1
|
Bekker GJ, Nagao C, Shirota M, Nakamura T, Katayama T, Kihara D, Kinoshita K, Kurisu G. Protein Data Bank Japan: Improved tools for sequence-oriented analysis of protein structures. Protein Sci 2025; 34:e70052. [PMID: 39969112 DOI: 10.1002/pro.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
Protein Data Bank Japan (PDBj) is the Asian hub of three-dimensional macromolecular structure data, and a founding member of the worldwide Protein Data Bank. We have accepted, processed, and distributed experimentally determined biological macromolecular structures for over two decades. Although we collaborate with RCSB PDB and BMRB in the United States, PDBe and EMDB in Europe and recently PDBc in China for our data-in activities, we have developed our own unique services and tools for searching, exploring, visualizing and analyzing protein structures. We have recently introduced a new UniProt-integrated portal to provide users with a quick overview of their target protein and shows a recommended structure with integrated data from various internal and external resources. The portal page helps users identify known genomic variations of their protein of interest and provide insights into how these modifications might impact the structure, stability and dynamics of the protein. Furthermore, the portal page also helps users to select the optimal structure to use for further analysis. We have also introduced another service to explore proteins using experimental and computational approaches, which enables experimental structural biologists to increase their insight to help them to more efficiently design their experimental studies. With these new additions, we have enhanced our service portfolio to benefit both experimental and computational structural biologists in their search to interpret protein structures, their dynamics and function.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Chioko Nagao
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Matsuyuki Shirota
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Tsukasa Nakamura
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Toshiaki Katayama
- Institute for Protein Research, Osaka University, Suita, Japan
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Kashiwa, Japan
| | - Daisuke Kihara
- Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization, Tsukuba, Japan
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Japan
- Protein Research Foundation, Minoh, Japan
| |
Collapse
|
2
|
Dapkūnas J, Timinskas A, Olechnovič K, Tomkuvienė M, Venclovas Č. PPI3D: a web server for searching, analyzing and modeling protein-protein, protein-peptide and protein-nucleic acid interactions. Nucleic Acids Res 2024; 52:W264-W271. [PMID: 38619046 PMCID: PMC11223826 DOI: 10.1093/nar/gkae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Structure-resolved protein interactions with other proteins, peptides and nucleic acids are key for understanding molecular mechanisms. The PPI3D web server enables researchers to query preprocessed and clustered structural data, analyze the results and make homology-based inferences for protein interactions. PPI3D offers three interaction exploration modes: (i) all interactions for proteins homologous to the query, (ii) interactions between two proteins or their homologs and (iii) interactions within a specific PDB entry. The server allows interactive analysis of the identified interactions in both summarized and detailed manner. This includes protein annotations, structures, the interface residues and the corresponding contact surface areas. In addition, users can make inferences about residues at the interaction interface for the query protein(s) from the sequence alignments and homology models. The weekly updated PPI3D database includes all the interaction interfaces and binding sites from PDB, clustered based on both protein sequence and structural similarity, yielding non-redundant datasets without loss of alternative interaction modes. Consequently, the PPI3D users avoid being flooded with redundant information, a typical situation for intensely studied proteins. Furthermore, PPI3D provides a possibility to download user-defined sets of interaction interfaces and analyze them locally. The PPI3D web server is available at https://bioinformatics.lt/ppi3d.
Collapse
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
3
|
Palvair J, Farhat I, Chaintreuil M, Dal Zuffo L, Messager L, Tinel C, Lamarthée B. The Potential Role of the Leucocyte Immunoglobulin-Like Receptors in Kidney Transplant Rejection: A Mini Review. Transpl Int 2024; 37:12995. [PMID: 39010891 PMCID: PMC11247310 DOI: 10.3389/ti.2024.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Antibody-mediated rejection (ABMR) remains one of the main causes of long-term graft failure after kidney transplantation, despite the development of powerful immunosuppressive therapy. A detailed understanding of the complex interaction between recipient-derived immune cells and the allograft is therefore essential. Until recently, ABMR mechanisms were thought to be solely caused by adaptive immunity, namely, by anti-human leucocyte antigen (HLA) donor-specific antibody. However recent reports support other and/or additive mechanisms, designating monocytes/macrophages as innate immune contributors of ABMR histological lesions. In particular, in mouse models of experimental allograft rejection, monocytes/macrophages are readily able to discriminate non-self via paired immunoglobulin receptors (PIRs) and thus accelerate rejection. The human orthologs of PIRs are leukocyte immunoglobulin-like receptors (LILRs). Among those, LILRB3 has recently been reported as a potential binder of HLA class I molecules, shedding new light on LILRB3 potential as a myeloid mediator of allograft rejection. In this issue, we review the current data on the role of LILRB3 and discuss the potential mechanisms of its biological functions.
Collapse
Affiliation(s)
- Jovanne Palvair
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Imane Farhat
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | - Mélanie Chaintreuil
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | | | - Lennie Messager
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Claire Tinel
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | | |
Collapse
|
4
|
Hashida R, Kawabata T. Structural Perspective of NR4A Nuclear Receptor Family and Their Potential Endogenous Ligands. Biol Pharm Bull 2024; 47:580-590. [PMID: 38432913 DOI: 10.1248/bpb.b23-00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
There are 48 nuclear receptors in the human genome, and many members of this superfamily have been implicated in human diseases. The NR4A nuclear receptor family consisting of three members, NR4A1, NR4A2, and NR4A3 (formerly annotated as Nur77, Nurr1, and NOR1, respectively), are still orphan receptors but exert pathological effects on immune-related and neurological diseases. We previously reported that prostaglandin A1 (PGA1) and prostaglandin A2 (PGA2) are potent activators of NR4A3, which bind directly to the ligand-binding domain (LBD) of the receptor. Recently, the co-crystallographic structures of NR4A2-LBD bound to PGA1 and PGA2 were reported, followed by reports of the neuroprotective effects of these possible endogenous ligands in mouse models of Parkinson's disease. Based on these structures, we modeled the binding structures of the other two members (NR4A1 and NR4A3) with these potential endogenous ligands using a template-based modeling method, and reviewed the similarity and diversity of ligand-binding mechanisms in the nuclear receptor family.
