1
|
Yeganeh FA, Summerill C, Hu Z, Rahmani H, Taylor DW, Taylor KA. The cryo-EM 3D image reconstruction of isolated Lethocerus indicus Z-discs. J Muscle Res Cell Motil 2023; 44:271-286. [PMID: 37661214 PMCID: PMC10843718 DOI: 10.1007/s10974-023-09657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
The Z-disk of striated muscle defines the ends of the sarcomere, which repeats many times within the muscle fiber. Here we report application of cryoelectron tomography and subtomogram averaging to Z-disks isolated from the flight muscles of the large waterbug Lethocerus indicus. We use high salt solutions to remove the myosin containing filaments and use gelsolin to remove the actin filaments of the A- and I-bands leaving only the thin filaments within the Z-disk which were then frozen for cryoelectron microscopy. The Lethocerus Z-disk structure is similar in many ways to the previously studied Z-disk of the honeybee Apis mellifera. At the corners of the unit cell are positioned trimers of paired antiparallel F-actins defining a large solvent channel, whereas at the trigonal positions are positioned F-actin trimers converging slowly towards their (+) ends defining a small solvent channel through the Z-disk. These near parallel F-actins terminate at different Z-heights within the Z-disk. The two types of solvent channel in Lethocerus are similar in size compared to those of Apis which are very different in size. Two types of α-actinin crosslinks were observed between oppositely oriented actin filaments. In one of these, the α-actinin long axis is almost parallel to the F-actins it crosslinks. In the other, the α-actinins are at a small but distinctive angle with respect to the crosslinked actin filaments. The utility of isolated Z-disks for structure determination is discussed.
Collapse
Affiliation(s)
- Fatemeh Abbasi Yeganeh
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Corinne Summerill
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- Department of Life and Earth Sciences, Perimeter College, Georgia State University, 33 Gilmer Street SE, Atlanta, GA, 30303, USA
| | - Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- Facebook, Inc, 1 Hacker Way, Menlo Park, CA, 94025, USA
| | - Hamidreza Rahmani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA.
| |
Collapse
|
2
|
Pons A. The self-oscillation paradox in the flight motor of Drosophila melanogaster. J R Soc Interface 2023; 20:20230421. [PMID: 37963559 PMCID: PMC10645510 DOI: 10.1098/rsif.2023.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Tiny flying insects, such as Drosophila melanogaster, fly by flapping their wings at frequencies faster than their brains are able to process. To do so, they rely on self-oscillation: dynamic instability, leading to emergent oscillation, arising from muscle stretch-activation. Many questions concerning this vital natural instability remain open. Does flight motor self-oscillation necessarily lead to resonance-a state optimal in efficiency and/or performance? If so, what state? And is self-oscillation even guaranteed in a motor driven by stretch-activated muscle, or are there limiting conditions? In this work, we use data-driven models of wingbeat and muscle behaviour to answer these questions. Developing and leveraging novel analysis techniques, including symbolic computation, we establish a fundamental condition for motor self-oscillation common to a wide range of motor models. Remarkably, D. melanogaster flight apparently defies this condition: a paradox of motor operation. We explore potential resolutions to this paradox, and, within its confines, establish that the D. melanogaster flight motor is probably not resonant with respect to exoskeletal elasticity: instead, the muscular elasticity plays a dominant role. Contrary to common supposition, the stiffness of stretch-activated muscle is an obstacle to, rather than an enabler of, the operation of the D. melanogaster flight motor.
Collapse
Affiliation(s)
- Arion Pons
- Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Schueder F, Mangeol P, Chan EH, Rees R, Schünemann J, Jungmann R, Görlich D, Schnorrer F. Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nanoarchitecture in flight muscles. eLife 2023; 12:e79344. [PMID: 36645127 PMCID: PMC9886278 DOI: 10.7554/elife.79344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023] Open
Abstract
Sarcomeres are the force-producing units of all striated muscles. Their nanoarchitecture critically depends on the large titin protein, which in vertebrates spans from the sarcomeric Z-disc to the M-band and hence links actin and myosin filaments stably together. This ensures sarcomeric integrity and determines the length of vertebrate sarcomeres. However, the instructive role of titins for sarcomeric architecture outside of vertebrates is not as well understood. Here, we used a series of nanobodies, the Drosophila titin nanobody toolbox, recognising specific domains of the two Drosophila titin homologs Sallimus and Projectin to determine their precise location in intact flight muscles. By combining nanobodies with DNA-PAINT super-resolution microscopy, we found that, similar to vertebrate titin, Sallimus bridges across the flight muscle I-band, whereas Projectin is located at the beginning of the A-band. Interestingly, the ends of both proteins overlap at the I-band/A-band border, revealing a staggered organisation of the two Drosophila titin homologs. This architecture may help to stably anchor Sallimus at the myosin filament and hence ensure efficient force transduction during flight.
Collapse
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Eunice HoYee Chan
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Renate Rees
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| |
Collapse
|
4
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Daneshparvar N, Taylor DW, O'Leary TS, Rahmani H, Abbasiyeganeh F, Previs MJ, Taylor KA. CryoEM structure of Drosophila flight muscle thick filaments at 7 Å resolution. Life Sci Alliance 2020; 3:3/8/e202000823. [PMID: 32718994 PMCID: PMC7391215 DOI: 10.26508/lsa.202000823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/24/2022] Open
Abstract
Striated muscle thick filaments are composed of myosin II and several non-myosin proteins. Myosin II's long α-helical coiled-coil tail forms the dense protein backbone of filaments, whereas its N-terminal globular head containing the catalytic and actin-binding activities extends outward from the backbone. Here, we report the structure of thick filaments of the flight muscle of the fruit fly Drosophila melanogaster at 7 Å resolution. Its myosin tails are arranged in curved molecular crystalline layers identical to flight muscles of the giant water bug Lethocerus indicus Four non-myosin densities are observed, three of which correspond to ones found in Lethocerus; one new density, possibly stretchin-mlck, is found on the backbone outer surface. Surprisingly, the myosin heads are disordered rather than ordered along the filament backbone. Our results show striking myosin tail similarity within flight muscle filaments of two insect orders separated by several hundred million years of evolution.
