1
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
2
|
Taher AY, Alizadeh M, Aslan Y. The covalent immobilization of β-galactosidase from Aspergillus oryzae and alkaline protease from Bacillus licheniformis on amino-functionalized multi-walled carbon nanotubes in milk. Heliyon 2024; 10:e32223. [PMID: 38873691 PMCID: PMC11170143 DOI: 10.1016/j.heliyon.2024.e32223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
This study aimed was to covalently immobilize β-galactosidase from Aspergillus oryzae and protease from Bacillus licheniformis on amino-functionalized multi-walled carbon nanotubes. In this study, a two-level factorial design was employed to investigate the impact of seven continuous variables (activation pH, glutaraldehyde molarity, activation time (0-8 h), buffer solution pH (8-0), buffer solution molarity, MWCNT-NH 2 -glutaraldehyde quantity, and stabilization time (0-180 h)) on the immobilization efficiency and enzymatic activity of protease and β-galactosidase. Furthermore, the effect of time on the percentage of enzymatic activity was examined during specific intervals (24, 48, 72, 96, and 120 h) of the immobilization process. The analysis of variance results for protease enzymatic activity revealed a notable influence of the seven variables on immobilization efficiency and enzymatic activity. Additionally, the findings indicate that activation time, buffer pH, MWCNT-NH 2 -glutaraldehyde quantity, and stabilization time significantly affect the activity of the protease enzyme. The interplay between buffer pH and stabilization time is also significant. Indeed, both activation time and the quantity of MWCNT-NH 2 -glutaraldehyde exert a reducing effect on enzyme activity. Notably, the influence of MWCNT-NH 2 -glutaraldehyde quantity is more significant (p < 0.05). In terms of beta-galactosidase enzymatic activity, the study results highlight that among the seven variables considered, only the glutaraldehyde molarity, activation time, and the interplay of activation time and the quantity of MWCNT-NH 2 -glutaraldehyde can exert a statistically significant positive impact on the enzyme's activity (p < 0.05). The combination of activation time and buffer solution molarity, as well as the interactive effect of buffer pH and MWCNT-NH2-glutaraldehyde, can lead to a significant improvement in the stabilization efficiency of the protease of carbon nanotubes. The analysis of variance results demonstrated that the efficiency of covalently immobilizing β-galactosidase from Aspergillus oryzae on amino-functionalized multi-walled carbon nanotubes is influenced by the molarity of glutaraldehyde, buffer pH, stabilization time, and the interplay of activation time + buffer pH, buffer pH + activation time, activation time + buffer molarity, and glutaraldehyde molarity + MWCNT-NH 2 -glutaraldehyde (p < 0.05). Through the optimization and selection of optimal formulations, the obtained results indicate enzyme activities and stabilization efficiencies of 64.09 % ± 72.63 % and 65.96 % ± 71.77 % for protease and beta-galactosidase, respectively. Moreover, increasing the enzyme stabilization time resulted in a reduction of enzyme activity. Furthermore, an increase in pH, temperature, and the duration of milk storage passing through the enzyme-immobilized carbon nanotubes led to a decrease in enzyme stabilization efficiency, and lactose hydrolysis declined progressively over 8-h. Hence, the covalent immobilization of β-galactosidase from Aspergillus oryzae and protease from Bacillus licheniformis onto amino-functionalized multi-walled carbon nanotubes is anticipated to be achievable for milk applications.
Collapse
Affiliation(s)
- Alan Yaseen Taher
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Alizadeh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Yakup Aslan
- Siirt University, Faculty of Engineering, Department of Food Engineering, Turkey
| |
Collapse
|
3
|
Li Z, Yu F. Recent Advances in Lycopene for Food Preservation and Shelf-Life Extension. Foods 2023; 12:3121. [PMID: 37628120 PMCID: PMC10453541 DOI: 10.3390/foods12163121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, there has been increasing concern about the safety of additives used to extend the shelf-life of food products. As a result, lycopene, a natural phytochemical compound, has attracted attention, as it has been demonstrated to be a potential alternative to traditional artificial antioxidants, with significant health benefits when applied to food preservation. Based on this, this review introduces the specific forms of lycopene currently used as an antioxidant in foods, both in its naturally occurring forms in fruits and vegetables and in artificially added forms involving technologies such as composite coating, active film packaging, emulsion, and microcapsules. In addition, it also provides a comprehensive summary of the effects and progress of lycopene in the preservation of different types of food products, such as meat, seafood, oil, dairy products, fruits, and vegetables, in the last decade. At last, it also points out the limitations of lycopene, including its insolubility in water, dark color, and high sensitivity to heat or light, as well as the potential solutions to load lycopene on suitable carriers, such as combining lycopene with antimicrobial substances or other actives, in order to broaden its applications as an antioxidant in future foods.
