1
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
2
|
Jassi C, Kuo WW, Chang YC, Wang TF, Ho TJ, Hsieh DJY, Kuo CH, Chen MC, Li CC, Huang CY. MicroRNA-376a-3p sensitizes CPT-11-resistant colorectal cancer by enhancing apoptosis and reversing the epithelial-to-mesenchymal transition (EMT) through the IGF1R/PI3K/AKT pathway. Transl Oncol 2024; 50:102125. [PMID: 39317064 PMCID: PMC11456798 DOI: 10.1016/j.tranon.2024.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/10/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent type of cancer worldwide contributing to an estimated 10 % of all cancer cases. CPT-11 is one of the first-line drugs for CRC treatment. Unfortunately, the development of drug resistance significantly exacerbates the adverse impact of CRC. Consequent tumor recurrences and metastasis, years after treatment are the frequently reported incidences. MicroRNAs (miRNA) are short non-coding RNA with the functionality of gene suppression. The insulin-like growth factor type 1 receptor (IGF1R) is a tyrosine kinase receptor frequently upregulated in cancers and is associated with cell survival and drug resistance. MiRNAs are frequently reported to be dysregulated in cancers including CRC. Evidence suggests that dysregulated miRNAs have direct consequences on the biological processes of their target genes. We previously demonstrated that miRNA-376a-3p is upregulated in CPT-11responsive, CRC cells upon treatment with CPT-11. We therefore aimed to investigate the involvement of miRNA-376a-3p in CPT-11 resistance and its probable association with IGF1R-mediated cancer cell survival. Our experimental approach used knockdown and overexpression experiments supplemented with western blot, RT-qPCR, flow cytometry, MTT, and migration assays to achieve our aim. Our data reveals the mechanism through which IGF1R and miRNA-376a-3p perpetrate and attenuate CPT-11 resistance respectively. MiRNA-376a-3p overexpression negatively regulated the IGF1R-induced cell survival, PI3K/AKT pathway, and reversed the epithelial-mesenchymal transition, hence sensitizing resistant cells to CPT-11. Our findings suggests that the miRNA-376a-3p/IGF1R axis holds promise as a potential target to sensitize CRC to CPT-11 in cases of drug resistance.
Collapse
Affiliation(s)
- Chikondi Jassi
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC; School of pharmacy, China Medical University, Taichung, Taiwan, ROC
| | - Yu-Chun Chang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan; Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Cheng Li
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria related Diseases Research Center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan; Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
3
|
Antoon R, Overdevest N, Saleh AH, Keating A. Mesenchymal stromal cells as cancer promoters. Oncogene 2024; 43:3545-3555. [PMID: 39414984 PMCID: PMC11602730 DOI: 10.1038/s41388-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Mesenchymal stromal cells (MSCs) are important cellular constituents of tumor stroma that play an active role in tumor development. Complex interactions between MSCs and cancer promote tumor progression by creating a favorable milieu for tumor cell proliferation, angiogenesis, motility, invasion, and metastasis. The cellular heterogeneity, source of origin, diversity in isolation methods, culture techniques and model systems of MSCs, together with the different tumor subtypes, add to the complexity of MSC-tumor interactions. In this review, we discuss the mechanisms of MSC-mediated tumor promotion and evaluate cell-stromal interactions between cancer cells, MSCs, cells of the tumor microenvironment (TME), and the extracellular matrix (ECM). A more thorough understanding of tumor-MSC interactions is likely to lead to better cancer management.
Collapse
Affiliation(s)
| | | | - Amr H Saleh
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Armand Keating
- Krembil Research Institute, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- University Health Network, Toronto, ON, Canada.
| |
Collapse
|
4
|
Manjunath M, Ravindran F, Sharma S, Siddiqua H, Raghavan SC, Choudhary B. Disarib, a Specific BCL2 Inhibitor, Induces Apoptosis in Triple-Negative Breast Cancer Cells and Impedes Tumour Progression in Xenografts by Altering Mitochondria-Associated Processes. Int J Mol Sci 2024; 25:6485. [PMID: 38928195 PMCID: PMC11203414 DOI: 10.3390/ijms25126485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Targeted cancer therapy aims to disrupt the functions of proteins that regulate cancer progression, mainly by using small molecule inhibitors (SMIs). SMIs exert their effect by modulating signalling pathways, organelle integrity, chromatin components, and several biosynthetic processes essential for cell division and survival. Antiapoptotic protein BCL2 is highly upregulated in many cancers compared with normal cells, making it an ideal target for cancer therapy. Around 75% of primary breast cancers overexpress BCL2, providing an opportunity to explore BCL2 inhibitors as a therapeutic option. Disarib is an SMI that has been developed as a selective BCL2 inhibitor. Disarib works by disrupting BCL2-BAK interaction and activating intrinsic apoptotic pathways in leukemic cells while sparing normal cells. We investigated the effects of Disarib, a BCL2 specific inhibitor, on breast cancer cells and xenografts. Cytotoxicity and fluorometric assays revealed that Disarib induced cell death by increasing reactive oxygen species and activating intrinsic apoptotic pathways in Triple-Negative Breast Cancer cells (MDA-MB-231 and MDA-MB-468). Disarib also affected the colony-forming properties of these cells. MDA-MB-231- and MDA-MB-468-derived xenografts showed a significant reduction in tumours upon Disarib treatment. Through the transcriptomics approach, we also explored the influence of BCL2 inhibitors on energy metabolism, mitochondrial dynamics, and epithelial-to-mesenchymal transition (EMT). Mitochondrial dynamics and glucose metabolism mainly regulate energy metabolism. The change in energetics regulates tumour growth through epithelial-mesenchymal transition, and angiogenesis. RNA sequencing (RNAseq) analysis revealed that BCL2 inhibitors ABT-199 and Disarib maintain Oxphos levels in MDA-MB-231. However, key glycolytic genes were significantly downregulated. Mitochondrial fission genes were seen to be downregulated both in RNAseq data and semi quantitative real time polymerase chain reaction (qRTPCR) in Disarib-treated TNBC cells and xenografts. Lastly, Disarib inhibited wound healing and epithelial-to-mesenchymal transition. This study showed that Disarib disrupts mitochondrial function, activates the intrinsic apoptotic pathway in breast cancer, and inhibits epithelial-to-mesenchymal transition both in vitro and in vivo. These findings highlight Disarib's potential as a multifaceted therapeutic strategy for patients with Triple-Negative Breast Cancer.
Collapse
Affiliation(s)
- Meghana Manjunath
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| | - Febina Ravindran
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| | - Shivangi Sharma
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
- Indian Institute of Science, Bengaluru 560012, India; (H.S.); (S.C.R.)
| | - Humaira Siddiqua
- Indian Institute of Science, Bengaluru 560012, India; (H.S.); (S.C.R.)
| | | | - Bibha Choudhary
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| |
Collapse
|
5
|
Wang Y, Chen Y, Zhao M. N6-methyladenosine modification and post-translational modification of epithelial-mesenchymal transition in colorectal cancer. Discov Oncol 2024; 15:209. [PMID: 38834851 DOI: 10.1007/s12672-024-01048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Colorectal cancer is a leading cause of cancer-related mortality worldwide. Traditionally, colorectal cancer has been recognized as a disease caused by genetic mutations. However, recent studies have revealed the significant role of epigenetic alterations in the progression of colorectal cancer. Epithelial-mesenchymal transition, a critical step in cancer cell metastasis, has been found to be closely associated with the tumor microenvironment and immune factors, thereby playing a crucial role in many kinds of biological behaviors of cancers. In this review, we explored the impact of N6-methyladenosine and post-translational modifications (like methylation, acetylation, ubiquitination, SUMOylation, glycosylation, etc.) on the process of epithelial-mesenchymal transition in colorectal cancer and the epigenetic regulation for the transcription factors and pathways correlated to epithelial-mesenchymal transition. Furthermore, we emphasized that the complex regulation of epithelial-mesenchymal transition by epigenetics can provide new strategies for overcoming drug resistance and improving treatment outcomes. This review aims to provide important scientific evidence for the prevention and treatment of colorectal cancer based on epigenetic modifications.
Collapse
Affiliation(s)
- Yingnan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yufan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Miaomiao Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
6
|
Joshi P, Ayyagari V, Kandel S, Modur V, Iqbal MF, Robinson K, Gao J, Rao K. Loss of RAB25 Cooperates with Oncogenes in the Transformation of Human Mammary Epithelial Cells (HMECs) to Give Rise to Claudin-Low Tumors. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8544837. [PMID: 38803515 PMCID: PMC11129910 DOI: 10.1155/2024/8544837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/10/2023] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
The loss of RAB25 expression-RAS superfamily of GTPase characteristic of numerous breast cancers-corresponds with H-RAS point mutations, particularly in triple-negative breast cancers (TNBC), a subtype associated with a poor prognosis. To address the poorly understood factors dictating the progression of TNBC tumors, we examine the cooperative effects that loss of RAB25 expression in human mammary epithelial cell (HMEC) lines with H-RAS mutations confers in tumorigenesis. HMECs were immortalized by transduction with LXSN CDK4 R24C, a mutant form of cyclin-dependent kinase, followed by transduction with hTERT, a catalytic subunit of the telomerase enzyme. We found that with the loss of RAB25 and overexpression of mutant H-RAS61L, immortal HMECs transformed toward anchorage-independent growth and acquired an increased ability to migrate. Furthermore, cells express low CD24, high CD44, and low claudin levels, indicating stem-like properties upon transformation. Besides, loss of RAB25 and overexpression of H-RAS61L resulted in increased expression of transcription factors Snail and Slug that drive these cells to lose E-cadherin and undergo epithelial-mesenchymal transition (EMT). This study confirms that loss of RAB25 and overexpression of mutant H-RAS can drive HMECs toward a mesenchymal stem-like state. Our findings reveal that RAB25 functions as a tumor suppressor gene, and loss of RAB25 could serve as a novel biomarker of the claudin-low type of TNBC.