Collapse
Affiliation(s)
- Nadia Daneshparvar
- Department of Physics, Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Thomas S O'Leary
- Department of Molecular Physiology & Biophysics, University of Vermont College of Medicine, Burlington, VT, USA
| | - Hamidreza Rahmani
- Department of Physics, Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | | | - Michael J Previs
- Department of Molecular Physiology & Biophysics, University of Vermont College of Medicine, Burlington, VT, USA
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
6
|
Szikora S, Gajdos T, Novák T, Farkas D, Földi I, Lenart P, Erdélyi M, Mihály J. Nanoscopy reveals the layered organization of the sarcomeric H-zone and I-band complexes. J Cell Biol 2020; 219:132617. [PMID: 31816054 PMCID: PMC7039190 DOI: 10.1083/jcb.201907026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/18/2023] Open
Abstract
Sarcomeres are extremely highly ordered macromolecular assemblies where structural organization is intimately linked to their functionality as contractile units. Although the structural basis of actin and Myosin interaction is revealed at a quasiatomic resolution, much less is known about the molecular organization of the I-band and H-zone. We report the development of a powerful nanoscopic approach, combined with a structure-averaging algorithm, that allowed us to determine the position of 27 sarcomeric proteins in Drosophila melanogaster flight muscles with a quasimolecular, ∼5- to 10-nm localization precision. With this protein localization atlas and template-based protein structure modeling, we have assembled refined I-band and H-zone models with unparalleled scope and resolution. In addition, we found that actin regulatory proteins of the H-zone are organized into two distinct layers, suggesting that the major place of thin filament assembly is an M-line-centered narrow domain where short actin oligomers can form and subsequently anneal to the pointed end.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Dávid Farkas
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Peter Lenart
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Tune TC, Ma W, Irving T, Sponberg S. Nanometer-scale structure differences in the myofilament lattice spacing of two cockroach leg muscles correspond to their different functions. J Exp Biol 2020; 223:jeb212829. [PMID: 32205362 PMCID: PMC7225125 DOI: 10.1242/jeb.212829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/09/2020] [Indexed: 01/21/2023]
Abstract
Muscle is highly organized across multiple length scales. Consequently, small changes in the arrangement of myofilaments can influence macroscopic mechanical function. Two leg muscles of a cockroach have identical innervation, mass, twitch responses, length-tension curves and force-velocity relationships. However, during running, one muscle is dissipative (a 'brake'), while the other dissipates and produces significant positive mechanical work (bifunctional). Using time-resolved X-ray diffraction in intact, contracting muscle, we simultaneously measured the myofilament lattice spacing, packing structure and macroscopic force production of these muscles to test whether structural differences in the myofilament lattice might correspond to the muscles' different mechanical functions. While the packing patterns are the same, one muscle has 1 nm smaller lattice spacing at rest. Under isometric stimulation, the difference in lattice spacing disappeared, consistent with the two muscles' identical steady-state behavior. During periodic contractions, one muscle undergoes a 1 nm greater change in lattice spacing, which correlates with force. This is the first identified structural feature in the myofilament lattice of these two muscles that shares their whole-muscle dynamic differences and quasi-static similarities.
Collapse
Affiliation(s)
- Travis Carver Tune
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - Weikang Ma
- Biophysics Collaborative Access Team and CSRRI, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, 60616 USA
| | - Thomas Irving
- Biophysics Collaborative Access Team and CSRRI, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, 60616 USA
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332 USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| |
Collapse
|
8
|
Nikonova E, Kao SY, Spletter ML. Contributions of alternative splicing to muscle type development and function. Semin Cell Dev Biol 2020; 104:65-80. [PMID: 32070639 DOI: 10.1016/j.semcdb.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Animals possess a wide variety of muscle types that support different kinds of movements. Different muscles have distinct locations, morphologies and contractile properties, raising the question of how muscle diversity is generated during development. Normal aging processes and muscle disorders differentially affect particular muscle types, thus understanding how muscles normally develop and are maintained provides insight into alterations in disease and senescence. As muscle structure and basic developmental mechanisms are highly conserved, many important insights into disease mechanisms in humans as well as into basic principles of muscle development have come from model organisms such as Drosophila, zebrafish and mouse. While transcriptional regulation has been characterized to play an important role in myogenesis, there is a growing recognition of the contributions of alternative splicing to myogenesis and the refinement of muscle function. Here we review our current understanding of muscle type specific alternative splicing, using examples of isoforms with distinct functions from both vertebrates and Drosophila. Future exploration of the vast potential of alternative splicing to fine-tune muscle development and function will likely uncover novel mechanisms of isoform-specific regulation and a more holistic understanding of muscle development, disease and aging.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Through thick and thin: dual regulation of insect flight muscle and cardiac muscle compared. J Muscle Res Cell Motil 2019; 40:99-110. [PMID: 31292801 PMCID: PMC6726838 DOI: 10.1007/s10974-019-09536-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/02/2019] [Indexed: 01/15/2023]
Abstract
Both insect flight muscle and cardiac muscle contract rhythmically, but the way in which repetitive contractions are controlled is different in the two types of muscle. We have compared the flight muscle of the water bug, Lethocerus, with cardiac muscle. Both have relatively high resting elasticity and are activated by an increase in sarcomere length or a quick stretch. The larger response of flight muscle is attributed to the highly ordered lattice of thick and thin filaments and to an isoform of troponin C that has no exchangeable Ca2+-binding site. The Ca2+ sensitivity of cardiac muscle and flight muscle can be manipulated so that cardiac muscle responds to Ca2+ like flight muscle, and flight muscle responds like cardiac muscle, showing the malleability of regulation. The interactions of the subunits in flight muscle troponin are described; a model of the complex, using the structure of cardiac troponin as a template, shows an overall similarity of cardiac and flight muscle troponin complexes. The dual regulation by thick and thin filaments in skeletal and cardiac muscle is thought to operate in flight muscle. The structure of inhibited myosin heads folded back on the thick filament in relaxed Lethocerus fibres has not been seen in other species and may be an adaptation to the rapid contractions of flight muscle. A scheme for regulation by thick and thin filaments during oscillatory contraction is described. Cardiac and flight muscle have much in common, but the differing mechanical requirements mean that regulation by both thick and thin filaments is adapted to the particular muscle.
Collapse
|
10
|
Effect of myofibril passive elastic properties on the mechanical communication between motor proteins on adjacent sarcomeres. Sci Rep 2019; 9:9355. [PMID: 31249348 PMCID: PMC6597731 DOI: 10.1038/s41598-019-45772-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/10/2019] [Indexed: 11/08/2022] Open
Abstract
Rapid sarcomere lengthening waves propagate along a single muscle myofibril during spontaneous oscillatory contraction (SPOC). In asynchronous insect flight muscles, SPOC is thought to be almost completely synchronized over the entire myofibril. This phenomenon does not require Ca2+ regulation of the dynamics of the motor proteins, and cannot be explained simply by the longitudinal mechanical equilibrium among sarcomeres in the myofibril. In the present study, we rationalize these phenomena by considering the lateral mechanical equilibrium, in which two tensions originating from the inverse relationship between sarcomere length and lattice spacing, along with the lattice alignment, play important roles in the mechanical communication between motor proteins on adjacent filaments via the Z-disc. The proposed model is capable of explaining various SPOC phenomena based on the stochastic power-stroke mechanism of motor proteins, which responds to temporal changes in longitudinal mechanical load.