Collapse
Affiliation(s)
- Ryoichi Hashida
- Genox Research Inc
- Department of Microbiology, Matsumoto Dental University
| | - Takeshi Kawabata
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University
| |
Collapse
|
5
|
Bhattacharya N, Kolvekar N, Mondal S, Sarkar A, Chakrabarty D. Biological activities of Vipegrin, an anti-adhesive Kunitz-type serine proteinase inhibitor purified from Russell's viper venom. Toxicon 2023:107213. [PMID: 37419286 DOI: 10.1016/j.toxicon.2023.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Vipegrin is a 6.8 kDa protein purified from Russell's viper (Vipera russelii russelii) venom. Structural assessment of Vipegrin indicates that it is a Kunitz-type serine proteinase inhibitor. Kunitz-type serine proteinase inhibitors are non-enzymatic proteins and are ubiquitous constituents of viper venoms. Vipegrin could partially (43%) inhibit the catalytic activity of trypsin. It has disintegrin-like properties and could inhibit collagen and ADP-induced platelet aggregation in a dose-dependent manner. Vipegrin is cytotoxic to human breast cancer cells, MCF7 and restricts its invasive property. Confocal microscopic analysis revealed that Vipegrin could induce apoptosis in MCF7 cells. Vipegrin disrupts cell-cell adhesion of human breast cancer MCF7 cells through its disintegrin-like activity. It also causes cell-matrix disruption of MCF7 cells from synthetic (poly L-lysine) and natural (fibronectin, laminin) matrices. Vipegrin did not cause cytotoxicity on non-cancerous HaCaT, human keratinocytes. The observed properties indicate that Vipegrin may help the development of a potent anti-cancer drug in future.
Collapse
Affiliation(s)
| | - Nivedita Kolvekar
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Sukanta Mondal
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Angshuman Sarkar
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Dibakar Chakrabarty
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India.
| |
Collapse
|
6
|
An evolutionary medicine perspective on the cetacean pulmonary immune system - The first identification of SP-D and LBP in the bottlenose dolphin (Tursiops truncatus). Respir Physiol Neurobiol 2023; 312:104038. [PMID: 36871862 DOI: 10.1016/j.resp.2023.104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Evolutionary medicine expresses the present status of biomolecules affected by past evolutionary events. To clarify the whole picture of cetacean pneumonia, which is a major threat to cetaceans, their pulmonary immune system should be studied from the perspective of evolutionary medicine. In this in silico study, we focused on cetacean surfactant protein D (SP-D) and lipopolysaccharide-binding protein (LBP) as two representative molecules of the cetacean pulmonary immune system. Sequencing and analyzing SP-D and LBP in the bottlenose dolphin (Tursiops truncatus) lung and liver tissue collected post-mortem elucidated not only basic physicochemical properties but also their evolutionary background. This is the first study to report the sequences and expression of SP-D and LBP in the bottlenose dolphin. Besides, our findings also suggest the direction of an evolutionary arms race in the cetacean pulmonary immune system. These results have important positive implications for cetacean clinical medicine.
Collapse
|
7
|
Kurisu G, Bekker GJ, Nakagawa A. History of Protein Data Bank Japan: standing at the beginning of the age of structural genomics. Biophys Rev 2022; 14:1233-1238. [PMID: 36532871 PMCID: PMC9734456 DOI: 10.1007/s12551-022-01021-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022] Open
Abstract
Prof. Haruki Nakamura, who is the former head of Protein Data Bank Japan (PDBj) and an expert in computational biology, retired from Osaka University at the end of March 2018. He founded PDBj at the Institute for Protein Research, together with other faculty members, researchers, engineers, and annotators in 2000, and subsequently established the worldwide Protein Data Bank (wwPDB) in 2003 to manage the core archive of the Protein Data Bank (PDB), collaborating with RCSB-PDB in the USA and PDBe in Europe. As the former head of PDBj and also an expert in structural bioinformatics, he has grown PDBj to become a well-known data center within the structural biology community and developed several related databases, tools and integrated with new technologies, such as the semantic web, as primary services offered by PDBj.
Collapse
Affiliation(s)
- Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
8
|
Identification of ultra-rare disruptive variants in voltage-gated calcium channel-encoding genes in Japanese samples of schizophrenia and autism spectrum disorder. Transl Psychiatry 2022; 12:84. [PMID: 35220405 PMCID: PMC8882172 DOI: 10.1038/s41398-022-01851-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
Several large-scale whole-exome sequencing studies in patients with schizophrenia (SCZ) and autism spectrum disorder (ASD) have identified rare variants with modest or strong effect size as genetic risk factors. Dysregulation of cellular calcium homeostasis might be involved in SCZ/ASD pathogenesis, and genes encoding L-type voltage-gated calcium channel (VGCC) subunits Cav1.1 (CACNA1S), Cav1.2 (CACNA1C), Cav1.3 (CACNA1D), and T-type VGCC subunit Cav3.3 (CACNA1I) recently were identified as risk loci for psychiatric disorders. We performed a screening study, using the Ion Torrent Personal Genome Machine (PGM), of exon regions of these four candidate genes (CACNA1C, CACNA1D, CACNA1S, CACNA1I) in 370 Japanese patients with SCZ and 192 with ASD. Variant filtering was applied to identify biologically relevant mutations that were not registered in the dbSNP database or that have a minor allele frequency of less than 1% in East-Asian samples from databases; and are potentially disruptive, including nonsense, frameshift, canonical splicing site single nucleotide variants (SNVs), and non-synonymous SNVs predicted as damaging by five different in silico analyses. Each of these filtered mutations were confirmed by Sanger sequencing. If parental samples were available, segregation analysis was employed for measuring the inheritance pattern. Using our filter, we discovered one nonsense SNV (p.C1451* in CACNA1D), one de novo SNV (p.A36V in CACNA1C), one rare short deletion (p.E1675del in CACNA1D), and 14 NSstrict SNVs (non-synonymous SNV predicted as damaging by all of five in silico analyses). Neither p.A36V in CACNA1C nor p.C1451* in CACNA1D were found in 1871 SCZ cases, 380 ASD cases, or 1916 healthy controls in the independent sample set, suggesting that these SNVs might be ultra-rare SNVs in the Japanese population. The neuronal splicing isoform of Cav1.2 with the p.A36V mutation, discovered in the present study, showed reduced Ca2+-dependent inhibition, resulting in excessive Ca2+ entry through the mutant channel. These results suggested that this de novo SNV in CACNA1C might predispose to SCZ by affecting Ca2+ homeostasis. Thus, our analysis successfully identified several ultra-rare and potentially disruptive gene variants, lending partial support to the hypothesis that VGCC-encoding genes may contribute to the risk of SCZ/ASD.
