1
|
Corleto KA, Schedin P, Kotta AS, Strandmo JL, Foster SM, Lammoglia N, Karmakar M, Carroll RJ, MacLean PS, Giles ED. Targeting the menopause transition with metformin improves breast cancer outcomes, but discontinuation has deleterious effects on metabolic health: Findings from a preclinical model of postmenopausal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625083. [PMID: 39651199 PMCID: PMC11623501 DOI: 10.1101/2024.11.25.625083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Women with obesity and/or type-II-diabetes have an increased breast cancer risk, increased metastasis, and poorer prognosis, especially after menopause. In a rat model of high-fat-diet and menopause-induced weight gain, we previously reported that treatment with the anti-diabetic drug metformin for 8-weeks after ovariectomy (OVX; modeling menopause) reduced growth of existing mammary tumors and inhibited new tumor formation. This identified the menopause transition as a potential window-of-opportunity for interventions to decrease obesity-associated breast cancer incidence and disease progression. Here, we extend these findings to determine if limiting metformin to the peak window of OVX-induced weight gain would have similar anti-cancer effects. Findings Metformin during the first four weeks following OVX is critical to reducing tumor burden, as rats treated with metformin early (weeks0-4-postOVX) had reduced tumor burden. Conversely, initiating metformin later in the postOVX period (weeks 4-8postOVX) did not reduce cancer burden. Despite improved tumor outcomes, metformin withdrawal after the early postOVX time had detrimental metabolic effects, including weight gain and increased adiposity, insulin, IGF1, and HOMA-IR, which correlate with increased cancer risk. Conclusions These data reveal early-postmenopause as a critical window when metformin decreases progression of existing disease and highlights the importance of maintaining treatment to prevent metabolic dysregulation, which could promote secondary tumors/metastasis. These findings also help explain the disconnect between epidemiological studies reporting anticancer benefits of metformin and more recent clinical trials that failed to see similar efficacy, potentially due to issues of timing and/or inclusion of women outside the early postmenopausal window and/or without underlying metabolic dysfunction.
Collapse
|
2
|
Libby AE, Solt CM, Jackman MR, Sherk VD, Foright RM, Johnson GC, Nguyen TT, Breit MJ, Hulett N, Rudolph MC, Roberson PA, Wellberg EA, Jambal P, Scalzo RL, Higgins J, Kumar TR, Wierman ME, Pan Z, Shankar K, Klemm DJ, Moreau KL, Kohrt WM, MacLean PS. Effects of follicle-stimulating hormone on energy balance and tissue metabolic health after loss of ovarian function. Am J Physiol Endocrinol Metab 2024; 326:E626-E639. [PMID: 38536037 PMCID: PMC11208003 DOI: 10.1152/ajpendo.00400.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.
