1
|
Lin X, Zhao Z, Cai Y, He Y, Wang J, Liu N, Qin Y, Wu Y. MyD88 deficiency in mammary epithelial cells attenuates lipopolysaccharide (LPS)-induced mastitis in mice. Biochem Biophys Res Commun 2024; 739:150569. [PMID: 39186869 DOI: 10.1016/j.bbrc.2024.150569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Lactation mastitis is a debilitating inflammatory mammary disease in postpartum animals. Myeloid differentiation primary response protein MyD88 is the key downstream adapter for innate pattern recognition receptor toll-like receptor 4 (TLR4), which plays an important role in inflammation. However, the specific role of MyD88 in mammary epithelial cells in the progression of mastitis has not been investigated. In this study, lipopolysaccharide (LPS)-induced mouse mastitis model was used and cytokines such as Tnf-α, Il-1β, Il-6, Cxcl1, Cxcl2 and Ccl2 were significantly increased in inflammatory mammary gland as shown by real time-qPCR. However, the mice with MyD88-deficienet in mammary epithelial cells (cKO) showed a reduction in the expression of Tnf-α, Il-1β, Il-6, Cxcl1 and Cxcl2 in mammary gland compared with control mice, when subjected to LPS induced mastitis. Immunohistochemical staining of cleaved caspase-3 showed that the cell apoptosis induced by inflammation were decreased in MyD88 cKO mice. Furthermore, there were significantly fewer infiltrating inflammatory cells in alveolar lumen of MyD88 cKO mice, including Ly6G-positive neutrophils and F4/80-positive macrophages. RNA-seq in LPS treated mammary glands showed that MyD88 cKO mice had significantly downregulated inflammation-related genes and upregulated genes related to anti-inflammation processes and lipid metabolism compared with control mice. Thus, these results demonstrate that MyD88 in mammary epithelial cells is essential for mastitis progression. And this study not only has important implications for understanding the innate immune response in mammary epithelial cells, but also potentially helps the development of new therapeutic drugs for treating mastitis.
Collapse
Affiliation(s)
- Xinyi Lin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhifeng Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifeilong He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhou B, Zhang B, Han J, Zhang J, Li J, Dong W, Zhao X, Zhang Y, Zhang Q. Role of Acyl-CoA Thioesterase 7 in Regulating Fatty Acid Metabolism and Its Contribution to the Onset and Progression of Bovine Clinical Mastitis. Int J Mol Sci 2024; 25:13046. [PMID: 39684757 DOI: 10.3390/ijms252313046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Clinical mastitis (CM) is a prevalent and severe inflammatory disease in dairy cows affecting the mammary glands. Fatty acid (FA) metabolism and associated enzymes are crucial for many physiological and pathological processes in dairy cows. However, the relationships among FA metabolism, FA-associated enzymes, and CM, as well as the mechanisms underlying their interactions, in dairy cows are not fully understood. The aim of this study was to characterize biological process (BP) terms, pathways, and differentially expressed proteins (DEPs) related to FA metabolism from our previous data-independent acquisition proteomic study. Six BPs involving 14 downregulated and 20 upregulated DEPs, and four pathways involving 10 downregulated and 11 upregulated DEPs related to FA synthesis and metabolism were systematically identified. Associated analysis suggested that 12 candidate DEPs obtained from BPs and pathways, especially acyl-CoA thioesterase 7 (ACOT7), regulate long-chain FA (LCFA) elongation and the biosynthesis of unsaturated FAs. Immunohistochemical and immunofluorescence staining results showed that ACOT7 was present mainly in the cytoplasm of mammary epithelial cells. The qRT-PCR and Western blotting results showed that ACOT7 mRNA and protein levels in the mammary glands of the CM group were significantly upregulated compared to those in the healthy group. This evidence indicates that ACOT7 is positively correlated with CM onset and progression in Holstein cows. These findings offer novel insights into the role of FA metabolism and related enzymes in CM and offer potential targets for the development of therapeutic strategies and biomarkers for the prevention and treatment of CM in dairy cows.
Collapse
Affiliation(s)
- Bin Zhou
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Bohao Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangyuan Han
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Junjun Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jianfu Li
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Weitao Dong
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
4
|
Pelayo R, Gutiérrez-Gil B, Marina H, Fonseca PAS, Alonso-García M, Arranz JJ, Suárez-Vega A. Unraveling Dynamic Transcriptomic Changes in Sheep's Lactating Mammary Gland Following Escherichia coli Lipopolysaccharide Exposure. J Dairy Sci 2024:S0022-0302(24)01149-4. [PMID: 39343208 DOI: 10.3168/jds.2024-25009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024]
Abstract
Mammary gland infections constitute a significant challenge in dairy sheep, impacting productivity and welfare. Temporal RNA-Seq provide a valuable approach to evaluate the evolution of the host defensive molecular mechanisms triggered by mastitis caused by external agents or events. This study aimed to characterize the transcriptomic response of sheep mammary glands to an intramammary inflammation induced with an Escherichia coli lipopolysaccharide (LPS) inoculation based on RNA-Seq samples generated from milk somatic cells collected at 3 time points: pre-inoculation (0 h), and 6 h and 24 h post-LPS inoculation. The differential expression analyses between the analyzed time points were performed using 2 statistical approaches: one parametric (DESeq2) and one non-parametric (Wilcoxon rank sum test). The differentially expressed genes (DEGs) commonly identified by both approaches encompass 5,872 for the 0 h versus 6 h comparison, 4,063 for the 0 h versus 24 h comparison, and 1,034 for the 6 h versus 24 h comparison. At both 6 h and 24 h, transcriptomic data highlighted a significant decrease in the expression of genes linked to metabolic processes crucial for milk protein and lipid synthesis within the mammary gland. Concurrently, increased expression of genes related to the neutrophil attraction was observed for 6 and 24 h, with differences in gene expression between DEGs with the highest expression at 6 h, related to T cell activation, type I interferon-mediated signaling pathway, and 24 h, related to cell-cell neutrophil adhesion extravasation or epithelial cell proliferation. In summary, this study reveals how the sheep mammary gland transcriptome responds dynamically to an LPS inoculation, providing a comprehensive understanding of how gene expression patterns evolve over time and shedding light on the molecular mechanisms driving the initial defensive response of the mammary gland against potential inflammatory challenges.
Collapse
Affiliation(s)
- R Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - B Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - H Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - P A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - M Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - J J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - A Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain..
| |
Collapse
|
5
|
Haj Hasan A, Preet G, Astakala RV, Al-Adilah H, Oluwabusola ET, Ebel R, Jaspars M. Antibacterial activity of natural flavones against bovine mastitis pathogens: in vitro, SAR analysis, and computational study. In Silico Pharmacol 2024; 12:78. [PMID: 39184231 PMCID: PMC11344746 DOI: 10.1007/s40203-024-00253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Bovine mastitis is a worldwide disease affecting dairy cattle and causes major economic losses in the dairy industry. Recently, the emergence of microbial resistance to the current antibiotics complicates the treatment protocol which necessitates antibiotic stewardship and further research to find new active compounds. Recently, phytobiotics have gained interest in being used as an alternative to antibiotics in the poultry industry as an antibiotic stewardship intervention. This study evaluated the in vitro antibacterial activity of 16 flavonoids against bovine mastitis pathogens. Two flavones: 2-(4-methoxyphenyl)chromen-4-one (1) and 2-(3-hydroxyphenyl)chromen-4-one (4) showed inhibition of the growth of Klebsiella oxytoca with MIC values range (25-50 µg mL- 1) followed by a structure-activity relationship (SAR) study indicating that the presence of a hydroxyl group at C-3` or methoxy at C-4` increases the activity against Klebsiella oxytoca while the presence of hydroxyl group at C-7 decreases the activity. Furthermore, a structure-based drug development approach was applied using several in silico tools to understand the interactions of active flavones at the active site of the DNA gyrase protein. Compound (4) showed a higher docking score than quercetin (standard) which is known to have antibacterial activity by inhibiting the DNA gyrase. In addition, the structure-based pharmacophores of compound (4) and quercetin showed similar pharmacophoric features and interactions with DNA gyrase. Based on our findings, compounds (1) and (4) are promising for further study as potential anti-microbial phytochemicals that can have a role in controlling bovine mastitis as well as to investigate their mechanism of action further. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00253-w.
Collapse
Affiliation(s)
- Ahlam Haj Hasan
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, AB24 3UE UK
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110 Jordan
| | - Gagan Preet
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, AB24 3UE UK
| | | | - Hanan Al-Adilah
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109 Kuwait
| | | | - Rainer Ebel
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Marcel Jaspars
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, AB24 3UE UK
| |
Collapse
|
6
|
Li M, Li Z, Deng M, Liu D, Sun B, Liu J, Guo J, Guo Y. Overview of Bovine Mastitis: Application of Metabolomics in Screening Its Predictive and Diagnostic Biomarkers. Animals (Basel) 2024; 14:2264. [PMID: 39123790 PMCID: PMC11311089 DOI: 10.3390/ani14152264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Bovine mastitis is an inflammatory disease of the mammary glands, and its pathogenesis and diagnosis are complicated. Through qualitative and quantitative analysis of small-molecule metabolites, the metabolomics technique plays an important role in finding biomarkers and studying the metabolic mechanism of bovine mastitis. Therefore, this paper reviews the predictive and diagnostic biomarkers of bovine mastitis that have been identified using metabolomics techniques and that are present in samples such as milk, blood, urine, rumen fluid, feces, and mammary tissue. In addition, the metabolic pathways of mastitis-related biomarkers in milk and blood were analyzed; it was found that the tricarboxylic acid (TCA) cycle was the most significant (FDR = 0.0015767) pathway in milk fluid, and glyoxylate and dicarboxylate metabolism was the most significant (FDR = 0.0081994) pathway in blood. The purpose of this review is to provide useful information for the prediction and early diagnosis of bovine mastitis.
Collapse
Affiliation(s)
- Muyang Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Zhongjie Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Jianying Liu
- Agro-Tech Center of Guangdong Province, Guangzhou 510500, China;
| | - Jianchao Guo
- Agro-Tech Center of Guangdong Province, Guangzhou 510500, China;
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| |
Collapse
|
7
|
Strickland JM, Leite de Campos J, Gandy J, Mavangira V, Ruegg PL, Sordillo L. A randomized control trial to test the effect of pegbovigrastim treatment at dry-off on plasma and milk oxylipid profiles during early mammary gland involution and the postparturient period. J Dairy Sci 2024; 107:5070-5089. [PMID: 38246537 DOI: 10.3168/jds.2023-23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The early period of mammary gland involution is a critical juncture in the lactation cycle that can have significant effects on milk production and mammary gland health. Pegbovigrastim (PEG) administered 1 wk prior and on the day of parturition can enhance immune function and reduce the incidence of mastitis in the early postpartum period. Oxylipids are potent metabolites of polyunsaturated fatty acids (PUFA) and are important mediators of inflammation. The objective of this study was to evaluate effects of PEG given 1 wk before and at the day of dry-off (D0) on concentrations of oxylipids in plasma and milk from 7 d before D0 to 14 d after, as well as the effects during the first 14 d of the subsequent lactation. We hypothesized that both pro- and anti-inflammatory oxylipids would vary based on initiation of mammary gland involution and that pegbovigrastim would affect oxylipid concentrations, particularly those related to leukocytes. A complete randomized blocked design was used to enroll cows into either a PEG treatment group (n = 10) or control group (n = 10; CON). Blood samples were collected -7, -2, -1, 0, 1, 2, 4, 7, and 14 d relative to dry-off and 5, 10, and 14 d postcalving. Samples were analyzed for PUFA and oxylipids in milk and plasma by ultra-performance mass spectrometry and liquid chromatography tandem quadrupole mass spectrometry, respectively. Overall, 30 lipid mediators were measured in both milk and plasma. Repeated measures analyses revealed a significant interaction of treatment by time for milk 8-iso-keto-15-prostaglandin E2, prostaglandin F2α, plasma 8,12-iso-prostaglandin Fα-VI, 11-hydroxyeicosatetraenoic acid, and 12-hydroxyheptadecatienoic acid. The majority of milk PUFA and oxylipids differed significantly during early mammary gland involution and into the early postpartum period. This study demonstrated changes in oxylipids in milk secretions and plasma during early involution, and further investigation may illuminate multiple complex processes and reveal targets for optimization of mammary gland involution.