Collapse
Affiliation(s)
| | - Vijayalakshmi Ayyagari
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Samikshya Kandel
- Department of Medical Microbiology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Vishnu Modur
- Medpace, Inc., 5400 Medpace Way, Cincinnati, OH 45227, USA
| | - Muhammad F. Iqbal
- Cancer Specialists of North Florida, 80 Pinnacles Drive, Suite 700, Palm Coast, FL 32164, USA
| | - Kathy Robinson
- Simmons Cancer Institute at Southern Illinois University, 315 W Carpenter St., Springfield, IL 62702, USA
| | - John Gao
- Department of Pathology and Gastroenterology, Memorial Medical Center, Springfield, IL, USA
| | - Krishna Rao
- Department of Medical Microbiology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Simmons Cancer Institute at Southern Illinois University, 315 W Carpenter St., Springfield, IL 62702, USA
| |
Collapse
|
7
|
Varghese E, Samuel SM, Brockmueller A, Shakibaei M, Kubatka P, Büsselberg D. B7-H3 at the crossroads between tumor plasticity and colorectal cancer progression: a potential target for therapeutic intervention. Cancer Metastasis Rev 2024; 43:115-133. [PMID: 37768439 PMCID: PMC11016009 DOI: 10.1007/s10555-023-10137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
B7-H3 (B7 homology 3 protein) is an important transmembrane immunoregulatory protein expressed in immune cells, antigen-presenting cells, and tumor cells. Studies reveal a multifaceted role of B7-H3 in tumor progression by modulating various cancer hallmarks involving angiogenesis, immune evasion, and tumor microenvironment, and it is also a promising candidate for cancer immunotherapy. In colorectal cancer (CRC), B7-H3 has been associated with various aspects of disease progression, such as evasion of tumor immune surveillance, tumor-node metastasis, and poor prognosis. Strategies to block or interfere with B7-H3 in its immunological and non-immunological functions are under investigation. In this study, we explore the role of B7-H3 in tumor plasticity, emphasizing tumor glucose metabolism, angiogenesis, epithelial-mesenchymal transition, cancer stem cells, apoptosis, and changing immune signatures in the tumor immune landscape. We discuss how B7-H3-induced tumor plasticity contributes to immune evasion, metastasis, and therapy resistance. Furthermore, we delve into the most recent advancements in targeting B7-H3-based tumor immunotherapy as a potential approach to CRC treatment.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
8
|
Vydra N, Toma-Jonik A, Janus P, Mrowiec K, Stokowy T, Głowala-Kosińska M, Sojka DR, Olbryt M, Widłak W. An Increase in HSF1 Expression Directs Human Mammary Epithelial Cells toward a Mesenchymal Phenotype. Cancers (Basel) 2023; 15:4965. [PMID: 37894333 PMCID: PMC10605143 DOI: 10.3390/cancers15204965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
HSF1 is a well-known heat shock protein expression regulator in response to stress. It also regulates processes important for growth, development or tumorigenesis. We studied the HSF1 influence on the phenotype of non-tumorigenic human mammary epithelial (MCF10A and MCF12A) and several triple-negative breast cancer cell lines. MCF10A and MCF12A differ in terms of HSF1 levels, morphology, growth in Matrigel, expression of epithelial (CDH1) and mesenchymal (VIM) markers (MCF10A are epithelial cells; MCF12A resemble mesenchymal cells). HSF1 down-regulation led to a reduced proliferation rate and spheroid formation in Matrigel by MCF10A cells. However, it did not affect MCF12A proliferation but led to CDH1 up-regulation and the formation of better organized spheroids. HSF1 overexpression in MCF10A resulted in reduced CDH1 and increased VIM expression and the acquisition of elongated fibroblast-like morphology. The above-mentioned results suggest that elevated levels of HSF1 may direct mammary epithelial cells toward a mesenchymal phenotype, while a lowering of HSF1 could reverse the mesenchymal phenotype to an epithelial one. Therefore, HSF1 may be involved in the remodeling of mammary gland architecture over the female lifetime. Moreover, HSF1 levels positively correlated with the invasive phenotype of triple-negative breast cancer cells, and their growth was inhibited by the HSF1 inhibitor DTHIB.
Collapse
Affiliation(s)
- Natalia Vydra
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Agnieszka Toma-Jonik
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Patryk Janus
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Katarzyna Mrowiec
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Tomasz Stokowy
- Scientific Computing Group, IT Division, University of Bergen, N-5008 Bergen, Norway;
| | - Magdalena Głowala-Kosińska
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Damian Robert Sojka
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Magdalena Olbryt
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| | - Wiesława Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland; (A.T.-J.); (P.J.); (K.M.); (M.G.-K.); (D.R.S.); (M.O.)
| |
Collapse
|
9
|
Liu T, Chen J, Wu J, Du Q, Liu J, Tan S, Pan Y, Yao S. Role of the tripartite motif (TRIM) family in female genital neoplasms. Pathol Res Pract 2023; 250:154811. [PMID: 37713735 DOI: 10.1016/j.prp.2023.154811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The tripartite motif proteins (TRIMs) family represents a class of highly conservative proteins which play a large regulatory role in molecular processes. Recently, increasing evidence has demonstrated a role of TRIMs in female genital neoplasms. Our review thereby aimed to provide an overview of the biological involvement of TRIMs in female genital neoplasms, to provide a better understanding of its role in the development and progression of such diseases, and emphasize its potential as targeted cancer therapy. Overall, our review highlighted that the wide-ranging roles of TRIMs, in not only target protein ubiquitination, tumor migration and/or invasion, epithelial-mesenchymal transition, stemness, cell adhesion, proliferation, cell cycle regulation, and apoptosis, but also in influencing estrogenic, and chemotherapy response.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Silu Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Géci I, Bober P, Filová E, Amler E, Sabo J. The Role of ARHGAP1 in Rho GTPase Inactivation during Metastasizing of Breast Cancer Cell Line MCF-7 after Treatment with Doxorubicin. Int J Mol Sci 2023; 24:11352. [PMID: 37511111 PMCID: PMC10379778 DOI: 10.3390/ijms241411352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is the most prevalent cancer type in women worldwide. It proliferates rapidly and can metastasize into farther tissues at any stage due to the gradual invasiveness and motility of the tumor cells. These crucial properties are the outcome of the weakened intercellular adhesion, regulated by small guanosine triphosphatases (GTPases), which hydrolyze to the guanosine diphosphate (GDP)-bound conformation. We investigated the inactivating effect of ARHGAP1 on Rho GTPases involved signaling pathways after treatment with a high dose of doxorubicin. Label-free quantitative proteomic analysis of the proteome isolated from the MCF-7 breast cancer cell line, treated with 1 μM of doxorubicin, identified RAC1, CDC42, and RHOA GTPases that were inactivated by the ARHGAP1 protein. Upregulation of the GTPases involved in the transforming growth factor-beta (TGF-beta) signaling pathway initiated epithelial-mesenchymal transitions. These findings demonstrate a key role of the ARHGAP1 protein in the disruption of the cell adhesion and simultaneously allow for a better understanding of the molecular mechanism of the reduced cell adhesion leading to the subsequent metastasis. The conclusions of this study corroborate the hypothesis that chemotherapy with doxorubicin may increase the risk of metastases in drug-resistant breast cancer cells.
Collapse
Affiliation(s)
- Imrich Géci
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| | - Eva Filová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Evžen Amler
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| |
Collapse
|
11
|
Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep 2023:10.1007/s12015-023-10529-x. [PMID: 37129728 DOI: 10.1007/s12015-023-10529-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The term "cancer stem cells" (CSCs) refers to cancer cells that exhibit traits parallel to normal stem cells, namely the potential to give rise to every type of cell identified in a tumor microenvironment. It has been found that CSCs usually develops from other neoplastic cells or non-cancerous somatic cells by acquiring stemness and malignant characteristics through particular genetic modifications. A trivial number of CSCs, identified in solid and liquid cancer, can give rise to an entire tumor population with aggressive anticancer drug resistance, metastasis, and invasiveness. Besides, cancer stem cells manipulate their intrinsic and extrinsic features, regulate the metabolic pattern of the cell, adjust efflux-influx efficiency, modulate different signaling pathways, block apoptotic signals, and cause genetic and epigenetic alterations to retain their pluripotency and ability of self-renewal. Notably, to keep the cancer stem cells' ability to become malignant cells, mesenchymal stem cells, tumor-associated fibroblasts, immune cells, etc., interact with one another. Furthermore, CSCs are characterized by the expression of particular molecular markers that carry significant diagnostic and prognostic significance. Because of this, scientific research on CSCs is becoming increasingly imperative, intending to understand the traits and behavior of cancer stem cells and create more potent anticancer therapeutics to fight cancer at the CSC level. In this review, we aimed to elucidate the critical role of CSCs in the onset and spread of cancer and the characteristics of CSCs that promote severe resistance to targeted therapy.
Collapse
Affiliation(s)
- Tahsin Nairuz
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
12
|
Friend C, Parajuli P, Razzaque MS, Atfi A. Deciphering epithelial-to-mesenchymal transition in pancreatic cancer. Adv Cancer Res 2023; 159:37-73. [PMID: 37268401 DOI: 10.1016/bs.acr.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex cellular program that alters epithelial cells and induces their transformation into mesenchymal cells. While essential to normal developmental processes such as embryogenesis and wound healing, EMT has also been linked to the development and progression of various diseases, including fibrogenesis and tumorigenesis. Under homeostatic conditions, initiation of EMT is mediated by key signaling pathways and pro-EMT-transcription factors (EMT-TFs); however, in certain contexts, these pro-EMT regulators and programs also drive cell plasticity and cell stemness to promote oncogenesis as well as metastasis. In this review, we will explain how EMT and EMT-TFs mediate the initiation of pro-cancer states and how they influence late-stage progression and metastasis in pancreatic ductal adenocarcinoma (PDAC), the most severe form of pancreatic cancer.
Collapse
Affiliation(s)
- Creighton Friend
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Parash Parajuli
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
13
|
Gugnoni M, Manzotti G, Vitale E, Sauta E, Torricelli F, Reggiani F, Pistoni M, Piana S, Ciarrocchi A. OVOL2 impairs RHO GTPase signaling to restrain mitosis and aggressiveness of Anaplastic Thyroid Cancer. J Exp Clin Cancer Res 2022; 41:108. [PMID: 35337349 PMCID: PMC8957195 DOI: 10.1186/s13046-022-02316-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Anaplastic Thyroid Cancer (ATC) is an undifferentiated and aggressive tumor that often originates from well-Differentiated Thyroid Carcinoma (DTC) through a trans-differentiation process. Epithelial-to-Mesenchymal Transition (EMT) is recognized as one of the major players of this process. OVOL2 is a transcription factor (TF) that promotes epithelial differentiation and restrains EMT during embryonic development. OVOL2 loss in some types of cancers is linked to aggressiveness and poor prognosis. Here, we aim to clarify the unexplored role of OVOL2 in ATC. Methods Gene expression analysis in thyroid cancer patients and cell lines showed that OVOL2 is mainly associated with epithelial features and its expression is deeply impaired in ATC. To assess OVOL2 function, we established an OVOL2-overexpression model in ATC cell lines and evaluated its effects by analyzing gene expression, proliferation, invasion and migration abilities, cell cycle, specific protein localization through immunofluorescence staining. RNA-seq profiling showed that OVOL2 controls a complex network of genes converging on cell cycle and mitosis regulation and Chromatin Immunoprecipitation identified new OVOL2 target genes. Results Coherently with its reported function, OVOL2 re-expression restrained EMT and aggressiveness in ATC cells. Unexpectedly, we observed that it caused G2/M block, a consequent reduction in cell proliferation and an increase in cell death. This phenotype was associated to generalized abnormalities in the mitotic spindle structure and cytoskeletal organization. By RNA-seq experiments, we showed that many pathways related to cytoskeleton and migration, cell cycle and mitosis are profoundly affected by OVOL2 expression, in particular the RHO-GTPase pathway resulted as the most interesting. We demonstrated that RHO GTPase pathway is the central hub of OVOL2-mediated program in ATC and that OVOL2 transcriptionally inhibits RhoU and RhoJ. Silencing of RhoU recapitulated the OVOL2-driven phenotype pointing to this protein as a crucial target of OVOL2 in ATC. Conclusions Collectively, these data describe the role of OVOL2 in ATC and uncover a novel function of this TF in inhibiting the RHO GTPase pathway interlacing its effects on EMT, cytoskeleton dynamics and mitosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02316-2.