Collapse
Affiliation(s)
- Andrew E Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Claudia M Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, United States
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Campus, Kansas City, Kansas, United States
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Thi-Tina Nguyen
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew J Breit
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nicholas Hulett
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Paul A Roberson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Elizabeth A Wellberg
- Stephenson Cancer Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janine Higgins
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Zhaoxing Pan
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kartik Shankar
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Dwight J Klemm
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
3
|
Kulkoyluoglu Cotul E, Safdar MH, Paez SJ, Kulkarni A, Ayers MG, Lin H, Xianyu Z, Teegarden D, Hursting SD, Wendt MK. FGFR1 Signaling Facilitates Obesity-Driven Pulmonary Outgrowth in Metastatic Breast Cancer. Mol Cancer Res 2024; 22:254-267. [PMID: 38153436 PMCID: PMC10923021 DOI: 10.1158/1541-7786.mcr-23-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Survival of dormant, disseminated breast cancer cells contributes to tumor relapse and metastasis. Women with a body mass index greater than 35 have an increased risk of developing metastatic recurrence. Herein, we investigated the effect of diet-induced obesity (DIO) on primary tumor growth and metastatic progression using both metastatic and systemically dormant mouse models of breast cancer. This approach led to increased PT growth and pulmonary metastasis. We developed a novel protocol to induce obesity in Balb/c mice by combining dietary and hormonal interventions with a thermoneutral housing strategy. In contrast to standard housing conditions, ovariectomized Balb/c mice fed a high-fat diet under thermoneutral conditions became obese over a period of 10 weeks, resulting in a 250% gain in fat mass. Obese mice injected with the D2.OR model developed macroscopic pulmonary nodules compared with the dormant phenotype of these cells in mice fed a control diet. Analysis of the serum from obese Balb/c mice revealed increased levels of FGF2 as compared with lean mice. We demonstrate that serum from obese animals, exogenous FGF stimulation, or constitutive stimulation through autocrine and paracrine FGF2 is sufficient to break dormancy and drive pulmonary outgrowth. Blockade of FGFR signaling or specific depletion of FGFR1 prevented obesity-associated outgrowth of the D2.OR model. IMPLICATIONS Overall, this study developed a novel DIO model that allowed for demonstration of FGF2:FGFR1 signaling as a key molecular mechanism connecting obesity to breakage of systemic tumor dormancy and metastatic progression.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu Cotul
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Muhammad Hassan Safdar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Sebastian Juan Paez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Aneesha Kulkarni
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Mitchell G. Ayers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Hang Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Zilin Xianyu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Dorothy Teegarden
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael K. Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Thomas NS, Scalzo RL, Wellberg EA. Diabetes mellitus in breast cancer survivors: metabolic effects of endocrine therapy. Nat Rev Endocrinol 2024; 20:16-26. [PMID: 37783846 PMCID: PMC11487546 DOI: 10.1038/s41574-023-00899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Breast cancer is the most common invasive malignancy in the world, with millions of survivors living today. Type 2 diabetes mellitus (T2DM) is also a globally prevalent disease that is a widely studied risk factor for breast cancer. Most breast tumours express the oestrogen receptor and are treated with systemic therapies designed to disrupt oestrogen-dependent signalling. Since the advent of targeted endocrine therapy six decades ago, the mortality from breast cancer has steadily declined; however, during the past decade, an elevated risk of T2DM after breast cancer treatment has been reported, particularly for those who received endocrine therapy. In this Review, we highlight key events in the history of endocrine therapies, beginning with the development of tamoxifen. We also summarize the sequence of reported adverse metabolic effects, which include dyslipidaemia, hepatic steatosis and impaired glucose tolerance. We discuss the limitations of determining a causal role for breast cancer treatments in T2DM development from epidemiological data and describe informative preclinical studies that suggest complex mechanisms through which endocrine therapy might drive T2DM risk and progression. We also reinforce the life-saving benefits of endocrine therapy and highlight the need for better predictive biomarkers of T2DM risk and preventive strategies for the growing population of breast cancer survivors.
Collapse
Affiliation(s)
- Nisha S Thomas
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA.