Collapse
|
9
|
Elhabashy H, Merino F, Alva V, Kohlbacher O, Lupas AN. Exploring protein-protein interactions at the proteome level. Structure 2022; 30:462-475. [DOI: 10.1016/j.str.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
10
|
Bekker G, Yokochi M, Suzuki H, Ikegawa Y, Iwata T, Kudou T, Yura K, Fujiwara T, Kawabata T, Kurisu G. Protein Data Bank Japan: Celebrating our 20th anniversary during a global pandemic as the Asian hub of three dimensional macromolecular structural data. Protein Sci 2022; 31:173-186. [PMID: 34664328 PMCID: PMC8740847 DOI: 10.1002/pro.4211] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022]
Abstract
Protein Data Bank Japan (PDBj), a founding member of the worldwide Protein Data Bank (wwPDB) has accepted, processed and distributed experimentally determined biological macromolecular structures for 20 years. During that time, we have continuously made major improvements to our query search interface of PDBj Mine 2, the BMRBj web interface, and EM Navigator for PDB/BMRB/EMDB entries. PDBj also serves PDB-related secondary database data, original web-based modeling services such as Homology modeling of complex structure (HOMCOS), visualization services and utility tools, which we have continuously enhanced and expanded throughout the years. In addition, we have recently developed several unique archives, BSM-Arc for computational structure models, and XRDa for raw X-ray diffraction images, both of which promote open science in the structural biology community. During the COVID-19 pandemic, PDBj has also started to provide feature pages for COVID-19 related entries across all available archives at PDBj from raw experimental data and PDB structural data to computationally predicted models, while also providing COVID-19 outreach content for high school students and teachers.
Collapse
Affiliation(s)
- Gert‐Jan Bekker
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Masashi Yokochi
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Hirofumi Suzuki
- School of Advanced Science and EngineeringWaseda UniversityShinjukuTokyoJapan
| | - Yasuyo Ikegawa
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Takeshi Iwata
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Takahiro Kudou
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Kei Yura
- School of Advanced Science and EngineeringWaseda UniversityShinjukuTokyoJapan
- Graduate School of Humanities and Sciences, Ochanoizu UniversityBunkyoTokyoJapan
| | | | - Takeshi Kawabata
- Protein Research FoundationMinohOsakaJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| | - Genji Kurisu
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
11
|
Forni D, Cagliani R, Arrigoni F, Benvenuti M, Mozzi A, Pozzoli U, Clerici M, De Gioia L, Sironi M. Adaptation of the endemic coronaviruses HCoV-OC43 and HCoV-229E to the human host. Virus Evol 2021; 7:veab061. [PMID: 34527284 PMCID: PMC8344746 DOI: 10.1093/ve/veab061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
Four coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E) are endemic in human populations. All these viruses are seasonal and generate short-term immunity. Like the highly pathogenic coronaviruses, the endemic coronaviruses have zoonotic origins. Thus, understanding the evolutionary dynamics of these human viruses might provide insight into the future trajectories of SARS-CoV-2 evolution. Because the zoonotic sources of HCoV-OC43 and HCoV-229E are known, we applied a population genetics-phylogenetic approach to investigate which selective events accompanied the divergence of these viruses from the animal ones. Results indicated that positive selection drove the evolution of some accessory proteins, as well as of the membrane proteins. However, the spike proteins of both viruses and the hemagglutinin-esterase (HE) of HCoV-OC43 represented the major selection targets. Specifically, for both viruses, most positively selected sites map to the receptor-binding domains (RBDs) and are polymorphic. Molecular dating for the HCoV-229E spike protein indicated that RBD Classes I, II, III, and IV emerged 3-9 years apart. However, since the appearance of Class V (with much higher binding affinity), around 25 years ago, limited genetic diversity accumulated in the RBD. These different time intervals are not fully consistent with the hypothesis that HCoV-229E spike evolution was driven by antigenic drift. An alternative, not mutually exclusive possibility is that strains with higher affinity for the cellular receptor have out-competed strains with lower affinity. The evolution of the HCoV-OC43 spike protein was also suggested to undergo antigenic drift. However, we also found abundant signals of positive selection in HE. Whereas such signals might result from antigenic drift, as well, previous data showing co-evolution of the spike protein with HE suggest that optimization for human cell infection also drove the evolution of this virus. These data provide insight into the possible trajectories of SARS-CoV-2 evolution, especially in case the virus should become endemic.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Martino Benvenuti
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, via Francesco Sforza, Milan 20122, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| |
Collapse
|
12
|
Park T, Woo H, Yang J, Kwon S, Won J, Seok C. Protein oligomer structure prediction using GALAXY in CASP14. Proteins 2021; 89:1844-1851. [PMID: 34363243 DOI: 10.1002/prot.26203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/17/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022]
Abstract
Proteins perform their functions by interacting with other biomolecules. For these interactions, proteins often form homo- or hetero-oligomers as well. Thus, oligomer protein structures provide important clues regarding the biological roles of proteins. To this end, computational prediction of oligomer structures may be a useful tool in the absence of experimentally resolved structures. Here, we describe our server and human-expert methods used to predict oligomer structures in the CASP14 experiment. Examples are provided for cases in which manual domain-splitting led to improved oligomeric domain structures by ab initio docking, automated oligomer structure refinement led to improved subunit orientation and terminal structure, and manual oligomer modeling utilizing literature information generated a reasonable oligomer model. We also discussed the results of post-prediction docking calculations with AlphaFold2 monomers as input in comparison to our blind prediction results. Overall, ab initio docking of AlphaFold2 models did not lead to better oligomer structure prediction, which may be attributed to the interfacial structural difference between the AlphaFold2 monomer structures and the crystal oligomer structures. This result poses a next-stage challenge in oligomer structure prediction after the success of AlphaFold2. For successful protein assembly structure prediction, a different approach that exploits further evolutionary information on the interface and/or flexible docking taking the interfacial conformational flexibilities of subunit structures into account is needed.
Collapse
Affiliation(s)
- Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Jinsol Yang
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Jonghun Won
- Department of Chemistry, Seoul National University, Seoul, South Korea.,Galux Inc., Seoul, South Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, South Korea.,Galux Inc., Seoul, South Korea
| |
Collapse
|
13
|
Sequeiros-Borja CE, Surpeta B, Brezovsky J. Recent advances in user-friendly computational tools to engineer protein function. Brief Bioinform 2021; 22:bbaa150. [PMID: 32743637 PMCID: PMC8138880 DOI: 10.1093/bib/bbaa150] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Progress in technology and algorithms throughout the past decade has transformed the field of protein design and engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze the effects of mutations for a variety of properties, comprising ligand binding, protein-protein and protein-nucleic acid interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools face and provide our perspectives on the further development of readily applicable methods to guide protein engineering efforts.