Collapse
Affiliation(s)
- Jaimie M Strickland
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824.
| | - Juliana Leite de Campos
- College of Agriculture and Natural Resources, Animal Science, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Vengai Mavangira
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pamela L Ruegg
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Lorraine Sordillo
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
8
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
9
|
Gao S, Tang L, Ma J, Wang K, Yao H, Tong J, Zhang H. Evaluation of the mechanism of Gong Ying San activity on dairy cows mastitis by network pharmacology and metabolomics analysis. PLoS One 2024; 19:e0299234. [PMID: 38630770 PMCID: PMC11023200 DOI: 10.1371/journal.pone.0299234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/02/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVES The goal of this investigation was to identify the main compounds and the pharmacological mechanism of the traditional Chinese medicine formulation, Gong Ying San (GYS), by infrared spectral absorption characteristics, metabolomics, network pharmacology, and molecular-docking analysis for mastitis. The antibacterial and antioxidant activities were determined in vitro. METHODS The chemical constituents of GYS were detected by ultra-high-performance liquid chromatography Q-extractive mass spectrometry (UHPLC-QE-MS). Related compounds were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php) and the Encyclopedia of Traditional Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/Home/) databases; genes associated with mastitis were identified in DisGENT. A protein-protein interaction (PPI) network was generated using STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment screening was conducted using the R module. Molecular-docking analyses were performed with the AutoDockTools V1.5.6. RESULTS Fifty-four possible compounds in GYS with forty likely targets were found. The compound-target-network analysis showed that five of the ingredients, quercetin, luteolin, kaempferol, beta-sitosterol, and stigmasterol, had degree values >41.6, and the genes TNF, IL-6, IL-1β, ICAM1, CXCL8, CRP, IFNG, TP53, IL-2, and TGFB1 were core targets in the network. Enrichment analysis revealed that pathways associated with cancer, lipids, atherosclerosis, and PI3K-Akt signaling pathways may be critical in the pharmacology network. Molecular-docking data supported the hypothesis that quercetin and luteolin interacted well with TNF-α and IL-6. CONCLUSIONS An integrative investigation based on a bioinformatics-network topology provided new insights into the synergistic, multicomponent mechanisms of GYS's anti-inflammatory, antibacterial, and antioxidant activities. It revealed novel possibilities for developing new combination medications for reducing mastitis and its complications.
Collapse
Affiliation(s)
- Shuang Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Liyun Tang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Jiayi Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Kaiming Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Hua Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| |
Collapse
|
10
|
Wang X, Fei Y, Shao Y, Liao Q, Meng Q, Chen R, Deng L. Transcriptome analysis reveals immune function-related mRNA expression in donkey mammary glands during four developmental stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101169. [PMID: 38096640 DOI: 10.1016/j.cbd.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
The low susceptibility to mastitis of female donkey (jenny) mammary glands and the strong immune properties of donkey milk are acknowledged, but little is known about the genes involved in mammary gland immunity in jennies. Herein, we used RNA-sequencing and bioinformatics analyses to explore jenny mammary gland transcriptomes and detect potential functional differentially expressed (DE) mRNAs related to immunity during four specific developmental stages: foetal (F), pubertal (P), adult parous nonlactation (N) and lactation (L). A total of 2497, 583 and 1820 DE mRNAs were identified in jenny mammary glands at F vs. P, P vs. N, and N vs. L, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analyses revealed numerous GO terms related to immune function, especially between F and P. Seven significantly enriched profiles were identified, among which 497 and 1261 DE mRNAs were upregulated in profiles 19 and 17. Eleven mRNAs were enriched in over 10 KEGG pathways. β-2-microglobulin (B2M), immunoglobulin heavy constant mu (IGHM), toll like receptor 2 (TLR2), toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MYD88) were mainly involved in phosphoinositide 3-kinase (PI3K)-Akt signalling, phagosome and nuclear factor kappa-B (NF-kappa B) signalling pathways. The findings provide insight into the molecular features underpinning the low prevalence of intramammary infections (i.e., mastitis) in donkeys.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yaqi Fei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Shao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingchao Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingze Meng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Liang Deng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
11
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
12
|
Wells TL, Poindexter MB, Kweh MF, Gandy J, Nelson CD. Intramammary calcitriol treatment of mastitis alters profile of milk somatic cells and indicators of redox activity in milk. Vet Immunol Immunopathol 2023; 266:110679. [PMID: 38039842 DOI: 10.1016/j.vetimm.2023.110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
The objective of this experiment was to determine the effect of intramammary calcitriol treatment on indicators of inflammation during an intramammary bacterial infection. Lactating Holstein cows were challenged with intramammary Streptococcus uberis. At the onset of mild or moderate mastitis, cows were randomly assigned to receive 10 µg of intramammary calcitriol (CAL, n = 7) or placebo control (CON; n = 6) after every milking for 5 days. Data were analyzed by ANOVA with mixed models using the MIXED procedure of SAS with significance declared at P ≤ 0.05. Milk somatic cells, mastitis severity scores, rectal temperatures, and milk bacterial counts did not differ between treatments. Calcitriol decreased the percentage of CD11b+CD14- cells in milk compared with CON (CON = 81 vs. CAL = 61 ± 5%). Antioxidant potential and concentrations of 15-F2t- isoprostanes in milk of infected quarters also were lower in CAL compared with CON. Transcripts for the 25-hydroxyvitamin D 24-hydroxylase and inducible nitric oxide synthase were greater in milk somatic cells of CAL compared with CON, but those for β-defensin 7, metallothionein 1 A and 2 A, thioredoxin and thioredoxin reductase did not differ between treatments. Although clinical signs of severity did not differ, CAL influenced the composition of milk somatic cells and redox activity in milk of infected quarters.
Collapse
Affiliation(s)
- Teri L Wells
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Michael B Poindexter
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Mercedes F Kweh
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Corwin D Nelson
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Xia X, Hou J, Ren P, Liu M, Wang L, Wei X, Teng Z, Kasianenko O, Cheng L, Hu J. Coexpression analysis of lncRNAs and mRNAs identifies potential regulatory long noncoding RNAs involved in the inflammatory effects of lipopolysaccharide on bovine mammary epithelial cells. BMC Vet Res 2023; 19:209. [PMID: 37845761 PMCID: PMC10580555 DOI: 10.1186/s12917-023-03780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The infection of bovine mammary glands by pathogenic microorganisms not only causes animal distress but also greatly limits the development of the dairy industry and animal husbandry. A deeper understanding of the host's initial response to infection may increase the accuracy of selecting drug-resistant animals or facilitate the development of new preventive or therapeutic intervention strategies. In addition to their functions of milk synthesis and secretion, bovine mammary epithelial cells (BMECs) play an irreplaceable role in the innate immune response. To better understand this process, the current study identified differentially expressed long noncoding lncRNAs (DE lncRNAs) and mRNAs (DE mRNAs) in BMECs exposed to Escherichia coli lipopolysaccharide (LPS) and further explored the functions and interactions of these lncRNAs and mRNAs. RESULTS In this study, transcriptome analysis was performed by RNA sequencing (RNA-seq), and the functions of the DE mRNAs and DE lncRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, we constructed a modulation network to gain a deeper understanding of the interactions and roles of these lncRNAs and mRNAs in the context of LPS-induced inflammation. A total of 231 DE lncRNAs and 892 DE mRNAs were identified. Functional enrichment analysis revealed that pathways related to inflammation and the immune response were markedly enriched in the DE genes. In addition, research results have shown that cell death mechanisms, such as necroptosis and pyroptosis, may play key roles in LPS-induced inflammation. CONCLUSIONS In summary, the current study identified DE lncRNAs and mRNAs and predicted the signaling pathways and biological processes involved in the inflammatory response of BMECs that might become candidate therapeutic and prognostic targets for mastitis. This study also revealed several possible pathogenic mechanisms of mastitis.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China.
| | - Jie Hou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Pengfei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Oksana Kasianenko
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Likun Cheng
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, PR China.
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| |
Collapse
|
14
|
Rešetar Maslov D, Thomas FC, Beletić A, Kuleš J, Rubić I, Benić M, Bačić G, Maćešić N, Eraghi V, Farkaš V, Lenac Roviš T, Lisnić B, Žubčić D, Potočnjak D, Mrljak V. Distinguishing Natural Infections of the Bovine Mammary Gland by Staphylococcus from Streptococcus spp. Using Quantitative Milk Proteomics. Animals (Basel) 2023; 13:1829. [PMID: 37889706 PMCID: PMC10252062 DOI: 10.3390/ani13111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 10/29/2023] Open
Abstract
Bovine mastitis is the most frequent disease on dairy farms, which leads to a decrease in the health welfare of the animals and great economic losses. This study was aimed at determining the quantitative variations in the milk proteome caused by natural infection by Staphylococcus and Streptococcus species in order to gain further understanding of any discrepancies in pathophysiology and host immune responses, independent of the mastitis level. After identification of Staphylococcus (N = 51) and Streptococcus (N = 67) spp., tandem mass tag (TMT)-labeled quantitative proteomic and liquid chromatography-mass spectrometry (LC-MS/MS) techniques on a modular Ultimate 3000 RSLCnano system coupled to a Q Exactive Plus was applied on aseptically sampled milk from Holstein cows. Proteome Discoverer was used for protein identification and quantitation through the SEQUEST algorithm. Statistical analysis employing R was used to identify differentially abundant proteins between the groups. Protein classes, functions and functional-association networks were determined using the PANTHER and STRING tools and pathway over-representation using the REACTOME. In total, 156 master bovine proteins were identified (two unique peptides, p < 0.05 and FDR < 0.001), and 20 proteins showed significantly discrepant abundance between the genera (p < 0.05 and FDR < 0.5). The most discriminatory proteins per group were odorant-binding protein (higher in staphylococci) and fibrinogen beta chain protein (higher in streptococci). The receiver operating characteristic (ROC) curve showed that protein kinase C-binding protein NELL2, thrombospondin-1, and complement factor I have diagnostic potential for differentiating staphylococci and streptococci intramammary infection and inflammation. Improved understanding of the host response mechanisms and recognition of potential biomarkers of specific-pathogen mastitis, which may aid prompt diagnosis for control implementation, are potential benefits of this study.
Collapse
Affiliation(s)
- Dina Rešetar Maslov
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (F.C.T.); (A.B.); (I.R.); (V.E.); (V.F.); (V.M.)
| | - Funmilola Clara Thomas
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (F.C.T.); (A.B.); (I.R.); (V.E.); (V.F.); (V.M.)
| | - Anđelo Beletić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (F.C.T.); (A.B.); (I.R.); (V.E.); (V.F.); (V.M.)