Collapse
|
14
|
Cohen EN, Jayachandran G, Moore RG, Cristofanilli M, Lang JE, Khoury JD, Press MF, Kim KK, Khazan N, Zhang Q, Zhang Y, Kaur P, Guzman R, Miller MC, Reuben JM, Ueno NT. A Multi-Center Clinical Study to Harvest and Characterize Circulating Tumor Cells from Patients with Metastatic Breast Cancer Using the Parsortix ® PC1 System. Cancers (Basel) 2022; 14:5238. [PMID: 36358657 PMCID: PMC9656921 DOI: 10.3390/cancers14215238] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/22/2023] Open
Abstract
Circulating tumor cells (CTCs) captured from the blood of cancer patients may serve as a surrogate source of tumor material that can be obtained via a venipuncture (also known as a liquid biopsy) and used to better understand tumor characteristics. However, the only FDA-cleared CTC assay has been limited to the enumeration of surface marker-defined cells and not further characterization of the CTCs. In this study, we tested the ability of a semi-automated device capable of capturing and harvesting CTCs from peripheral blood based on cell size and deformability, agnostic of cell-surface markers (the Parsortix® PC1 System), to yield CTCs for evaluation by downstream techniques commonly available in clinical laboratories. The data generated from this study were used to support a De Novo request (DEN200062) for the classification of this device, which the FDA recently granted. As part of a multicenter clinical trial, peripheral blood samples from 216 patients with metastatic breast cancer (MBC) and 205 healthy volunteers were subjected to CTC enrichment. A board-certified pathologist enumerated the CTCs from each participant by cytologic evaluation of Wright-Giemsa-stained slides. As proof of principle, cells harvested from a concurrent parallel sample provided by each participant were evaluated using one of three additional evaluation techniques: molecular profiling by qRT-PCR, RNA sequencing, or cytogenetic analysis of HER2 amplification by FISH. The study demonstrated that the Parsortix® PC1 System can effectively capture and harvest CTCs from the peripheral blood of MBC patients and that the harvested cells can be evaluated using orthogonal methodologies such as gene expression and/or Fluorescence In Situ Hybridization (FISH).
Collapse
Affiliation(s)
- Evan N. Cohen
- Department of Hematopathology Research, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gitanjali Jayachandran
- Department of Hematopathology Research, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard G. Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Julie E. Lang
- USC Breast Cancer Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Joseph D. Khoury
- Department of Pathology, Breast Cancer Analysis Laboratory, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael F. Press
- Department of Pathology, Breast Cancer Analysis Laboratory, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyu Kwang Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Negar Khazan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Qiang Zhang
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youbin Zhang
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pushpinder Kaur
- USC Breast Cancer Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Roberta Guzman
- Department of Pathology, Breast Cancer Analysis Laboratory, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael C. Miller
- ANGLE Clinical Studies, ANGLE Europe Limited, Guildford, Surrey GU2 7AF, UK
| | - James M. Reuben
- Department of Hematopathology Research, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Nasiłowska B, Bogdanowicz Z, Kasprzycka W, Bombalska A, Mierczyk Z. Studies on the Effect of Graphene Oxide Deposited on Gold and Nickel Microsieves on Prostate Cancer Cells DU 145. Int J Mol Sci 2022; 23:ijms23126567. [PMID: 35743008 PMCID: PMC9224325 DOI: 10.3390/ijms23126567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
This work shows the effect of graphene oxide deposition on microsieves’ surfaces of gold and nickel foils, on DU 145 tumor cells of the prostate gland. The sieves were made by a laser ablation process. The graphene oxide (GO) deposition process was characterized by the complete covering of the inner edges of the microholes and the flat surface between the holes with GO. Electron microscanning studies have shown that due to the deposition method applied, graphene oxide flakes line the interior of the microholes, reducing the unevenness of the downstream surfaces during the laser ablation process. The presence of graphene oxide was confirmed by Fourier infrared spectroscopy. During the screening (sieving) process, the microsieves were placed in a sieve column. Gold foil is proven to be a very good material for the screening of cancer cells, but even more so after screening as a substrate for re-culture of the DU 145. This allows a potential recovery of the cells and the development of a targeted therapy. The sieved cells were successfully grown on the microsieves used in the experiment. Graphene oxide remaining on the surface of the nickel sieve has been observed to increase the sieving effect. Although graphene oxide improved separation efficiency by 9.7%, the nickel substrate is not suitable for re-culturing of the Du 145 cells and the development of a targeted therapy compared to the gold one.
Collapse
Affiliation(s)
- Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (W.K.); (A.B.); (Z.M.)
- Correspondence:
| | - Zdzisław Bogdanowicz
- Faculty of Mechanical Engineering, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Wiktoria Kasprzycka
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (W.K.); (A.B.); (Z.M.)
| | - Aneta Bombalska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (W.K.); (A.B.); (Z.M.)
| | - Zygmunt Mierczyk
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (W.K.); (A.B.); (Z.M.)
| |
Collapse
|
16
|
Descarpentrie J, Araúzo-Bravo MJ, He Z, François A, González Á, Garcia-Gallastegi P, Badiola I, Evrard S, Pernot S, Creemers JWM, Khatib AM. Role of Furin in Colon Cancer Stem Cells Malignant Phenotype and Expression of LGR5 and NANOG in KRAS and BRAF-Mutated Colon Tumors. Cancers (Basel) 2022; 14:1195. [PMID: 35267511 PMCID: PMC8909039 DOI: 10.3390/cancers14051195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Proprotein convertases or PCs are known to regulate the malignant phenotype of colon cancer cells by different mechanisms, but their effects on cancer stem cells (CSCs) have been less widely investigated. Here, we report that PCs expression is altered in colon CSCs, and the inhibition of their activity reduced colon CSCs growth, survival, and invasion in three-dimensional spheroid cultures. In vivo, repression of PCs activity by the general PC inhibitors α1-PDX, Spn4A, or decanoyl-RVKR-chloromethylketone (CMK) significantly reduced tumor expression levels of the stem cell markers LGR5 and NANOG that are associated with reduced tumor xenografts. Further analysis revealed that reduced tumor growth mediated by specific silencing of the convertase Furin in KRAS or BRAF mutated-induced colon tumors was associated with reduced expression of LGR5 and NANOG compared to wild-type KRAS and BRAF tumors. Analysis of various calcium regulator molecules revealed that while the calcium-transporting ATPase 4 (ATP2B4) is downregulated in all the Furin-silenced colon cancer cells, the Ca2+-mobilizing P2Y receptors, was specifically repressed in BRAF mutated cells and ORAI1 and CACNA1H in KRAS mutated cells. Taken together, our findings indicate that PCs play an important role in the malignant phenotype of colon CSCs and stem cell markers' expression and highlight PCs repression, particularly of Furin, to target colon tumors with KRAS or BRAF mutation.
Collapse
Affiliation(s)
- Jean Descarpentrie
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastian, Spain;
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing 400042, China;
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Alexia François
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Álvaro González
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
| | - Patricia Garcia-Gallastegi
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Serge Evrard
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| | | | - John W. M. Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| | - Abdel-Majid Khatib
- Reprogramming tumor activitY and associaTed MicroEnvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France; (J.D.); (A.F.); (P.G.-G.); (S.E.)
- Institut Bergonié, 33000 Bordeaux, France;
| |
Collapse
|
17
|
Buyuk B, Jin S, Ye K. Epithelial-to-Mesenchymal Transition Signaling Pathways Responsible for Breast Cancer Metastasis. Cell Mol Bioeng 2022; 15:1-13. [PMID: 35096183 PMCID: PMC8761190 DOI: 10.1007/s12195-021-00694-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Breast carcinoma is highly metastatic and invasive. Tumor metastasis is a convoluted and multistep process involving tumor cell disseminating from their primary site and migrating to the secondary organ. Epithelial-mesenchymal transition (EMT) is one of the crucial steps that initiate cell progression, invasion, and metastasis. During EMT, epithelial cells alter their molecular features and acquire a mesenchymal phenotype. The regulation of EMT is centered by several signaling pathways, including primary mediators TGF-β, Notch, Wnt, TNF-α, Hedgehog, and RTKs. It is also affected by hypoxia and microRNAs (miRNAs). All these pathways are the convergence on the transcriptional factors such as Snail, Slug, Twist, and ZEB1/2. In addition, a line of evidence suggested that EMT and cancer stem like cells (CSCs) are associated. EMT associated cancer stem cells display mesenchymal phenotypes and resist to chemotherapy or targeted therapy. In this review, we highlighted recent discoveries in these signaling pathways and their regulation in breast cancer metastasis and invasion. While the clinical relevance of EMT and breast cancers remains controversial, we speculated a convergent signaling network pivotal to elucidating the transition of epithelial to mesenchymal phenotypes and onset of metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Busra Buyuk
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Sha Jin
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| |
Collapse
|
18
|
Gao W, Zhang S, Guorong L, Liu Q, Zhu A, Gui F, Zou Y, Wu Y, Luo Y, Hong Z. Nc886 promotes renal cancer cell drug-resistance by enhancing EMT through Rock2 phosphorylation-mediated β-catenin nuclear translocation. Cell Cycle 2022; 21:340-351. [PMID: 34974812 PMCID: PMC8855853 DOI: 10.1080/15384101.2021.2020431] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Drug resistance is a significant challenge in the present treatment regimens of renal cell carcinoma (RCC). Our previous study confirmed that nc886 functions as an oncogene in RCC. Nevertheless, the role and underlying mechanism of nc886 in RCC drug resistance are unclear. In the present study, Sunitinib and Everolimus treatment, respectively, downregulated nc886 expression in a dose-dependent manner in all four renal cancer cell lines. Nc886 overexpression in 786-O cells and ACHN cells significantly reduced the sensitivity of cancer cells to both Sunitinib and Everolimus treatment, respectively, by promoting cell viability and inhibiting cell apoptosis, whereas nc886 silencing increased cancer cell sensitivity. In renal cancer cell line with the highest drug-resistance, 786-O cells, Sunitinib, or Everolimus treatment enhanced the cellular EMT and was further enhanced by nc886 overexpression while attenuated by nc886 silencing. In 786-O cells, nc886 overexpression significantly promoted EMT, ROCK2 phosphorylation, and β-catenin nucleus translocation under Sunitinib or Everolimus treatment. Moreover, ROCK2 silencing significantly reversed the effects of nc886 overexpression on EMT, ROCK2 phosphorylation, and β-catenin nucleus translocation, as well as drug-resistant renal cancer cell viability and apoptosis. In conclusion, it was demonstrated that nc886 promotes renal cancer cell proliferation, migration, and invasion, as demonstrated previously. nc886 also promotes renal cancer cell drug-resistance to Sunitinib or Everolimus by promoting EMT through Rock2 phosphorylation-mediated nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Weiyin Gao
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Children’s Hospital, Nanchang, Jiangxi Province, China
| | - Li Guorong
- Department of Urology, North Hospital, Chu Saint-Etienne, University of Jean-Monnet, Saint-Etienne, France
| | - Queling Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Anyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fu Gui
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yan Zou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yiguo Wu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yang Luo
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhengdong Hong
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,CONTACT Zhengdong Hong The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi Province, China
| |
Collapse
|
19
|
Lee J, Ung A, Kim H, Lee K, Cho HJ, Bandaru P, Ahadian S, Dokmeci MR, Khademhosseini A. Engineering liver microtissues to study the fusion of HepG2 with mesenchymal stem cells and invasive potential of fused cells. Biofabrication 2021; 14. [PMID: 34740205 DOI: 10.1088/1758-5090/ac36de] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence from cancer cell fusion with different cell types in the tumor microenvironment has suggested a probable mechanism for how metastasis-initiating cells could be generated in tumors. Although human mesenchymal stem cells (hMSCs) have been known as promising candidates to create hybrid cells with cancer cells, the role of hMSCs in fusion with cancer cells is still controversial. Here, we fabricated a liver-on-a-chip platform to monitor the fusion of liver hepatocellular cells (HepG2) with hMSCs and study their invasive potential. We demonstrated that hMSCs might play dual roles in HepG2 spheroids. The analysis of tumor growth with different fractions of hMSCs in HepG2 spheroids revealed hMSCs' role in preventing HepG2 growth and proliferation, while the hMSCs presented in the HepG2 spheroids led to the generation of HepG2-hMSC hybrid cells with much higher invasiveness compared to HepG2. These invasive HepG2-hMSC hybrid cells expressed high levels of markers associated with stemness, proliferation, epithelial to mesenchymal transition, and matrix deposition, which corresponded to the expression of these markers for hMSCs escaping from hMSC spheroids. In addition, these fused cells were responsible for collective invasion following HepG2 by depositing Collagen I and Fibronectin in their surrounding microenvironment. Furthermore, we showed that hepatic stellate cells (HSCs) could also be fused with HepG2, and the HepG2-HSC hybrid cells possessed similar features to those from HepG2-hMSC fusion. This fusion of HepG2 with liver-resident HSCs may propose a new potential mechanism of hepatic cancer metastasis.
