1
|
Tyubaeva PM, Varyan IA, Nikolskaya ED, Mollaeva MR, Yabbarov NG, Sokol MB, Chirkina MV, Popov AA. Biocompatibility and Antimicrobial Activity of Electrospun Fibrous Materials Based on PHB and Modified with Hemin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020236. [PMID: 36677989 PMCID: PMC9861043 DOI: 10.3390/nano13020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 05/31/2023]
Abstract
The effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Ivetta A. Varyan
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Elena D. Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Mariia R. Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Nikita G. Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Maria B. Sokol
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Margarita V. Chirkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anatoly A. Popov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| |
Collapse
|
2
|
Elyaderani AK, De Lama-Odría MDC, del Valle LJ, Puiggalí J. Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232315016. [PMID: 36499342 PMCID: PMC9738225 DOI: 10.3390/ijms232315016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| |
Collapse
|
3
|
Miao Y, Fang C, Shi D, Li Y, Wang Z. Coupling effects of boron nitride and heat treatment on crystallization, mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Naser AZ, Deiab I, Defersha F, Yang S. Expanding Poly(lactic acid) (PLA) and Polyhydroxyalkanoates (PHAs) Applications: A Review on Modifications and Effects. Polymers (Basel) 2021; 13:4271. [PMID: 34883773 PMCID: PMC8659978 DOI: 10.3390/polym13234271] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The high price of petroleum, overconsumption of plastic products, recent climate change regulations, the lack of landfill spaces in addition to the ever-growing population are considered the driving forces for introducing sustainable biodegradable solutions for greener environment. Due to the harmful impact of petroleum waste plastics on human health, environment and ecosystems, societies have been moving towards the adoption of biodegradable natural based polymers whose conversion and consumption are environmentally friendly. Therefore, biodegradable biobased polymers such as poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) have gained a significant amount of attention in recent years. Nonetheless, some of the vital limitations to the broader use of these biopolymers are that they are less flexible and have less impact resistance when compared to petroleum-based plastics (e.g., polypropylene (PP), high-density polyethylene (HDPE) and polystyrene (PS)). Recent advances have shown that with appropriate modification methods-plasticizers and fillers, polymer blends and nanocomposites, such limitations of both polymers can be overcome. This work is meant to widen the applicability of both polymers by reviewing the available materials on these methods and their impacts with a focus on the mechanical properties. This literature investigation leads to the conclusion that both PLA and PHAs show strong candidacy in expanding their utilizations to potentially substitute petroleum-based plastics in various applications, including but not limited to, food, active packaging, surgical implants, dental, drug delivery, biomedical as well as antistatic and flame retardants applications.
Collapse
Affiliation(s)
| | | | | | - Sheng Yang
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.Z.N.); (I.D.); (F.D.)
| |
Collapse
|
5
|
Naser AZ, Deiab I, Darras BM. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 2021; 11:17151-17196. [PMID: 35479695 PMCID: PMC9033233 DOI: 10.1039/d1ra02390j] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022] Open
Abstract
In spite of the fact that petroleum-based plastics are convenient in terms of fulfilling the performance requirements of many applications, they contribute significantly to a number of ecological and environmental problems. Recently, the public awareness of the negative effects of petroleum-based plastics on the environment has increased. The present utilization of natural resources cannot be sustained forever. Furthermore, oil is often subjected to price fluctuations and will eventually be depleted. The increase in the level of carbon dioxide due to the combustion of fossil fuel is causing global warming. Concerns about preservation of natural resources and climate change are considered worldwide motivations for academic and industrial researchers to reduce the consumption and dependence on fossil fuel. Therefore, bio-based polymers are moving towards becoming the favorable option to be utilized in polymer manufacturing, food packaging, and medical applications. This paper represents an overview of the feasibility of both Poly Lactic Acid (PLA) and polyhydroxyalkanoates (PHAs) as alternative materials that can replace petroleum-based polymers in a wide range of industrial applications. Physical, thermal, rheological, and mechanical properties of both polymers as well as their permeability and migration properties have been reviewed. Moreover, PLA's recyclability, sustainability, and environmental assessment have been also discussed. Finally, applications in which both polymers can replace petroleum-based plastics have been explored and provided.