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia;
| | - Ivana Rubić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (F.C.T.); (A.B.); (I.R.); (V.E.); (V.F.); (V.M.)
| | - Miroslav Benić
- Department of Bacteriology and Parasitology, Croatian Veterinary Institute, Savska Cesta, 143, 10000 Zagreb, Croatia;
| | - Goran Bačić
- Reproduction and Obstetrics Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (G.B.); (N.M.)
| | - Nino Maćešić
- Reproduction and Obstetrics Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (G.B.); (N.M.)
| | - Vida Eraghi
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (F.C.T.); (A.B.); (I.R.); (V.E.); (V.F.); (V.M.)
| | - Vladimir Farkaš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (F.C.T.); (A.B.); (I.R.); (V.E.); (V.F.); (V.M.)
| | - Tihana Lenac Roviš
- Center for Proteomics University of Rijeka, Faculty of Medicine, Brace Branchetta 20, 51000 Rijeka, Croatia; (T.L.R.); (B.L.)
| | - Berislav Lisnić
- Center for Proteomics University of Rijeka, Faculty of Medicine, Brace Branchetta 20, 51000 Rijeka, Croatia; (T.L.R.); (B.L.)
| | - Damir Žubčić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (D.Ž.); (D.P.)
| | - Dalibor Potočnjak
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (D.Ž.); (D.P.)
| | - Vladimir Mrljak
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (F.C.T.); (A.B.); (I.R.); (V.E.); (V.F.); (V.M.)
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, 10000 Zagreb, Croatia; (D.Ž.); (D.P.)
| |
Collapse
|
15
|
Zhu XY, Wang ML, Cai M, Nan XM, Zhao YG, Xiong BH, Yang L. Protein Expression Profiles in Exosomes of Bovine Mammary Epithelial Cell Line MAC-T Infected with Staphylococcus aureus. Appl Environ Microbiol 2023; 89:e0174322. [PMID: 36939340 PMCID: PMC10132110 DOI: 10.1128/aem.01743-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Mastitis is a common and widespread infectious disease in dairy farms around the world, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis in dairy cows. S. aureus can activate inflammatory signaling pathways in bovine mammary epithelial cells. Exosomes produced by cells can directly transfer pathogen-related molecules from cell to cell, thus affecting the process of infection. Protein is the material basis of the immune defense function in the body; therefore, a comprehensive comparison of proteins in exosomes derived from S. aureus-infected (SA group) and normal (control group [C group]) bovine mammary epithelial MAC-T cells was performed using shotgun proteomics by a DIA approach. A total of 7,070 proteins were identified and quantified. Compared with the C group, there were 802 differentially expressed proteins (DEPs) identified in the SA group (absolute log2 fold change [|log2FC|] of ≥0.58; false discovery rate [FDR] of <0.05), among which 325 proteins were upregulated and 477 were downregulated. The upregulated proteins, including complement 3 (C3), integrin alpha-6 (ITGA6), apolipoprotein A1 (APOA1), annexin A2 (ANXA2), tripeptidyl peptidase II (TPP2), keratin 8 (KRT8), and recombinant desmoyokin (AHNAK), are involved mostly in host defense against pathogens, inflammation, and cell structure maintenance. KEGG enrichment analysis indicated that DEPs in S. aureus infection were involved in the complement and coagulation cascade, phagosome, extracellular matrix (ECM)-receptor interaction, and focal adhesion pathways. The results of this study provide novel information about proteins in the exosomes of MAC-T cells infected with S. aureus and could contribute to an understanding of the infectious mechanism of bovine mastitis. IMPORTANCE Mastitis is a widespread infectious disease in dairy farms, resulting in reduced milk production and quality. Staphylococcus aureus is one of the main pathogenic bacteria causing subclinical mastitis. Exosomes contain proteins, lipids, and nucleic acids, which are involved in many physiological and pathological functions. The expression of proteins in exosomes derived from bovine mammary epithelial cells infected by S. aureus is still barely understood. These results provide novel information about MAC-T-derived exosomal proteins, reveal insights into their functions, and lay a foundation for further studying the biological function of exosomes during the inflammatory response.
Collapse
Affiliation(s)
- Xiao-Yan Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng-Ling Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Cai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Mei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi-Guang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ben-Hai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Abuelo A, Mann S, Contreras GA. Metabolic Factors at the Crossroads of Periparturient Immunity and Inflammation. Vet Clin North Am Food Anim Pract 2023; 39:203-218. [PMID: 37032303 DOI: 10.1016/j.cvfa.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Periparturient cows have the highest risk for disease and culling in the adult dairy herd. This risk is compounded by the multiple physiological changes of metabolism and immune function occurring around calving that alter the cow's inflammatory response. In this article, the authors summarize the current knowledge on immunometabolism in the periparturient cow, discussing major changes in immune and metabolic function around parturition that will facilitate the assessment of periparturient cow management programs.
Collapse
Affiliation(s)
- Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48824, USA
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 240 Farrier Road, Box 47, Ithaca, NY 14853, USA.
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Sadat A, Farag AMM, Elhanafi D, Awad A, Elmahallawy EK, Alsowayeh N, El-khadragy MF, Elshopakey GE. Immunological and Oxidative Biomarkers in Bovine Serum from Healthy, Clinical, and Sub-Clinical Mastitis Caused by Escherichia coli and Staphylococcus aureus Infection. Animals (Basel) 2023; 13:ani13050892. [PMID: 36899749 PMCID: PMC10000043 DOI: 10.3390/ani13050892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The study aimed to investigate the mastitis' emerging causative agents and their antimicrobial sensitivity, in addition to the hematological, biochemical indicators, oxidative biomarkers, acute phase protein (APP), and inflammatory cytokine changes in dairy farms in Gamasa, Dakahlia Governorate, Egypt. One hundred Holstein Friesian dairy cattle with clinical and subclinical mastitis were investigated and were allocated into three groups based on a thorough clinical examination. Escherichia coli and Staphylococcus aureus were found responsible for the clinical and subclinical mastitis in dairy farms, respectively. Multiple drug resistance (MDR) was detected in 100%, and 94.74% of E. coli and S. aureus isolates, respectively. Significantly low RBCs count, Hb, and PCV values were detected in mastitic cows compared with both subclinical mastitic and control groups; moreover, WBCs, lymphocytes, and neutrophil counts were significantly diminished in mastitic cows compared to the controls. Significantly higher levels of AST, LDH, total protein, and globulin were noticed in both mastitic and subclinical mastitic cows. The haptoglobin, fibrinogen, amyloid A, ceruloplasmin, TNF-α, IL-1β, and IL-6 levels were statistically increased in mastitic cows compared to the controls. Higher MDA levels and reduction of TAC and catalase were identified in all the mastitic cases compared to the controls. Overall, the findings suggested potential public health hazards due to antimicrobial resistance emergence. Meanwhile, the APP and cytokines, along with antioxidant markers can be used as early indicators of mastitis.
Collapse
Affiliation(s)
- Asmaa Sadat
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.S.); (G.E.E.); Tel.: +20-1099633122 (A.S.); +20-1023923945 (G.E.E.); Fax: +20-502379952 (A.S.); +20-502379952 (G.E.E.)
| | - Alshimaa M. M. Farag
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Amal Awad
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Noorah Alsowayeh
- Department of Biology, College of Education (Majmaah), Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Manal F. El-khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.S.); (G.E.E.); Tel.: +20-1099633122 (A.S.); +20-1023923945 (G.E.E.); Fax: +20-502379952 (A.S.); +20-502379952 (G.E.E.)
| |
Collapse
|
18
|
Mastitis: What It Is, Current Diagnostics, and the Potential of Metabolomics to Identify New Predictive Biomarkers. DAIRY 2022. [DOI: 10.3390/dairy3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Periparturient diseases continue to be the greatest challenge to both farmers and dairy cows. They are associated with a decrease in productivity, lower profitability, and a negative impact on cows’ health as well as public health. This review article discusses the pathophysiology and diagnostic opportunities of mastitis, the most common disease of dairy cows. To better understand the disease, we dive deep into the causative agents, traditional paradigms, and the use of new technologies for diagnosis, treatment, and prevention of mastitis. This paper takes a systems biology approach by highlighting the relationship of mastitis with other diseases and introduces the use of omics sciences, specifically metabolomics and its analytical techniques. Concluding, this review is backed up by multiple studies that show how earlier identification of mastitis through predictive biomarkers can benefit the dairy industry and improve the overall animal health.
Collapse
|
19
|
Yang J, Tang Y, Liu X, Zhang J, Zahoor Khan M, Mi S, Wang C, Yu Y. Characterization of peripheral white blood cells transcriptome to unravel the regulatory signatures of bovine subclinical mastitis resistance. Front Genet 2022; 13:949850. [PMID: 36204322 PMCID: PMC9530456 DOI: 10.3389/fgene.2022.949850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Subclinical bovine mastitis is a pathogenic infection of the breast characterized by a marked decrease in milk production and quality. As it has no obvious clinical symptoms, diagnosis and treatment are challenging. Therefore, searching for biomarkers in cows’ peripheral white blood cells is valuable for preventing and treating subclinical mastitis. Thus, in this study, the transcriptome of peripheral blood from healthy and subclinical mastitis cows was characterized to find the regulatory signatures of bovine subclinical mastitis using RNA-seq. A total of 287 differentially expressed genes (DEGs) and 70 differentially expressed lncRNAs (DELs) were detected, and 37 DELs were documented near known Quantitative Trait Loci (QTL) associated with the mastitis of cows. Bioinformatic analysis indicated that lncRNAs MSTRG25101.2, MSTRG.56327.1, and MSTRG.18968.1, which are adjacent to the SCS QTL and SCC QTL, may be candidate lncRNAs that influence the pathogenesis of mastitis in cows by up-regulating the expression of genes TLR4, NOD2, CXCL8, and OAS2. Moreover, the alternative splicing (AS) pattern of transcriptional sequence differences between healthy cows and subclinical mastitis cows suggested a molecular mechanism of mastitis resistance and susceptibility. A total of 2,212 differential alternative splicing (DAS) events, corresponding to 1,621 unique DAS genes, were identified in both groups and significantly enriched in immune and inflammatory pathways. Of these, 29 DAS genes were subject to regulation by 32 alternative splicing SNPs, showing diverse and specific splicing patterns and events. It is hypothesized that the PIK3C2B and PPRPF8 splice variants associated with AS SNPs (rs42705933 and rs133847062) may be risk factors for susceptibility to bovine subclinical mastitis. Altogether, these key blood markers associated with resistance to subclinical mastitis and SNPs associated with alternative splicing of genes provide the basis for genetic breeding for resistance to subclinical mastitis in cows.