| |
Collapse
|
5
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Castillo-Castrejon M, Sankofi BM, Murguia SJ, Udeme AA, Cen HH, Xia YH, Thomas NS, Berry WL, Jones KL, Richard VR, Zahedi RP, Borchers CH, Johnson JD, Wellberg EA. FGF1 supports glycolytic metabolism through the estrogen receptor in endocrine-resistant and obesity-associated breast cancer. Breast Cancer Res 2023; 25:99. [PMID: 37608351 PMCID: PMC10463730 DOI: 10.1186/s13058-023-01699-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Obesity increases breast cancer risk and breast cancer-specific mortality, particularly for people with estrogen receptor (ER)-positive tumors. Body mass index (BMI) is used to define obesity, but it may not be the best predictor of breast cancer risk or prognosis on an individual level. Adult weight gain is an independent indicator of breast cancer risk. Our previous work described a murine model of obesity, ER-positive breast cancer, and weight gain and identified fibroblast growth factor receptor (FGFR) as a potential driver of tumor progression. During adipose tissue expansion, the FGF1 ligand is produced by hypertrophic adipocytes as a stimulus to stromal preadipocytes that proliferate and differentiate to provide additional lipid storage capacity. In breast adipose tissue, FGF1 production may stimulate cancer cell proliferation and tumor progression. METHODS We explored the effects of FGF1 on ER-positive endocrine-sensitive and resistant breast cancer and compared that to the effects of the canonical ER ligand, estradiol. We used untargeted proteomics, specific immunoblot assays, gene expression profiling, and functional metabolic assessments of breast cancer cells. The results were validated in tumors from obese mice and breast cancer datasets from women with obesity. RESULTS FGF1 stimulated ER phosphorylation independently of estradiol in cells that grow in obese female mice after estrogen deprivation treatment. Phospho- and total proteomic, genomic, and functional analyses of endocrine-sensitive and resistant breast cancer cells show that FGF1 promoted a cellular phenotype characterized by glycolytic metabolism. In endocrine-sensitive but not endocrine-resistant breast cancer cells, mitochondrial metabolism was also regulated by FGF1. Comparison of gene expression profiles indicated that tumors from women with obesity shared hallmarks with endocrine-resistant breast cancer cells. CONCLUSIONS Collectively, our data suggest that one mechanism by which obesity and weight gain promote breast cancer progression is through estrogen-independent ER activation and cancer cell metabolic reprogramming, partly driven by FGF/FGFR. The first-line treatment for many patients with ER-positive breast cancer is inhibition of estrogen synthesis using aromatase inhibitors. In women with obesity who are experiencing weight gain, locally produced FGF1 may activate ER to promote cancer cell metabolic reprogramming and tumor progression independently of estrogen.
Collapse
Affiliation(s)
- Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street BRC 309, Oklahoma City, OK, 73104, USA
| | - Barbara Mensah Sankofi
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street BRC 309, Oklahoma City, OK, 73104, USA
| | - Stevi Johnson Murguia
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street BRC 309, Oklahoma City, OK, 73104, USA
| | - Abasi-Ama Udeme
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street BRC 309, Oklahoma City, OK, 73104, USA
| | - Hoaning Howard Cen
- Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Yi Han Xia
- Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Nisha S Thomas
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street BRC 309, Oklahoma City, OK, 73104, USA
| | - William L Berry
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street BRC 309, Oklahoma City, OK, 73104, USA
| | - Kenneth L Jones
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street BRC 309, Oklahoma City, OK, 73104, USA
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital and McGill University, Montreal, QC, Canada
| | - Rene P Zahedi
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB, R3E 0V9, Canada
| | - Christoph H Borchers
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, R3E 3P4, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th Street BRC 309, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Giles ED, Purcell SA, Olson J, Vrieling A, Hirko KA, Woodruff K, Playdon MC, Thomas GA, Gilmore LA, Moberly HK, Newell-Fugate AE. Trends in Diet and Cancer Research: A Bibliometric and Visualization Analysis. Cancers (Basel) 2023; 15:3761. [PMID: 37568578 PMCID: PMC10417030 DOI: 10.3390/cancers15153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Diet plays a critical role for patients across the cancer continuum. The World Cancer Research Fund International and the American Cancer Society have published evidence supporting the role of nutrition in cancer prevention. We conducted an analysis of the literature on dietary nutrients and cancer to uncover opportunities for future research. The objective of the bibliometric analysis was to describe trends in peer-reviewed publications on dietary components and cancer and to highlight research gaps. PubMed was queried for manuscripts with diet- and cancer-related keywords and Medical Subject Headings (MeSH) terms. Metadata covering 99,784 publications from 6469 journals were analyzed to identify trends since 1970 on diet topics across 19 tumor types. Publications focused largely on breast, colorectal, and liver cancer, with fewer papers linking diet with other cancers such as brain, gallbladder, or ovarian. With respect to "unhealthy" diets, many publications focused on high-fat diets and alcohol consumption. The largest numbers of publications related to "healthy" diets examined the Mediterranean diet and the consumption of fruits and vegetables. These findings highlight the need for additional research focused on under-investigated cancers and dietary components, as well as dietary studies during cancer therapy and post-therapy, which may help to prolong survivorship.