Collapse
|
11
|
Azad A, Poloni G, Sontayananon N, Jiang H, Gehmlich K. The giant titin: how to evaluate its role in cardiomyopathies. J Muscle Res Cell Motil 2019; 40:159-167. [PMID: 31147888 PMCID: PMC6726704 DOI: 10.1007/s10974-019-09518-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.
Collapse
Affiliation(s)
- Amar Azad
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
- Swansea University Medical School, Swansea, SA2 8PP, UK
| | - Giulia Poloni
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Phillips MA, Rutledge GA, Kezos JN, Greenspan ZS, Talbott A, Matty S, Arain H, Mueller LD, Rose MR, Shahrestani P. Effects of evolutionary history on genome wide and phenotypic convergence in Drosophila populations. BMC Genomics 2018; 19:743. [PMID: 30305018 PMCID: PMC6180417 DOI: 10.1186/s12864-018-5118-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies combining experimental evolution and next-generation sequencing have found that adaptation in sexually reproducing populations is primarily fueled by standing genetic variation. Consequently, the response to selection is rapid and highly repeatable across replicate populations. Some studies suggest that the response to selection is highly repeatable at both the phenotypic and genomic levels, and that evolutionary history has little impact. Other studies suggest that even when the response to selection is repeatable phenotypically, evolutionary history can have significant impacts at the genomic level. Here we test two hypotheses that may explain this discrepancy. Hypothesis 1: Past intense selection reduces evolutionary repeatability at the genomic and phenotypic levels when conditions change. Hypothesis 2: Previous intense selection does not reduce evolutionary repeatability, but other evolutionary mechanisms may. We test these hypotheses using D. melanogaster populations that were subjected to 260 generations of intense selection for desiccation resistance and have since been under relaxed selection for the past 230 generations. RESULTS We find that, with the exception of longevity and to a lesser extent fecundity, 230 generations of relaxed selection has erased the extreme phenotypic differentiation previously found. We also find no signs of genetic fixation, and only limited evidence of genetic differentiation between previously desiccation resistance selected populations and their controls. CONCLUSION Our findings suggest that evolution in our system is highly repeatable even when populations have been previously subjected to bouts of extreme selection. We therefore conclude that evolutionary repeatability can overcome past bouts of extreme selection in Drosophila experimental evolution, provided experiments are sufficiently long and populations are not inbred.
Collapse
Affiliation(s)
- Mark A Phillips
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA.
| | - Grant A Rutledge
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - James N Kezos
- Department of Development, Aging, and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, San Diego, USA
| | - Zachary S Greenspan
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Andrew Talbott
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Sara Matty
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Hamid Arain
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Laurence D Mueller
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Michael R Rose
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - Parvin Shahrestani
- Department of Biological Science, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| |
Collapse
|
13
|
Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A, Brunner E, Cardone G, Basler K, Habermann BH, Schnorrer F. A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. eLife 2018; 7:34058. [PMID: 29846170 PMCID: PMC6005683 DOI: 10.7554/elife.34058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Collapse
Affiliation(s)
- Maria L Spletter
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Biomedical Center, Physiological ChemistryLudwig-Maximilians-Universität MünchenMartinsriedGermany
| | - Christiane Barz
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Assa Yeroslaviz
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Xu Zhang
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Sandra B Lemke
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Adrien Bonnard
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Erich Brunner
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Giovanni Cardone
- Imaging FacilityMax Planck Institute of BiochemistryMartinsriedGermany
| | - Konrad Basler
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Bianca H Habermann
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Frank Schnorrer
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
| |
Collapse
|
14
|
Randazzo D, Pierantozzi E, Rossi D, Sorrentino V. The potential of obscurin as a therapeutic target in muscle disorders. Expert Opin Ther Targets 2017; 21:897-910. [DOI: 10.1080/14728222.2017.1361931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
15
|
González-Morales N, Holenka TK, Schöck F. Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion. PLoS Genet 2017; 13:e1006880. [PMID: 28732005 PMCID: PMC5521747 DOI: 10.1371/journal.pgen.1006880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Many proteins contribute to the contractile properties of muscles, most notably myosin thick filaments, which are anchored at the M-line, and actin thin filaments, which are anchored at the Z-discs that border each sarcomere. In humans, mutations in the actin-binding protein Filamin-C result in myopathies, but the underlying molecular function is not well understood. Here we show using Drosophila indirect flight muscle that the filamin ortholog Cheerio in conjunction with the giant elastic protein titin plays a crucial role in keeping thin filaments stably anchored at the Z-disc. We identify the filamin domains required for interaction with the titin ortholog Sallimus, and we demonstrate a genetic interaction of filamin with titin and actin. Filamin mutants disrupting the actin- or the titin-binding domain display distinct phenotypes, with Z-discs breaking up in parallel or perpendicularly to the myofibril, respectively. Thus, Z-discs require filamin to withstand the strong contractile forces acting on them. The Z-disc is a macromolecular complex required to attach and stabilize actin thin filaments in the sarcomere, the smallest contractile unit of striated muscles. Mutations in Z-disc-associated proteins typically result in muscle disorders. Dimeric filamin organizes actin filaments, localizes at the Z-disc in vertebrates and causes muscle disorders in humans when mutated. Despite its clinical relevance, the molecular function of filamin in the sarcomere is not well understood. Here we use Drosophila muscles and an array of filamin mutations to address the molecular and cell biological function of filamin in the sarcomere. We show that filamin mainly serves as a Z-disc cohesive element, binding both thin filaments and titin. This configuration enables filamin to act as a bridge between thin filaments and the elastic scaffold protein titin from the adjacent sarcomere, maintaining sarcomere stability during muscle contraction.