Collapse
Affiliation(s)
- Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Aly Ung
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Hanjun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - KangJu Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Hyun-Jong Cho
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Praveen Bandaru
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
20
|
Liu Z, Ren Y, Meng L, Li L, Beatson R, Deng J, Zhang T, Liu J, Han X. Epigenetic Signaling of Cancer Stem Cells During Inflammation. Front Cell Dev Biol 2021; 9:772211. [PMID: 34722553 PMCID: PMC8554148 DOI: 10.3389/fcell.2021.772211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant tumors pose a great challenge to human health, which has led to many studies increasingly elucidating the tumorigenic process. Cancer Stem Cells (CSCs) have profound impacts on tumorigenesis and development of drug resistance. Recently, there has been increased interest in the relationship between inflammation and CSCs but the mechanism underlying this relationship has not been fully elucidated. Inflammatory cytokines produced during chronic inflammation activate signaling pathways that regulate the generation of CSCs through epigenetic mechanisms. In this review, we focus on the effects of inflammation on cancer stem cells, particularly the role of signaling pathways such as NF-κB pathway, STAT3 pathway and Smad pathway involved in regulating epigenetic changes. We hope to provide a novel perspective for improving strategies for tumor treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingfang Meng
- Department of Ultrasound, Zhengzhou Sixth People's Hospital, Henan Infectious Disease Hospital, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Richard Beatson
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
21
|
Rabionet M, Polonio-Alcalá E, Relat J, Yeste M, Sims-Mourtada J, Kloxin AM, Planas M, Feliu L, Ciurana J, Puig T. Fatty acid synthase as a feasible biomarker for triple negative breast cancer stem cell subpopulation cultured on electrospun scaffolds. Mater Today Bio 2021; 12:100155. [PMID: 34841239 PMCID: PMC8606546 DOI: 10.1016/j.mtbio.2021.100155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022] Open
Abstract
There is no targeted therapy for triple negative breast cancer (TNBC), which presents an aggressive profile and poor prognosis. Recent studies noticed the feasibility of breast cancer stem cells (BCSCs), a small population responsible for tumor initiation and relapse, to become a novel target for TNBC treatments. However, new cell culture supports need to be standardized since traditional two-dimensional (2D) surfaces do not maintain the stemness state of cells. Hence, three-dimensional (3D) scaffolds represent an alternative to study in vitro cell behavior without inducing cell differentiation. In this work, electrospun polycaprolactone scaffolds were used to enrich BCSC subpopulation of MDA-MB-231 and MDA-MB-468 TNBC cells, confirmed by the upregulation of several stemness markers and the existence of an epithelial-to-mesenchymal transition within 3D culture. Moreover, 3D-cultured cells displayed a shift from MAPK to PI3K/AKT/mTOR signaling pathways, accompanied by an enhanced EGFR and HER2 activation, especially at early cell culture times. Lastly, the fatty acid synthase (FASN), a lipogenic enzyme overexpressed in several carcinomas, was found to be hyperactivated in stemness-enriched samples. Its pharmacological inhibition led to stemness diminishment, overcoming the BCSC expansion achieved in 3D culture. Therefore, FASN may represent a novel target for BCSC niche in TNBC samples.
Collapse
Affiliation(s)
- Marc Rabionet
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Pic de Peguera 15, 17003, Girona, Spain
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark, DE, USA
| | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003, Girona, Spain
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab) - Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Emili Grahit 77, 17003, Girona, Spain
| |
Collapse
|
22
|
Zhuang QS, Sun XB, Chong QY, Banerjee A, Zhang M, Wu ZS, Zhu T, Pandey V, Lobie PE. ARTEMIN Promotes Oncogenicity and Resistance to 5-Fluorouracil in Colorectal Carcinoma by p44/42 MAPK Dependent Expression of CDH2. Front Oncol 2021; 11:712348. [PMID: 34422665 PMCID: PMC8377398 DOI: 10.3389/fonc.2021.712348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
ARTEMIN (ARTN), one of the glial-cell derived neurotrophic factor family of ligands, has been reported to be associated with a number of human malignancies. In this study, the enhanced expression of ARTN in colorectal carcinoma (CRC) was observed; the expression of ARTN positively correlated with lymph node metastases and advanced tumor stages and predicted poor prognosis. Forced expression of ARTN in CRC cells enhanced oncogenic behavior, mesenchymal phenotype, stem cell-like properties and tumor growth and metastasis in a xenograft model. These functions were conversely inhibited by depletion of endogenous ARTN. Forced expression of ARTN reduced the sensitivity of CRC cells to 5-FU treatment; and 5-FU resistant CRC cells harbored enhanced expression of ARTN. The oncogenic functions of ARTN were demonstrated to be mediated by p44/42 MAP kinase dependent expression of CDH2 (CADHERIN 2, also known as N-CADHERIN). Inhibition of p44/42 MAP kinase activity or siRNA mediated depletion of endogenous CDH2 reduced the enhanced oncogenicity and chemoresistance consequent to forced expression of ARTN induced cell functions; and forced expression of CDH2 rescued the reduced mesenchymal properties and resistance to 5-FU after ARTN depletion. In conclusion, ARTN may be of prognostic and theranostic utility in CRC.
Collapse
Affiliation(s)
- Qiu-Shi Zhuang
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xin-Bao Sun
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Arindam Banerjee
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Min Zhang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Tao Zhu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
23
|
Zadorozhna M, Mangieri D. Mechanisms of Chemopreventive and Therapeutic Proprieties of Ginger Extracts in Cancer. Int J Mol Sci 2021; 22:6599. [PMID: 34202966 PMCID: PMC8234951 DOI: 10.3390/ijms22126599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe, family: Zingiberaceae), originating in South-East Asia, is one of the most used spices and condiments for foods and beverages. It is also used in traditional medicine for many human disorders including fever, gastrointestinal complications, arthritis, rheumatism, hypertension, and various infectious diseases due to its anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties. Intriguingly, many recent studies evidenced the potent chemopreventive characteristics of ginger extracts against different types of cancer. The aim of this work is to review the literature related to the use of ginger extracts as a chemotherapeutic agent and to structure the cellular and molecular mechanisms through which ginger acts in different cancer types. Data summarized from experiments (in vitro or in vivo) and clinical studies, evidenced in this review, show that ginger derivatives perpetrate its anti-tumor action through important mediators, involved in crucial cell processes, such as cell cycle arrest, induction of cancer cell death, misbalance of redox homeostasis, inhibition of cell proliferation, angiogenesis, migration, and dissemination of cancer cells.
Collapse
Affiliation(s)
| | - Domenica Mangieri
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
24
|
Bornes L, Belthier G, van Rheenen J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J Clin Med 2021; 10:jcm10112403. [PMID: 34072345 PMCID: PMC8197992 DOI: 10.3390/jcm10112403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a cellular program which leads to cells losing epithelial features, including cell polarity, cell-cell adhesion and attachment to the basement membrane, while gaining mesenchymal characteristics, such as invasive properties and stemness. This program is involved in embryogenesis, wound healing and cancer progression. Over the years, the role of EMT in cancer progression has been heavily debated, and the requirement of this process in metastasis even has been disputed. In this review, we discuss previous discrepancies in the light of recent findings on EMT, plasticity and hybrid E/M states. Moreover, we highlight various tumor microenvironmental cues and cell intrinsic signaling pathways that induce and sustain EMT programs, plasticity and hybrid E/M states. Lastly, we discuss how recent findings on plasticity, especially on those that enable cells to switch between hybrid E/M states, have changed our understanding on the role of EMT in cancer metastasis, stemness and therapy resistance.