Collapse
Affiliation(s)
- Zhixi Li
- Haide College, Ocean University of China, Qingdao 266100, China;
| | - Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China;
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Tagyan AI, Yasser MM, Mousa AM, Alkhalifah DHM, Hozzein WN, Marzouk MA. Potential Application of Innovative Aspergillus terreus/ Sodium Alginate Composite Beads as Eco-Friendly and Sustainable Adsorbents for Alizarin Red S Dye: Isotherms and Kinetics Models. Microorganisms 2023; 11:1135. [PMID: 37317108 DOI: 10.3390/microorganisms11051135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Fungi were used as one of the most common bioremediation methods. From this perspective, our study highlights the optimization of Alizarin Red S (ARS) dye adsorption performance for the sodium alginate (SA) by using the fungus Aspergillus terreus (A. terreus) to form a composite bead and the possibility of its reusability. This was accomplished by mixing SA with different ratios of biomass powder of A. terreus, including 0%, 10%, 20%, 30%, and 40%, to form composite beads of A. terreus/SA-0%, A. terreus/SA-10%, A. terreus/SA-20%, A. terreus/SA-30%, and A. terreus/SA-40%, respectively. The ARS adsorption characteristics of these composite mixtures were analyzed at various mass ratios, temperatures, pH values, and initial concentrations. Moreover, sophisticated techniques, such as scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), were employed to detect the morphological and chemical properties of this composite, respectively. The experimental results revealed that A. terreus/SA-20% composite beads have the highest adsorption capacity of 188 mg/g. Its optimum adsorption conditions were achieved at 45 ∘C and pH 3. Moreover, the ARS adsorption was well explained by the Langmuir isotherm (qm = 192.30 mg/g) and pseudo-second-order and intra-particle diffusion kinetics. The SEM and FTIR findings corroborated the superior uptake of A. terreus/SA-20% composite beads. Lastly, the A. terreus/SA-20% composite beads can be employed as an eco-friendly and sustainable alternative to other common adsorbents for ARS.
Collapse
Affiliation(s)
- Aya I Tagyan
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Manal M Yasser
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed M Mousa
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael N Hozzein
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marym A Marzouk
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
5
|
Shektaei ZA, Pourehsan MM, Bagheri V, Ghasempour Z, Mahmoudzadeh M, Ehsani A. Physico-chemical and antimicrobial characteristics of novel biodegradable films based on gellan and carboxymethyl cellulose containing rosemary essential oil. Int J Biol Macromol 2023; 234:122944. [PMID: 36549625 DOI: 10.1016/j.ijbiomac.2022.12.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The purpose of the current investigation was to produce a novel functional composite biodegradable film by Gellan (Gla) and Carboxymethyl cellulose (CMC) biopolymers containing rosemary essential oils (REO) and evaluate their physicochemical and antimicrobial features. The film containing 5 % REO, due to its better mechanical properties (UTS = 13.44 ± 0.30 Mpa and SB = 21.14 ± 1.15 %) compared to other emulsified samples containing REO, was selected as the optimal film. Furthermore, it had less water vapor permeability (WVP = 6.60 ± 0.31 (g/mhPa) × 10-8) in comparison to control sample (8.21 ± 0.10 (g/mhPa) × 10-8) and the best color properties among the samples. The Scanning Electron Microscopy (SEM) images didn't show the phenomenon of agglomeration and point accumulation of REO. Also, 5 % of REO contributed to the increased compactness of the film in comparison to the film without the REO. Based on the results of Fourier-transform infrared spectroscopy (FTIR) spectra, no new chemical bonds were created by adding REO to the biopolymer substrate, and the REO was well dispersed and distributed among the Gla-CMC chains throughout the film substrate. Adding 5 % REO showed antioxidant effects. Considering the antimicrobial tests, all films containing REO had antimicrobial effects against the Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Pseudomonas fluorescens bacterial strains.