Collapse
Affiliation(s)
| | | | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Lindstedt S, Nishikawa K. Huxleys’ Missing Filament: Form and Function of Titin in Vertebrate Striated Muscle. Annu Rev Physiol 2017; 79:145-166. [DOI: 10.1146/annurev-physiol-022516-034152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stan Lindstedt
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona 86011-4185
| | - Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011-4185;
| |
Collapse
|
17
|
Weitkunat M, Brasse M, Bausch AR, Schnorrer F. Mechanical tension and spontaneous muscle twitching precede the formation of cross-striated muscle in vivo. Development 2017; 144:1261-1272. [PMID: 28174246 PMCID: PMC5399620 DOI: 10.1242/dev.140723] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/28/2017] [Indexed: 02/05/2023]
Abstract
Muscle forces are produced by repeated stereotypical actomyosin units called sarcomeres. Sarcomeres are chained into linear myofibrils spanning the entire muscle fiber. In mammalian body muscles, myofibrils are aligned laterally, resulting in their typical cross-striated morphology. Despite this detailed textbook knowledge about the adult muscle structure, it is still unclear how cross-striated myofibrils are built in vivo. Here, we investigate the morphogenesis of Drosophila abdominal muscles and establish them as an in vivo model for cross-striated muscle development. By performing live imaging, we find that long immature myofibrils lacking a periodic actomyosin pattern are built simultaneously in the entire muscle fiber and then align laterally to give mature cross-striated myofibrils. Interestingly, laser micro-lesion experiments demonstrate that mechanical tension precedes the formation of the immature myofibrils. Moreover, these immature myofibrils do generate spontaneous Ca2+-dependent contractions in vivo, which, when chemically blocked, result in cross-striation defects. Taken together, these results suggest a myofibrillogenesis model in which mechanical tension and spontaneous muscle twitching synchronize the simultaneous self-organization of different sarcomeric protein complexes to build highly regular cross-striated myofibrils spanning the length of large muscle fibers. Summary: In Drosophila, immature myofibrils are built simultaneously across an entire muscle fiber, and then self-organize in a manner dependent on spontaneous contractions and mechanical tension.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Martina Brasse
- Lehrstuhl für Biophysik E27, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany .,Developmental Biology Institute of Marseille (IBDM), CNRS, UMR 7288, Aix-Marseille Université, Case 907, Parc Scientifique de Luminy, Marseille 13288, France
| |
Collapse
|
18
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
19
|
Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution. SCIENCE ADVANCES 2016; 2:e1600058. [PMID: 27704041 PMCID: PMC5045269 DOI: 10.1126/sciadv.1600058] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/23/2016] [Indexed: 05/09/2023]
Abstract
We describe a cryo-electron microscopy three-dimensional image reconstruction of relaxed myosin II-containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin's long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation.
Collapse
Affiliation(s)
- Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
| | - Dianne W. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
| | - Michael K. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607, USA
| | - Robert J. Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27607, USA
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306–4380, USA
- Corresponding author.
| |
Collapse
|
20
|
Katzemich A, West RJH, Fukuzawa A, Sweeney ST, Gautel M, Sparrow J, Bullard B. Binding partners of the kinase domains in Drosophila obscurin and their effect on the structure of the flight muscle. J Cell Sci 2015; 128:3386-97. [PMID: 26251439 DOI: 10.1242/jcs.170639] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/27/2015] [Indexed: 01/15/2023] Open
Abstract
Drosophila obscurin (Unc-89) is a titin-like protein in the M-line of the muscle sarcomere. Obscurin has two kinase domains near the C-terminus, both of which are predicted to be inactive. We have identified proteins binding to the kinase domains. Kinase domain 1 bound Bällchen (Ball, an active kinase), and both kinase domains 1 and 2 bound MASK (a 400-kDa protein with ankyrin repeats). Ball was present in the Z-disc and M-line of the indirect flight muscle (IFM) and was diffusely distributed in the sarcomere. MASK was present in both the M-line and the Z-disc. Reducing expression of Ball or MASK by siRNA resulted in abnormalities in the IFM, including missing M-lines and multiple Z-discs. Obscurin was still present, suggesting that the kinase domains act as a scaffold binding Ball and MASK. Unlike obscurin in vertebrate skeletal muscle, Drosophila obscurin is necessary for the correct assembly of the IFM sarcomere. We show that Ball and MASK act downstream of obscurin, and both are needed for development of a well defined M-line and Z-disc. The proteins have not previously been identified in Drosophila muscle.
Collapse
Affiliation(s)
- Anja Katzemich
- Department of Biology, University of York, York YO10 5DD, UK
| | - Ryan J H West
- Department of Biology, University of York, York YO10 5DD, UK
| | - Atsushi Fukuzawa
- King's College BHF Centre, Cardiovascular Division, London SE1 1UL, UK
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mathias Gautel
- King's College BHF Centre, Cardiovascular Division, London SE1 1UL, UK
| | - John Sparrow
- Department of Biology, University of York, York YO10 5DD, UK
| | - Belinda Bullard
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
21
|
Yuan CC, Ma W, Schemmel P, Cheng YS, Liu J, Tsaprailis G, Feldman S, Ayme Southgate A, Irving TC. Elastic proteins in the flight muscle of Manduca sexta. Arch Biochem Biophys 2015; 568:16-27. [PMID: 25602701 PMCID: PMC4684177 DOI: 10.1016/j.abb.2014.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 11/20/2022]
Abstract
The flight muscles (DLM1) of the Hawkmoth, Manduca sexta are synchronous, requiring a neural spike for each contraction. Stress/strain curves of skinned DLM1 showed hysteresis indicating the presence of titin-like elastic proteins. Projectin and kettin are titin-like proteins previously identified in Lethocerus and Drosophila flight muscles. Analysis of Manduca muscles with 1% SDS-agarose gels and western blots showed two bands near 1 MDa that cross-reacted with antibodies to Drosophila projectin. Antibodies to Drosophila kettin cross-reacted to bands at ∼500 and ∼700 kDa, but also to bands at ∼1.6 and ∼2.1 MDa, that had not been previously observed in insect flight muscles. Mass spectrometry identified the 2.1 MDa protein as a product of the Sallimus (sls) gene. Analysis of the gene sequence showed that all 4 putative Sallimus and kettin isoforms could be explained as products of alternative splicing of the single sls gene. Both projectin and sallimus isoforms were expressed to higher levels in ventrally located DLM1 subunits, primarily responsible for active work production, as compared to dorsally located subunits, which may act as damped springs. The different expression levels of the 2 projectin isoforms and 4 sallimus/kettin isoforms may be adaptations to the specific requirements of individual muscle subunits.