Collapse
|
25
|
Hendawy H, Esmail AD, Zahani AMN, Elmahdi AH, Ibrahiem A. Clinicopathological correlation of stem cell markers expression in oral squamous cell carcinoma; relation to patients` outcome. J Immunoassay Immunochem 2021; 42:571-595. [PMID: 33896397 DOI: 10.1080/15321819.2021.1911814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Squamous cell carcinoma (OSCC) is the commonest oral malignancy.The overall 5 year survival of OSCC has remained at 50%, largely unchanged for 40 years. CSCs are important within the development, invasion, drug resistance, and prediction of carcinomas treatment outcome. ALDH1 and CD44 are commonly used epithelial tumors cancer stem-like cells surface markers. Materials: Our study aimed to judge CD44 and ALDH1 immunohistochemical expressions in 44 cases of OSCC and relates the expression to patients' survival. Results: High CD44 & ALDH1 expressions were significantly expressed in variable histologic grades of OSCCs, large sized carcinomas, presence lymph vascular invasion, presence of nodal and distant metastasis, advanced TNM clinical stage, recurrence and death during follow up period (P ≤ 0.05). Reduced DFS and three years overall survival were significantly recorded in cases with high CD44 expression, and high ALDH1 expression (p < 0.05). CD44 & ALDH1 expressions, histologic grade, tumor size were the independent predictors of DFS and three years OS. Conclusion: CD44 and ALDH1 expressions are valuable prognostic factors in OSCC and could be well considered predictors for patients' 3 years OS and DFS.
Collapse
Affiliation(s)
- Heba Hendawy
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - A Doaa Esmail
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - A M Nashwa Zahani
- Teaching Assistant, Northern Border University Faculty of Medicine, Arar, Saudi Arabia
| | - Al Hoda Elmahdi
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt
| | - Afaf Ibrahiem
- Lecturer of Oral and Maxillofacial Pathology, Mansoura University Faculty of Dentistry, Mansoura, Egypt.,Lecturer of pathology, Faculty medicine, Mansoura University , Egypt
| |
Collapse
|
26
|
Xin W, Zhao C, Jiang L, Pei D, Zhao L, Zhang C. Identification of a Novel Epithelial-Mesenchymal Transition Gene Signature Predicting Survival in Patients With HNSCC. Pathol Oncol Res 2021; 27:585192. [PMID: 34257533 PMCID: PMC8262154 DOI: 10.3389/pore.2021.585192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the most common types of cancer worldwide. There have been many reports suggesting that biomarkers explored via database mining plays a critical role in predicting HNSCC prognosis. However, a single biomarker for prognostic analysis is not adequate. Additionally, there is growing evidence indicating that gene signature could be a better choice for HNSCC prognosis. We performed a comprehensive analysis of mRNA expression profiles using clinical information of HNSCC patients from The Cancer Genome Atlas (TCGA). Gene Set Enrichment Analysis (GSEA) was performed, and we found that a set of genes involved in epithelial mesenchymal transition (EMT) contributed to HNSCC. Cox proportional regression model was used to identify a four-gene (WIPF1, PPIB, BASP1, PLOD2) signature that were significantly associated with overall survival (OS), and all the four genes were significantly upregulated in tumor tissues. We successfully classified the patients with HNSCC into high-risk and low-risk groups, where in high-risk indicated poorer patient prognosis, indicating that this gene signature might be a novel potential biomarker for the prognosis of HNSCC. The prognostic ability of the gene signature was further validated in an independent cohort from the Gene Expression Omnibus (GEO) database. In conclusion, we identified a four-EMT-based gene signature which provides the potentiality to serve as novel independent biomarkers for predicting survival in HNSCC patients, as well as a new possibility for individualized treatment of HNSCC.
Collapse
Affiliation(s)
- Wei Xin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Chaoran Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Dongmei Pei
- Department of Family Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation China Medical University, Shenyang, China
| | - Chengpu Zhang
- Department of Family Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Du L, Cheng Q, Zheng H, Liu J, Liu L, Chen Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin Cancer Biol 2021; 82:150-161. [PMID: 33631296 DOI: 10.1016/j.semcancer.2021.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer initiating/ stem cells (CSCs) undergo self-renewal and differentiation that contributes to tumor initiation, recurrence and metastasis in colorectal cancer (CRC). Targeting of colorectal cancer stem cells (CCSCs) holds significant promise in eradicating cancer cells and ultimately curing patients with cancer. In this review, we will introduce the current progress of CCSC studies, including the specific surface markers of CCSCs, the intrinsic signaling pathways that regulate the stemness and differentiation characteristics of CCSCs, and the tumor organoid model for CCSC research. We will focus on how these studies will lead to the progress in targeting specific surface markers or signaling pathways on CCSCs by monoclonal antibodies, or by natural or synthetic compounds, or by immunotherapy. As CSCs are highly heterogeneous and plastic, we suggest that combinatory approaches that target the stemness network may represent an important strategy for eradicating cancers.
Collapse
Affiliation(s)
- Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China.
| | - Qi Cheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The Graduate University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Hao Zheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinming Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
28
|
Angius A, Scanu AM, Arru C, Muroni MR, Rallo V, Deiana G, Ninniri MC, Carru C, Porcu A, Pira G, Uva P, Cossu-Rocca P, De Miglio MR. Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. Int J Mol Sci 2021; 22:1603. [PMID: 33562604 PMCID: PMC7915330 DOI: 10.3390/ijms22041603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and about 20% is metastatic at diagnosis and untreatable. Increasing evidence suggests that the heterogeneous nature of CRC is related to colorectal cancer stem cells (CCSCs), a small cells population with stemness behaviors and responsible for tumor progression, recurrence, and therapy resistance. Growing knowledge of stem cells (SCs) biology has rapidly improved uncovering the molecular mechanisms and possible crosstalk/feedback loops between signaling pathways that directly influence intestinal homeostasis and tumorigenesis. The generation of CCSCs is probably connected to genetic changes in members of signaling pathways, which control self-renewal and pluripotency in SCs and then establish function and phenotype of CCSCs. Particularly, various deregulated CCSC-related miRNAs have been reported to modulate stemness features, controlling CCSCs functions such as regulation of cell cycle genes expression, epithelial-mesenchymal transition, metastasization, and drug-resistance mechanisms. Primarily, CCSC-related miRNAs work by regulating mainly signal pathways known to be involved in CCSCs biology. This review intends to summarize the epigenetic findings linked to miRNAome in the maintenance and regulation of CCSCs, including their relationships with different signaling pathways, which should help to identify specific diagnostic, prognostic, and predictive biomarkers for CRC, but also develop innovative CCSCs-targeted therapies.
Collapse
Affiliation(s)
- Andrea Angius
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Antonio Mario Scanu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Giulia Deiana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Maria Chiara Ninniri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Alberto Porcu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Paolo Uva
- IRCCS G. Gaslini, 16147 Genoa, Italy;
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
- Department of Diagnostic Services, “Giovanni Paolo II” Hospital, ASSL Olbia-ATS Sardegna, 07026 Olbia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| |
Collapse
|
29
|
Bali P, Lozano-Pope I, Pachow C, Obonyo M. Early detection of tumor cells in bone marrow and peripheral blood in a fast‑progressing gastric cancer model. Int J Oncol 2021; 58:388-396. [PMID: 33469673 PMCID: PMC7864146 DOI: 10.3892/ijo.2021.5171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is a major risk factor for the development of gastric cancer. The authors previously demonstrated that in mice deficient in myeloid differentiation primary response 88 (Myd88−/−), infection with Helicobacter felis (H. felis) a close relative of H. pylori, subsequently rapidly progressed to neoplasia. The present study examined circulating tumor cells (CTCs) by measuring the expression of cytokeratins, epithelial-to-mesenchymal transition (EMT)-related markers and cancer stem cell (CSC) markers in bone marrow and peripheral blood from Myd88−/− and wild-type (WT) mice. Cytokeratins CK8/18 were detected as early as 4 months post-infection in Myd88−/− mice. By contrast, cytokeratins were not detected in WT mice even after 7 months post-infection. The expression of Mucin-1 (MUC1) was observed in both bone marrow and peripheral blood at different time points, suggesting its role in gastric cancer metastasis. Snail, Twist and ZEB were expressed at different levels in bone marrow and peripheral blood. The expression of these EMT-related markers suggests the manifestation of cancer metastasis in the early stages of disease development. LGR5, CD44 and CD133 were the most prominent CSC markers detected. The detection of CSC and EMT markers along with cytokeratins does reinforce their use as biomarkers for gastric cancer metastasis. This early detection of markers suggests that CTCs leave primary site even before cancer is well established. Thus, cytokeratins, EMT, and CSCs could be used as biomarkers to detect aggressive forms of gastric cancers. This information may prove to be of significance in stratifying patients for treatment prior to the onset of severe disease-related characteristics.
Collapse
Affiliation(s)
- Prerna Bali
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093‑0640, USA
| | - Ivonne Lozano-Pope
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093‑0640, USA
| | - Collin Pachow
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093‑0640, USA
| | - Marygorret Obonyo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093‑0640, USA
| |
Collapse
|
30
|
Jairajpuri Z, Jetley S, Sultan B, Rana S, Khetrapal S, Sharma A, Naseeruddin K. Histologic characteristics of invasive oral carcinoma and the role of epithelial-mesenchymal transition in cancer progression. JOURNAL OF CANCER RESEARCH AND PRACTICE 2021. [DOI: 10.4103/jcrp.jcrp_25_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Ospina-Muñoz N, Vernot JP. Partial acquisition of stemness properties in tumorspheres obtained from interleukin-8-treated MCF-7 cells. Tumour Biol 2020; 42:1010428320979438. [PMID: 33325322 DOI: 10.1177/1010428320979438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interleukin-8 is an important regulator of the tumor microenvironment, promoting the epithelial-mesenchymal transition and the acquisition of stem-like cell properties in cancer cells. The tumorsphere-formation assay has been used for the identification of cancer stem cell. Interleukin-8 induces the formation of larger tumorspheres in Michigan Cancer Foundation-7 (MCF-7) cells, suggesting cancer stem cell enrichment. In this work, we aimed to study the phenotypic and functional characteristics of the cells present within the tumorspheres of MCF-7 cells previously treated with interleukin-8. MCF-7 cells treated for 5 days or not with this cytokine were further cultivated in ultralow attachment plates for another 5 days to allow tumorspheres formation. We showed that the enhanced sphere formation by MCF-7 cells was not a consequence of higher cell proliferation by interleukin-8 stimulation. Despite maintaining an epithelial-mesenchymal transition phenotype with the presence of epithelial and mesenchymal markers, basic stemness properties were impaired in tumorspheres and in those treated with interleukin-8, while others were increased. Self-renewal capacity was increased in interleukin-8-treated cells only in the first generation of tumorspheres but was not sustained in consecutive assays. Accordingly, self-renewal and reprogramming gene expression, differentiation capacity to adipocytes, and clonogenicity were also impaired. We showed also that tumorspheres were enriched in differentiated luminal cells (EpCAM+/CD49f-). Nevertheless, cells were more quiescent and maintain a partial epithelial-mesenchymal transition, consistent with their increased resistance to Paclitaxel and Doxorubicin. They also presented higher migration and interleukin-8-directed invasion. Therefore, the breast cancer cell line MCF-7, having a low stemness index, might partially acquire some stem-like cell attributes after interleukin-8 stimulation, increasing its aggressiveness.