Collapse
Affiliation(s)
- Ahmed Z Naser
- Advanced Manufacturing Laboratory, University of Guelph Guelph ON Canada
| | - I Deiab
- Advanced Manufacturing Laboratory, University of Guelph Guelph ON Canada
| | - Basil M Darras
- Department of Mechanical Engineering, American University of Sharjah Sharjah UAE
| |
Collapse
|
6
|
Mourão MM, Xavier LP, Urbatzka R, Figueiroa LB, da Costa CEF, Dias CGBT, Schneider MPC, Vasconcelos V, Santos AV. Characterization and Biotechnological Potential of Intracellular Polyhydroxybutyrate by Stigeoclonium sp. B23 Using Cassava Peel as Carbon Source. Polymers (Basel) 2021; 13:polym13050687. [PMID: 33668862 PMCID: PMC7956423 DOI: 10.3390/polym13050687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
The possibility of utilizing lignocellulosic agro-industrial waste products such as cassava peel hydrolysate (CPH) as carbon sources for polyhydroxybutyrate (PHB) biosynthesis and characterization by Amazonian microalga Stigeoclonium sp. B23. was investigated. Cassava peel was hydrolyzed to reducing sugars to obtain increased glucose content with 2.56 ± 0.07 mmol/L. Prior to obtaining PHB, Stigeoclonium sp. B23 was grown in BG-11 for characterization and Z8 media for evaluation of PHB nanoparticles' cytotoxicity in zebrafish embryos. As results, microalga produced the highest amount of dry weight of PHB with 12.16 ± 1.28 (%) in modified Z8 medium, and PHB nanoparticles exerted some toxicity on zebrafish embryos at concentrations of 6.25-100 µg/mL, increased mortality (<35%) and lethality indicators as lack of somite formation (<25%), non-detachment of tail, and lack of heartbeat (both <15%). Characterization of PHB by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC), and thermogravimetry (TGA) analysis revealed the polymer obtained from CPH cultivation to be morphologically, thermally, physically, and biologically acceptable and promising for its use as a biomaterial and confirmed the structure of the polymer as PHB. The findings revealed that microalgal PHB from Stigeoclonium sp. B23 was a promising and biologically feasible new option with high commercial value, potential for biomaterial applications, and also suggested the use of cassava peel as an alternative renewable resource of carbon for PHB biosynthesis and the non-use of agro-industrial waste and dumping concerns.
Collapse
Affiliation(s)
- Murilo Moraes Mourão
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
- Correspondence: (M.M.M.); (A.V.S.)
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR, University of Porto, 4450-208 Porto, Portugal; (R.U.); (V.V.)
| | - Lucas Barbosa Figueiroa
- Laboratory of Oils of the Amazon, Guamá Science and Technology Park, Federal University of Pará, 66075-750 Belém, Pará, Brazil; (L.B.F.); (C.E.F.d.C.)
| | - Carlos Emmerson Ferreira da Costa
- Laboratory of Oils of the Amazon, Guamá Science and Technology Park, Federal University of Pará, 66075-750 Belém, Pará, Brazil; (L.B.F.); (C.E.F.d.C.)
| | | | | | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR, University of Porto, 4450-208 Porto, Portugal; (R.U.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
- Correspondence: (M.M.M.); (A.V.S.)
| |
Collapse
|
7
|
Poly(3-hydroxybutyrate): Promising biomaterial for bone tissue engineering. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:1-15. [PMID: 31677369 DOI: 10.2478/acph-2020-0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 01/19/2023]
Abstract
Poly(3-hydroxybutyrate) is a natural polymer, produced by different bacteria, with good biocompatibility and biodegradability. Cardiovascular patches, scaffolds in tissue engineering and drug carriers are some of the possible biomedical applications of poly(3-hydroxybutyrate). In the past decade, many researchers examined the different physico-chemical modifications of poly(3-hydroxybutyrate) in order to improve its properties for use in the field of bone tissue engineering. Poly(3-hydroxybutyrate) composites with hydroxyapatite and bioglass are intensively tested with animal and human osteoblasts in vitro to provide information about their biocompatibility, biodegradability and osteoinductivity. Good bone regeneration was proven when poly(3-hydroxy-butyrate) patches were implanted in vivo in bone tissue of cats, minipigs and rats. This review summarizes the recent reports of in vitro and in vivo studies of pure poly(3-hydroxy-butyrate) and poly(3-hydroxybutyrate) composites with the emphasis on their bioactivity and biocompatibility with bone cells.