Collapse
Affiliation(s)
- Jinyan Yang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjie Tang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueqin Liu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinning Zhang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Siyuan Mi
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuduan Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Ying Yu,
| |
Collapse
|
20
|
Worku D, Gowane GR, Mukherjee A, Alex R, Joshi P, Verma A. Associations between polymorphisms of LAP3 and SIRT1 genes with clinical mastitis and milk production traits in Sahiwal and Karan Fries dairy cattle. Vet Med Sci 2022; 8:2593-2604. [DOI: 10.1002/vms3.924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Destaw Worku
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
- Department of Animal Science Salale University Fitche Ethiopia
| | - G. R. Gowane
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| | - Anupama Mukherjee
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| | - Rani Alex
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| | - Pooja Joshi
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| | - Archana Verma
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| |
Collapse
|
21
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
22
|
Ali I, Raza A, Ahmad MA, Li L. Nutrient sensing mechanism of short-chain fatty acids in mastitis control. Microb Pathog 2022; 170:105692. [DOI: 10.1016/j.micpath.2022.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
|
23
|
Hassan FU, Nadeem A, Javed M, Saif-ur-Rehman M, Shahzad MA, Azhar J, Shokrollahi B. Nutrigenomic Interventions to Address Metabolic Stress and Related Disorders in Transition Cows. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2295017. [PMID: 35726316 PMCID: PMC9206560 DOI: 10.1155/2022/2295017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022]
Abstract
For dairy cattle, the period involving a shift from late pregnancy to early lactation termed transition or periparturient is an excruciating phase. Health-related disorders are likely to happen in this time frame. Timely postpartum and metabolic adjustments to this new physical state demands correct management strategies to fulfill the cow's needs for a successful transition to this phase. Among the management strategies, one of the most researched methods for managing transition-related stress is nutritional supplementation. Dietary components directly or indirectly affect the expression of various genes that are believed to be involved in various stress-related responses during this phase. Nutrigenomics, an interdisciplinary approach that combines nutritional science with omics technologies, opens new avenues for studying the genome's complicated interactions with food. This revolutionary technique emphasizes the importance of food-gene interactions on various physiological and metabolic mechanisms. In animal sciences, nutrigenomics aims to promote the welfare of livestock animals and enhance their commercially important qualities through nutritional interventions. To this end, an increasing volume of research shows that nutritional supplementation can be effectively used to manage the metabolic stress dairy cows undergo during the transition period. These nutritional supplements, including polyunsaturated fatty acids, vitamins, dietary amino acids, and phytochemicals, have been shown to modulate energy homeostasis through different pathways, leading to addressing metabolic issues in transition cows.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Asif Nadeem
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Maryam Javed
- Institute of Biochemistry & Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | | | - Jahanzaib Azhar
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Borhan Shokrollahi
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
24
|
Zhang D, Jin G, Liu W, Dou M, Wang X, Shi W, Bao Y. Salvia miltiorrhiza polysaccharides ameliorates Staphylococcus aureus-induced mastitis in rats by inhibiting activation of the NF-κB and MAPK signaling pathways. BMC Vet Res 2022; 18:201. [PMID: 35624447 PMCID: PMC9137159 DOI: 10.1186/s12917-022-03312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
The lactation capacity of dairy cows is critical to the productivity of the animals. Mastitis is a disease that directly affects the lactation capacity of cows. Staphylococcus aureus (S. aureus) is one of the most important pathogens that causes mastitis in dairy cows. The anti-inflammatory effect of Salvia miltiorrhiza polysaccharides (SMPs) has been demonstrated in mice and chickens. However, the effectiveness of SMPs in preventing and treating mastitis is unclear. Therefore, the purpose of this study was to explore the protective effect and mechanism of SMPs on mastitis caused by S. aureus. S. aureus was used to induce mastitis in rats, and three doses of SMPs (87.5, 175, 350 mg/kg, BW/d) were administered as treatments. The bacterial load, histopathology, and myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities of mammary glands were observed and measured. Cytokines, including interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor α (TNF-α), were examined by qRT-PCR and ELISA. Key proteins in the NF-κB and MAPK signaling pathways were analyzed by Western blotting. The results showed that SMP supplementation could significantly reduce the colonization of S. aureus and the recruitment of inflammatory cells in mammary glands. S. aureus-induced gene transcription and protein expression of IL-1β, IL-6, and TNF-α were significantly suppressed in mammary glands. In addition, the increase in NF-κB and MAPK protein phosphorylation was inhibited by SMPs. These results revealed that supplementation with SMPs protected the mammary gland of rats against damage caused by S. aureus and alleviated the inflammatory response. This study provides a certain experimental basis for the treatment of S. aureus-induced mastitis with SMPs in the future.
Collapse
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Guozhong Jin
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Mengmeng Dou
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China.
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China.
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China.
| |
Collapse
|
25
|
Khan MZ, Ma Y, Xiao J, Chen T, Ma J, Liu S, Wang Y, Khan A, Alugongo GM, Cao Z. Role of Selenium and Vitamins E and B9 in the Alleviation of Bovine Mastitis during the Periparturient Period. Antioxidants (Basel) 2022; 11:antiox11040657. [PMID: 35453342 PMCID: PMC9032172 DOI: 10.3390/antiox11040657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mastitis (inflammation of the mammary gland) commonly occurs in dairy cattle during the periparturient period (transition period), in which dairy cattle experience physiological and hormonal changes and severe negative energy balance, followed by oxidative stress. To maintain successful lactation and combat negative energy balance (NEB), excessive fat mobilization occurs, leading to overproduction of reactive oxygen species (ROS). Excessive fat mobilization also increases the concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyric acid (BHB) during the periparturient period. In addition, the excessive utilization of oxygen by cellular respiration in the mammary causes abnormal production of oxidative stress (OS). OS impairs the immunity and anti-inflammatory efficiency of periparturient dairy cattle, increasing their susceptibility to mastitis. To alleviate oxidative stress and subsequent mastitis, antioxidants are supplemented to dairy cattle from an external source. Extensive studies have been conducted on the supplementation of selenium (Se) and vitamins E and B9 to mitigate mastitis during the transition period in dairy cattle. Altogether, in the current review, we discuss the research development on bovine mastitis and its major causes, with special emphasis on oxidative stress during the transition period. Moreover, we discuss the antioxidant, immunoregulatory, and anti-inflammatory properties of Se and vitamins E and B9 and their role in the control of bovine mastitis in periparturient dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Yulin Ma
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Jianxin Xiao
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Tianyu Chen
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Jiaying Ma
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Shuai Liu
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Yajing Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Gibson Maswayi Alugongo
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
| | - Zhijun Cao
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (Y.M.); (J.X.); (T.C.); (J.M.); (S.L.); (Y.W.); (G.M.A.)
- Correspondence: ; Tel.: +86-010-6273-3746
| |
Collapse
|
26
|
Putman AK, Gandy JC, Contreras GA, Sordillo LM. Oxylipids are associated with higher disease risk in postpartum cows. J Dairy Sci 2022; 105:2531-2543. [PMID: 35086706 DOI: 10.3168/jds.2021-21057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/27/2021] [Indexed: 11/19/2022]
Abstract
Postpartum diseases are a major animal welfare and economic concern for dairy producers. Dysregulated inflammation, which may begin as soon as the cessation of lactation, contributes to the development of postpartum diseases. The ability to regulate inflammation and mitigate postpartum health diseases relies, in part, on the production of inflammatory mediators known as oxylipids. The objective of this study was to examine associations between oxylipids and postpartum diseases. Plasma samples were collected from 16 cattle via coccygeal venipuncture at the following time points: 6 d before dry-off; dry-off (d 0); 1, 2, 6, and 12 d after dry-off; 14 ± 3 d before the expected calving date; and 7 ± 2 d after calving. After calving, cows were grouped according to if clinical disease was undetected throughout the sampling period (n = 7) or if they developed a disease postpartum (n = 9). Liquid chromatography-tandem mass spectrometry was used to analyze plasma concentrations of 63 oxylipid species. Of the 32 oxylipids detected, concentrations of 7 differed between cows with no detected disease and diseased cows throughout the sampling period. Thus, a variable oxylipid profile was demonstrated through 2 major physiological transitions of a lactation cycle. Further, the information gained from this pilot study using a small number of animals with diverse diseases from a single herd suggests that it may be possible to use oxylipids at early mammary involution to alert dairy producers of cows at risk for disease after calving. Future studies should be performed in larger populations of animals, including cows from diverse geographies and dairying styles, and focus on specific diseases to evaluate the utility of oxylipids as biomarkers. Furthermore, it is important to determine the clinical implications of variable oxylipid concentrations throughout the lactation cycle and if the oxylipid profile can be modulated to improve inflammatory outcomes.
Collapse
Affiliation(s)
- A K Putman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| | - J C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - G A Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| |
Collapse
|
27
|
Barreiros Y, Meneses ACD, Alves JLF, Mumbach GD, Ferreira FA, Machado RAF, Bolzan A, Araujo PHHD. Xanthan gum-based film-forming suspension containing essential oils: Production and in vitro antimicrobial activity evaluation against mastitis-causing microorganisms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Shangraw EM, McFadden TB. Graduate Student Literature Review: Systemic mediators of inflammation during mastitis and the search for mechanisms underlying impaired lactation. J Dairy Sci 2021; 105:2718-2727. [PMID: 34955254 DOI: 10.3168/jds.2021-20776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
The negative effect of mastitis on lactation is well established, yet the mechanisms causing reduced milk production in the afflicted dairy cow are not. As one of the major inflammatory diseases in the dairy industry, mastitis has rightly received considerable research interest for decades. However, the focus on distinct, pathologic effects in mastitic glands has largely overlooked systemic effects on noninflamed mammary glands. This is particularly evident in the severe, acute response to the potent inflammatory mediator, lipopolysaccharide (LPS). Whereas secretory cell death, impaired tight junctions, and migration of leukocytes are locally restricted to an inflamed, LPS-challenged gland, changes in milk yield and milk components may be detectable in all mammary glands. Further, these differences extend to the mammary transcriptome. Notably, few transcriptomic studies have been designed to test for effects of systemic mediators of inflammation on gene expression. Relevant changes in the noninflamed mammary gland, identified through biochemical analyses and transcriptional studies, warrant further research. Current evidence suggests proinflammatory cytokines play a role in regulating lactose synthesis, but additional candidates and mechanisms continue to be identified. Ultimately, understanding how systemic mediators of inflammation affect mammary function may lead to the development of interventions that enable more efficient milk production without sacrificing the benefits of inflammation.
Collapse
Affiliation(s)
- E M Shangraw
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| | - T B McFadden
- Division of Animal Sciences, University of Missouri, Columbia 65211
| |
Collapse
|
29
|
Cattaneo L, Mezzetti M, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Gene network expression of whole blood leukocytes in dairy cows with different milk yield at dry-off. PLoS One 2021; 16:e0260745. [PMID: 34882732 PMCID: PMC8659302 DOI: 10.1371/journal.pone.0260745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Dairy cows at dry-off undergo several management and physiological changes, resulting in alterations in plasma biomarkers of inflammation, oxidative stress, and immune system. High milk yield at the end of lactation exacerbates these responses. The underlying mechanism of these changes has yet to be elucidated. We hypothesized altered leukocyte gene expression after dry-off and different responses in cows with different milk yield. Thirteen Holstein dairy cows were sampled at the turn of dry-off to investigated whole blood leukocyte gene expression and were grouped according to the average milk yield during the last week of lactation: low (< 15 kg/d) and high milk yield (> 15 kg/d). Blood samples were collected in PAXgene tubes (Preanalytix, Hombrechtikon, Switzerland) at -7, 7, and 34 days from dry-off (DFD) to measure mRNA abundance of 37 genes. Normalized gene abundance data were subjected to MIXED model ANOVA (SAS Institute Inc., Cary, NC). Compared with -7 DFD, at 7 DFD RNA abundance of lipoxygenase genes (ALOX5, ALOX15) and myeloperoxidase (MPO) increased, and that of the antioxidant gene (SOD2) decreased. Meanwhile, genes related to recognition and immune mediation (CD16, MYD88, TLR2), migration and cell adhesion (CX3CR1, ITGAL, ITGB2, TLN1), and the antimicrobial gene MMP9 were downregulated at 7 or 34 DFD, whereas the antimicrobial IDO1 gene was upregulated. Compared with low-producing cows, cows with high milk yield at dry-off cows had upregulated expression of the pro-inflammatory cytokines IL8 and IL18 and a greater reduction in transcript abundance of the toll-like receptor (TLR) recognition-related gene TLR2. Overall, the dry-off confirmed to be a phase of intense changes, triggering an inflammatory response and somewhat suppressing leukocyte immune function. In cows with high milk yield during the week before dry-off, the inflammatory response was exacerbated.