Collapse
Affiliation(s)
- Natalia Ospina-Muñoz
- Cellular and Molecular Physiology Group, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Jean-Paul Vernot
- Cellular and Molecular Physiology Group, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia.,Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
32
|
Saikawa H, Uesugi N, Sugai T, Maemondo M. Pleomorphic carcinoma of the trachea after chemoradiotherapy for laryngeal cancer. BMJ Case Rep 2020; 13:13/10/e236819. [PMID: 33127699 PMCID: PMC7604805 DOI: 10.1136/bcr-2020-236819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A 66-year-old male patient who had received chemoradiotherapy (CRT) for laryngeal cancer 2 years ago visited a local doctor complaining of dyspnoea and wheezing. CT scan showed narrowing of the trachea caused by a tumour. We intubated the trachea over the tumour using a bronchoscope. A week later, the truncated tracheal tumour obstructed the tracheal tube, compromising the patient’s breathing. We removed the obstructed tube and inserted a new one. We submitted the tissue from the tube to a pathologist. Histopathological diagnosis was pleomorphic carcinoma, a subtype of sarcomatoid carcinoma. The mechanism of epithelial–mesenchymal transition (EMT) occurring after CRT was detected in the tumour. Because he had undergone CRT for laryngeal cancer, surgery was not indicated, and we started radiation therapy. Sarcomatoid carcinomas including pleomorphic carcinoma of the trachea are extremely rare, with few reported cases, and EMT is associated with this histological type and CRT.
Collapse
Affiliation(s)
- Hirotaka Saikawa
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Iwate, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Iwate, Japan
| | - Makoto Maemondo
- Division of Pulmonary Medicine, Allergy, and Rheumatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
33
|
Zhang R, Xia J, Wang Y, Cao M, Jin D, Xue W, Huang Y, Chen H. Co-Expression of Stem Cell and Epithelial Mesenchymal Transition Markers in Circulating Tumor Cells of Bladder Cancer Patients. Onco Targets Ther 2020; 13:10739-10748. [PMID: 33122913 PMCID: PMC7588836 DOI: 10.2147/ott.s259240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Cancer cells with stemness and epithelial-to-mesenchymal transition (EMT) features display enhanced malignant and metastatic potential. This study aimed to introduce a new methodology developed in order to investigate the co-expression of a stemness (OCT4) and EMT markers on single circulating tumor cells (CTCs) of patients with localized urinary bladder cancer and their potential prognostic prediction value. Methods and Materials Between April 2015 and July 2015, blood samples of 51 consecutive patients diagnosed with high risk bladder cancer (cT1-3N0M0) were prospectively investigated for CTCs. Peripheral blood (5 mL) was drawn before primary transurethral resection. Detection of CTCs was performed using the CanPatrolTM system. Nucleic acid probes were used to identify CTCs, and expression levels of epithelial and mesenchymal genes in CTCs were examined by situ hybridization assay. Results All patients received radical cystectomy with pelvic lymph nodes dissection. CTCs were detected in 44 of 51 (86.3%) patients, respectively. The overall mean number of CTCs was 6.1 (range: 0~29; median: 4). A total of 311 CTCs were detected in PB. High OCT4 expression (OCT4high) was detected more frequently in Epi−Mes+ cells (p=0.001). Patients with pathological confirmed muscle-invasive bladder cancer (MIBC) had higher Epi−Mes+ CTCs positive rates (p=0.001) and OCT4high CTCs positive rates (p=0.019) than pathological confirmed non muscle-invasive bladder cancer (NMIBC). Regarding co-expression of these markers, Epi−Mes+/OCT4high CTCs were more frequently evident in the MIBC setting (30.4% vs 3.6% of patients, p = 0.016). Conclusion A differential expression pattern for these markers was observed both in NMIBC and MIBC disease. A subgroup of CTCs showed a CTCs expressing high OCT4, along with Mes were more frequently detected in patients with MIBC, suggesting that these cells may prevail during tumor muscle invasion and disease progression.
Collapse
Affiliation(s)
- Ruiyun Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jun Xia
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yiqiu Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ming Cao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Di Jin
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Haige Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Sameri S, Saidijam M, Bahreini F, Najafi R. Cancer Chemopreventive Activities of Silibinin on Colorectal Cancer through Regulation of E-Cadherin/β-Catenin Pathway. Nutr Cancer 2020; 73:1389-1399. [PMID: 32748663 DOI: 10.1080/01635581.2020.1800764] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Silibinin is the most active flavonolignan constituent of Silymarin, the extract of milk thistle seeds. In this study, we investigated the anticancer properties and molecular mechanisms of silibinin on colorectal cancer (CRC) cells. METHODS HCT-116 cells were used to investigate the effects of silibinin on proliferation, migration, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), apoptosis and signaling pathways underlying these functions by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), Western blot, Acridine orange/propidium iodide double staining, migration and sphere formation assay. RESULTS Silibinin significantly suppressed HCT-116 cells proliferation and migration and induced the apoptosis via increasing the Bax/Bcl-2 ratio. Silibinin down-regulated cancer stemness markers; prominin-1 (CD133), CD44, BMI1, Aldehyde dehydrogenase 1 (ALDH1), and doublecortin-like kinase 1 (DCLK1) of HCT-116 cell line. Silibinin attenuated EMT through decreased expression of N- cadherin and vimentin and increased expression of (E-cadherin). Furthermore, silibinin decreased the β-catenin gene and protein expression. CONCLUSION Our study revealed that silibinin maintains various antitumor activities such as induction of apoptosis, suppression of migration, elimination of CSCs and attenuation of EMT related markers in CRC cells. These underlying anti-tumor mechanisms of silibinin are likely to act through the blockage of the β-catenin signaling pathway, which is the key component of Wnt signaling pathway, one of the hallmarks of CRC development.
Collapse
Affiliation(s)
- Saba Sameri
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Bahreini
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
35
|
Wang J, Li M, Han X, Wang H, Wang X, Ma G, Xia T, Wang S. MiR-1976 knockdown promotes epithelial-mesenchymal transition and cancer stem cell properties inducing triple-negative breast cancer metastasis. Cell Death Dis 2020; 11:500. [PMID: 32620748 PMCID: PMC7335055 DOI: 10.1038/s41419-020-2711-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022]
Abstract
Triple-negative breast cancer (TNBC), characterized by high aggression and invasiveness, has a worse prognosis than other subtypes of breast cancer. Establishing a novel animal model is helpful to understand the mechanisms involved in the progress of TNBC metastasis. In a self-established mouse model consisting normal human breast tissues and normal human bone tissues, TNBC cell line SUM-1315 could spontaneously form species-specific bone metastasis. The expression level of miR-1976 in SUM-1315-bo (derived from metastatic bone tumor) was found lower than that in SUM-1315-br (derived from orthotopic breast tumor). MiR-1976 was found to be downregulated in TNBC tissues, and lower expression of miR-1976 was correlated with worse overall survival in a patient cohort obtained from TCGA database. MiR-1976 knockdown promoted epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) properties in vitro and in vivo. Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG) was verified as a target gene by sequencing, biotinylated miRNA pull-down, and luciferase reporter assay. Moreover, overexpression and suppression analysis implicated PIK3CG as a mediator of the biological effects of miR-1976. Our study demonstrated that miR-1976 knockdown could promote EMT and CSCs by PIK3CG. These findings may reveal mechanisms of TNBC metastasis, and represent a potential treatment target for patients with TNBC.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Minghui Li
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Han
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xinyang Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
36
|
Peng H, Tan X, Wang Y, Dai L, Liang G, Guo J, Chen M. Clinical Significance of Red Cell Distribution Width and Circulating Tumor Cells with an Epithelial-Mesenchymal Transition Phenotype in Lung Adenocarcinoma. Cancer Manag Res 2020; 12:5105-5117. [PMID: 32636675 PMCID: PMC7326696 DOI: 10.2147/cmar.s251271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To determine the prognostic value of red cell distribution width (RDW) and circulating tumor cells with epithelial-mesenchymal transition phenotype (M-CTC) in lung adenocarcinoma (LUAD). PATIENTS AND METHODS Clinical and laboratory data of 60 patients with LUAD were collected. CTCs were isolated from their peripheral blood using the CanPatrolTM CTC enrichment method. The indicators of RDW and neutrophil lymphocyte ratio (NLR) were calculated based on the laboratory standards. RESULTS A total of 60 LUAD patients were enrolled, of which 19 (31.7%) had high RDW (>0.14) and 32 (53.3%) were positive for M-CTCs. There was no significant correlation between RDW and the clinical characteristics. M-CTC was not significantly associated with tumor size and differentiation, age, gender, tumor stage, and histological type but correlated significantly with lymphatic metastasis (P = 0.044), high NLR (>2.26, P = 0.023), and high RDW (>0.14, P = 0.036). Furthermore, the M-CTC+ LUAD patients had a significantly poor recurrence-free survival (RFS; Log rank P =0.001, HR = 2.749, 95% CI = 1.489-5.078) and overall survival (OS; Log rank P =0.022, HR = 2.283, 95% CI = 1.128-4.622) compared to the M-CTC- patients. Similarly, high RDW also correlated with worse RFS (Log rank P = 0.008, HR = 2.331, 95% CI = 1.248-4.353) and OS (Log rank P = 0.004, HR = 0.004, 95% CI = 1.398-5.525). CONCLUSION M-CTC is significantly related to RDW and NLR, and an independent prognostic factor in LUAD.
Collapse
Affiliation(s)
- Huajian Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiang Tan
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yongyong Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Lei Dai
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Guanbiao Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jianji Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Mingwu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
37
|
Mahmoodi M, Ferdowsi S, Ebrahimi-Barough S, Kamian S, Ai J. Tissue engineering applications in breast cancer. J Med Eng Technol 2020; 44:162-168. [PMID: 32401543 DOI: 10.1080/03091902.2020.1757771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In Iran, breast cancer (BC) is the most prevalent cancer among women. The standard treatment for this cancer is partial or total removal of breast tissue, followed by chemotherapy and radiation. Tissue engineering (TE) has made new treatments for tissue loss in these patients by creating functional substitutes in the laboratory. In addition, cancer biology combined with TE provides a new strategy for evaluation of anti-BC therapy. Several innovations in TE have led to the design of scaffold or matrix based culture systems that more closely mimic the native extracellular matrix (ECM). Currently, engineered three-dimensional (3D) cultures are being developed for modelling of the tumour microenvironment. These 3D cultures fulfil the need for in vitro approaches that allow an accurate study of the molecular mechanisms and a better analysis of the drugs effect. In the present study, we review recent developments in utilising of TE in BC. Moreover, this review describes achievements of Iranian researchers in the field of breast TE.