Collapse
|
8
|
Perspectives of Polyhydroxyalkanoate (PHAs) Biopolymer Production Using Indigenous Bacteria: Screening and Characterization. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Öner M, Kızıl G, Keskin G, Pochat-Bohatier C, Bechelany M. The Effect of Boron Nitride on the Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E940. [PMID: 30445720 PMCID: PMC6265921 DOI: 10.3390/nano8110940] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022]
Abstract
The thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) composites filled with boron nitride (BN) particles with two different sizes and shapes were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), thermal gravimetric analysis (TGA) and mechanical testing. The biocomposites were produced by melt extrusion of PHBV with untreated BN and surface-treated BN particles. Thermogravimetric analysis (TGA) showed that the thermal stability of the composites was higher than that of neat PHBV while the effect of the different shapes and sizes of the particles on the thermal stability was insignificant. DSC analysis showed that the crystallinity of the PHBV was not affected significantly by the change in filler concentration and the type of the BN nanoparticle but decreasing of the crystallinity of PHBV/BN composites was observed at higher loadings. BN particles treated with silane coupling agent yielded nanocomposites characterized by good mechanical performance. The results demonstrate that mechanical properties of the composites were found to increase more for the silanized flake type BN (OSFBN) compared to silanized hexagonal disk type BN (OSBN). The highest Young's modulus was obtained for the nanocomposite sample containing 1 wt.% OSFBN, for which increase of Young's modulus up to 19% was observed in comparison to the neat PHBV. The Halpin⁻Tsai and Hui⁻Shia models were used to evaluate the effect of reinforcement by BN particles on the elastic modulus of the composites. Micromechanical models for initial composite stiffness showed good correlation with experimental values.
Collapse
Affiliation(s)
- Mualla Öner
- Chemical Engineering Department, Chemical-Metallurgical Faculty, Yildiz Technical University, Istanbul 34210, Turkey.
| | - Gülnur Kızıl
- Chemical Engineering Department, Chemical-Metallurgical Faculty, Yildiz Technical University, Istanbul 34210, Turkey.
| | - Gülşah Keskin
- Chemical Engineering Department, Chemical-Metallurgical Faculty, Yildiz Technical University, Istanbul 34210, Turkey.
| | - Celine Pochat-Bohatier
- Institut Européen des Membranes, IEM UMR-5635, ENCSM, CNRS, Université de Montpellier, ENSCM, CNRS, Place Eugéne Bataillon, 34000 Montpellier, France.
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR-5635, ENCSM, CNRS, Université de Montpellier, ENSCM, CNRS, Place Eugéne Bataillon, 34000 Montpellier, France.