Collapse
Affiliation(s)
- Luca Cattaneo
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
- * E-mail:
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
30
|
Castro I, Arroyo R, Aparicio M, Martínez MÁ, Rovira J, Ares S, Cunha SC, Casal S, Oliveira Fernandes J, Schuhmacher M, Nadal M, Rodríguez JM, Fernández L. Dietary Habits and Relationship with the Presence of Main and Trace Elements, Bisphenol A, Tetrabromobisphenol A, and the Lipid, Microbiological and Immunological Profiles of Breast Milk. Nutrients 2021; 13:nu13124346. [PMID: 34959899 PMCID: PMC8708081 DOI: 10.3390/nu13124346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Breastfeeding is the best way to feed an infant, although it can also be a source of abiotic contaminants such as heavy metals or bisphenol A (BPA). The early life exposure to these compounds can lead to serious toxic effects in both the short and long-term. These substances can reach breast milk through the mother’s habits, diet being one of the main routes of exposure. The aim of the present work was to analyse possible associations between the dietary habits of women and the content of major trace elements, BPA, fatty acids and lipids, and the microbiological and immunological profiles of human milk. Possible associations between major trace elements and BPA and the lipid, microbiological and immunological profiles were also analysed. The results of this study support that the microbiological composition of human milk is associated with the dietary habits of the women, and that the consumption of canned drinks is related to the presence of BPA in human milk. Furthermore, some relationships were found between the amount of major trace elements and the microbiological and immunological profile of the milk samples. Finally, the presence of BPA was associated with changes in the immunological profile of human milk.
Collapse
Affiliation(s)
- Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Marina Aparicio
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - María Ángeles Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43201 Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Reus, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (J.R.); (M.S.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain;
| | - Susana Ares
- Department of Neonatology, Universitary Hospital La Paz, P° de la Castellana, 261, 28046 Madrid, Spain;
| | - Sara Cristina Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Jose Oliveira Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.C.); (S.C.); (J.O.F.)
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (J.R.); (M.S.)
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain;
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (I.C.); (R.A.); (M.A.); (J.M.R.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943745
| |
Collapse
|
31
|
Baumrucker CR, Macrina AL, Bruckmaier RM. Colostrogenesis: Role and Mechanism of the Bovine Fc Receptor of the Neonate (FcRn). J Mammary Gland Biol Neoplasia 2021; 26:419-453. [PMID: 35080749 DOI: 10.1007/s10911-021-09506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Colostrogenesis is a separate and unique phase of mammary epithelial cell activity occurring in the weeks before parturition and rather abruptly ending after birth in the bovine. It has been the focus of research to define what controls this process and how it produces high concentrations of specific biologically active components important for the neonate. In this review we consider colostrum composition and focus upon components that appear in first milked colostrum in concentrations exceeding that in blood serum. The Fc Receptor of the Neonate (FcRn) is recognized as the major immunoglobulin G (IgG) and albumin binding protein that accounts for the proteins' long half-lives. We integrate the action of the pinocytotic (fluid phase) uptake of extracellular components and merge them with FcRn in sorting endosomes. We define and explore the means of binding, sorting, and the transcytotic delivery of IgG1 while recycling IgG2 and albumin. We consider the means of releasing the ligands from the receptor within the endosome and describe a new secretion mechanism of cargo release into colostrum without the appearance of FcRn itself in colostrum. We integrate the insulin-like growth factor family, some of which are highly concentrated bioactive components of colostrum, with the mechanisms related to FcRn endosome action. In addition to secretion, we highlight the recent findings of a role of the FcRn in phagocytosis and antigen presentation and relate its significant and abrupt change in cellular location after parturition to a role in the prevention and resistance to mastitis infections.
Collapse
Affiliation(s)
- Craig R Baumrucker
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA.
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
| | - Ann L Macrina
- Department of Animal Science, Penn State University, University Park, PA, 16802, USA
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
32
|
Alanis VM, Tomazi T, Santisteban C, Nydam DV, Ospina PA. Calculating clinical mastitis frequency in dairy cows: Incidence risk at cow level, incidence rate at cow level, and incidence rate at quarter level. Prev Vet Med 2021; 198:105527. [PMID: 34826731 DOI: 10.1016/j.prevetmed.2021.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
The lack of standardization in reporting clinical mastitis incidence limits the ability to compare results across multiple studies without additional calculations. There is both a biological and statistical rationale for evaluating the at-risk period at the quarter level. This study aimed to: (1) to outline an applied method for calculating clinical mastitis (CM) incidence rate at the quarter level using currently available software; and (2) to present the results of three different measurements: incidence risk at cow level, incidence rate at cow level, and incidence rate at quarter level. In an open population prospective cohort of eight commercial dairy farms monitored from May 15, 2016, to May 31, 2017, all CM cases (n = 7513) were identified by trained on-farm personnel, who collected all milk samples from all quarters with visibly abnormal milk. Microbiological identification was determined by culture and MALDI-TOF. All lactating quarters were at risk for CM. A quarter was at risk for a new CM case if there was at least 14 d between a previously diagnosed case and the current case in the same quarter, or if a different pathogen was isolated in the same quarter within 14 d. A total of 17,513,429 quarters days at risk (QDAR) were estimated. A statistical software macro and Structured Query Language (SQL) were used to bring all data together. The monthly incidence rate at the cow level was 16.6 cases per 10,000 cow-days, the monthly incidence rate at the quarter level was 4.4 cases per 10,000 QDAR and the monthly incidence risk at the cow level was 4.8 cases per 100 cows. Although the evaluation of QDAR requires additional computation when compared to other methods, it might allow for a more precise evaluation of the data and a more accurate evaluation of mastitis incidence. Clearly defining the methods used to report mastitis incidence will improve our ability to discuss and learn about the differences and similarities across studies, regions, and countries.
Collapse
|
33
|
Xu H, Zhang T, Hu X, Xie Y, Wu R, Lian S, Wang J. Exosomal miR-193b-5p as a regulator of LPS-induced inflammation in dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim 2021; 57:695-703. [PMID: 34312802 DOI: 10.1007/s11626-021-00596-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022]
Abstract
Exosomes are a type of extracellular vesicle that act as shuttles, transporting certain genetic information to other cells. MiRNA cargo within exosomes can regulate gene expression at the transcriptional level. The objective of this study was to investigate the exosomal miRNAs that regulate lipopolysaccharide (LPS)-induced inflammation in dairy cow mammary alveolar (Mac-T) cells. We found two exosome miRNAs upregulated and five exosomal miRNAs downregulated, respectively, in the LPS-stimulated Mac-T cells. MiR-193b-5p was upregulated 6.3-fold in the LPS-stimulated cell-derived exosome. Target prediction results showed that nuclear factor kappa B (NF-κB) inhibitor delta (NFKBID), transforming growth factor-beta 1 induced transcript 1 (TGFB1I1), interleukin 22 (IL-22), TNF receptor superfamily member 11b (TNFRSF11B), and Janus kinase 3 (JAK3) might be the main target genes of miR-193b-5p. After treatment of Mac-T cells with the miR-193b-5p mimic, the phosphorylation levels of inhibitor of nuclear factor-kappa Bα (IκBα) and p65 were upregulated, the level of IL-6 mRNA was upregulated, and IL-1β, TNF-α, and TGF-β mRNA levels were downregulated. After treatment of Mac-T cells with miR-193b-5p inhibitor, the phosphorylation levels of IκBα and p65 were downregulated. In summary, these findings provide strong evidence that exosomal miR-193b-5p could be a regulator of LPS-induced inflammation in Mac-T cells and reveal a new role of exosomal miRNAs in regulating dairy cow mastitis.
Collapse
Affiliation(s)
- Haotian Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Tianqi Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Xuequan Hu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Yingying Xie
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, High and New Technology Development Zone, Daqing, Heilongjiang, 163319, People's Republic of China.
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, High and New Technology Development Zone, Daqing, Heilongjiang, 163319, People's Republic of China.
| |
Collapse
|
34
|
Åvall-Jääskeläinen S, Koort J, Simojoki H, Taponen S. Genomic Analysis of Staphylococcus aureus Isolates Associated With Peracute Non-gangrenous or Gangrenous Mastitis and Comparison With Other Mastitis-Associated Staphylococcus aureus Isolates. Front Microbiol 2021; 12:688819. [PMID: 34305849 PMCID: PMC8297832 DOI: 10.3389/fmicb.2021.688819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus is a highly prevalent cause of mastitis in dairy herds worldwide, capable of causing outcomes that vary from subclinical to peracute gangrenous mastitis. We performed a comparative genomic analysis between 14 isolates of S. aureus, originating from peracute bovine mastitis with very severe signs (9 gangrenous, 5 non-gangrenous) and six isolates originating from subclinical or clinical mastitis with mild to moderate signs, to find differences that could be associated with the clinical outcome of mastitis. Of the 296 virulence factors studied, 219 were detected in all isolates. No difference in the presence of virulence genes was detected between the peracute and control groups. None of the virulence factors were significantly associated with only a single study group. Most of the variation in virulence gene profiles existed between the clonal complexes. Our isolates belonged to five clonal complexes (CC97, CC133, CC151, CC479, and CC522), of which CC522 has previously been detected only in isolates originating from caprine and ovine mastitis, but not from bovine mastitis. For statistical analysis, we sorted the CCs into two groups. The group of CCs including CC133, CC479, and CC522 was associated with gangrenous mastitis, in contrast to the group of CCs including CC97 and CC151. The presence of virulence genes does not explain the clinical outcome of mastitis, but may be affected by allelic variation, and especially different regulation and thus expression in the virulence genes.