Collapse
Affiliation(s)
- Erin D. Giles
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah A. Purcell
- Department of Medicine, Division of Endocrinology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jessica Olson
- Division of Community Health, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Alina Vrieling
- Department for Health Evidence, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Kelly A. Hirko
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48825, USA;
| | - Kary Woodruff
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Mary C. Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA;
| | - Gwendolyn A. Thomas
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - L. Anne Gilmore
- Department of Clinical Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Heather K. Moberly
- University Libraries, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Annie E. Newell-Fugate
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Kallamadi PR, Esari D, Addi UR, Kesavan R, Putcha UK, Nagini S, Reddy GB. Obesity Associated with Prediabetes Increases the Risk of Breast Cancer Development and Progression-A Study on an Obese Rat Model with Impaired Glucose Tolerance. Int J Mol Sci 2023; 24:11441. [PMID: 37511200 PMCID: PMC10380482 DOI: 10.3390/ijms241411441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with comorbidities of obesity and diabetes are recognized to be at high risk of breast cancer development and face worse breast cancer outcomes. Though several reports showed the reinforced link between obesity, diabetes, and prediabetes with breast cancer, the underlying molecular mechanisms are still unknown. The present study aimed to investigate the underlying molecular link between increased risks of breast cancer due to coincident diabetes or obesity using a spontaneous obese rat model with impaired glucose tolerance (WNIN/GR-Ob rat). A single dose of solubilized DMBA suspension (40 mg/kg body weight) was orally administered to the animals at the age of 60 days to induce breast tumors. The tumor incidence, latency period, tumor frequency, and tumor volume were measured. Histology, immunohistochemistry, and immunoblotting were performed to evaluate the tumor morphology and expression levels of signal molecules. The development of mammary tumors in GR-Ob rats was characterized by early onset and shorter latency periods compared to control lean rats. While 62% of obese rats developed breast tumors, tumor development in lean rats was only 21%. Overexpression of ER, PR, Ki67, and p53 markers was observed in tumor tissues of obese rats in comparison with lean rats. The levels of the hallmarks of cell proliferation and angiogenesis involved in IGF-1/PI3K/Akt/GSK3β/β-catenin signaling pathway molecules were upregulated in obese rat breast tumors compared to lean rats. Furthermore, obesity with prediabetes is associated with changes in IGF-1 signaling and acts on PI3K/Akt/GSK3β/β-catenin signaling, which results in rapid cell proliferation and development of breast tumors in obese rats than the lean rats. These results indicate that tumor onset and development were faster in spontaneous obese rat models with impaired glucose tolerance than in their lean counterparts.
Collapse
Affiliation(s)
| | - Deepshika Esari
- ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | | | - Rushendhiran Kesavan
- UT Southwestern Medical Center, Children Research Institute, Dallas, TX 75390, USA
| | | | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalinagar 608002, India
| | | |
Collapse
|
9
|
Geitgey DK, Lee M, Cottrill KA, Jaffe M, Pilcher W, Bhasin S, Randall J, Ross AJ, Salemi M, Castillo-Castrejon M, Kilgore MB, Brown AC, Boss JM, Johnston R, Fitzpatrick AM, Kemp ML, English R, Weaver E, Bagchi P, Walsh R, Scharer CD, Bhasin M, Chandler JD, Haynes KA, Wellberg EA, Henry CJ. The 'omics of obesity in B-cell acute lymphoblastic leukemia. J Natl Cancer Inst Monogr 2023; 2023:12-29. [PMID: 37139973 PMCID: PMC10157791 DOI: 10.1093/jncimonographs/lgad014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.