| |
Collapse
|
10
|
El-Taweel SH, Al-Ahmadi AO, Alhaddad O, Okasha RM. Cationic Cyclopentadienyliron Complex as a Novel and Successful Nucleating Agent on the Crystallization Behavior of the Biodegradable PHB Polymer. Molecules 2018; 23:molecules23102703. [PMID: 30347768 PMCID: PMC6222505 DOI: 10.3390/molecules23102703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/03/2022] Open
Abstract
Cationic cyclopentadienyliron (CpFe+) is one of the most fruitful organometallic moieties that has been utilized to mediate the facile synthesis of a massive number of macromolecules. However, the ability of this compound to function as a nucleating agent to improve other macromolecule properties has not been explored. This report scrutinizes the influence of the cationic complex as a novel nucleating agent on the spherulitic morphology, crystal structure, and isothermal and non-isothermal crystallization behavior of the Poly(3-hydroxybutyrate) (PHB) bacterial origin. The incorporation of the CpFe+ into the PHB materials caused a significant increase in its spherulitic numbers with a remarkable reduction in the spherulitic sizes. Unlike other nucleating agents, the SEM imageries exhibited a good dispersion without forming agglomerates of the CpFe+ moieties in the PHB matrix. Moreover, according to the FTIR analysis, the cationic organoiron complex has a strong interaction with the PHB polymeric chains via the coordination with its ester carbonyl. Yet, the XRD results revealed that this incorporation had no significant effect on the PHB crystalline structure. Though the CpFe+ had no effect on the polymer’s crystal structure, it accelerated outstandingly the melt crystallization of the PHB. Meanwhile, the crystallization half-times (t0.5) of the PHB decreased dramatically with the addition of the CpFe+. The isothermal and non-isothermal crystallization processes were successfully described using the Avrami model and a modified Avrami model, as well as a combination of the Avrami and Ozawa methods. Finally, the effective activation energy of the PHB/CpFe+ nanocomposites was much lower than those of their pure counterparts, which supported the heterogeneous nucleation mechanism with the organometallic moieties, indicating that the CpFe+ is a superior nucleating agent for this class of polymer.
Collapse
Affiliation(s)
- Safaa H El-Taweel
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
- Chemistry Department, Faculty of Science, Cairo University, Orman-Giza, P.O. 12613, Egypt.
| | - Arwa O Al-Ahmadi
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Omaima Alhaddad
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Rawda M Okasha
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| |
Collapse
|
11
|
Rivera-Briso AL, Serrano-Aroca Á. Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers (Basel) 2018; 10:E732. [PMID: 30960657 PMCID: PMC6403723 DOI: 10.3390/polym10070732] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/21/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, is a microbial biopolymer with excellent biocompatible and biodegradable properties that make it a potential candidate for substituting petroleum-derived polymers. However, it lacks mechanical strength, water sorption and diffusion, electrical and/or thermal properties, antimicrobial activity, wettability, biological properties, and porosity, among others, limiting its application. For this reason, many researchers around the world are currently working on how to overcome the drawbacks of this promising material. This review summarises the main advances achieved in this field so far, addressing most of the chemical and physical strategies to modify PHBV and placing particular emphasis on the combination of PHBV with other materials from a variety of different structures and properties, such as other polymers, natural fibres, carbon nanomaterials, nanocellulose, nanoclays, and nanometals, producing a wide range of composite biomaterials with increased potential applications. Finally, the most important methods to fabricate porous PHBV scaffolds for tissue engineering applications are presented. Even though great advances have been achieved so far, much research needs to be conducted still, in order to find new alternative enhancement strategies able to produce advanced PHBV-based materials able to overcome many of these challenges.
Collapse
Affiliation(s)
- Ariagna L Rivera-Briso
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 65, 46008 Valencia, Spain.
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain.
| |
Collapse
|
12
|
Ray P, Hughes T, Smith C, Simon GP, Saito K. Synthesis of Bioacrylic Polymers from Dihydro-5-hydroxyl furan-2-one (2H-HBO) by Free and Controlled Radical Polymerization. ACS OMEGA 2018; 3:2040-2048. [PMID: 31458513 PMCID: PMC6641244 DOI: 10.1021/acsomega.7b01929] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/30/2018] [Indexed: 06/09/2023]
Abstract
In this work, dihydro-5-hydroxyl furan-2-one (2H-HBO), a renewable-sourced chemical containing the hydroxyl functionality, is converted into its acrylic counterpart for the first time through a green chemical procedure using methacrylic anhydride. This newly synthesized acrylic monomer is able to be polymerized using different techniques such as bulk, solution, and emulsion polymerization. The ability of this monomer to copolymerize with other commercially available acrylates is studied using emulsion polymerization techniques. The pendent lactone ring remains unopened during polymerization and the new monomer is able to copolymerize with other acrylates such as methyl methacrylate and styrene. Reversible addition-fragmentation chain transfer reaction emulsion polymerization is also studied with the same monomer, leading to a steady conversion (∼60%) with a low polydispersity of 1.06. The homopolymer produced from such an emulsion polymerization shows a higher molecular weight than that produced from other methods, with a glass transition temperature of around 105 °C. This demonstrates the potential of this monomer as an interesting, green replacement for methyl methacrylate in certain fields of application.