Collapse
Affiliation(s)
- Zahra Akbari Shektaei
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahdi Pourehsan
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Bagheri
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. BOX 51666-16471, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Fayaz I, Ganaie NB, Peerzada GM. Synthesis of bromoepoxy/zirconium phosphate (ZrP) metalloresin by ultrasonication and exploring its applications. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
7
|
Opopanax gum and essential oil-based antimicrobial film reinforced with bismuth oxide nanoparticles: Production, characterization, and application in the storage of quail fillets. Int J Biol Macromol 2023; 229:282-294. [PMID: 36581035 DOI: 10.1016/j.ijbiomac.2022.12.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The aim of this study was to the production of an active film based on Prangos ferulacea root gum, using its leaf's essential oil (PFEO) (0-3 %) and bismuth oxide nanoparticles (Bi2O3NPs) (0-3 %). Then, the developed film was used for packaging of quail fillet. Response surface methodology was used to evaluate the effect of PFEO and Bi2O3NPs on films' properties. Optimum formulation, including 1.5 % PFEO and 1 % Bi2O3NPs, was achieved based on numerical optimization. The optimum film was produced and compared with the control film (based on Prangos ferulacea root gum, without PFEO and Bi2O3NPs). According to the results, adding PFEO and Bi2O3NPs to the film formulation increased the thickness and antioxidant activity of the film and decreased moisture content, solubility, water vapor permeability, and whiteness index (p < 0.05). The optimum film indicated high antimicrobial effects on Escherichia coli and Staphylococcus aureus. The pH, TVBN, TBA values, coliform, and total bacterial counts of quail fillet packed with the optimum film were lower and sensorial scores were higher than the control samples during the storage(p < 0.05).
Collapse
|
8
|
Sajjad A, Rasheed F, Xiao X, Olsson RT, Capezza AJ, Zia M. Integration of Zinc Oxide Nanoparticles in Wheat Gluten Hydrolysates-Development of Multifunctional Films with Pliable Properties. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Preparation of composite films composed of polyvinyl alcohol, shellac and carboxymethyl chitosan-CuO nanoparticles and their application in food preservation. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Najafian N, Aarabi A, Nezamzadeh-Ejhieh A. Evaluation of physicomechanical properties of gluten-based film incorporated with Persian gum and Guar gum. Int J Biol Macromol 2022; 223:1257-1267. [PMID: 36368364 DOI: 10.1016/j.ijbiomac.2022.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
This study aimed to optimize the formulation of gluten-based composite film incorporated with Persian gum and Guar gum using the response surface method. The effects of three variables gluten (37%wt), Persian gum (1-2%wt), and guar gum (1-2%wt) on the physicochemical properties of the films (thickness, color parameters (L*, ΔE, WI, YI), swelling, solubility, water vapor permeability (WVP) and mechanical properties of the film were investigated. The results confirmed that gluten is compatible with Persian gum and Guar gum. Optimization was determined, and then the morphological properties and interaction of the film components were investigated with SEM and FTIR, respectively. Results showed that all three variables significantly affected the films' mechanical and physical properties (P < 0.05). Increasing the number of gums in the film solution led to a decrease in the thickness of the films, and improved solubility and WVP of films. Moreover, the yellowness index of films raised with an increasing amount of gluten and Guar gum. Increasing the number of gums, Young's modulus and modulus of elasticity decreased significantly (P < 0.05). The optimum level of the variables with desirability of 0.992, obtained by the software, was 5 % gluten, 1.5 % Persian gum, and 1.5 % Guar gum (% w/w). Intensifying and shifting some absorption peaks of FTIR spectra pattern confirmed the interaction of gums and gluten chain functional groups. The current research outcomes demonstrated that proper interaction was established between gluten protein and gums and improved the physical properties of the films. High amounts of gum reduced the thickness of the film.