Collapse
Affiliation(s)
- Mozaffar Mahmoodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Radiology, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Kamian
- Department of Radiotherapy Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Vernot JP. Senescence-Associated Pro-inflammatory Cytokines and Tumor Cell Plasticity. Front Mol Biosci 2020; 7:63. [PMID: 32478091 PMCID: PMC7237636 DOI: 10.3389/fmolb.2020.00063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
The well-recognized cell phenotypic heterogeneity in tumors is a great challenge for cancer treatment. Dynamic interconversion and movement within a spectrum of different cell phenotypes (cellular plasticity) with the acquisition of specific cell functions is a fascinating biological puzzle, that represent an additional difficulty for cancer treatment and novel therapies development. The understanding of the molecular mechanisms responsible for moving or stabilizing tumor cells within this spectrum of variable states constitutes a valuable tool to overcome these challenges. In particular, cell transitions between epithelial and mesenchymal phenotypes (EMT-MET) and de-and trans-differentiation processes are relevant, since it has been shown that they confer invasiveness, drug resistance, and metastatic ability, due to the simultaneous acquisition of stem-like cell properties. Multiple drivers participate in these cell conversions events. In particular, cellular senescence and senescence-associated soluble factors have been shown to unveil stem-like cell properties and cell plasticity. By modulating gradually the composition of their secretome and the time of exposure, senescent cells may have differential effect not only on tumor cells but also on surrounding cells. Intriguingly, tumor cells that scape from senescence acquire stem-like cell properties and aggressiveness. The reinforcement of senescence and inflammation by soluble factors and the participation of immune cells may provide a dynamic milieu having varied effects on cell transitions, reprogramming, plasticity, stemness and therefore heterogeneity. This will confer different epithelial/mesenchymal traits (hybrid phenotype) and stem-like cell properties, combinations of which, in a particular cell context, could be responsible for different cellular functions during cancer progression (survival, migration, invasion, colonization or proliferation). Additionally, cooperative behavior between cell subpopulations with different phenotypes/stemness functions could also modulate their cellular plasticity. Here, we will discuss the role of senescence and senescence-associated pro-inflammatory cytokines on the induction of cellular plasticity, their effect role in establishing particular states within this spectrum of cell phenotypes and how this is accompanied by stem-like cell properties that, as the epithelial transitions, may also have a continuum of characteristics providing tumor cells with functional adaptability specifically useful in the different stages of carcinogenesis.
Collapse
Affiliation(s)
- Jean Paul Vernot
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
39
|
Iwahashi S, Shimada M, Morine Y, Imura S, Ikemoto T, Saito Y, Yamada S, Utsunomiya T. Effect of epigenetic modulation on cancer sphere. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 67:70-74. [PMID: 32378621 DOI: 10.2152/jmi.67.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Background : Cancer stem cell properties are highly relevant to the biology of treatment-resistant cancers. Epigenetic modification regulates gene expressions by chromatin remodeling during malignant transformation. The aim of this study was to elucidate the possible strategy for cancer stem cells focusing on epigenetic modification. Methods : We made cancer sphere from HepG2 cells, and we added Histone deacetylase (HDAC) inhibitor, valproic acid to cancer sphere. And we compared methylation status and the gene expression between normal HepG2 and cancer sphere groups, and between cancer sphere and sphere with HDAC inhibitor treatment groups. Results : Valproic acid (VPA) cancelled this spheroid formation. In comparison between normal HepG2 and cancer sphere, the number of methylation status changes more than 0.1 of beta level was 826 probes, and we could isolate some epithelial-mesenchymal transition (EMT) related genes. And VPA reduced the expressions of EMT related genes in sphere with RT-PCR. On the other hand, in comparison between cancer sphere and sphere with VPA treatment, we detected 29 probe of methylation status change, and VPA reduced the expressions of Bcl-6 in sphere. Conclusions : HDAC inhibitor affected the methylation status of cancer stem cells. Histone-acetylation might overcome treatmet-resistant cancer through the regulation of cancer stem cell. J. Med. Invest. 67 : 70-74, February, 2020.
Collapse
Affiliation(s)
- Shuichi Iwahashi
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Satoru Imura
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Shinihiro Yamada
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Tohru Utsunomiya
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
40
|
Xiang W, Lv L, Zhou G, Wu W, Yuan J, Zhang C, Jiang G. The lncRNA SNHG5-mediated miR-205-5p downregulation contributes to the progression of clear cell renal cell carcinoma by targeting ZEB1. Cancer Med 2020; 9:4251-4264. [PMID: 32281285 PMCID: PMC7300396 DOI: 10.1002/cam4.3052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
Recent findings have unraveled the critical functions of the long noncoding RNA (lncRNA) SNHG5 in human malignancies. Nevertheless, the role and mechanism of SNHG5 in clear cell renal cell carcinoma (ccRCC) are still elusive. In our study, substantially higher abundance of SNHG5 was observed in ccRCC specimens and cell lines, and increased SNHG5 expression was intimately correlated with tumor size, tumor-node-metastasis (TNM) stage, lymph node invasion, and distant metastases in patients with ccRCC. SNHG5 knockdown obviously suppressed the proliferative, migratory, and invasive capabilities of ccRCC cells, whereas SNHG5 overexpression induced the opposite effects. Mechanistically, SNHG5 activated the transcription of ZEB1, which exerts a pivotal role in modulation of epithelia-mesenchymal transition (EMT) and tumor metastasis. SNHG5 was then shown to act as an endogenous sponge for miR-205-5p, which targets ZEB1 in ccRCC. Moreover rescue experiments revealed that SNHG5 promotes ccRCC cell proliferation, migration, and invasion in a miR-205-5p-dependent manner. Additionally, in vivo assays further indicated that overexpression or silencing of SNHG5 in ccRCC cells promoted or suppressed the tumorigenesis and metastasis, respectively. Altogether, the present data provide the first evidence that the lncRNA SNHG5 has an oncogenic role in ccRCC through the SNHG5/miR-205-5p/ZEB1 signaling axis and represents a novel potential therapeutic regimen against ccRCC.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Lv
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhou
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingdong Yuan
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhua Zhang
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Choi JE, Hyun CL, Jin MS, Lee KM, Moon JH, Ryu HS. Downregulation of N-myc and STAT Interactor Protein Predicts Aggressive Tumor Behavior and Poor Prognosis in Invasive Ductal Carcinoma. J Breast Cancer 2020; 23:36-46. [PMID: 32140268 PMCID: PMC7043944 DOI: 10.4048/jbc.2020.23.e12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We investigated the expression of the N-myc and STAT interactor (NMI) protein in invasive ductal carcinoma tissue and estimated its clinicopathologic significance as a prognostic factor. The expression levels and prognostic significance of NMI were also analyzed according to the molecular subgroup of breast cancers. METHODS Human NMI detection by immunohistochemistry was performed using tissue microarrays of 382 invasive ductal carcinomas. The correlation of NMI expression with patient clinicopathological parameters and prognostic significance was analyzed and further assessed according to the molecular subgroup of breast cancers. Moreover, in vitro experiments with 13 breast cancer cell lines were carried out. We also validated NMI expression significance in The Cancer Genome Atlas cohort using the Human Protein Atlas (HPA) database. RESULTS Low NMI expression was observed in 190 cases (49.7%). Low NMI expression was significantly associated with the "triple-negative" molecular subtype (p < 0.001), high nuclear grade (p < 0.001), high histologic grade (p < 0.001), and advanced anatomic stage (p = 0.041). Patients with low NMI expression had poorer progression-free survival (p = 0.038) than patients with high NMI expression. Low NMI expression was not significantly associated with patient prognosis in the molecular subgroup analysis. In vitro, a reduction of NMI expression was observed in 8 breast cancer cell lines, especially in the estrogen receptor-positive and basal B type of triple-negative breast cancer molecular subgroups. The HPA database showed that low NMI expression levels were associated with a lower survival probability compared with that associated with high NMI expression (p = 0.053). CONCLUSION NMI expression could be a useful prognostic biomarker and a potential novel therapeutic target in invasive ductal carcinoma.
Collapse
Affiliation(s)
- Ji Eun Choi
- Department of Pathology, Design Hospital, Jeonju, Korea
| | - Chang Lim Hyun
- Department of Pathology, Jeju National University Hospital, Jeju, Korea
| | - Min-Sun Jin
- Department of Pathology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Kyung-min Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hye Moon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Differential engagement of ORAI1 and TRPC1 in the induction of vimentin expression by different stimuli. J Transl Med 2020; 100:224-233. [PMID: 31243341 DOI: 10.1038/s41374-019-0280-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
The Ca2+ signal is essential in both hypoxia- and epidermal growth factor (EGF)-mediated epithelial to mesenchymal transition (EMT) in MDA-MB-468 breast cancer cells. This finding suggests that Ca2+-permeable ion channels participate in the induction of expression of some mesenchymal markers such as vimentin. However, the ion channels involved in vimentin expression induction have not been fully characterized. This work sought to define how differential modulation of the calcium signal effects the induction of vimentin and the Ca2+ influx pathways involved. We identified that the intracellular Ca2+ chelator EGTA-AM, cytochalasin D (a modulator of cytoskeletal dynamics and cell morphology), and the sarco/endoplasmic reticulum ATPase inhibitor thapsigargin are all inducers of vimentin in MDA-MB-468 breast cancer cells. EGTA-AM- and thapsigargin-mediated induction of vimentin expression in MDA-MB-468 cells involves store-operated Ca2+ entry, as evidenced by sensitivity to silencing of the molecular components of this pathway, STIM1 and ORAI1. In stark contrast, cytochalasin D-mediated vimentin induction was insensitive to silencing of ORAI1, despite sensitivity to silencing of its canonical activator the endoplasmic reticulum Ca2+ sensor STIM1. Cytochalasin D-mediated vimentin induction was, however, sensitive to silencing of another reported STIM1 target, TRPC1. Subsequent studies identified that EGTA-AM-induced vimentin expression also partially involved a TRPC1-dependent pathway. These studies define a complex interplay between vimentin expression in this model and the specific Ca2+-permeable ion channels involved. The complexity in the engagement of different Ca2+ influx pathways that regulate vimentin induction are opportunities but also potential challenges in targeting Ca2+ signaling to block EMT in cancer cells. Our findings further highlight the need to identify potential indispensable ion channels that can regulate induction of specific mesenchymal markers via different stimuli.
Collapse
|
43
|
Cui Y, Wu L, Cao R, Xu H, Xia J, Wang ZP, Ma J. Antitumor functions and mechanisms of nitidine chloride in human cancers. J Cancer 2020; 11:1250-1256. [PMID: 31956371 PMCID: PMC6959075 DOI: 10.7150/jca.37890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Nitidine chloride (NC), a quaternary ammonium alkaloid, exhibits multiple biological activities, including antimalarial, antifungal, and antiangiogenesis. Recently, NC has been characterized to perform antitumor activity in a variety of malignancies. NC has been identified to suppress cell proliferation, stimulate apoptosis, and induce cell cycle arrest, retard migration, invasion and metastasis. Moreover, NC is reported to sensitize cancer cells to chemotherapeutic drugs. In this review article, we describe the functions of NC in human cancers and discuss the molecular insight into NC-involved antitumor feature. This review article will stimulate the deeper investigation for using NC as a potent agent for the management of cancer patients.