Collapse
Affiliation(s)
- Silja Åvall-Jääskeläinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Joanna Koort
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Heli Simojoki
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland.,Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Suvi Taponen
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| |
Collapse
|
35
|
Flunixin Meglumine Reduces Milk Isoprostane Concentrations in Holstein Dairy Cattle Suffering from Acute Coliform Mastitis. Antioxidants (Basel) 2021; 10:antiox10060834. [PMID: 34073753 PMCID: PMC8225098 DOI: 10.3390/antiox10060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Dysfunctional inflammation contributes significantly to the pathogenesis of coliform mastitis and the classical pro-inflammatory enzyme cyclooxygenase-2 (COX-2) is the target of medical intervention using the non-steroidal anti-inflammatory drug (NSAID) flunixin meglumine (FM). Inhibition of COX-2 by FM can decrease concentrations of pro-inflammatory fatty acid-based mediators called eicosanoids, providing antipyretic and analgesic effects in dairy cows suffering from coliform mastitis. However, approximately 50% of naturally occurring coliform mastitis with systemic involvement results in death of the animal, even with NSAID treatment. Inadequate antioxidant potential (AOP) to neutralize reactive oxygen species (ROS) produced during excessive inflammation allows for oxidative stress (OS), contributing to tissue damage during coliform mastitis. Biomarkers of lipid peroxidation by ROS, called isoprostanes (IsoP), were used in humans and cattle to quantify the extent of OS. Blood IsoP were shown to be elevated and correlate with oxidant status during acute coliform mastitis. However, the effect of FM treatment on oxidant status and markers of OS has not been established. Blood IsoP concentrations were used to quantify systemic OS, whereas milk was used to assess local OS in the mammary gland. Results indicate that FM treatment had no effect on blood markers of inflammation but reduced the oxidant status index (OSi) by increasing blood AOP from pre- to post-FM treatment. Milk AOP significantly increased from pre- to post-FM treatment, whereas ROS decreased, resulting in a decreased OSi from pre- to post-FM treatment. The only blood IsoP concentration that was significantly different was 5-iso-iPF2α-VI, with a decreased concentration from pre- to post-FM treatment. Conversely, milk 5-iso-iPF2α-VI, 8,12-iso-iPF2α-VI, and total IsoP concentrations were decreased following FM treatment. These results indicated that administration of FM did improve systemic and local oxidant status and reduced local markers of OS. However, differential effects were observed between those animals that survived the infection and those that died, indicating that pre-existing inflammation and oxidant status greatly affect efficacy of FM and may be the key to reducing severity and mortality associated with acute coliform infections. Supplementation to improve AOP and anti-inflammatory mediator production may significantly improve efficacy of FM treatment.
Collapse
|
36
|
Artemisinin Protects Porcine Mammary Epithelial Cells against Lipopolysaccharide-Induced Inflammatory Injury by Regulating the NF-κB and MAPK Signaling Pathways. Animals (Basel) 2021; 11:ani11061528. [PMID: 34073895 PMCID: PMC8225056 DOI: 10.3390/ani11061528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Sow mastitis is a serious breast disease that can cause severe inflammation, agalaxia and even lead to death of piglets. Porcine mammary epithelial cells (pMECs) are the main cell types that affect sow milk secretion, therefore, when swine mastitis occurs, the inflammatory response of pMECs directly affects the mammary gland health and sow’s lactation ability. Promoting the health of mammary gland epithelial cells is an important method for treating mastitis. Thus, in the current study, we investigated the effects of artemisinin on the inflammatory response of pMECs induced by lipopolysaccharide (LPS), and proposed a potential anti-inflammatory mechanism. We confirmed that artemisinin can reduce the inflammatory damage of pMECs induced by LPS by inhibiting MAPK and NF-κB signaling pathways. Pretreatment of pMECs with artemisinin showed enhanced anti-inflammatory activity against LPS-induced inflammation. Artemisinin could be a useful, safe and natural anti-inflammatory feed additive to prevent sow mastitis. Abstract Artemisinin performs a variety of biological functions, such as anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant effects. However, the effects of artemisinin on sow mastitis have not been studied. The results of the current study showed that mRNA expression abundance and content of the inflammatory factors interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were significantly increased when using 50 μg/mL LPS to stimulate pMECs for 24 h (p < 0.05). Pretreatment with 20 μM artemisinin weakened LPS-induced inflammatory damage in pMECs and decreased mRNA expression abundance and the content of inflammatory factors (IL-1β, IL-6, and TNF-α) in pMECs (p < 0.05). Mechanistically, artemisinin inhibited LPS-induced activation of the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. In summary, the pretreatment of pMECs with artemisinin showed enhanced anti-inflammatory activity against LPS-induced inflammation.
Collapse
|
37
|
Scarsella E, Zecconi A, Cintio M, Stefanon B. Characterization of Microbiome on Feces, Blood and Milk in Dairy Cows with Different Milk Leucocyte Pattern. Animals (Basel) 2021; 11:ani11051463. [PMID: 34069719 PMCID: PMC8160755 DOI: 10.3390/ani11051463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Mastitis is an inflammation of the mammary gland caused by microorganisms and associated with an altered immune response. Recently, several studies hypothesized that a translocation of some bacteria from the gastrointestinal tract to the mammary gland can occur and that this bacterial crossing could be the cause of certain mastitis. The aim of this research is to investigate the bacteria translocation from the gut to the mammary gland, the so-called entero-mammary pathway, through the study of the fecal, blood and milk microbiome. Cows were recruited on the basis of their mammary gland health status and classified as healthy, at risk of mastitis and with mastitis. The microbial composition of feces, blood and milk were analyzed through high-throughput sequencing technique and the results were checked through a quantitative real-time PCR analysis. Although small differences were found in the microbiome of these three specimens between the groups of animals, beta biodiversity, that is, the ratio between whole and individual species diversity, highlighted a microbial community change in the milk of cows with different udder health conditions. The three matrices shared a high number of taxa; however, our results do not confirm a bacterial crossing from gut to milk, that still remains hypothetical. Abstract Mastitis is an inflammatory disease of the mammary gland, caused by the invasion of microorganism on this site, associated with an altered immune response. Recent studies in this field hypothesize that the origin of these pathogens can also be from the gastrointestinal tract, through the entero-mammary pathway in relation to an increase in gut permeability. In this study, we wanted to investigate if inflammatory status of the mammary gland is related to an alteration of gut permeability. The microbiome of feces, blood and milk of lactating cows, recruited on the basis of the total somatic cell count and of the percentage of polymorphonuclear neutrophils and lymphocytes, was studied. Cows were divided into healthy (G), at risk of mastitis (Y) and with mastitis (R) classifications. The bacterial DNA was extracted and the V3 and V4 regions of 16S rRNA sequenced. Moreover, the quantification of total bacteria was performed with quantitative real-time PCR. A non-parametric Kruskal–Wallis test was applied at the phylum, family and genera levels and beta biodiversity was evaluated with the unweighted UniFrac distance metric. Significant differences between groups were found for the microbial composition of feces (Clostridiaceae, Turicibacteriaceae for family level and Clostridium, Dorea, SMB53 and Turicibacter for genus level), blood (Tenericutes for phylum level and Mycoplasma for genus level) and milk (OD1 and Proteobacteria for phylum level, Enterobacteriaceae and Moraxallaceae for family level and Olsenella and Rhodococcus for genus level). The beta biodiversity of feces and blood did not change between groups. Significant differences (p < 0.05) were observed between the beta diversity in milk of G group and Y group and between Y group and R group. The number of taxa in common between feces, blood and milk were 8 at a phylum, 19 at a family and 15 at a genus level. From these results, the bacterial crossing from gut to milk in cows was not confirmed but remained hypothetical and deserves further investigation.
Collapse
Affiliation(s)
- Elisa Scarsella
- Department of Agriculture, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (E.S.); (M.C.)
| | - Alfonso Zecconi
- Department of Biomedical, Surgical and Dental Sciences–One Health Unit, University of Milan, 20100 Milan, Italy;
| | - Michela Cintio
- Department of Agriculture, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (E.S.); (M.C.)
| | - Bruno Stefanon
- Department of Agriculture, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (E.S.); (M.C.)
- Correspondence:
| |
Collapse
|
38
|
Ciliberti MG, Albenzio M, Claps S, Santillo A, Marino R, Caroprese M. NETosis of Peripheral Neutrophils Isolated From Dairy Cows Fed Olive Pomace. Front Vet Sci 2021; 8:626314. [PMID: 33996961 PMCID: PMC8118642 DOI: 10.3389/fvets.2021.626314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neutrophils represent primary mobile phagocytes recruited to the site of infection, and their functions are essential to enhance animals' health performance. Neutrophils have an essential role in innate immunity and are able to kill the pathogens via the synthesis of neutrophil extracellular traps (NETs). The objective of the present work was the study of the in vitro NETosis of peripheral neutrophils isolated from dairy cows supplemented with olive pomace. Dairy cows (n = 16) balanced for parity (3.67 ± 1.5 for CON, 3.67 ± 1.9 for OP), milk yield (24.3 ± 4.5 kg d−1for CON and 24.9 ± 1.7 kg d−1 for OP), the number of days in milk (109 ± 83.5 for CON and 196 ± 51 for OP), and body weight (647 ± 44.3 kg for CON and 675 ± 70.7 kg for OP) were divided into two experimental groups fed with a control diet (CON) and supplemented with 6% of olive pomace (OP). Peripheral blood neutrophils were isolated and stimulated in vitro with phorbol-myristate-acetate (PMA) as a marker for activation and reactivity of the neutrophils. After isolation, both the viability and CD11b expression were analyzed by flow cytometry. Both NETosis by neutrophil elastase-DNA complex system and myeloperoxidase (MPO) activity were evaluated by ELISA. The specific antibodies against MPO and citrullination of Histone-H1 were used for investigating NETosis by immunofluorescence microscopy. The neutrophil elastase-DNA complexes produced during NETosis and MPO activity of neutrophil extracts were affected by OP supplementation. Furthermore, results from immunofluorescence analysis of NETosis depicted a similar result found by ELISA showing a higher expression of MPO and citrullination of Histone-H1 in OP than the CON neutrophils. In addition, all data showed that the OP diet resulted in a better response of neutrophils to PMA stimulation than the CON diet, which did not support the neutrophils' responses to PMA stimulation. Our results demonstrated that OP supplementation can enhance the neutrophil function in dairy cows leading to udder defense and inflammation response especially when an immunosuppression state can occur.
Collapse
Affiliation(s)
- Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources, and Engineering, University of Foggia, Foggia, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources, and Engineering, University of Foggia, Foggia, Italy
| | - Salvatore Claps
- Council for Agricultural Research and Economics-Research Centre for Animal Production and Aquaculture, Bella Muro, Italy
| | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources, and Engineering, University of Foggia, Foggia, Italy
| | - Rosaria Marino
- Department of Agriculture, Food, Natural Resources, and Engineering, University of Foggia, Foggia, Italy
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources, and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|
39
|
Ali I, Yang M, Wang Y, Yang C, Shafiq M, Wang G, Li L. Sodium propionate protect the blood-milk barrier integrity, relieve lipopolysaccharide-induced inflammatory injury and cells apoptosis. Life Sci 2021; 270:119138. [PMID: 33524422 DOI: 10.1016/j.lfs.2021.119138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
AIMS Sodium propionate (SP) has been reported to possess an anti-inflammatory and anti-apoptotic potential by inhibiting certain signaling pathways and helps in reducing the pathological damages of the mammary gland. However, the effects of sodium propionate on attenuating Lipopolysaccharide (LPS)-induced inflammatory condition and cell damage in bovine mammary epithelial cells (bMECs) are not comprehensively studied yet. Therefore, the aim of the current investigation was to evaluate the protective effects of sodium propionate on LPS-induced inflammatory conditions and to clarify the possible underlying molecular mechanism in bMECs. MAIN METHODS The effects of increasing doses of SP on LPS-induced inflammation, oxidative stress and apoptosis was studied in vitro. Furthermore, the underlying protective mechanisms of SP on LPS-stimulated bMECs was investigated under different experimental conditions. KEY FINDINGS The results reveled that increased inflammatory cytokines, chemokines and those of tight junction's mRNA expression was significantly attenuated dose-dependently by propionate. Biochemical analysis revealed that propionate pretreatment modulated the LPS-induced intercellular reactive oxygen species (ROS) accumulation, oxidative and antioxidant factors and apoptosis rate. Furthermore, we investigated that the LPS activated nuclear factor-kB (NF-kB), caspase/Bax apoptotic pathways and Histone deacetylases (HDAC) was significantly attenuated by propionate in bMECs. SIGNIFICANCE Our results suggest that sodium propionate is a potent agent for ameliorating LPS-mediated cellular disruption and limiting detrimental inflammatory responses, partly via maintaining blood milk barrier integrity, inhibiting HDAC activity and NF-kB signaling pathway.