Collapse
Affiliation(s)
- Nahid Najafian
- Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Aazam Aarabi
- Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
| | | |
Collapse
|
11
|
Hydrogels and biohydrogels: investigation of origin of production, production methods, and application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Nanoreinforcement as a strategy to improve physical properties of biodegradable composite films based on biopolymers. Food Res Int 2022; 162:112178. [DOI: 10.1016/j.foodres.2022.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
|
13
|
Abdolsattari P, Rezazadeh-Bari M, Pirsa S. Smart Film Based on Polylactic Acid, Modified with Polyaniline/ZnO/CuO: Investigation of Physicochemical Properties and Its Use of Intelligent Packaging of Orange Juice. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Andrade J, González-Martínez C, Chiralt A. Physical and active properties of poly (vinyl alcohol) films with phenolic acids as affected by the processing method. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Jia X, Li X, Zhao J, Kong B, Wang H, Liu Q, Wang H. Fabrication and characterization of crosslinked pea protein isolated/pullulan/allicin electrospun nanofiber films as potential active packaging material. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
|
17
|
Alp-Erbay E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhao J, Wang Y, Liu C. Film Transparency and Opacity Measurements. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Sun X, Yin L, Zhu H, Zhu J, Hu J, Luo X, Huang H, Fu Y. Enhanced Antimicrobial Cellulose/Chitosan/ZnO Biodegradable Composite Membrane. MEMBRANES 2022; 12:membranes12020239. [PMID: 35207160 PMCID: PMC8877955 DOI: 10.3390/membranes12020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023]
Abstract
In this study, chitosan and sugarcane cellulose were used as film-forming materials, while the inorganic agent zinc oxide (ZnO) and natural compound phenyllactic acid (PA) were used as the main bacteriostatic components to fabricate biodegradable antimicrobial composite membranes. The water absorption and antimicrobial properties were investigated by adjusting the concentration of PA. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results demonstrated that the components of the composite membrane were successfully integrated. The addition of ZnO improved the mechanical and antimicrobial properties of the composite membrane, while the addition of PA with high crystallinity significantly reduced the water absorption and swelling. Moreover, the addition of 0.5% PA greatly improved the water absorption of the composite membrane. The results of antimicrobial experiments showed that PA improved the antimicrobial activity of the composite membrane against Staphylococcus aureus, Escherichia coli, Aspergillus niger and Penicillium rubens. Among them, 0.3% PA had the best antimicrobial effect against S. aureus, E. coli and A. niger, while 0.7% PA had the best antimicrobial effect against P. rubens.
Collapse
Affiliation(s)
- Xiaolong Sun
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China; (X.S.); (H.H.)
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Longfei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Huayue Zhu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Junhao Zhu
- Zhejiang Kingsun Eco-Pack Co., Ltd., Taizhou 317000, China;
| | - Jiahuan Hu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
| | - He Huang
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China; (X.S.); (H.H.)
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Taizhou 318000, China; (L.Y.); (H.Z.); (J.H.); (X.L.)
- Correspondence:
| |
Collapse
|
20
|
Atomization of Microfibrillated Cellulose and Its Incorporation into Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Reactive Extrusion. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study focuses on the preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films that were reinforced with cellulose microstructures to obtain new green composite materials for sustainable food packaging applications. The atomization of suspensions of microfibrillated cellulose (MFC) successfully allowed the formation of ultrathin cellulose structures of nearly 3 µm that were, thereafter, melt-mixed at 2.5, 5, and 10 wt % with PHBV and subsequently processed into films by thermo-compression. The most optimal results were attained for the intermediate MFC content of 5 wt %, however, the cellulose microstructures showed a low interfacial adhesion with the biopolyester matrix. Thus, two reactive compatibilizers were explored in order to improve the properties of the green composites, namely the multi-functional epoxy-based styrene-acrylic oligomer (ESAO) and the combination of triglycidyl isocyanurate (TGIC) with dicumyl peroxide (DCP). The chemical, optical, morphological, thermal, mechanical, and barrier properties against water and aroma vapors and oxygen were analyzed in order to determine the potential application of these green composite films in food packaging. The results showed that the incorporation of MFC yielded contact transparent films, whereas the reactive extrusion with TGIC and DCP led to green composites with enhanced thermal stability, mechanical strength and ductility, and barrier performance to aroma vapor and oxygen. In particular, this compatibilized green composite film was thermally stable up to ~280 °C, whereas it showed an elastic modulus (E) of above 3 GPa and a deformation at break (ɛb) of 1.4%. Moreover, compared with neat PHBV, its barrier performance to limonene vapor and oxygen was nearly improved by nine and two times, respectively.