Collapse
Affiliation(s)
- Chen-Ching Yuan
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Weikang Ma
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Peter Schemmel
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Yu-Shu Cheng
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Jiangmin Liu
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | | | - Samuel Feldman
- Dept. of Biology, College of Charleston, Charleston, SC, USA
| | | | - Thomas C Irving
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA.
| |
Collapse
|
22
|
Pérez-Moreno JJ, Bischoff M, Martín-Bermudo MD, Estrada B. The conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in Drosophila. J Cell Sci 2014; 127:3162-73. [PMID: 24794494 PMCID: PMC4095857 DOI: 10.1242/jcs.150425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Muscle differentiation requires the assembly of high-order structures called myofibrils, composed of sarcomeres. Even though the molecular organization of sarcomeres is well known, the mechanisms underlying myofibrillogenesis are poorly understood. It has been proposed that integrin-dependent adhesion nucleates myofibrils at the periphery of the muscle cell to sustain sarcomere assembly. Here, we report a role for the gene perdido (perd, also known as kon-tiki, a transmembrane chondroitin proteoglycan) in myofibrillogenesis. Expression of perd RNAi in muscles, prior to adult myogenesis, can induce misorientation and detachment of Drosophila adult abdominal muscles. In comparison to controls, perd-depleted muscles contain fewer myofibrils, which are localized at the cell periphery. These myofibrils are detached from each other and display a defective sarcomeric structure. Our results demonstrate that the extracellular matrix receptor Perd has a specific role in the assembly of myofibrils and in sarcomeric organization. We suggest that Perd acts downstream or in parallel to integrins to enable the connection of nascent myofibrils to the Z-bands. Our work identifies the Drosophila adult abdominal muscles as a model to investigate in vivo the mechanisms behind myofibrillogenesis.
Collapse
Affiliation(s)
- Juan J Pérez-Moreno
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, 41013 Seville, Spain
| | - Marcus Bischoff
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Maria D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, 41013 Seville, Spain
| | - Beatriz Estrada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, 41013 Seville, Spain
| |
Collapse
|
23
|
Ayme-Southgate AJ, Turner L, Southgate RJ. Molecular analysis of the muscle protein projectin in Lepidoptera. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:88. [PMID: 24206568 PMCID: PMC3835035 DOI: 10.1673/031.013.8801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/08/2012] [Indexed: 06/02/2023]
Abstract
Striated muscles of both vertebrates and insects contain a third filament composed of the giant proteins, namely kettin and projectin (insects) and titin (vertebrates). All three proteins have been shown to contain several domains implicated in conferring elasticity, in particular a PEVK segment. In this study, the characterization of the projectin protein in the silkmoth, Bombyx mori L. (Lepidoptera: Bombycidae), and the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), as well as a partial characterization in the Carolina sphinx, Manduca sexta L. (Lepidoptera: Sphingidae), are presented. This study showed that, similar to other insects, projectin's overall modular organization was conserved, but in contrast, the PEVK region had a highly divergent sequence. The analysis of alternative splicing in the PEVK region revealed a small number of possible isoforms and the lack of a flight-muscle specific variant, both characteristics being in sharp contrast with findings from other insects. The possible correlation with difference in flight muscle stiffness and physiology between Lepidoptera and other insect orders is discussed.
Collapse
Affiliation(s)
- A. J. Ayme-Southgate
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29401
| | - L. Turner
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29401
- Current address: Central Carolina Technical College, Sumter, SC
| | - R. J. Southgate
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29401
| |
Collapse
|
24
|
Katzemich A, Kreisköther N, Alexandrovich A, Elliott C, Schöck F, Leonard K, Sparrow J, Bullard B. The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J Cell Sci 2012; 125:3367-79. [PMID: 22467859 DOI: 10.1242/jcs.097345] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Obscurin (also known as Unc-89 in Drosophila) is a large modular protein in the M-line of Drosophila muscles. Drosophila obscurin is similar to the nematode protein UNC-89. Four isoforms are found in the muscles of adult flies: two in the indirect flight muscle (IFM) and two in other muscles. A fifth isoform is found in the larva. The larger IFM isoform has all the domains that were predicted from the gene sequence. Obscurin is in the M-line throughout development of the embryo, larva and pupa. Using P-element mutant flies and RNAi knockdown flies, we have investigated the effect of decreased obscurin expression on the structure of the sarcomere. Embryos, larvae and pupae developed normally. In the pupa, however, the IFM was affected. Although the Z-disc was normal, the H-zone was misaligned. Adults were unable to fly and the structure of the IFM was irregular: M-lines were missing and H-zones misplaced or absent. Isolated thick filaments were asymmetrical, with bare zones that were shifted away from the middle of the filaments. In the sarcomere, the length and polarity of thin filaments depends on the symmetry of adjacent thick filaments; shifted bare zones resulted in abnormally long or short thin filaments. We conclude that obscurin in the IFM is necessary for the development of a symmetrical sarcomere in Drosophila IFM.
Collapse
|
25
|
Salvi SS, Kumar RP, Ramachandra NB, Sparrow JC, Nongthomba U. Mutations in Drosophila myosin rod cause defects in myofibril assembly. J Mol Biol 2012; 419:22-40. [PMID: 22370558 DOI: 10.1016/j.jmb.2012.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/17/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies.
Collapse
Affiliation(s)
- Sheetal S Salvi
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
26
|
Genomic- and protein-based approaches for connectin (titin) identification in the ascidian Ciona intestinalis. Methods 2012; 56:18-24. [PMID: 22245513 DOI: 10.1016/j.ymeth.2011.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/24/2011] [Accepted: 12/28/2011] [Indexed: 11/20/2022] Open
Abstract
Determining the complete primary structure of large proteins is difficult because of the large sequence size and low sequence homology among animals, as is the case with connectin (titin)-like proteins in invertebrate muscles. Conventionally, large proteins have been investigated using immuno-screenings and plaque hybridization screenings that require significant time and labor. Recently, however, the genomic sequences of various invertebrates have been determined, leading to changes in the strategies used to elucidate the complete primary structures of large proteins. In this paper, we describe our methods for determining the sequences of large proteins by elucidating the primary structure of connectin from the ascidian Ciona intestinalis as an example. We searched for genes that encode connectin-like proteins in the C. intestinalis genome using the BLAST search program. Subsequently, we identified some domains present in connectin and connectin-like proteins, such as immunoglobulin (Ig), fibronectin type 3 (Fn) and kinase domains in C. intestinalis using the SMART program and manual estimation. The existence of these domains and the unique sequences between each domain were confirmed using RT-PCR. We also examined the localization of mRNA using whole-mount in situ hybridization (WISH) and protein expression using SDS-PAGE. These analyses indicate that the domain structure and molecular weight of ascidian connectin are similar to those of vertebrate connectin and that ascidian connectin is also expressed in heart muscle, similarly to vertebrate connectin. The methods described in this study can be used to determine the primary structures of large proteins, such as novel connectin-like proteins in invertebrates.