Collapse
Affiliation(s)
- Delaney K Geitgey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Miyoung Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - William Pilcher
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Swati Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica Randall
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Anthony J Ross
- Riley Children’s Health, Indiana University Health, Indianapolis, IN, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, Davis, 95616, CA
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew B Kilgore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayjha C Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Rich Johnston
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Melissa L Kemp
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Eric Weaver
- Shimadzu Scientific Instruments, Columbia, MD, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Walsh
- Shimadzu Scientific Instruments, Columbia, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
10
|
Peng Y, Huang X, Wang H. lncRNA ACTA2-AS1 predicts malignancy and poor prognosis of triple-negative breast cancer and regulates tumor progression via modulating miR-532-5p. BMC Mol Cell Biol 2022; 23:34. [PMID: 35896973 PMCID: PMC9327331 DOI: 10.1186/s12860-022-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Dysregulation of ACTA2-AS1 and miR-532-5p and their functions in various cancers have been widely reported. Their potential of serving as biomarkers in triple-negative breast cancer (TNBC) remains unknown. This study aimed to evaluate the function of ACTA2-AS1 and miR-532-5p and their potential of serving as biomarkers in TNBC. Results The TNBC tissues were collected from 119 patients, where the reduced level of ACTA2-AS1 and increased level of miR-532-5p were observed by PCR and showed a significantly negative correlation (P < 0.001). Both ACTA2-AS1 and miR-532-5p were closely associated with the malignant development and poor prognosis of TNBC patients. Moreover, in TNBC cell, overexpressing ACTA2-AS1 was found to suppress cell proliferation and metastasis, which was reversed by the upregulation of miR-532-5p. Conclusions ACTA2-AS1 and miR-532-5p could act as biomarkers of TNBC predicting the progression and prognosis of patients. ACTA2-AS1 served as a tumor suppressor of TNBC which was mediated by miR-532-5p. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00432-7.
Collapse
|
11
|
Bioinformatics Analysis Reveals the Related Role of miR-511-5p in the Progression of Breast Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7146338. [PMID: 35186236 PMCID: PMC8853816 DOI: 10.1155/2022/7146338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
Breast cancer remains a dangerous disease, and delving the molecular mechanism of breast cancer is still necessary. To illustrate the role of miR-511-5p, TCGA database was used to excavate the abundance of miR-511-5p, and the miR-511-5p level was measured in the pathological tissues and tumor cell lines. Moreover, the targets of miR-511-5p were identified with miRDIP and GEPIA and then were used for functional enrichment analysis. Besides, the targets of miR-511-5p were analyzed with the protein-protein interaction (PPI) network for the hub nodes, and then the expression levels of the hub nodes were visualized with the GEPIA database. The results showed that miR-511-5p was significantly downregulated in multiple types of tumor samples in the online database, and the downregulated miR-511-5p was also found in pathological tissues and tumor cell lines. Moreover, 48 genes were identified as the potential targets of miR-511-5p by miRDIP and GEPIA databases and enriched in cell cycle, PI3K/AKT, and P53 pathways. Besides, seven genes including BRCA1, FN1, CCNE1, CCND1, CHEK1, BUB3, and CDC25A were identified as the hub nodes by the PPI network, and CCNE1 and CHEK1 were confirmed to be related with the prognostic survival of the patients with breast cancer. In conclusion, the proofs in this study suggest that reduced miR-511-5p was a biomarker event for breast cancer, and CCNE1 and CHEK1 served as potential targets of miR-511-5p to involve the progression of breast cancer.