Collapse
Affiliation(s)
- Parijat Ray
- Department
of Materials Science and Engineering and New Horizons
Research Centre and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy Hughes
- Department
of Materials Science and Engineering and New Horizons
Research Centre and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Craig Smith
- PPG
Industries Australia Pty Ltd, McNaughton Road, Clayton, Victoria 3168, Australia
| | - George P. Simon
- Department
of Materials Science and Engineering and New Horizons
Research Centre and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Kei Saito
- Department
of Materials Science and Engineering and New Horizons
Research Centre and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 205:215-230. [PMID: 28987985 DOI: 10.1016/j.jenvman.2017.09.083] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 05/26/2023]
Abstract
The search for new materials that replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). The present paper reviews the challenges of scaling-up PHA production from waste streams during the period from 2014 to 2016, focusing on the feasibility of the alternatives and the most promising alternatives to its scaling-up. The reviewed research studies mainly focus on reducing costs or obtaining more valuable polymers. In the future, the integration of PHA production into processes such as wastewater treatment plants, hydrogen production or biodiesel factories could enhance its implementation at industrial scale.
Collapse
Affiliation(s)
- Santiago Rodriguez-Perez
- Molecular Biology and Biochemical Engineering Department, Universidad Pablo de Olavide, Ed. 22 Ctra. deUtrera, km. 1, Seville, Spain
| | - Antonio Serrano
- Instituto de Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Ed. 46, Ctra. deUtrera, km. 1, Seville, Spain
| | - Alba A Pantión
- The University of Seville, Higher Technical School of Engineering, Department of Chemical and Environmental Engineering, Camino de losDescubrimientos, s/n, Seville, Spain
| | - Bernabé Alonso-Fariñas
- The University of Seville, Higher Technical School of Engineering, Department of Chemical and Environmental Engineering, Camino de losDescubrimientos, s/n, Seville, Spain.
| |
Collapse
|
14
|
Heidarzadeh N, Rafizadeh M, Taromi FA, Puiggalí J, Del Valle LJ, Franco L. Preparation of random poly(butylene alkylate-co-terephthalate)s with different methylene group contents: crystallization and degradation kinetics. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1318-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kwiecień I, Radecka I, Kowalczuk M, Jelonek K, Orchel A, Adamus G. The Synthesis and Structural Characterization of Graft Copolymers Composed of γ-PGA Backbone and Oligoesters Pendant Chains. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2223-2234. [PMID: 28695530 PMCID: PMC5594058 DOI: 10.1007/s13361-017-1731-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
The novel copolymers composed of poly-γ-glutamic acid (γ-PGA) and oligoesters have been developed. The structures of the obtained copolymers including variety of end groups were determined at the molecular level with the aid of electrospray ionization multistage mass spectrometry (ESI-MSn). The fragmentation experiment performed for the selected sodium adducts of the copolymers confirmed that the developed methods lead to the formation of graft copolymers composed of poly-γ-glutamic acid (γ-PGA) backbone and oligoesters pendant chains. Moreover, it was established that fragmentation of selected sodium adducts of graft copolymers proceeded via random breakage of amide bonds along the backbone and ester bonds of the oligoesters pendant chains. Considering potential applications of the synthesized copolymers in the area of biomaterials, the hydrolytic degradation under laboratory conditions and in vitro cytotoxicity tests were performed. The ESI-MSn technique applied in this study has been proven to be a useful tool in structural studies of novel graft copolymers as well as their degradation products. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34 Street, 41-819, Zabrze, Poland.
| | - Iza Radecka
- School of Biology, Chemistry, and Forensic Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34 Street, 41-819, Zabrze, Poland
- School of Biology, Chemistry, and Forensic Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, UK
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34 Street, 41-819, Zabrze, Poland
| | - Arkadiusz Orchel
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Chair and Department of Biopharmacy, 8 Jednosci Street, Sosnowiec, 41-208, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34 Street, 41-819, Zabrze, Poland
| |
Collapse
|