Collapse
Affiliation(s)
- Carlos Eduardo Sequeiros-Borja
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Bartłomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw
| |
Collapse
|
14
|
Computational and experimental characterization of the novel ECM glycoprotein SNED1 and prediction of its interactome. Biochem J 2021; 478:1413-1434. [PMID: 33724335 DOI: 10.1042/bcj20200675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/03/2023]
Abstract
The extracellular matrix (ECM) is a complex meshwork of proteins and an essential component of multicellular life. We have recently reported the characterization of a novel ECM protein, SNED1, and showed that it promotes breast cancer metastasis and regulates craniofacial development. However, the mechanisms by which it does so remain unknown. ECM proteins exert their functions by binding to cell surface receptors and interacting with other ECM proteins, actions that we can predict using knowledge of protein's sequence, structure, and post-translational modifications. Here, we combined in-silico and in-vitro approaches to characterize the physico-chemical properties of SNED1 and infer its putative functions. To do so, we established a mammalian cell system to produce and purify SNED1 and its N-terminal fragment, which contains a NIDO domain, and demonstrated experimentally SNED1's potential to be glycosylated, phosphorylated, and incorporated into an insoluble ECM. We also determined the secondary and tertiary structures of SNED1 and its N-terminal fragment and obtained a model for its NIDO domain. Using computational predictions, we identified 114 proteins as putative SNED1 interactors, including the ECM protein fibronectin. Pathway analysis of the predicted SNED1 interactome further revealed that it may contribute to signaling through cell surface receptors, such as integrins, and participate in the regulation of ECM organization and developmental processes. Last, using fluorescence microscopy, we showed that SNED1 forms microfibrils within the ECM and partially colocalizes with fibronectin. Altogether, we provide a wealth of information on an understudied yet important ECM protein with the potential to decipher its pathophysiological functions.
Collapse
|
15
|
Abstract
Biological processes are often mediated by complexes formed between proteins and various biomolecules. The 3D structures of such protein-biomolecule complexes provide insights into the molecular mechanism of their action. The structure of these complexes can be predicted by various computational methods. Choosing an appropriate method for modelling depends on the category of biomolecule that a protein interacts with and the availability of structural information about the protein and its interacting partner. We intend for the contents of this chapter to serve as a guide as to what software would be the most appropriate for the type of data at hand and the kind of 3D complex structure required. Particularly, we have dealt with protein-small molecule ligand, protein-peptide, protein-protein, and protein-nucleic acid interactions.Most, if not all, model building protocols perform some sampling and scoring. Typically, several alternate conformations and configurations of the interactors are sampled. Each such sample is then scored for optimization. To boost the confidence in these predicted models, their assessment using other independent scoring schemes besides the inbuilt/default ones would prove to be helpful. This chapter also lists such software and serves as a guide to gauge the fidelity of modelled structures of biomolecular complexes.
Collapse
|
16
|
Ishizuka K, Yoshida T, Kawabata T, Imai A, Mori H, Kimura H, Inada T, Okahisa Y, Egawa J, Usami M, Kushima I, Morikawa M, Okada T, Ikeda M, Branko A, Mori D, Someya T, Iwata N, Ozaki N. Functional characterization of rare NRXN1 variants identified in autism spectrum disorders and schizophrenia. J Neurodev Disord 2020; 12:25. [PMID: 32942984 PMCID: PMC7496212 DOI: 10.1186/s11689-020-09325-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Rare genetic variants contribute to the etiology of both autism spectrum disorder (ASD) and schizophrenia (SCZ). Most genetic studies limit their focus to likely gene-disrupting mutations because they are relatively easier to interpret their effects on the gene product. Interpretation of missense variants is also informative to some pathophysiological mechanisms of these neurodevelopmental disorders; however, their contribution has not been elucidated because of relatively small effects. Therefore, we characterized missense variants detected in NRXN1, a well-known neurodevelopmental disease-causing gene, from individuals with ASD and SCZ. Methods To discover rare variants with large effect size and to evaluate their role in the shared etiopathophysiology of ASD and SCZ, we sequenced NRXN1 coding exons with a sample comprising 562 Japanese ASD and SCZ patients, followed by a genetic association analysis in 4273 unrelated individuals. Impact of each missense variant detected here on cell surface expression, interaction with NLGN1, and synaptogenic activity was analyzed using an in vitro functional assay and in silico three-dimensional (3D) structural modeling. Results Through mutation screening, we regarded three ultra-rare missense variants (T737M, D772G, and R856W), all of which affected the LNS4 domain of NRXN1α isoform, as disease-associated variants. Diagnosis of individuals with T737M, D772G, and R856W was 1ASD and 1SCZ, 1ASD, and 1SCZ, respectively. We observed the following phenotypic and functional burden caused by each variant. (i) D772G and R856W carriers had more serious social disabilities than T737M carriers. (ii) In vitro assay showed reduced cell surface expression of NRXN1α by D772G and R856W mutations. In vitro functional analysis showed decreased NRXN1α-NLGN1 interaction of T737M and D772G mutants. (iii) In silico 3D structural modeling indicated that T737M and D772G mutations could destabilize the rod-shaped structure of LNS2-LNS5 domains, and D772G and R856W could disturb N-glycan conformations for the transport signal. Conclusions The combined data suggest that missense variants in NRXN1 could be associated with phenotypes of neurodevelopmental disorders beyond the diagnosis of ASD and/or SCZ.
Collapse
Affiliation(s)
- Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 9300194, Japan
| | - Takeshi Kawabata
- Institute for Protein Research, Osaka University, Osaka, 5650871, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 9300194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 9300194, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 7008558, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 9518510, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba, 2728516, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Aleksic Branko
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan. .,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, 4668550, Japan.
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 9518510, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, 4701192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 4668550, Japan
| |
Collapse
|
17
|
Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SIS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020; 30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Daiki Yoshihara
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Arakawa
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Abstract
There is a large gap between the numbers of known protein-protein interactions and the corresponding experimentally solved structures of protein complexes. Fortunately, this gap can be in part bridged by computational structure modeling methods. Currently, template-based modeling is the most accurate means to predict both individual protein structures and protein complexes. One of the major issues in template-based modeling is to identify homologous structures that could be utilized as templates. To simplify this task, we have developed the PPI3D web server. The server is not only able to search for homologous protein complexes, but also provides means to analyze identified interactions and to model protein complexes. In recent CASP and CAPRI experiments, PPI3D proved to be a useful tool for homology modeling of multimeric proteins. In this chapter, we provide a brief description of the PPI3D web server capabilities and how to use the server for modeling of protein complexes.