Collapse
|
12
|
Wellberg EA, Corleto KA, Checkley LA, Jindal S, Johnson G, Higgins JA, Obeid S, Anderson SM, Thor AD, Schedin PJ, MacLean PS, Giles ED. Preventing ovariectomy-induced weight gain decreases tumor burden in rodent models of obesity and postmenopausal breast cancer. Breast Cancer Res 2022; 24:42. [PMID: 35725493 PMCID: PMC9208221 DOI: 10.1186/s13058-022-01535-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/01/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Obesity and adult weight gain are linked to increased breast cancer risk and poorer clinical outcomes in postmenopausal women, particularly for hormone-dependent tumors. Menopause is a time when significant weight gain occurs in many women, and clinical and preclinical studies have identified menopause (or ovariectomy) as a period of vulnerability for breast cancer development and promotion. METHODS We hypothesized that preventing weight gain after ovariectomy (OVX) may be sufficient to prevent the formation of new tumors and decrease growth of existing mammary tumors. We tested this hypothesis in a rat model of obesity and carcinogen-induced postmenopausal mammary cancer and validated our findings in a murine xenograft model with implanted human tumors. RESULTS In both models, preventing weight gain after OVX significantly decreased obesity-associated tumor development and growth. Importantly, we did not induce weight loss in these animals, but simply prevented weight gain. In both lean and obese rats, preventing weight gain reduced visceral fat accumulation and associated insulin resistance. Similarly, the intervention decreased circulating tumor-promoting growth factors and inflammatory cytokines (i.e., BDNF, TNFα, FGF-2), with greater effects in obese compared to lean rats. In obese rats, preventing weight gain decreased adipocyte size, adipose tissue macrophage infiltration, reduced expression of the tumor-promoting growth factor FGF-1 in mammary adipose, and reduced phosphorylated FGFR indicating reduced FGF signaling in tumors. CONCLUSIONS Together, these findings suggest that the underlying mechanisms associated with the anti-tumor effects of weight maintenance are multi-factorial, and that weight maintenance during the peri-/postmenopausal period may be a viable strategy for reducing obesity-associated breast cancer risk and progression in women.
Collapse
Affiliation(s)
- Elizabeth A. Wellberg
- grid.266902.90000 0001 2179 3618Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Karen A. Corleto
- grid.264756.40000 0004 4687 2082Department of Nutrition, Texas A&M University, College Station, TX USA
| | - L. Allyson Checkley
- grid.430503.10000 0001 0703 675XDivisions of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Sonali Jindal
- grid.5288.70000 0000 9758 5690Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Ginger Johnson
- grid.430503.10000 0001 0703 675XDivisions of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.430503.10000 0001 0703 675XAnschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Janine A. Higgins
- grid.430503.10000 0001 0703 675XDepartment of Pediatrics, Endocrinology Section, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Sarina Obeid
- grid.264756.40000 0004 4687 2082Department of Nutrition, Texas A&M University, College Station, TX USA
| | - Steven M. Anderson
- grid.430503.10000 0001 0703 675XDepartment of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.499234.10000 0004 0433 9255University of Colorado Cancer Center, Aurora, CO USA
| | - Ann D. Thor
- grid.430503.10000 0001 0703 675XDepartment of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.499234.10000 0004 0433 9255University of Colorado Cancer Center, Aurora, CO USA
| | - Pepper J. Schedin
- grid.5288.70000 0000 9758 5690Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Paul S. MacLean
- grid.430503.10000 0001 0703 675XDivisions of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.430503.10000 0001 0703 675XAnschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.499234.10000 0004 0433 9255University of Colorado Cancer Center, Aurora, CO USA
| | - Erin D. Giles
- grid.214458.e0000000086837370School of Kinesiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
13
|
How Lineage Tracing Studies Can Unveil Tumor Heterogeneity in Breast Cancer. Biomedicines 2021; 10:biomedicines10010003. [PMID: 35052683 PMCID: PMC8772890 DOI: 10.3390/biomedicines10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Lineage tracing studies have become a well-suited approach to reveal cellular hierarchies and tumor heterogeneity. Cellular heterogeneity, particularly in breast cancer, is still one of the main concerns regarding tumor progression and resistance to anti-cancer therapies. Here, we review the current knowledge about lineage tracing analyses that have contributed to an improved comprehension of the complexity of mammary tumors, highlighting how targeting different mammary epithelial cells and tracing their progeny can be useful to explore the intra- and inter-heterogeneity observed in breast cancer. In addition, we examine the strategies used to identify the cell of origin in different breast cancer subtypes and summarize how cellular plasticity plays an important role during tumorigenesis. Finally, we evaluate the clinical implications of lineage tracing studies and the challenges remaining to address tumor heterogeneity in breast cancer.