Collapse
|
21
|
A biodegradable film based on carrageenan gum/Plantago psyllium mucilage/red beet extract: physicochemical properties, biodegradability and water absorption kinetic. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Alginate hydrogel beads containing Thymus daenensis essential oils/Glycyrrhizic acid loaded in β-cyclodextrin. Investigation of structural, antioxidant/antimicrobial properties and release assessment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Basavegowda N, Baek KH. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers (Basel) 2021; 13:4198. [PMID: 34883701 PMCID: PMC8659840 DOI: 10.3390/polym13234198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Polymeric nanocomposites have received significant attention in both scientific and industrial research in recent years. The demand for new methods of food preservation to ensure high-quality, healthy foods with an extended shelf life has increased. Packaging, a crucial feature of the food industry, plays a vital role in satisfying this demand. Polymeric nanocomposites exhibit remarkably improved packaging properties, including barrier properties, oxygen impermeability, solvent resistance, moisture permeability, thermal stability, and antimicrobial characteristics. Bio-based polymers have drawn considerable interest to mitigate the influence and application of petroleum-derived polymeric materials and related environmental concerns. The integration of nanotechnology in food packaging systems has shown promise for enhancing the quality and shelf life of food. This article provides a general overview of bio-based polymeric nanocomposites comprising polymer matrices and inorganic nanoparticles, and describes their classification, fabrication, properties, and applications for active food packaging systems with future perspectives.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
24
|
Al Sharabati M, Abokwiek R, Al-Othman A, Tawalbeh M, Karaman C, Orooji Y, Karimi F. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. ENVIRONMENTAL RESEARCH 2021; 202:111694. [PMID: 34274334 DOI: 10.1016/j.envres.2021.111694] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) target the endocrine system by interfering with the natural hormones in the body leading to adverse effects on human and animal health. These chemicals have been identified as major polluting agents in wastewater effluents. Pharmaceuticals, personal care products, industrial compounds, pesticides, dyes, and heavy metals are examples of substances that could be considered endocrine active chemicals. In humans, these chemicals could cause obesity, cancer, Alzheimer's disease, autism, reproductive abnormalities, and thyroid problems. While in wildlife, dysfunctional gene expression could lead to the feminization of some aquatic organisms, metabolic diseases, cardiovascular risk, and problems in the reproductive system as well as its levels of hatchability and vitellogenin. EDCs could be effectively removed from wastewater using advanced technologies such as reverse osmosis, membrane treatment, ozonation, advanced oxidation, filtration, and biodegradation. However, adsorption has been proposed as a more promising and sustainable method for water treatment than any other reported technique. Increased attention has been paid to biodegradable polymers and their nano-composites as promising adsorbents for the removal of EDCs from wastewater. These polymers could be either natural, synthetic, or a combination of both. This review presents a summary of the most relevant cases where natural and synthetic biodegradable polymers have been used for the successful removal of EDCs from wastewater. It demonstrates the effectiveness of these polymers as favorable adsorbents for novel wastewater treatment technologies. Hitherto, very limited work has been published on the use of both natural and synthetic biodegradable polymers to remove EDCs from wastewater, as most of the studies focused on the utilization of only one type, either natural or synthetic. Therefore, this review could pave the way for future exploration of biodegradable polymers as promising and sustainable adsorbents for the removal of various types of pollutants from wastewater.
Collapse
Affiliation(s)
- Miral Al Sharabati
- Materials Science and Engineering PhD Program, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Raed Abokwiek
- Materials Science and Engineering PhD Program, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Fatemeh Karimi
- Deparment of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
25
|
Pirsa S, Mohammadi B. Conducting/biodegradable chitosan-polyaniline film; Antioxidant, color, solubility and water vapor permeability properties. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, chitosan-polyaniline nanocomposite film was prepared in combination with different concentrations of polyaniline at various synthesis times. Surface morphology, antioxidant properties, water solubility, water vapor permeability (WVP), color properties and light transparency properties of the films were investigated. The size, shape and morphology of the synthesized particles were examined with scanning electron microscopy (SEM) technique. The results indicated that the synthesized polyaniline particles were spherical and in the range of 45–70 nm. The results obtained from the study of the effect of polyaniline on the physical properties of the chitosan film showed that increasing polyaniline concentration and synthesis time causes a decrease in the rate of the water solubility and water vapor permeability. This is an important factor in expanding its use in food packaging. The results of the colorimetric studies showed that the polyaniline sharply changed the surface color of the film. Polyaniline also increased antioxidant properties of composite film. Investigating the light transmission and transparency of the films showed that the polyaniline reduced the transparency and transmission of light, which could be used to package products that are susceptible to oxidation in the light.