Collapse
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
19
|
Park T, Woo H, Baek M, Yang J, Seok C. Structure prediction of biological assemblies using GALAXY in CAPRI rounds 38-45. Proteins 2019; 88:1009-1017. [PMID: 31774573 DOI: 10.1002/prot.25859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022]
Abstract
We participated in CARPI rounds 38-45 both as a server predictor and a human predictor. These CAPRI rounds provided excellent opportunities for testing prediction methods for three classes of protein interactions, that is, protein-protein, protein-peptide, and protein-oligosaccharide interactions. Both template-based methods (GalaxyTBM for monomer protein, GalaxyHomomer for homo-oligomer protein, GalaxyPepDock for protein-peptide complex) and ab initio docking methods (GalaxyTongDock and GalaxyPPDock for protein oligomer, GalaxyPepDock-ab-initio for protein-peptide complex, GalaxyDock2 and Galaxy7TM for protein-oligosaccharide complex) have been tested. Template-based methods depend heavily on the availability of proper templates and template-target similarity, and template-target difference is responsible for inaccuracy of template-based models. Inaccurate template-based models could be improved by our structure refinement and loop modeling methods based on physics-based energy optimization (GalaxyRefineComplex and GalaxyLoop) for several CAPRI targets. Current ab initio docking methods require accurate protein structures as input. Small conformational changes from input structure could be accounted for by our docking methods, producing one of the best models for several CAPRI targets. However, predicting large conformational changes involving protein backbone is still challenging, and full exploration of physics-based methods for such problems is still to come.
Collapse
Affiliation(s)
- Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Yang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Kawabata T. Detection of cave pockets in large molecules: Spaces into which internal probes can enter, but external probes from outside cannot. Biophys Physicobiol 2019; 16:391-406. [PMID: 31984193 PMCID: PMC6975925 DOI: 10.2142/biophysico.16.0_391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/27/2019] [Indexed: 12/01/2022] Open
Abstract
Geometric features of macromolecular shapes are important for binding with other molecules. Kawabata, T. and Go, N. (2007) defined a pocket as a space into which a small probe can enter, but a large probe cannot. In 2010, mathematical morphology (MM) was introduced to provide a more rigorous definition, and the program GHECOM was developed using the grid-based representation of molecules. This method was simple, but effective in finding the binding sites of small compounds on protein surfaces. Recently, many 3D structures of large macromolecules have been determined to contain large internal hollow spaces. Identification and size estimation of these spaces is important for characterizing their function and stability. Therefore, we employ the MM definition of pocket proposed by Manak, M. (2019)—a space into which an internal probe can enter, but an external probe cannot enter from outside of the macromolecules. This type of space is called a “cave pocket”, and is identified through molecular grid-representation. We define a “cavity” as a space into which a probe can enter, but cannot escape to the outside. Three types of spaces: cavity, pocket, and cave pocket were compared both theoretically and numerically. We proved that a cave pocket includes a pocket, and it is equal to a pocket if no cavity is found. We compared the three types of spaces for a variety of molecules with different-sized spherical probes; cave pockets were more sensitive than pockets for finding almost closed internal holes, allowing for more detailed representations of internal surfaces than cavities provide.
Collapse
Affiliation(s)
- Takeshi Kawabata
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Gemovic B, Sumonja N, Davidovic R, Perovic V, Veljkovic N. Mapping of Protein-Protein Interactions: Web-Based Resources for Revealing Interactomes. Curr Med Chem 2019; 26:3890-3910. [PMID: 29446725 DOI: 10.2174/0929867325666180214113704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/14/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND The significant number of protein-protein interactions (PPIs) discovered by harnessing concomitant advances in the fields of sequencing, crystallography, spectrometry and two-hybrid screening suggests astonishing prospects for remodelling drug discovery. The PPI space which includes up to 650 000 entities is a remarkable reservoir of potential therapeutic targets for every human disease. In order to allow modern drug discovery programs to leverage this, we should be able to discern complete PPI maps associated with a specific disorder and corresponding normal physiology. OBJECTIVE Here, we will review community available computational programs for predicting PPIs and web-based resources for storing experimentally annotated interactions. METHODS We compared the capacities of prediction tools: iLoops, Struck2Net, HOMCOS, COTH, PrePPI, InterPreTS and PRISM to predict recently discovered protein interactions. RESULTS We described sequence-based and structure-based PPI prediction tools and addressed their peculiarities. Additionally, since the usefulness of prediction algorithms critically depends on the quality and quantity of the experimental data they are built on; we extensively discussed community resources for protein interactions. We focused on the active and recently updated primary and secondary PPI databases, repositories specialized to the subject or species, as well as databases that include both experimental and predicted PPIs. CONCLUSION PPI complexes are the basis of important physiological processes and therefore, possible targets for cell-penetrating ligands. Reliable computational PPI predictions can speed up new target discoveries through prioritization of therapeutically relevant protein-protein complexes for experimental studies.
Collapse
Affiliation(s)
- Branislava Gemovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Neven Sumonja
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Radoslav Davidovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Baek M, Park T, Woo H, Seok C. Prediction of protein oligomer structures using GALAXY in CASP13. Proteins 2019; 87:1233-1240. [PMID: 31509276 DOI: 10.1002/prot.25814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 01/24/2023]
Abstract
Many proteins need to form oligomers to be functional, so oligomer structures provide important clues to biological roles of proteins. Prediction of oligomer structures therefore can be a useful tool in the absence of experimentally resolved structures. In this article, we describe the server and human methods that we used to predict oligomer structures in the CASP13 experiment. Performances of the methods on the 42 CASP13 oligomer targets consisting of 30 homo-oligomers and 12 hetero-oligomers are discussed. Our server method, Seok-assembly, generated models with interface contact similarity measure greater than 0.2 as model 1 for 11 homo-oligomer targets when proper templates existed in the database. Model refinement methods such as loop modeling and molecular dynamics (MD)-based overall refinement failed to improve model qualities when target proteins have domains not covered by templates or when chains have very small interfaces. In human predictions, additional experimental data such as low-resolution electron microscopy (EM) map were utilized. EM data could assist oligomer structure prediction by providing a global shape of the complex structure.
Collapse
Affiliation(s)
- Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Quignot C, Rey J, Yu J, Tufféry P, Guerois R, Andreani J. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs. Nucleic Acids Res 2019; 46:W408-W416. [PMID: 29741647 PMCID: PMC6030979 DOI: 10.1093/nar/gky377] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Computational protein docking is a powerful strategy to predict structures of protein-protein interactions and provides crucial insights for the functional characterization of macromolecular cross-talks. We previously developed InterEvDock, a server for ab initio protein docking based on rigid-body sampling followed by consensus scoring using physics-based and statistical potentials, including the InterEvScore function specifically developed to incorporate co-evolutionary information in docking. InterEvDock2 is a major evolution of InterEvDock which allows users to submit input sequences – not only structures – and multimeric inputs and to specify constraints for the pairwise docking process based on previous knowledge about the interaction. For this purpose, we added modules in InterEvDock2 for automatic template search and comparative modeling of the input proteins. The InterEvDock2 pipeline was benchmarked on 812 complexes for which unbound homology models of the two partners and co-evolutionary information are available in the PPI4DOCK database. InterEvDock2 identified a correct model among the top 10 consensus in 29% of these cases (compared to 15–24% for individual scoring functions) and at least one correct interface residue among 10 predicted in 91% of these cases. InterEvDock2 is thus a unique protein docking server, designed to be useful for the experimental biology community. The InterEvDock2 web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/.