Collapse
|
27
|
Ayme-Southgate A, Philipp RA, Southgate RJ. Projectin PEVK domain, splicing variants and domain structure in basal and derived insects. INSECT MOLECULAR BIOLOGY 2011; 20:347-356. [PMID: 21349121 DOI: 10.1111/j.1365-2583.2011.01069.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The third elastic filament of striated muscles consists of giant proteins: titin (in vertebrates) and kettin/projectin (in insects). In all three proteins, elasticity is at least partly associated with the so-called PEVK domain. The projectin PEVK domains of diverse insects are highly divergent compared with an otherwise conserved protein organization. We present the characterization of the PEVK domain in two dragonflies and in human lice. A conserved segment at the end of the PEVK, the NH(2)-terminal conserved segment-1 (NTCS-1), may serve as an anchor point for projectin to either myosin or actin, providing a mechanical link. The analysis of alternative splicing variants identifies the shortest PEVK isoform as the predominant form in the flight muscles of several insects, possibly contributing to myofibrillar stiffness.
Collapse
Affiliation(s)
- A Ayme-Southgate
- Department of Biology, College of Charleston, Charleston, SC, USA.
| | | | | |
Collapse
|
28
|
Tanner BCW, Miller MS, Miller BM, Lekkas P, Irving TC, Maughan DW, Vigoreaux JO. COOH-terminal truncation of flightin decreases myofilament lattice organization, cross-bridge binding, and power output in Drosophila indirect flight muscle. Am J Physiol Cell Physiol 2011; 301:C383-91. [PMID: 21593450 DOI: 10.1152/ajpcell.00016.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln(ΔC44)). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln(ΔC44) line compared with control, a transgenic flightin-null rescued line (fln(+)). fln(ΔC44) fibers produced roughly 1/3 the oscillatory work and power of fln(+), with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln(ΔC44) fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln(ΔC44) flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ohtsuka S, Hanashima A, Kubokawa K, Bao Y, Tando Y, Kohmaru J, Nakaya H, Maruyama K, Kimura S. Amphioxus connectin exhibits merged structure as invertebrate connectin in I-band region and vertebrate connectin in A-band region. J Mol Biol 2011; 409:415-26. [PMID: 21510959 DOI: 10.1016/j.jmb.2011.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/10/2011] [Accepted: 04/05/2011] [Indexed: 11/16/2022]
Abstract
Connectin is an elastic protein found in vertebrate striated muscle and in some invertebrates as connectin-like proteins. In this study, we determined the structure of the amphioxus connectin gene and analyzed its sequence based on its genomic information. Amphioxus is not a vertebrate but, phylogenetically, the lowest chordate. Analysis of gene structure revealed that the amphioxus gene is approximately 430 kb in length and consists of regions with exons of repeatedly aligned immunoglobulin (Ig) domains and regions with exons of fibronectin type 3 and Ig domain repeats. With regard to this sequence, although the region corresponding to the I-band is homologous to that of invertebrate connectin-like proteins and has an Ig-PEVK region similar to that of the Neanthes sp. 4000K protein, the region corresponding to the A-band has a super-repeat structure of Ig and fibronectin type 3 domains and a kinase domain near the C-terminus, which is similar to the structure of vertebrate connectin. These findings revealed that amphioxus connectin has the domain structure of invertebrate connectin-like proteins at its N-terminus and that of vertebrate connectin at its C-terminus. Thus, amphioxus connectin has a novel structure among known connectin-like proteins. This finding suggests that the formation and maintenance of the sarcomeric structure of amphioxus striated muscle are similar to those of vertebrates; however, its elasticity is different from that of vertebrates, being more similar to that of invertebrates.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Department of Biology, Graduate School of Science, Chiba University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Iwamoto H. Structure, function and evolution of insect flight muscle. Biophysics (Nagoya-shi) 2011; 7:21-28. [PMID: 27857589 PMCID: PMC5036774 DOI: 10.2142/biophysics.7.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/02/2011] [Indexed: 12/01/2022] Open
Abstract
Insects, the largest group of animals on the earth, owe their prosperity to their ability of flight and small body sizes. The ability of flight provided means for rapid translocation. The small body size allowed access to unutilized niches. By acquiring both features, however, insects faced a new problem: They were forced to beat their wings at enormous frequencies. Insects have overcome this problem by inventing asynchronous flight muscle, a highly specialized form of striated muscle capable of oscillating at >1,000 Hz. This article reviews the structure, mechanism, and molecular evolution of this unique invention of nature.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Research and Utilization Division, SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| |
Collapse
|
31
|
X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proc Natl Acad Sci U S A 2010; 108:120-5. [PMID: 21148419 DOI: 10.1073/pnas.1014599107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stretch activation is important in the mechanical properties of vertebrate cardiac muscle and essential to the flight muscles of most insects. Despite decades of investigation, the underlying molecular mechanism of stretch activation is unknown. We investigated the role of recently observed connections between myosin and troponin, called "troponin bridges," by analyzing real-time X-ray diffraction "movies" from sinusoidally stretch-activated Lethocerus muscles. Observed changes in X-ray reflections arising from myosin heads, actin filaments, troponin, and tropomyosin were consistent with the hypothesis that troponin bridges are the key agent of mechanical signal transduction. The time-resolved sequence of molecular changes suggests a mechanism for stretch activation, in which troponin bridges mechanically tug tropomyosin aside to relieve tropomyosin's steric blocking of myosin-actin binding. This enables subsequent force production, with cross-bridge targeting further enhanced by stretch-induced lattice compression and thick-filament twisting. Similar linkages may operate in other muscle systems, such as mammalian cardiac muscle, where stretch activation is thought to aid in cardiac ejection.