Collapse
Affiliation(s)
- Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Behzad Mohammadi
- Department of Food Science and Technology, Afagh Higher Education Institute, Urmia, Iran
| |
Collapse
|
26
|
Ghamari MA, Amiri S, Rezazadeh-Bari M, Rezazad-Bari L. Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03550-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Primožič M, Knez Ž, Leitgeb M. (Bio)nanotechnology in Food Science-Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:292. [PMID: 33499415 PMCID: PMC7911006 DOI: 10.3390/nano11020292] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
Background: Bionanotechnology, as a tool for incorporation of biological molecules into nanoartifacts, is gaining more and more importance in the field of food packaging. It offers an advanced expectation of food packaging that can ensure longer shelf life of products and safer packaging with improved food quality and traceability. Scope and approach: This review recent focuses on advances in food nanopackaging, including bio-based, improved, active, and smart packaging. Special emphasis is placed on bio-based packaging, including biodegradable packaging and biocompatible packaging, which presents an alternative to most commonly used non-degradable polymer materials. Safety and environmental concerns of (bio)nanotechnology implementation in food packaging were also discussed including new EU directives. Conclusions: The use of nanoparticles and nanocomposites in food packaging increases the mechanical strength and properties of the water and oxygen barrier of packaging and may provide other benefits such as antimicrobial activity and light-blocking properties. Concerns about the migration of nanoparticles from packaging to food have been expressed, but migration tests and risk assessment are unclear. Presumed toxicity, lack of additional data from clinical trials and risk assessment studies limit the use of nanomaterials in the food packaging sector. Therefore, an assessment of benefits and risks must be defined.
Collapse
Affiliation(s)
- Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
28
|
Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite-Potential Coating for Grapes. Foods 2020; 9:foods9121801. [PMID: 33291604 PMCID: PMC7761909 DOI: 10.3390/foods9121801] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
New packaging materials based on biopolymers are gaining increasing attention due to many advantages like biodegradability or existence of renewable sources. Grouping more antimicrobials agents in the same packaging can create a synergic effect, resulting in either a better antimicrobial activity against a wider spectrum of spoilage agents or a lower required quantity of antimicrobials. In the present work, we obtained a biodegradable antimicrobial film that can be used as packaging material for food. Films based on chitosan as biodegradable polymer, with ZnO and Ag nanoparticles as filler/antimicrobial agents were fabricated by a casting method. The nanoparticles were loaded with citronella essential oil (CEO) in order to enhance the antimicrobial activity of the nanocomposite films. The tests made on Gram-positive, Gram-negative, and fungal strains indicated a broad-spectrum antimicrobial activity, with inhibition diameters of over 30 mm for bacterial strains and over 20 mm for fungal strains. The synergic effect was evidenced by comparing the antimicrobial results with chitosan/ZnO/CEO or chitosan/Ag/CEO simple films. According to the literature and our preliminary studies, these formulations are suitable as coating for fruits. The obtained nanocomposite films presented lower water vapor permeability values when compared with the chitosan control film. The samples were characterized by SEM, fluorescence and UV-Vis spectroscopy, FTIR spectroscopy and microscopy, and thermal analysis.
Collapse
|
29
|
Asadzadeh F, Pirsa S. Specific Removal of Nitrite from Lake Urmia Sediments by Biohydrogel Based on Isolated Soy Protein/Tragacanth/Mesoporous Silica Nanoparticles/Lycopene. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:2000061. [PMID: 33304611 PMCID: PMC7713559 DOI: 10.1002/gch2.202000061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Indexed: 06/12/2023]
Abstract
In this study, a biodegradable biohydrogel based on isolated soy protein/tragacanth containing mesoporous silica nanoparticles and lycopene pigment (ISP/TG/MPS/Lyc) is prepared. The physicochemical characteristics and structure of the biohydrogel are investigated by scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, and thermal gravimetry analysis (TGA) techniques. Mechanical properties (tensile strength and elongation at break point), antioxidant activity, water solubility, water absorption capacity (WAC), and the humidity content of the biohydrogels are studied. Five optimal biohydrogels including pure ISP, ISP/TG, ISP/MPS, ISP/Lyc, and ISP/TG/MPS/Lyc are used for chemical treatment of Lake Urmia sediments. For this purpose, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate, and nitrite of sediments are examined before and after treatment with biohydrogels. According to the FTIR results, there is only physical interaction between lycopene and isolated soy protein. According to the TGA results, adding silica mesoporous to biohydrogel increases its thermal stability. Tragacanth gum and lycopene pigment reduce water solubility and increase the WAC of biohydrogel. The biohydrogel significantly reduces the BOD and COD of the sediments. The biohydrogel reduces nitrite content up to 90%, while reducing nitrate content by almost 30%. The results show that the biohydrogel containing lycopene selectively purifies nitrite from the sediment solution of Lake Urmia.
