cytokines (IL-1β, -2, -4, -6, -8, -10, -12, -13, -17, -18, tumor necrosis factor α (TNF-α), interferon-gamma (IFN-γ), and sIL-6R were assessed in these two groups. Although the increased IL-6 concentrations after TCZ infusion were expected, we observed an unexpected increase in IL-1β, -2, -4, -10, -12p70, -18, and sIL-6R levels in the treated patients with maximal values reaching 2 to 4 days after TCZ. In contrast, no change in cytokine levels was observed in the control group. Our results suggested that some inflammatory pathways escape IL-6R blockade and even appeared amplified. This finding highlights an old observation of the anti-inflammatory effects of IL-6 as already suggested over 20 years ago. Clinical Trial Registration number: NCT04346017.
Collapse
Affiliation(s)
- Fanny Ponthieux
- Immunology Department, LHUB-ULB, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Dauby
- Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Evelyne Maillart
- Department of Infectious Disease, Brugmann University Hospital, Brussels, Belgium
| | | | - Julie Smet
- Immunology Department, LHUB-ULB, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Claus
- Department of Intensive Care, Centre Hospitalier Universitaire Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - David De Bels
- Department of Intensive Care, Brugmann University Hospital, Brussels, Belgium
| | - Francis Corazza
- Immunology Department, LHUB-ULB, Université libre de Bruxelles (ULB), Brussels, Belgium
- Laboratory of Translational Research, Brugmann University Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Carole Nagant
- Immunology Department, LHUB-ULB, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Wang J, Wang L, Zhou H, Liang XD, Zhang MT, Tang YX, Wang JH, Mao JL. The isolation, structural features and biological activities of polysaccharide from Ligusticum chuanxiong: A review. Carbohydr Polym 2021; 285:118971. [DOI: 10.1016/j.carbpol.2021.118971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
|
12
|
Rouhani SJ, Trujillo JA, Pyzer AR, Yu J, Fessler J, Cabanov A, Higgs EF, Cron KR, Zha Y, Lu Y, Bloodworth JC, Abasiyanik MF, Okrah S, Flood BA, Hatogai K, Leung MY, Pezeshk A, Kozloff L, Reschke R, Strohbehn GW, Chervin CS, Kumar M, Schrantz S, Madariaga ML, Beavis KG, Yeo KTJ, Sweis RF, Segal J, Tay S, Izumchenko E, Mueller J, Chen LS, Gajewski TF. Severe COVID-19 infection is associated with aberrant cytokine production by infected lung epithelial cells rather than by systemic immune dysfunction. RESEARCH SQUARE 2021:rs.3.rs-1083825. [PMID: 34845442 PMCID: PMC8629200 DOI: 10.21203/rs.3.rs-1083825/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
Collapse
Affiliation(s)
- Sherin J Rouhani
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jonathan A Trujillo
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Athalia R Pyzer
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jessica Fessler
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Alexandra Cabanov
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Emily F Higgs
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Kyle R Cron
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Yuanyuan Zha
- The Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637
| | - Yihao Lu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637
| | - Jeffrey C Bloodworth
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | - Susan Okrah
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Blake A Flood
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Ken Hatogai
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Michael Yk Leung
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Apameh Pezeshk
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Lara Kozloff
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Robin Reschke
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Garth W Strohbehn
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Carolina Soto Chervin
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Madan Kumar
- Department of Pediatrics, Section of Infectious Diseases, University of Chicago
| | - Stephen Schrantz
- Department of Medicine, Section of Infectious Diseases, University of Chicago
| | | | - Kathleen G Beavis
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Kiang-Teck J Yeo
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Randy F Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jeremy Segal
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jeffrey Mueller
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Lin S Chen
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| |
Collapse
|
13
|
Cytokine signature and COVID-19 prediction models in the two waves of pandemics. Sci Rep 2021; 11:20793. [PMID: 34675240 PMCID: PMC8531346 DOI: 10.1038/s41598-021-00190-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
In Europe, multiple waves of infections with SARS-CoV-2 (COVID-19) have been observed. Here, we have investigated whether common patterns of cytokines could be detected in individuals with mild and severe forms of COVID-19 in two pandemic waves, and whether machine learning approach could be useful to identify the best predictors. An increasing trend of multiple cytokines was observed in patients with mild or severe/critical symptoms of COVID-19, compared with healthy volunteers. Linear Discriminant Analysis (LDA) clearly recognized the three groups based on cytokine patterns. Classification and Regression Tree (CART) further indicated that IL-6 discriminated controls and COVID-19 patients, whilst IL-8 defined disease severity. During the second wave of pandemics, a less intense cytokine storm was observed, as compared with the first. IL-6 was the most robust predictor of infection and discriminated moderate COVID-19 patients from healthy controls, regardless of epidemic peak curve. Thus, serum cytokine patterns provide biomarkers useful for COVID-19 diagnosis and prognosis. Further definition of individual cytokines may allow to envision novel therapeutic options and pave the way to set up innovative diagnostic tools.
Collapse
|