Collapse
Affiliation(s)
- Yue Cui
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Anhui, China, 233030, China
| | - Linhui Wu
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Anhui, China, 233030, China
| | - Ruoxue Cao
- Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Anhui, China, 233030, China
| | - Hui Xu
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| |
Collapse
|
44
|
Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol 2019; 234:14535-14555. [PMID: 30723913 DOI: 10.1002/jcp.28160] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key step in transdifferentiation process in solid cancer development. Forthcoming evidence suggest that the stratified program transforms polarized, immotile epithelial cells to migratory mesenchymal cells associated with enhancement of breast cancer stemness, metastasis, and drug resistance. It involves primarily several signaling pathways, such as transforming growth factor-β (TGF-β), cadherin, notch, plasminogen activator protein inhibitor, urokinase plasminogen activator, and WNT/beta catenin pathways. However, current understanding on the crosstalk of multisignaling pathways and assemblies of key transcription factors remain to be explored. In this review, we focus on the crosstalk of signal transduction pathways linked to the current therapeutic and drug development strategies. We have also performed the computational modeling on indepth the structure and conformational dynamic studies of regulatory proteins and analyze molecular interactions with their associate factors to understand the complicated process of EMT in breast cancer progression and metastasis. Electrostatic potential surfaces have been analyzed that help in optimization of electrostatic interactions between the protein and its ligand. Therefore, understanding the biological implications underlying the EMT process through molecular biology with biocomputation and structural biology approaches will enable the development of new therapeutic strategies to sensitize tumors to conventional therapy and suppress their metastatic phenotype.
Collapse
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Sourya Bhattacharya
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Saugata Hazra
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Mintu Pal
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| |
Collapse
|
45
|
Mohammed SI, Torres‐Luquis O, Walls E, Lloyd F. Lymph-circulating tumor cells show distinct properties to blood-circulating tumor cells and are efficient metastatic precursors. Mol Oncol 2019; 13:1400-1418. [PMID: 31026363 PMCID: PMC6547792 DOI: 10.1002/1878-0261.12494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/11/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023] Open
Abstract
The leading cause of breast cancer-associated death is metastasis. In 80% of solid tumors, metastasis via the lymphatic system precedes metastasis via the vascular system. However, the molecular properties of tumor cells as they exit the primary tumor into the afferent lymphatics en route to the sentinel lymph nodes (SLNs) are not yet known. Here, we developed an innovative technique that enables the collection of lymph and lymph-circulating tumor cells (LCTCs) en route to the SLN in an immunocompetent animal model of breast cancer metastasis. We found that the gene and protein expression profiles of LCTCs and blood-circulating tumor cells (BCTCs) as they exit the primary tumor are similar, but distinct from those of primary tumors and lymph node metastases (LNMs). LCTCs, but not BCTCs, exist in clusters, display a hybrid epithelial/mesenchymal phenotype and cancer stem cell-like properties, and are efficient metastatic precursors. These results demonstrate that tumor cells that metastasize through the lymphatic system are different from those spread by blood circulation. Understanding the relative contribution of these cells to overall peripheral blood-circulating tumor cells is important for cancer therapy. Whether these two types of cell occur in cancer patients remains to be determined.
Collapse
Affiliation(s)
- Sulma I. Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Odalys Torres‐Luquis
- Department of Comparative Pathobiology and Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Elwood Walls
- Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Frank Lloyd
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
46
|
Linkage between EMT and stemness state through molecular association between TWIST1 and NY-ESO1 in esophageal squamous cell carcinoma. Biochimie 2019; 163:84-93. [PMID: 31158427 DOI: 10.1016/j.biochi.2019.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Aberrant expression of cancer testis antigens (CTAs) is reported in tumors, especially those with stemness properties. A number of CTAs can induce epithelial mesenchymal transition (EMT) process and promote cancer stem cells (CSCs) characteristics. We aimed in this study to analyze the correlation between NY-ESO1 and TWIST1 in esophageal squamous cell carcinoma (ESCC), as well as their impact on EMT process. Gene expression profiling of NY-ESO1 and TWIST1 was performed in 43 esophageal tumors compared to their margin normal tissues of using qRT-PCR, and their correlation with clinicopathological variables of the patients was evaluated. In silico analysis of the NY-ESO1, epithelial and mesenchymal cell markers and also their promoter sequences was executed. ESCC cell lines KYSE-30 and YM-1 were transduced to ectopically express TWIST1 using a retroviral system, followed by qRT-PCR mRNA expression analysis to reveal the probable correlation among TWIST1, NY-ESO1 and EMT markers gene expression. Scratch assay was performed to estimate migration of TWIST1-induced cells. Overexpression of TWIST1 and NY-ESO1 mRNA was observed in 42% and 39.5% (P ˂ 0.05) of tumors, respectively. Expression of the genes was significantly correlated with each other (p = 0.005). TWIST1 and NY-ESO1 overexpression was significantly associated with stage of progression and size of tumors, respectively. A direct association between TWIST1 and NY-ESO1 mRNA expression was confirmed by induced ectopic expression of TWIST1 in ESCC cell lines KYSE-30 and YM-1. TWIST1-induced cells led to increase migration in ESCC cell line. Furthermore, significant up-regulation of EMT markers was observed following ectopic expression of TWIST1 in these cells. Based on our findings, it may be proposed that a vital association is exist between the EMT and the acquisition of cancer stemness state in tumor cells through the TWIST1/NY-ESO1 axis and it can be a critical hallmark in ESCC tumorigenesis.
Collapse
|
47
|
O'Reilly D, Buchanan P. Calcium channels and cancer stem cells. Cell Calcium 2019; 81:21-28. [PMID: 31163289 DOI: 10.1016/j.ceca.2019.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSC's) have emerged as a key area of investigation due to associations with cancer development and treatment resistance, related to their ability to remain quiescent, self-renew and terminally differentiate. Targeting CSC's in addition to the tumour bulk could ensure complete removal of the cancer, lessening the risk of relapse and improving patient survival. Understanding the mechanisms supporting the functions of CSC's is essential to highlight targets for the development of therapeutic strategies. Changes in intracellular calcium through calcium channel activity is fundamental for integral cellular processes such as proliferation, migration, differentiation and survival in a range of cell types, under both normal and pathological conditions. Here in we highlight how calcium channels represent a key mechanism involved in CSC function. It is clear that expression and or function of a number of channels involved in calcium entry and intracellular store release are altered in CSC's. Correlating with aberrant proliferation, self-renewal and differentiation, which in turn promoted cancer progression and treatment resistance. Research outlined has demonstrated that targeting altered calcium channels in CSC populations can reduce their stem properties and induce terminal differentiation, sensitising them to existing cancer treatments. Overall this highlights calcium channels as emerging novel targets for CSC therapies.
Collapse
Affiliation(s)
- Debbie O'Reilly
- National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland; School of Nursing and Human science, Dublin City University, Dublin, Ireland
| | - Paul Buchanan
- National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland; School of Nursing and Human science, Dublin City University, Dublin, Ireland.
| |
Collapse
|
48
|
Rahimi M, Sharifi‐Zarchi A, Firouzi J, Azimi M, Zarghami N, Alizadeh E, Ebrahimi M. An integrated analysis to predict micro-RNAs targeting both stemness and metastasis in breast cancer stem cells. J Cell Mol Med 2019; 23:2442-2456. [PMID: 30710426 PMCID: PMC6433858 DOI: 10.1111/jcmm.14090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/14/2018] [Accepted: 11/25/2018] [Indexed: 01/17/2023] Open
Abstract
Several evidences support the idea that a small population of tumour cells representing self-renewal potential are involved in initiation, maintenance, metastasis, and outcomes of cancer therapy. Elucidation of microRNAs/genes regulatory networks activated in cancer stem cells (CSCs) is necessary for the identification of new targets for cancer therapy. The aim of the present study was to predict the miRNAs pattern, which can target both metastasis and self-renewal pathways using integration of literature and data mining. For this purpose, mammospheres derived from MCF-7, MDA-MB231, and MDA-MB468 were used as breast CSCs model. They had higher migration, invasion, and colony formation potential, with increasing in stemness- and EMT-related genes expression. Our results determined that miR-204, -200c, -34a, and -10b contemporarily could target both self-renewal and EMT pathways. This core regulatory of miRNAs could increase the survival rate of breast invasive carcinoma via up-regulation of OCT4, SOX2, KLF4, c-MYC, NOTCH1, SNAI1, ZEB1, and CDH2 and down-regulation of CDH1. The majority of those target genes were involved in the regulation of pluripotency, MAPK, WNT, Hedgehog, p53, and transforming growth factor β pathways. Hence, this study provides novel insights for targeting core regulatory of miRNAs in breast CSCs to target both self-renewal and metastasis potential and eradication of breast cancer.
Collapse
Affiliation(s)
- Mahsa Rahimi
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & TechnologyACECRTehranIran
| | - Ali Sharifi‐Zarchi
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & TechnologyACECRTehranIran
- Department of Computer EngineeringSharif University of TechnologyTehranIran
| | - Javad Firouzi
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & TechnologyACECRTehranIran
| | - Mahnaz Azimi
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & TechnologyACECRTehranIran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- The Umbilical Cord Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Marzieh Ebrahimi
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & TechnologyACECRTehranIran
| |
Collapse
|
49
|
Liu J, Ke F, Cheng H, Zhou J. Traditional Chinese medicine as targeted treatment for epithelial-mesenchymal transition-induced cancer progression. J Cell Biochem 2019; 120:1068-1079. [PMID: 30431663 DOI: 10.1002/jcb.27588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 01/24/2023]
Abstract
The epithelial-mesenchymal transition (EMT) program, which loosens cell-cell adhesion complexes, endows cells with enhanced migratory and invasive properties. Furthermore, this process facilitates both the development of drug resistance and immunosuppression by tumor cells, which preclude the successful treatment of cancer. Recent research has demonstrated that many signaling pathways are involved in EMT progression. In addition, cancer stem cells (CSCs), vasculogenic mimicry (VM) and the tumor-related immune microenvironment all play important roles in tumor formation. However, there are few reports on the relationships between EMT and these factors. In addition, in recent years, traditional Chinese medicine (TCM) has developed a unique system for treating cancer. In this review, we summarize the crucial signaling pathways associated with the EMT process in cancer patients and discuss the interconnections between EMT and other molecular factors (such as CSCs, VM, and the tumor-related immune microenvironment). We attempt to identify common regulators that might be potential therapeutic targets to thereby optimize tumor treatment. In addition, we outline recent research on TCM approaches that target EMT and thereby provide a foundation for further research on the exact mechanisms by which TCMs affect EMT in cancer.
Collapse
Affiliation(s)
- Jianrong Liu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Ke
- Department of Pathology, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Jinrong Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
50
|
Hu WW, Lin CH, Hong ZJ. The enrichment of cancer stem cells using composite alginate/polycaprolactone nanofibers. Carbohydr Polym 2019; 206:70-79. [DOI: 10.1016/j.carbpol.2018.10.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
|