Collapse
|
14
|
Scalzo RL, Foright RM, Hull SE, Knaub LA, Johnson-Murguia S, Kinanee F, Kaplan J, Houck JA, Johnson G, Sharp RR, Gillen AE, Jones KL, Zhang AMY, Johnson JD, MacLean PS, Reusch JEB, Wright-Hobart S, Wellberg EA. Breast Cancer Endocrine Therapy Promotes Weight Gain With Distinct Adipose Tissue Effects in Lean and Obese Female Mice. Endocrinology 2021; 162:bqab174. [PMID: 34410380 PMCID: PMC8455348 DOI: 10.1210/endocr/bqab174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer survivors treated with tamoxifen and aromatase inhibitors report weight gain and have an elevated risk of type 2 diabetes, especially if they have obesity. These patient experiences are inconsistent with, preclinical studies using high doses of tamoxifen which reported acute weight loss. We investigated the impact of breast cancer endocrine therapies in a preclinical model of obesity and in a small group of breast adipose tissue samples from women taking tamoxifen to understand the clinical findings. Mature female mice were housed at thermoneutrality and fed either a low-fat/low-sucrose (LFLS) or a high-fat/high-sucrose (HFHS) diet. Consistent with the high expression of Esr1 observed in mesenchymal stem cells from adipose tissue, endocrine therapy was associated with adipose accumulation and more preadipocytes compared with estrogen-treated control mice but resulted in fewer adipocyte progenitors only in the context of HFHS. Analysis of subcutaneous adipose stromal cells revealed diet- and treatment-dependent effects of endocrine therapies on various cell types and genes, illustrating the complexity of adipose tissue estrogen receptor signaling. Breast cancer therapies supported adipocyte hypertrophy and associated with hepatic steatosis, hyperinsulinemia, and glucose intolerance, particularly in obese females. Current tamoxifen use associated with larger breast adipocyte diameter only in women with obesity. Our translational studies suggest that endocrine therapies may disrupt adipocyte progenitors and support adipocyte hypertrophy, potentially leading to ectopic lipid deposition that may be linked to a greater type 2 diabetes risk. Monitoring glucose tolerance and potential interventions that target insulin action should be considered for some women receiving life-saving endocrine therapies for breast cancer.
Collapse
Affiliation(s)
- Rebecca L Scalzo
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sara E Hull
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leslie A Knaub
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stevi Johnson-Murguia
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Fotobari Kinanee
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jeffrey Kaplan
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Houck
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ginger Johnson
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel R Sharp
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Austin E Gillen
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| | - Anni M Y Zhang
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul S MacLean
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jane E B Reusch
- Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Sabrina Wright-Hobart
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth A Wellberg
- Center for Women’s Health Research; University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Research Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Glenny EM, Coleman MF, Giles ED, Wellberg EA, Hursting SD. Designing Relevant Preclinical Rodent Models for Studying Links Between Nutrition, Obesity, Metabolism, and Cancer. Annu Rev Nutr 2021; 41:253-282. [PMID: 34357792 PMCID: PMC8900211 DOI: 10.1146/annurev-nutr-120420-032437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to (a) provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; (b) identify common pitfalls when selecting a rodent model; and (c) discuss strengths and limitations of available preclinical models.