Collapse
Affiliation(s)
- Chloé Quignot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Julien Rey
- INSERM UMR-S 973, Université Paris Diderot, Sorbonne Paris Cité, RPBS, Paris 75205, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Pierre Tufféry
- INSERM UMR-S 973, Université Paris Diderot, Sorbonne Paris Cité, RPBS, Paris 75205, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
24
|
Park T, Baek M, Lee H, Seok C. GalaxyTongDock: Symmetric and asymmetric ab initio protein-protein docking web server with improved energy parameters. J Comput Chem 2019; 40:2413-2417. [PMID: 31173387 DOI: 10.1002/jcc.25874] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/27/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022]
Abstract
Protein-protein docking methods are spotlighted for their roles in providing insights into protein-protein interactions in the absence of full structural information by experiment. GalaxyTongDock is an ab initio protein-protein docking web server that performs rigid-body docking just like ZDOCK but with improved energy parameters. The energy parameters were trained by iterative docking and parameter search so that more native-like structures are selected as top rankers. GalaxyTongDock performs asymmetric docking of two different proteins (GalaxyTongDock_A) and symmetric docking of homo-oligomeric proteins with Cn and Dn symmetries (GalaxyTongDock_C and GalaxyTongDock_D). Performance tests on an unbound docking benchmark set for asymmetric docking and a model docking benchmark set for symmetric docking showed that GalaxyTongDock is better or comparable to other state-of-the-art methods. Experimental and/or evolutionary information on binding interfaces can be easily incorporated by using block and interface options. GalaxyTongDock web server is freely available at http://galaxy.seoklab.org/tongdock. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taeyong Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hasup Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Kasahara K, Shiina M, Higo J, Ogata K, Nakamura H. Phosphorylation of an intrinsically disordered region of Ets1 shifts a multi-modal interaction ensemble to an auto-inhibitory state. Nucleic Acids Res 2018; 46:2243-2251. [PMID: 29309620 PMCID: PMC5861456 DOI: 10.1093/nar/gkx1297] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022] Open
Abstract
Multi-modal interactions are frequently observed in intrinsically disordered regions (IDRs) of proteins upon binding to their partners. In many cases, post-translational modifications in IDRs are accompanied by coupled folding and binding. From both molecular simulations and biochemical experiments with mutational studies, we show that the IDR including a Ser rich region (SRR) of the transcription factor Ets1, just before the DNA-binding core domain, undergoes multi-modal interactions when the SRR is not phosphorylated. In the phosphorylated state, the SRR forms a few specific complex structures with the Ets1 core, covering the recognition helix in the core and drastically reducing the DNA binding affinities as the auto-inhibitory state. The binding kinetics of mutated Ets1 indicates that aromatic residues in the SRR can be substituted with other hydrophobic residues for the interactions with the Ets1 core.
Collapse
Affiliation(s)
- Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Masaaki Shiina
- Graduate School of Medicine, Yokohama City University, Fuku-ura 3–9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Ogata
- Graduate School of Medicine, Yokohama City University, Fuku-ura 3–9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Dapkunas J, Timinskas A, Olechnovic K, Margelevicius M, Diciunas R, Venclovas C. The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures. Bioinformatics 2017; 33:935-937. [PMID: 28011769 DOI: 10.1093/bioinformatics/btw756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Summary The PPI3D web server is focused on searching and analyzing the structural data on protein-protein interactions. Reducing the data redundancy by clustering and analyzing the properties of interaction interfaces using Voronoi tessellation makes this software a highly effective tool for addressing different questions related to protein interactions. Availability and Implementation The server is freely accessible at http://bioinformatics.lt/software/ppi3d/ . Contact ceslovas.venclovas@bti.vu.lt. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Justas Dapkunas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | - Kliment Olechnovic
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania.,Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
| | | | - Rytis Diciunas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | |
Collapse
|
27
|
Kato K, Nakayoshi T, Fukuyoshi S, Kurimoto E, Oda A. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins. Molecules 2017; 22:molecules22101716. [PMID: 29023395 PMCID: PMC6151455 DOI: 10.3390/molecules22101716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton’s equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10–46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10–34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.
Collapse
Affiliation(s)
- Koichi Kato
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Јapan.
- Department of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan.
| | - Tomoki Nakayoshi
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Јapan.
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Eiji Kurimoto
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Јapan.
| | - Akifumi Oda
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Јapan.
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Imada Y, Nakamura H, Takano Y. Density functional study of porphyrin distortion effects on redox potential of heme. J Comput Chem 2017; 39:143-150. [DOI: 10.1002/jcc.25058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/29/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Yasuhiro Imada
- Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka; Suita Osaka 565-0871 Japan
| | - Haruki Nakamura
- Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka; Suita Osaka 565-0871 Japan
| | - Yu Takano
- Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka; Suita Osaka 565-0871 Japan
- Department of Biomedical Information Sciences; Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku; Hiroshima 731-3194 Japan
| |
Collapse
|
29
|
Kimura H, Fujita Y, Kawabata T, Ishizuka K, Wang C, Iwayama Y, Okahisa Y, Kushima I, Morikawa M, Uno Y, Okada T, Ikeda M, Inada T, Branko A, Mori D, Yoshikawa T, Iwata N, Nakamura H, Yamashita T, Ozaki N. A novel rare variant R292H in RTN4R affects growth cone formation and possibly contributes to schizophrenia susceptibility. Transl Psychiatry 2017; 7:e1214. [PMID: 28892071 PMCID: PMC5611737 DOI: 10.1038/tp.2017.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/20/2017] [Accepted: 06/17/2017] [Indexed: 02/03/2023] Open
Abstract
Reticulon 4 receptor (RTN4R) plays an essential role in regulating axonal regeneration and plasticity in the central nervous system through the activation of rho kinase, and is located within chromosome 22q11.2, a region that is known to be a hotspot for schizophrenia (SCZ) and autism spectrum disorder (ASD). Recently, rare variants such as copy-number variants and single-nucleotide variants have been a focus of research because of their large effect size associated with increased susceptibility to SCZ and ASD and the possibility of elucidating the pathophysiology of mental disorder through functional analysis of the discovered rare variants. To discover rare variants with large effect size and to evaluate their role in the etiopathophysiology of SCZ and ASD, we sequenced the RTN4R coding exons with a sample comprising 370 SCZ and 192 ASD patients, and association analysis using a large number of unrelated individuals (1716 SCZ, 382 ASD and 4009 controls). Through this mutation screening, we discovered four rare (minor allele frequency <1%) missense mutations (R68H, D259N, R292H and V363M) of RTN4R. Among these discovered rare mutations, R292H was found to be significantly associated with SCZ (P=0.048). Furthermore, in vitro functional assays showed that the R292H mutation affected the formation of growth cones. This study strengthens the evidence for association between rare variants within RTN4R and SCZ, and may shed light on the molecular mechanisms underlying the neurodevelopmental disorder.