Collapse
Affiliation(s)
- Farrokh Asadzadeh
- Department of Soil ScienceFaculty of AgricultureUrmia UniversityUrmia5756151818Iran
- Department of Sediment ProcessingLake Urmia Research InstituteUrmia UniversityUrmia5756151818Iran
| | - Sajad Pirsa
- Department of Sediment ProcessingLake Urmia Research InstituteUrmia UniversityUrmia5756151818Iran
- Department of Food Science and TechnologyFaculty of AgricultureUrmia UniversityUrmia5756151818Iran
| |
Collapse
|
30
|
Detection of fraud of palm, sunflower, and corn oil in butter using HPLC profile of tocopherols and tocotrienols by response surface method. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02100-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Van Hung N, Nguyet BTM, Nghi NH, Khieu DQ. Photocatalytic Degradation of Methylene Blue by Using ZnO/Longan Seed Activated Carbon Under Visible-Light Region. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01734-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Chaudhary P, Fatima F, Kumar A. Relevance of Nanomaterials in Food Packaging and its Advanced Future Prospects. J Inorg Organomet Polym Mater 2020; 30:5180-5192. [PMID: 32837459 PMCID: PMC7368925 DOI: 10.1007/s10904-020-01674-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Biopolymers have been used in packaged foods to tackle environmental hazards due to their biodegradability and non-toxic nature. In addition to these merits, they have also several demerits such as poor mechanical properties and low resistance towards water. Nanomaterials have attracted great interest in recent years due to their phenomenal properties that makes them precedent in applications for food packaging as they enhance the mechanical, thermal and gas barriers properties, without compromising with the ability to become non-toxic and biodegradable. The most important nanomaterials used in food packaging are montmorillonite (MMT), zinc oxide (ZnO-NPs) coated silicate, kaolinite, silver NPs (Ag-NPs) and titanium dioxide (TiO2NPs) as these, nanomaterials coated films makes a barrier against oxygen, carbon dioxide and favour compounds. They also possess oxygen scavenging capability, antimicrobial activity and tolerance towards temperature. The most difficult task related to the preparation of these nanocomposites is their complete distribution within the polymer matrix and their compatibility. Therefore, there is an increasing demand for improvement in the performance of nano-packaging materials including mechanical stability, degradability and effectiveness of antibacterial property.
Collapse
Affiliation(s)
- Pallavi Chaudhary
- Department of Agriculture, IIAST, Integral University, Kursi Road, Lucknow, Uttar Pradesh India
| | - Faria Fatima
- Department of Agriculture, IIAST, Integral University, Kursi Road, Lucknow, Uttar Pradesh India
| | - Ankur Kumar
- Department of Horticulture, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh India
| |
Collapse
|
33
|
Pirsa S, Karimi Sani I, Pirouzifard MK, Erfani A. Smart film based on chitosan/Melissa officinalis essences/ pomegranate peel extract to detect cream cheeses spoilage. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:634-648. [DOI: 10.1080/19440049.2020.1716079] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Iraj Karimi Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mir Khalil Pirouzifard
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Aref Erfani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
34
|
Gao Y, Wang X, Li X, Dai H. An antibacterial composite film based on cellulose acetate/TiO2 nanoparticles. NEW J CHEM 2020. [DOI: 10.1039/d0nj04374e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aims of this paper were: (1) prevent the aggregation of TiO2 nanoparticles and obtain a uniform suspension; (2) obtain homogeneous composite films through three simple steps; (3) evaluate the antibacterial properties of CA/TiO2 composite films against E. coli.
Collapse
Affiliation(s)
- Ying Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
- Nanjing
- China
| | - Xiu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
- Nanjing
- China
| | - Xiang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
- Nanjing
- China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
- Nanjing
- China
| |
Collapse
|