Collapse
Affiliation(s)
- Elaine M Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
16
|
Sena IFG, Rocha BGS, Picoli CC, Santos GSP, Costa AC, Gonçalves BOP, Garcia APV, Soltani-Asl M, Coimbra-Campos LMC, Silva WN, Costa PAC, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Heller D, Cassali GD, Mintz A, Birbrair A. C(3)1-TAg in C57BL/6 J background as a model to study mammary tumor development. Histochem Cell Biol 2021; 156:165-182. [PMID: 34003355 DOI: 10.1007/s00418-021-01995-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
Diagnosis and prognosis of breast cancer is based on disease staging identified through histopathological and molecular biology techniques. Animal models are used to gain mechanistic insights into the development of breast cancer. C(3)1-TAg is a genetically engineered mouse model that develops mammary cancer. However, carcinogenesis caused by this transgene was characterized in the Friend Virus B (FVB) background. As most genetic studies are done in mice with C57BL/6 J background, we aimed to define the histological alterations in C3(1)-TAg C57BL/6 J animals. Our results showed that C3(1)-TAg animals with C57BL/6 J background develop solid-basaloid adenoid cystic carcinomas with increased fibrosis, decreased area of adipocytes, and a high proliferative index, which are triple-negative for progesterone, estrogen, and human epidermal growth factor receptor 2 (HER2) receptors. Our results also revealed that tumor development is slower in the C57BL/6 J background when compared with the FVB strain, providing a better model to study the different stages in breast cancer progression.
Collapse
Affiliation(s)
- Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula V Garcia
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maryam Soltani-Asl
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora Heller
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Cruzeiro Do Sul University, São Paulo, Brazil
| | - Geovanni D Cassali
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
17
|
Cellular and Molecular Players in the Interplay between Adipose Tissue and Breast Cancer. Int J Mol Sci 2021; 22:ijms22031359. [PMID: 33572982 PMCID: PMC7866411 DOI: 10.3390/ijms22031359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and severity of obesity are rising in most of the world. In addition to metabolic disorders, obesity is associated with an increase in the incidence and severity of a variety of types of cancer, including breast cancer (BC). The bidirectional interaction between BC and adipose cells has been deeply investigated, although the molecular and cellular players involved in these mechanisms are far from being fully elucidated. Here, we review the current knowledge on these interactions and describe how preclinical research might be used to clarify the effects of obesity over BC progression and morbidity, with particular attention paid to promising therapeutic interventions.
Collapse
|
18
|
Monkkonen T, Traustadóttir GÁ, Koledova Z. Unraveling the Breast: Advances in Mammary Biology and Cancer Methods. J Mammary Gland Biol Neoplasia 2020; 25:233-236. [PMID: 33479879 PMCID: PMC7819143 DOI: 10.1007/s10911-020-09476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 11/06/2022] Open
Abstract
The field of mammary gland biology and breast cancer research encompasses a wide range of topics and scientific questions, which span domains of molecular, cell and developmental biology, cancer research, and veterinary and human medicine, with interdisciplinary overlaps to non-biological domains. Accordingly, mammary gland and breast cancer researchers employ a wide range of molecular biology methods, in vitro techniques, in vivo approaches as well as in silico analyses. The list of techniques is ever-expanding; together with the refinement of established, staple techniques in the field, new technologies keep emerging thanks to technological advances and scientific creativity. This issue of the Journal of Mammary Gland Biology and Neoplasia represents a compilation of original articles and reviews focused on methods used in mammary gland biology and breast cancer research.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Department of Pathology, University of California, San Francisco, USA
| | - Gunnhildur Ásta Traustadóttir
- Stem Cell Research Unit, Department of Anatomy, Faculty of Medicine, School of Health Sciences, Biomedical Center, University of Iceland, Reykjavík, Iceland
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|