Collapse
Affiliation(s)
- H Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Fujita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - T Kawabata
- Laboratory of Protein Informatics Institute for Protein Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - K Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - C Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Y Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - I Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
| | - T Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - T Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - A Branko
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan,Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan. E-mail:
| | - D Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - N Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - H Nakamura
- Laboratory of Protein Informatics Institute for Protein Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - T Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - N Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
30
|
Ishizuka K, Fujita Y, Kawabata T, Kimura H, Iwayama Y, Inada T, Okahisa Y, Egawa J, Usami M, Kushima I, Uno Y, Okada T, Ikeda M, Aleksic B, Mori D, Someya T, Yoshikawa T, Iwata N, Nakamura H, Yamashita T, Ozaki N. Rare genetic variants in CX3CR1 and their contribution to the increased risk of schizophrenia and autism spectrum disorders. Transl Psychiatry 2017; 7:e1184. [PMID: 28763059 PMCID: PMC5611740 DOI: 10.1038/tp.2017.173] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/20/2017] [Accepted: 06/17/2017] [Indexed: 12/20/2022] Open
Abstract
CX3CR1, a G protein-coupled receptor solely expressed by microglia in the brain, has been repeatedly reported to be associated with neurodevelopmental disorders including schizophrenia (SCZ) and autism spectrum disorders (ASD) in transcriptomic and animal studies but not in genetic studies. To address the impacts of variants in CX3CR1 on neurodevelopmental disorders, we conducted coding exon-targeted resequencing of CX3CR1 in 370 Japanese SCZ and 192 ASD patients using next-generation sequencing technology, followed by a genetic association study in a sample comprising 7054 unrelated individuals (2653 SCZ, 574 ASD and 3827 controls). We then performed in silico three-dimensional (3D) structural modeling and in vivo disruption of Akt phosphorylation to determine the impact of the detected variant on CX3CR1-dependent signal transduction. We detected a statistically significant association between the variant Ala55Thr in CX3CR1 with SCZ and ASD phenotypes (odds ratio=8.3, P=0.020). A 3D structural model indicated that Ala55Thr could destabilize the conformation of the CX3CR1 helix 8 and affect its interaction with a heterotrimeric G protein. In vitro functional analysis showed that the CX3CR1-Ala55Thr mutation inhibited cell signaling induced by fractalkine, the ligand for CX3CR1. The combined data suggested that the variant Ala55Thr in CX3CR1 might result in the disruption of CX3CR1 signaling. Our results strengthen the association between microglia-specific genes and neurodevelopmental disorders.
Collapse
Affiliation(s)
- K Ishizuka
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - Y Fujita
- Department of Molecular Neuroscience,
Osaka University Graduate School of Medicine, Osaka,
Japan
| | - T Kawabata
- Institute for Protein Research, Osaka
University, Osaka, Japan
| | - H Kimura
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - Y Iwayama
- Laboratory for Molecular Psychiatry,
RIKEN Brain Science Institute, Wako, Japan
| | - T Inada
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - Y Okahisa
- Department of Neuropsychiatry, Okayama
University Graduate School of Medicine, Dentistry and Pharmaceutical
Sciences, Okayama, Japan
| | - J Egawa
- Department of Psychiatry, Niigata
University Graduate School of Medical and Dental Sciences,
Niigata, Japan
| | - M Usami
- Department of Child and Adolescent
Psychiatry, Kohnodai Hospital, National Center for Global Health and
Medicine, Ichikawa, Japan
| | - I Kushima
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - Y Uno
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan,Laboratory for Psychiatric and Molecular
Neuroscience, McLean Hospital, Belmont, MA,
USA
| | - T Okada
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - M Ikeda
- Department of Psychiatry, Fujita Health
University School of Medicine, Toyoake, Japan
| | - B Aleksic
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan,Department of Psychiatry, Nagoya University Graduate School
of Medicine, 65 Tsurumai-cho, Showa-ku,
Nagoya, Aichi
4668550, Japan. E-mail:
| | - D Mori
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan,Brain and Mind Research Center, Nagoya
University, Nagoya, Japan
| | - To Someya
- Department of Psychiatry, Niigata
University Graduate School of Medical and Dental Sciences,
Niigata, Japan
| | - T Yoshikawa
- Laboratory for Molecular Psychiatry,
RIKEN Brain Science Institute, Wako, Japan
| | - N Iwata
- Department of Psychiatry, Fujita Health
University School of Medicine, Toyoake, Japan
| | - H Nakamura
- Institute for Protein Research, Osaka
University, Osaka, Japan
| | - T Yamashita
- Department of Molecular Neuroscience,
Osaka University Graduate School of Medicine, Osaka,
Japan
| | - N Ozaki
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| |
Collapse
|
31
|
Pai PP, Dattatreya RK, Mondal S. Ensemble Architecture for Prediction of Enzyme‐ligand Binding Residues Using Evolutionary Information. Mol Inform 2017. [DOI: 10.1002/minf.201700021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Priyadarshini P. Pai
- Department of Biological SciencesBirla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus. Near NH17 Bypass Road Zuarinagar, Goa India
| | - Rohit Kadam Dattatreya
- Department of EconomicsBirla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus. Near NH17 Bypass Road Zuarinagar, Goa India, PIN: 403726
| | - Sukanta Mondal
- Department of Biological SciencesBirla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus. Near NH17 Bypass Road Zuarinagar, Goa India
| |
Collapse
|
32
|
Zhao L, Chen J, Sun J, Zhang D. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis. Sci Rep 2017; 7:44023. [PMID: 28276482 PMCID: PMC5343618 DOI: 10.1038/srep44023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 01/02/2023] Open
Abstract
Non-classical protein secretion in bacteria is a common phenomenon. However, the selection principle for non-classical secretion pathways remains unclear. Here, our experimental data, to our knowledge, are the first to show that folded multimeric proteins can be recognized and excreted by a non-classical secretion pathway in Bacillus subtilis. We explored the secretion pattern of a typical cytoplasmic protein D-psicose 3-epimerase from Ruminococcus sp. 5_1_39BFAA (RDPE), and showed that its non-classical secretion is not simply due to cell lysis. Analysis of truncation variants revealed that the C- and N-terminus, and two hydrophobic domains, are required for structural stability and non-classical secretion of RDPE. Alanine scanning mutagenesis of the hydrophobic segments of RDPE revealed that hydrophobic residues mediated the equilibrium between its folded and unfolded forms. Reporter mCherry and GFP fusions with RDPE regions show that its secretion requires an intact tetrameric protein complex. Using cross-linked tetramers, we show that folded tetrameric RDPE can be secreted as a single unit. Finally, we provide evidence that the non-classical secretion pathway has a strong preference for multimeric substrates, which accumulate at the poles and septum region. Altogether, these data show that a multimer recognition mechanism is likely applicable across the non-classical secretion pathway.