Collapse
|
32
|
Iwamoto H, Inoue K, Yagi N. Fast x-ray recordings reveal dynamic action of contractile and regulatory proteins in stretch-activated insect flight muscle. Biophys J 2010; 99:184-92. [PMID: 20655846 DOI: 10.1016/j.bpj.2010.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/20/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022] Open
Abstract
To assess the ability of the thin-filament regulatory system to control each stretch-activation (SA) event in the fast beating of asynchronous insect flight muscle (IFM), we obtained fast (3.4 ms/frame) and semistatic (> or = 50 ms) x-ray diffraction recordings for IFM fibers from bumblebees (beating at 170 Hz) and compared the results with those acquired in giant waterbugs (20-30 Hz) and crane flies (40 Hz, semistatic only). In contrast to the well-documented large SA force of waterbug IFMs, the SA force of bumblebee and crane fly IFMs was small compared to their large isometric force. In semistatic recordings, step-stretched bumblebee and crane fly IFMs showed smaller net SA-associated intensity changes in reflections that report myosin attachment to actin and tropomyosin movement toward its activating position. However, fast recordings on bumblebee IFMs showed a fast and large temporary reversal of intensities in these reflections, suggesting that the myosin heads supporting isometric force are dynamically replaced by SA-supporting heads, and that tropomyosin moves to and back from its inactivating position in milliseconds. In waterbug IFMs, the fast temporary reversal of intensities was not obvious. The observed rates of the attachment/detachment of myosin heads and the motion of tropomyosin are fast enough for the thin-filament regulatory system to control each SA event in fast-beating insects.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Research and Utilization Division, SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan.
| | | | | |
Collapse
|
33
|
Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction. J Biomed Biotechnol 2010; 2010:473423. [PMID: 20625489 PMCID: PMC2896680 DOI: 10.1155/2010/473423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/26/2010] [Indexed: 02/02/2023] Open
Abstract
The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.
Collapse
|
34
|
De Nicola GF, Martin S, Bullard B, Pastore A. Solution structure of the Apo C-terminal domain of the Lethocerus F1 troponin C isoform. Biochemistry 2010; 49:1719-26. [PMID: 20104876 PMCID: PMC3388720 DOI: 10.1021/bi902094w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/24/2010] [Indexed: 11/28/2022]
Abstract
Muscle contraction is activated by two distinct mechanisms. One depends on the calcium influx, and the other is calcium-independent and activated by mechanical stress. A prototypical example of stretch activation is observed in insect muscles. In Lethocerus, a model system ideally suited for studying stretch activation, the two mechanisms seem to be under the control of different isoforms of troponin C (TnC), F1 and F2, which are responsible for stretch and calcium-dependent regulation, respectively. We have previously shown that F1 TnC is a typical collapsed dumbbell EF-hand protein that accommodates one calcium ion in its fourth EF-hand. When calcium loaded, the C-terminal domain of F1 TnC is in an open conformation which allows binding to troponin I. We have determined the solution structure of the isolated F1 TnC C-terminal domain in the absence of calcium and have compared it together with its dynamical properties with those of the calcium-loaded form. The domain is folded also in the absence of calcium and is in a closed conformation. Binding of a single calcium is sufficient to induce a modest but clear closed-to-open conformational transition and releases the conformational entropy observed in the calcium-free form. These results provide the first example of a TnC domain in which the presence of only one calcium ion is sufficient to induce a closed-to-open transition and clarify the role of calcium in stretch activation.
Collapse
Affiliation(s)
- Gian Felice De Nicola
- Molecular Structure Division, National Institute for Medical Research, MRC, The Ridgeway, Mill Hill, London NW71AA, U.K
| | - Stephen Martin
- Molecular Structure Division, National Institute for Medical Research, MRC, The Ridgeway, Mill Hill, London NW71AA, U.K
| | - Belinda Bullard
- Department of Biology, University of York, York YO10 5DD, U.K
| | - Annalisa Pastore
- Molecular Structure Division, National Institute for Medical Research, MRC, The Ridgeway, Mill Hill, London NW71AA, U.K
| |
Collapse
|
35
|
Flightin is necessary for length determination, structural integrity, and large bending stiffness of insect flight muscle thick filaments. J Mol Biol 2009; 395:340-8. [PMID: 19917296 DOI: 10.1016/j.jmb.2009.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 11/21/2022]
Abstract
Despite the fundamental role of thick filaments in muscle contraction, little is known about the mechanical behavior of these filaments and how myosin-associated proteins dictate differences between muscle types. In this study, we used atomic force microscopy to study the morphological and mechanical properties of fully hydrated native thick filaments isolated from indirect flight muscle (IFM) of normal and mutant Drosophila lacking flightin (fln(0)). IFM thick filaments from newly eclosed (0-1 h old) wild-type flies have a mean length of 3.04+/-0.05 microm. In contrast, IFM thick filaments from newly eclosed fln(0) flies are more variable in length and, on average, are significantly longer (3.90+/-1.33 microm) than wild-type filaments from flies of the same age. In the absence of flightin, thick filaments can attain lengths >300% of wild-type filaments, indicating that flightin is required for setting the proper filament length in vivo. Filaments lacking flightin are structurally compromised, and filament preparations from fully matured 3- to 5-day-old adult fln(0) IFM yielded fragments of variable length much shorter than 3.20+/-0.04 microm, the length obtained from wild-type flies of similar age. The persistence length, an index of bending stiffness, was calculated from measurements of filament end-to-end length and contour length. We show that the presence of flightin increases persistence length by more than 40% and that wild-type filaments increase in stiffness with age. These results indicate that flightin fulfills an essential role in defining the structural and mechanical properties of IFM thick filaments.
Collapse
|
36
|
Perkins AD, Ellis SJ, Asghari P, Shamsian A, Moore EDW, Tanentzapf G. Integrin-mediated adhesion maintains sarcomeric integrity. Dev Biol 2009; 338:15-27. [PMID: 19879257 DOI: 10.1016/j.ydbio.2009.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 10/24/2022]
Abstract
Integrin-mediated adhesion to the ECM is essential for normal development of animal tissues. During muscle development, integrins provide the structural stability required to construct such a highly tensile, force generating tissue. Mutations that disrupt integrin-mediated adhesion in skeletal muscles give rise to a myopathy in humans and mice. To determine if this is due to defects in formation or defects in maintenance of muscle tissue, we used an inducible, targeted RNAi based approach to disrupt integrin-mediated adhesion in fully formed adult fly muscles. A decrease in integrin-mediated adhesion in adult muscles led to a progressive loss of muscle function due to a failure to maintain normal sarcomeric cytoarchitecture. This defect was due to a gradual, age dependent disorganization of the sarcomeric actin, Z-line, and M-line. Electron microscopic analysis showed that reduction in integrin-mediated adhesion resulted in detachment of actin filaments from the Z-lines, separation of the Z-lines from the membrane, and eventually to disintegration of the Z-lines. Our results show that integrin-mediated adhesion is essential for maintaining sarcomeric integrity and illustrate that the seemingly stable adhesive contacts underlying sarcomeric architecture are inherently dynamic.