Collapse
Affiliation(s)
- Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiru Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Caixia Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Shafiq
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
40
|
Kuhn MJ, Mavangira V, Sordillo LM. Invited review: Cytochrome P450 enzyme involvement in health and inflammatory-based diseases of dairy cattle. J Dairy Sci 2020; 104:1276-1290. [PMID: 33358163 DOI: 10.3168/jds.2020-18997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Dairy cattle are at the greatest risk of developing diseases around the time of calving because of compromised immune responses and the occurrence of oxidative stress. Both the development of compromised immunity and oxidative stress are influenced directly or indirectly by the metabolism of polyunsaturated fatty acids (PUFA) and fat-soluble vitamins. The cytochrome P450 (CYP450) family of enzymes is central to the metabolism of both classes of these compounds, but to date, the importance of CYP450 in the health of dairy cattle is underappreciated. As certain CYP450 isoforms metabolize both PUFA and fat-soluble vitamins, potential interactions may occur between PUFA and fat-soluble vitamins that are largely unexplored. For example, one CYP450 that generates anti-inflammatory oxylipids from arachidonic acid additionally contributes to the activation of vitamin D. Other potential substrate interactions between PUFA and vitamins A and E may exist as well. The intersection of PUFA and fat-soluble vitamin metabolism by CYP450 suggest that this enzyme system could provide an understanding of how immune function and oxidant status interconnect, resulting in increased postpartum disease occurrence. This review will detail the known contributions of bovine CYP450 to the regulation of oxylipids with a focus on enzymes that may also be involved in the metabolism of fat-soluble vitamins A, D, and E that contribute to antioxidant defenses. Although the activity of specific CYP450 is generally conserved among mammals, important differences exist in cattle, such as the isoforms primarily responsible for activation of vitamin D that makes their specific study in cattle of great importance. Additionally, a CYP450-driven inflammatory positive feedback loop is proposed, which may contribute to the dysfunctional inflammatory responses commonly found during the transition period. Establishing the individual enzyme isoform contributions to oxylipid biosynthesis and the regulation of vitamins A, D, and E may reveal how the CYP450 family of enzymes can affect inflammatory responses during times of increased susceptibility to disease. Determining the potential effect of each CYP450 on disease susceptibility or pathogenesis may allow for the targeted manipulation of the CYP450 pathways to influence specific immune responses and antioxidant defenses during times of increased risk for health disorders.
Collapse
Affiliation(s)
- M J Kuhn
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - V Mavangira
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
41
|
Carratalá JV, Brouillette E, Serna N, Sánchez-Chardi A, Sánchez JM, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N, Malouin F. In Vivo Bactericidal Efficacy of GWH1 Antimicrobial Peptide Displayed on Protein Nanoparticles, a Potential Alternative to Antibiotics. Pharmaceutics 2020; 12:pharmaceutics12121217. [PMID: 33348529 PMCID: PMC7766456 DOI: 10.3390/pharmaceutics12121217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomerization of antimicrobial peptides into nanosized supramolecular complexes produced in biological systems (inclusion bodies and self-assembling nanoparticles) seems an appealing alternative to conventional antibiotics. In this work, the antimicrobial peptide, GWH1, was N-terminally fused to two different scaffold proteins, namely, GFP and IFN-γ for its bacterial production in the form of such recombinant protein complexes. Protein self-assembling as regular soluble protein nanoparticles was achieved in the case of GWH1-GFP, while oligomerization into bacterial inclusion bodies was reached in both constructions. Among all these types of therapeutic proteins, protein nanoparticles of GWH1-GFP showed the highest bactericidal effect in an in vitro assay against Escherichia coli, whereas non-oligomerized GWH1-GFP and GWH1-IFN-γ only displayed a moderate bactericidal activity. These results indicate that the biological activity of GWH1 is specifically enhanced in the form of regular multi-display configurations. Those in vitro observations were fully validated against a bacterial infection using a mouse mastitis model, in which the GWH1-GFP soluble nanoparticles were able to effectively reduce bacterial loads.
Collapse
Affiliation(s)
- Jose V. Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eric Brouillette
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
| | - Naroa Serna
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain;
- Departament of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Julieta M. Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (N.F.-M.); (F.M.)
| | - François Malouin
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
- Correspondence: (N.F.-M.); (F.M.)
| |
Collapse
|
42
|
Epidemiology and Classification of Mastitis. Animals (Basel) 2020; 10:ani10122212. [PMID: 33255907 PMCID: PMC7760962 DOI: 10.3390/ani10122212] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/21/2020] [Accepted: 11/25/2020] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Farmers should focus on milk quality over quantity. However, in some situations, more attention is focused on the amount of milk produced. In the long term, this approach might represent an important economic cost as it leads to increased incidence of mastitis. Mastitis affects herds in all countries and is the most economically burdensome disease encountered by dairy farmers. The current review focuses on the main pathogens that cause this inflammation and their prevalence as well as strategies to prevent their proliferation. We discuss economic loss, with the goal of demonstrating that prevention is always better than disease management. Abstract Farmers should focus on milk quality over quantity because milk that contains unsuitable components and/or antibiotic residues, or has a high somatic cell count, cannot be used in food production and thereby results in reduced milk yield. One of the main problems affecting the ultimate milk yield of dairy cows is mastitis. This disease is the most serious economic and health problem associated with dairy cow herds and is a major reason for excessive culling. Therefore, many studies have addressed this problem to further our understanding of the agents causing mastitis and their classification and virulence factors. This review summarizes the current knowledge regarding mastitis prevalence, the characteristics of its main causative agents, and the effects of mastitis on dairy production. The review also intends to provide guidance for future studies by examining external effects influencing dairy production in cows under field conditions.
Collapse
|
43
|
Caldeira MO, Bruckmaier RM, Wellnitz O. Effects of local or systemic administration of meloxicam on mammary gland inflammatory responses to lipopolysaccharide-induced mastitis in dairy cows. J Dairy Sci 2020; 104:1039-1052. [PMID: 33189275 DOI: 10.3168/jds.2020-18691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAID) are commonly used in combination with antimicrobial mastitis treatments to reduce pain. Little is known about whether meloxicam, an NSAID designed for the preferential inhibition of cyclooxygenase-2 over cyclooxygenase-1, affects the mammary immune response. The objective of this study was to analyze the mammary immune response to intramammary (local) or intravenous (systemic) administration of meloxicam with or without immune activation by lipopolysaccharide (LPS). We challenged 108 quarters of 30 cows with or without a low or high dose of LPS from Escherichia coli (0.1 or 0.2 µg/quarter), with or without meloxicam via intramammary administration (50 mg/quarter) or intravenous injection (0.5 mg/kg of body weight; ~300 mg/cow). Intramammary administration of meloxicam alone did not trigger an acute inflammatory response, verified by unchanged somatic cell count (SCC) and lactate dehydrogenase (LDH), BSA, and IgG concentrations in milk, which are normally augmented during mastitis due to an opening of the blood-milk barrier. Similarly, intramammary meloxicam did not change the mRNA abundance of inflammatory factors in mammary gland tissue. As expected, quarters challenged with either dose of LPS showed increased leukocyte infiltration (SCC); increased LDH, BSA, IgG, Na, and Cl concentrations; and diminished K concentrations in milk. In contrast to our hypothesis, the addition of intramammary or intravenous meloxicam did not reduce these markers of mastitis in milk. Instead, intramammary meloxicam appeared to accelerate the SCC response to LPS, but only at the lower LPS dose. Moreover, the mRNA expression of inflammatory factors in mammary tissue was not modified by the intramammary application of meloxicam compared with the contralateral quarters that were challenged with LPS only. We demonstrated for the first time that intramammary meloxicam at a dose of 50 mg/quarter did not trigger an immune response in the mammary glands of dairy cows. At the doses we used, meloxicam (intramammary or systemic) did not lower inflammatory responses. The intramammary administration of meloxicam seemed to stimulate leukocyte recruitment into the milk in quarters challenged with a low dose of LPS. The integrity of the blood-milk barrier was not protected by meloxicam in LPS-stimulated quarters. This study provides the first indications that meloxicam does not limit the inflammatory response in the mammary gland, although it does not impair the mammary immune system.
Collapse
Affiliation(s)
- M O Caldeira
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Graduate School for Cellular and Biomedical Science, University of Bern, 3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|
44
|
Hermida JA, Baird AN, Hawkins JF, Moore GE. Mastectomy in 25 small ruminants (2002-2019). Vet Surg 2020; 50:104-110. [PMID: 32870506 DOI: 10.1111/vsu.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To describe the outcome of small ruminants treated with unilateral and bilateral mastectomy by using three surgical techniques. STUDY DESIGN Retrospective study. ANIMALS Twenty-five small ruminants (24 goats and one sheep). METHODS Medical records of animals that underwent mastectomy between November 1, 2002, and May 1, 2019, were reviewed. Follow-up information was obtained by telephone questionnaire with owners. Signalment, surgical data, intraoperative and postoperative complications, bacterial culture results, histopathologic diagnoses, short- and long-term outcomes, and other procedures performed were recorded. RESULT Procedures consisted of six unilateral (with an elliptical incision) and 19 total (with inverted cloverleaf or elliptical skin incisions) mastectomies. All animals survived to hospital discharge. Intraoperative complications included contamination of the surgical site with mammary-gland fluid, hemorrhage, and difficulty dissecting skin from the mammary gland. Postoperative complications included seroma formation (7/25), surgical-site infection (5/25), and dehiscence of the skin incision (3/25). Mammary neoplasia was diagnosed in seven of 15 animals with histopathologic examination. No association was detected between surgical technique, diagnosis of neoplasia, and long-term outcome. Overall, client satisfaction was high. CONCLUSION Mastectomy was effective at removing abnormally enlarged udders secondary to chronic mastitis, inappropriate lactation, idiopathic causes, or neoplasia and was associated with a low rate of complications in small ruminants. CLINICAL SIGNIFICANCE Unilateral mastectomy with an elliptical skin incision or total mastectomy, preferably with inverted cloverleaf skin incision, may be indicated to remove diseased mammary tissue in small ruminants and can result in long-term survival with low morbidity and cosmetically pleasing results.