Collapse
Affiliation(s)
- Liuqun Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jingqi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.,National Engineering Laboratory for Industrial Enzymes, Tianjin 300308, P. R. China
| |
Collapse
|
33
|
Gojobori T, Ikeo K, Katayama Y, Kawabata T, Kinjo AR, Kinoshita K, Kwon Y, Migita O, Mizutani H, Muraoka M, Nagata K, Omori S, Sugawara H, Yamada D, Yura K. VaProS: a database-integration approach for protein/genome information retrieval. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2016; 17:69-81. [PMID: 28012137 PMCID: PMC5274651 DOI: 10.1007/s10969-016-9211-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023]
Abstract
Life science research now heavily relies on all sorts of databases for genome sequences, transcription, protein three-dimensional (3D) structures, protein-protein interactions, phenotypes and so forth. The knowledge accumulated by all the omics research is so vast that a computer-aided search of data is now a prerequisite for starting a new study. In addition, a combinatory search throughout these databases has a chance to extract new ideas and new hypotheses that can be examined by wet-lab experiments. By virtually integrating the related databases on the Internet, we have built a new web application that facilitates life science researchers for retrieving experts' knowledge stored in the databases and for building a new hypothesis of the research target. This web application, named VaProS, puts stress on the interconnection between the functional information of genome sequences and protein 3D structures, such as structural effect of the gene mutation. In this manuscript, we present the notion of VaProS, the databases and tools that can be accessed without any knowledge of database locations and data formats, and the power of search exemplified in quest of the molecular mechanisms of lysosomal storage disease. VaProS can be freely accessed at http://p4d-info.nig.ac.jp/vapros/ .
Collapse
Affiliation(s)
- Takashi Gojobori
- Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- National Institute of Genetics, Shizuoka, 411-8540, Mishima, Japan
| | - Kazuho Ikeo
- National Institute of Genetics, Shizuoka, 411-8540, Mishima, Japan
| | - Yukie Katayama
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Kawabata
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akira R Kinjo
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kengo Kinoshita
- Graduate School of Information Sciences, Tohoku University, Miyagi, Sendai, 980-8597, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Sendai, 980-8573, Japan
| | - Yeondae Kwon
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Ohsuke Migita
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Miyamae, Kawasaki, 216-8511, Japan
| | - Hisashi Mizutani
- National Institute of Genetics, Shizuoka, 411-8540, Mishima, Japan
| | - Masafumi Muraoka
- National Institute of Genetics, Shizuoka, 411-8540, Mishima, Japan
| | - Koji Nagata
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Satoshi Omori
- Graduate School of Information Sciences, Tohoku University, Miyagi, Sendai, 980-8597, Japan
| | - Hideaki Sugawara
- National Institute of Genetics, Shizuoka, 411-8540, Mishima, Japan
| | - Daichi Yamada
- Center for Informational Biology, Ochanomizu University, 2-1-1, Otsuka, Bunkyo, Tokyo, 112-8610, Japan
| | - Kei Yura
- National Institute of Genetics, Shizuoka, 411-8540, Mishima, Japan.
- Center for Informational Biology, Ochanomizu University, 2-1-1, Otsuka, Bunkyo, Tokyo, 112-8610, Japan.
| |
Collapse
|
34
|
Tanabe S, Kawabata T, Aoyagi K, Yokozaki H, Sasaki H. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells 2016; 8:384-395. [PMID: 27928465 PMCID: PMC5120243 DOI: 10.4252/wjsc.v8.i11.384] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics.
METHODS The expression of the catenin β 1 (CTNNB1) gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases.
RESULTS The expression of the CTNNB1 gene was up-regulated in GC cells compared to MSCs. The expression of EPH receptor A8 (EPHA8), synovial sarcoma translocation chromosome 18 (SS18), interactor of little elongation complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and caspase recruitment domain family member 11 (CARD11) were also shown to be altered in GC cells in the cBioPortal for Cancer Genomics analysis. 3D complex structures were reported for E-cadherin 1 (CDH1), lymphoid enhancer binding factor 1 (LEF1), transcription factor 7 like 2 (TCF7L2) and adenomatous polyposis coli protein (APC) with β-catenin.
CONCLUSION The results indicate that the epithelial-mesenchymal transition (EMT)-related gene CTNNB1 plays an important role in the regulation of stem cell pluripotency and cancer signaling.
Collapse
|
35
|
Kinjo AR, Bekker GJ, Suzuki H, Tsuchiya Y, Kawabata T, Ikegawa Y, Nakamura H. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures. Nucleic Acids Res 2016; 45:D282-D288. [PMID: 27789697 PMCID: PMC5210648 DOI: 10.1093/nar/gkw962] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 11/14/2022] Open
Abstract
The Protein Data Bank Japan (PDBj, http://pdbj.org), a member of the worldwide Protein Data Bank (wwPDB), accepts and processes the deposited data of experimentally determined macromolecular structures. While maintaining the archive in collaboration with other wwPDB partners, PDBj also provides a wide range of services and tools for analyzing structures and functions of proteins. We herein outline the updated web user interfaces together with RESTful web services and the backend relational database that support the former. To enhance the interoperability of the PDB data, we have previously developed PDB/RDF, PDB data in the Resource Description Framework (RDF) format, which is now a wwPDB standard called wwPDB/RDF. We have enhanced the connectivity of the wwPDB/RDF data by incorporating various external data resources. Services for searching, comparing and analyzing the ever-increasing large structures determined by hybrid methods are also described.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuko Tsuchiya
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Kawabata
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuyo Ikegawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|