Collapse
Affiliation(s)
- Jesus A Hermida
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, Indiana, USA
| | - Aubrey N Baird
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, Indiana, USA
| | - Jan F Hawkins
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, Indiana, USA
| | - George E Moore
- Veterinary Administration, College of Veterinary Medicine, Purdue University, Indiana, USA
| |
Collapse
|
45
|
Bronzo V, Lopreiato V, Riva F, Amadori M, Curone G, Addis MF, Cremonesi P, Moroni P, Trevisi E, Castiglioni B. The Role of Innate Immune Response and Microbiome in Resilience of Dairy Cattle to Disease: The Mastitis Model. Animals (Basel) 2020; 10:E1397. [PMID: 32796642 PMCID: PMC7459693 DOI: 10.3390/ani10081397] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Animal health is affected by many factors such as metabolic stress, the immune system, and epidemiological features that interconnect. The immune system has evolved along with the phylogenetic evolution as a highly refined sensing and response system, poised to react against diverse infectious and non-infectious stressors for better survival and adaptation. It is now known that high genetic merit for milk yield is correlated with a defective control of the inflammatory response, underlying the occurrence of several production diseases. This is evident in the mastitis model where high-yielding dairy cows show high disease prevalence of the mammary gland with reduced effectiveness of the innate immune system and poor control over the inflammatory response to microbial agents. There is growing evidence of epigenetic effects on innate immunity genes underlying the response to common microbial agents. The aforementioned agents, along with other non-infectious stressors, can give rise to abnormal activation of the innate immune system, underlying serious disease conditions, and affecting milk yield. Furthermore, the microbiome also plays a role in shaping immune functions and disease resistance as a whole. Accordingly, proper modulation of the microbiome can be pivotal to successful disease control strategies. These strategies can benefit from a fundamental re-appraisal of native cattle breeds as models of disease resistance based on successful coping of both infectious and non-infectious stressors.
Collapse
Affiliation(s)
- Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Vincenzo Lopreiato
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Massimo Amadori
- Rete Nazionale di Immunologia Veterinaria, 25125 Brescia, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA
| | - Erminio Trevisi
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| |
Collapse
|
46
|
Liu K, Ding T, Fang L, Cui L, Li J, Meng X, Zhu G, Qian C, Wang H, Li J. Organic Selenium Ameliorates Staphylococcus aureus-Induced Mastitis in Rats by Inhibiting the Activation of NF-κB and MAPK Signaling Pathways. Front Vet Sci 2020; 7:443. [PMID: 32851026 PMCID: PMC7406644 DOI: 10.3389/fvets.2020.00443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Mastitis is an economically important disease in dairy cows, which is often caused by Staphylococcus aureus (S. aureus). Selenium is an indispensable element for physiological function and contributes to reduce injury of the mammary glands in mastitis. However, adequate sources of selenium have always been an important consideration for livestock. Therefore, the study aimed to explore the protective effect and mechanism of Selenohomolanthionine (SeHLan) on mastitis induced by S. aureus. The S. aureus-induced rat model was established and three doses (0.2, 2, 20 μg/kg body weight/day) of dietary OS were supplemented. The bacterial load, histopathology, and myeloperoxidase (MPO) of the mammary glands were performed and determined. Cytokines, including interleukin (IL)-1β, TNF-α, and IL-6, were detected using qRT-PCR. The key proteins of NF-κB and MAPK signaling pathways were analyzed by Western blot. The results revealed that OS supplementation could reduce the recruitment of neutrophils and macrophages in mammary tissues, but did not decrease S. aureus load in the tissues. The overexpression levels of IL-1β, TNF-α, and IL-6 induced by S. aureus were inhibited after OS treatment. Furthermore, the increased phosphorylation of NF-κB and MAPKs proteins were also suppressed. The results suggest that dietary supplementation with adequate OS during pregnancy contributes to protect the mammary glands from injury caused by S. aureus and alleviate the inflammatory response.
Collapse
Affiliation(s)
- Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Li Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
47
|
Akhtar M, Guo S, Guo YF, Zahoor A, Shaukat A, Chen Y, Umar T, Deng PG, Guo M. Upregulated-gene expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) via TLRs following NF-κB and MAPKs in bovine mastitis. Acta Trop 2020; 207:105458. [PMID: 32243879 DOI: 10.1016/j.actatropica.2020.105458] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022]
Abstract
Mastitis is the inflammation of mammary glands which causes huge economic loss in dairy cows. Inflammation, any tissue injury and pathogens in cow udder activate Toll-like Receptors (TLRs). Staphylococcus aureus (S. aureus) is the major cause of mastitis. In mastitis, activated TLRs initiate the NF-κB/MAPKs pathways which further trigger the gene expression associated with mastitis followed by innate immune response. In this study, pathogenic-induced gene expression profile of pro-inflammatory cytokines in mammary gland tissues, was investigated in mastitis. The Hematoxylin and Eosin (H & E) results indicated severe histopathological changes in infected tissues. Western blot results suggested the over expressions of TLR2/TLR4 with NF-κB/MAPKs pathways activation in infected tissues. qRT-PCR results revealed the gene expression associated with TLR2/TLR4-mediated NF-κB/MAPKs pathways in infected tissues in comparison with non-infected. Statistical analysis of mRNA and relative protein expression levels indicated the up-regulation of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in infected tissues rather than non-infected tissues. These results suggested that the up-regulation of gene expression levels implicated the underlying regulatory pathways for proper immune function in mammary glands. In conclusion, our study might give new insights for investigation and better understanding of mammary gland pathophysiology and TLRs and NF-κB/MAPKs-mediated gene expression of pro-inflammatory cytokines.
Collapse
|
48
|
Bacterial Endotoxins and Their Role in Periparturient Diseases of Dairy Cows: Mucosal Vaccine Perspectives. DAIRY 2020. [DOI: 10.3390/dairy1010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During the periparturient period there is a significant increase in the incidence of multiple metabolic and infectious diseases in dairy cows. Dairy cows are fed high-grain diets immediately after calving to support production of large amounts of milk. Mounting evidence indicates these types of diets are associated with the release of high amounts of endotoxins in the rumen fluid. If infected, the udder and uterus additionally become important sources of endotoxins during the postpartum period. There is increasing evidence that endotoxins translocate from rumen, uterus, or udder into the systemic circulation and trigger chronic low-grade inflammatory conditions associated with multiple diseases including fatty liver, mastitis, retained placenta, metritis, laminitis, displaced abomasum, milk fever, and downer cow syndrome. Interestingly, endotoxin-related diseases are triggered by a bacterial component and not by a specific bacterium. This makes prevention of these type of diseases different from classical infectious diseases. Prevention of translocation of endotoxins into the host systemic circulation needs to take priority and this could be achieved with a new approach: mucosal vaccination. In this review article, we discuss all the aforementioned issues in detail and also report some of our trials with regards to mucosal vaccination of periparturient dairy cows.
Collapse
|
49
|
Islam MA, Takagi M, Fukuyama K, Komatsu R, Albarracin L, Nochi T, Suda Y, Ikeda-Ohtsubo W, Rutten V, van Eden W, Villena J, Aso H, Kitazawa H. Transcriptome Analysis of The Inflammatory Responses of Bovine Mammary Epithelial Cells: Exploring Immunomodulatory Target Genes for Bovine Mastitis. Pathogens 2020; 9:pathogens9030200. [PMID: 32182886 PMCID: PMC7157600 DOI: 10.3390/pathogens9030200] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022] Open
Abstract
Bovine mastitis is the inflammatory reaction of the mammary gland and is commonly caused by bacterial infections in high-yielding dairy cows. The detailed investigation of the immunotranscriptomic response of bovine mammary epithelial (BME) cells to pattern recognition receptors (PRRs) activation by microbial-associated molecular patterns (MAMPs) can be of great importance for understanding the innate immune defense mechanisms, and for exploring the immunomodulatory candidate genes. In this work, we investigated the transcriptome modifications of BME cells after the in vitro stimulation with Escherichia coli derived lipopolysaccharide (LPS) and heat-killed Staphylococcus aureus JE2 and S. aureus SA003. In addition, the effect of Pam3CSK4 (a synthetic triacylated lipopeptide that activates Toll-like receptor 2 (TLR2)), and the intracellular chemotactic protein cyclophilin A (CyPA), which is secreted by BME cells during mastitis, in the expression changes of selected cytokines and chemokines were evaluated by qPCR. Microarray analysis identified 447, 465 and 520 differentially expressed genes (DEGs) in the BME cells after LPS, S. aureus JE2 and S. aureus SA003 stimulation, respectively. A major differential response in the inflammatory gene expression was noticed between the stimulation of LPS and S. aureus strains. Unlike the S. aureus strains, LPS stimulation resulted in significant upregulation of CCL2, CXCL2, CXCL3, CXCL8,IL1α and IL1β, which were confirmed by qPCR analysis. Pam3CSK4 was not able to induce significant changes in the expression of cytokines and chemokines in challenged BME cells. The exogenous CyPA administration was able to upregulate CXCL2, CXCL3, CXCL8, IL1α and IL1β expression in BME cells indicating its ability to promote inflammation. The identification of transcriptional markers of mastitis specific for individual inflammatory factors such as LPS, Pam3CSK4 or CyPA, which can be evaluated in vitro in BME cells, may enable the development of novel diagnostics and/or immunomodulatory treatments, providing new tools for the effective management of mastitis in dairy cows. The results of this work are an advance in this regard.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.A.I.); (M.T.); (K.F.); (R.K.); (L.A.); (W.I.-O.); (J.V.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Michihiro Takagi
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.A.I.); (M.T.); (K.F.); (R.K.); (L.A.); (W.I.-O.); (J.V.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.A.I.); (M.T.); (K.F.); (R.K.); (L.A.); (W.I.-O.); (J.V.)
| | - Ryoya Komatsu
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.A.I.); (M.T.); (K.F.); (R.K.); (L.A.); (W.I.-O.); (J.V.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.A.I.); (M.T.); (K.F.); (R.K.); (L.A.); (W.I.-O.); (J.V.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 980-0845, Argentina
- Scientific Computing Laboratory, Computer Science Department, Faculty of Exact Sciences and Technology, National University of Tucuman, Tucuman 980-0845, Argentina
| | - Tomonori Nochi
- Infection Immunity Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Graduate School of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.A.I.); (M.T.); (K.F.); (R.K.); (L.A.); (W.I.-O.); (J.V.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Victor Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (V.R.); (W.v.E.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private bag X20, Hatfield 0028, South Africa
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (V.R.); (W.v.E.)
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.A.I.); (M.T.); (K.F.); (R.K.); (L.A.); (W.I.-O.); (J.V.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 980-0845, Argentina
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.A.); (H.K.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.A.I.); (M.T.); (K.F.); (R.K.); (L.A.); (W.I.-O.); (J.V.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.A.); (H.K.)
| |
Collapse
|
50
|
Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S. A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front Pharmacol 2020; 11:153. [PMID: 32184728 PMCID: PMC7059186 DOI: 10.3389/fphar.2020.00153] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory diseases are caused by abnormal immune responses and are characterized by an imbalance of inflammatory mediators and cells. In recent years, the anti-inflammatory activity of natural products has attracted wide attention. Rosmarinic acid (RosA) is a water-soluble phenolic compound that is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is discovered in many plants, like those of the Boraginaceae and Lamiaceae families. RosA has a wide range of pharmacological effects, including anti-oxidative, anti-apoptotic, anti-tumorigenic, and anti-inflammatory effects. The anti-inflammatory effects of RosA have been revealed through in vitro and in vivo studies of various inflammatory diseases like arthritis, colitis, and atopic dermatitis. This article mainly describes the preclinical research of RosA on inflammatory diseases and depicts a small amount of clinical research data. The purpose of this review is to discuss the anti-inflammatory effects of RosA in inflammatory diseases and its underlying mechanism.
Collapse
Affiliation(s)
- Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lin Zou
- Department of Internal Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China.,Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China
| | - Shuangyong Sun
- Research Center of Pharmacodynamic, Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co., Ltd., Tianjin, China
| |
Collapse
|