Collapse
Affiliation(s)
- Alexander D Perkins
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
37
|
Ayme-Southgate AJ, Southgate RJ, Philipp RA, Sotka EE, Kramp C. The myofibrillar protein, projectin, is highly conserved across insect evolution except for its PEVK domain. J Mol Evol 2008; 67:653-69. [PMID: 18982379 PMCID: PMC2775928 DOI: 10.1007/s00239-008-9177-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
All striated muscles respond to stretch by a delayed increase in tension. This physiological response, known as stretch activation, is, however, predominantly found in vertebrate cardiac muscle and insect asynchronous flight muscles. Stretch activation relies on an elastic third filament system composed of giant proteins known as titin in vertebrates or kettin and projectin in insects. The projectin insect protein functions jointly as a "scaffold and ruler" system during myofibril assembly and as an elastic protein during stretch activation. An evolutionary analysis of the projectin molecule could potentially provide insight into how distinct protein regions may have evolved in response to different evolutionary constraints. We mined candidate genes in representative insect species from Hemiptera to Diptera, from published and novel genome sequence data, and carried out a detailed molecular and phylogenetic analysis. The general domain organization of projectin is highly conserved, as are the protein sequences of its two repeated regions-the immunoglobulin type C and fibronectin type III domains. The conservation in structure and sequence is consistent with the proposed function of projectin as a scaffold and ruler. In contrast, the amino acid sequences of the elastic PEVK domains are noticeably divergent, although their length and overall unusual amino acid makeup are conserved. These patterns suggest that the PEVK region working as an unstructured domain can still maintain its dynamic, and even its three-dimensional, properties, without the need for strict amino acid conservation. Phylogenetic analysis of the projectin proteins also supports a reclassification of the Hymenoptera in relation to Diptera and Coleoptera.
Collapse
Affiliation(s)
- Agnes J Ayme-Southgate
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29401, USA.
| | | | | | | | | |
Collapse
|
38
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
39
|
Dixon RDS, Arneman DK, Rachlin AS, Sundaresan NR, Costello MJ, Campbell SL, Otey CA. Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. J Biol Chem 2008; 283:6222-31. [PMID: 18180288 DOI: 10.1074/jbc.m707694200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Palladin is a recently described phosphoprotein that plays an important role in cell adhesion and motility. Previous studies have shown that palladin overexpression results in profound changes in actin organization in cultured cells. Palladin binds to the actin-associated proteins alpha-actinin, vasodilator-stimulated phosphoprotein, profilin, Eps8, and ezrin, suggesting that it may affect actin organization indirectly. To determine its molecular function in generating actin arrays, we purified palladin and asked if it is also capable of binding to F-actin directly. In co-sedimentation and differential sedimentation assays, palladin was found to both bind and cross-link actin filaments. This bundling activity was confirmed by fluorescence and electron microscopy. Palladin fragments were then purified and used to determine the sequences necessary to bind and bundle F-actin. The Ig3 domain of palladin bound to F-actin, and a palladin fragment containing Ig3, Ig4, and the region linking these domains was identified as a fragment that was able to bundle F-actin. Because palladin has multiple Ig domains, and only one of them binds to F-actin, this suggests that different Ig domains may be specialized for distinct biological functions. In addition, our results suggest a potential role for palladin in generating specialized, actin-based cell morphologies via both direct actin cross-linking activity and indirect scaffolding activity.
Collapse
Affiliation(s)
- Richard D S Dixon
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Burkart C, Qiu F, Brendel S, Benes V, Hååg P, Labeit S, Leonard K, Bullard B. Modular Proteins from the Drosophila sallimus (sls) Gene and their Expression in Muscles with Different Extensibility. J Mol Biol 2007; 367:953-69. [PMID: 17316686 DOI: 10.1016/j.jmb.2007.01.059] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/21/2007] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
The passive elasticity of the sarcomere in striated muscle is determined by large modular proteins, such as titin in vertebrates. In insects, the function of titin is divided between two shorter proteins, projectin and sallimus (Sls), which are the products of different genes. The Drosophila sallimus (sls) gene codes for a protein of 2 MDa. The N-terminal half of the protein is largely made up of immunoglobulin (Ig) domains and unique sequence; the C-terminal half has two stretches of sequence similar to the elastic PEVK region of titin, and at the end of the molecule there is a region of tandem Ig and fibronectin domains. We have investigated splicing pathways of the sls gene and identified isoforms expressed in different muscle types, and at different stages of Drosophila development. The 5' half of sls codes for zormin and kettin; both proteins contain Ig domains and can be expressed as separate isoforms, or as larger proteins linked to sequence downstream. There are multiple splicing pathways between the kettin region of sls and sequence coding for the two PEVK regions. All the resulting protein isoforms have sequence derived from the 3' end of the sls gene. Splicing of exons varies at different stages of development. Kettin RNA is predominant in the embryo, and longer transcripts are expressed in larva, pupa and adult. Sls isoforms in the indirect flight muscle (IFM) are zormin, kettin and Sls(700), in which sequence derived from the end of the gene is spliced to kettin RNA. Zormin is in both M-line and Z-disc. Kettin and Sls(700) extend from the Z-disc to the ends of the thick filaments, though, Sls(700) is only in the myofibril core. These shorter isoforms would contribute to the high stiffness of IFM. Other muscles in the thorax and legs have longer Sls isoforms with varying amounts of PEVK sequence; all span the I-band to the ends of the thick filaments. In muscles with longer I-bands, the proportion of PEVK sequence would determine the extensibility of the sarcomere. Alternative Sls isoforms could regulate the stiffness of the many fibre types in Drosophila muscles.
Collapse
Affiliation(s)
- Christoph Burkart
- Institut für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, D-68167 Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kreisköther N, Reichert N, Buttgereit D, Hertenstein A, Fischbach KF, Renkawitz-Pohl R. Drosophila Rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin and Zormin in the terminal Z-discs. J Muscle Res Cell Motil 2006; 27:93-106. [PMID: 16699917 DOI: 10.1007/s10974-006-9060-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The rolling pebbles gene of Drosophila encodes two proteins, one of which, Rols7, is essential for myoblast fusion. In addition, Rols 7 is expressed during myofibrillogenesis and in the mature muscles. Here it overlaps with alpha-Actinin (alpha-Actn) and the N-terminus of D-Titin/Kettin/Zormin in the Z-line of the sarcomeres. In the attachment sites of the somatic muscles, Rols7 and the immunoglobulin superfamily protein Dumbfounded/Kin of irreC (Duf/Kirre) colocalise. As Duf/Kirre is detectable only transiently, it may be involved in establishing the first contact of the outgrowing muscle fiber to the epidermal attachment site. We propose that Rols7 and Duf/Kirre link the terminal Z-disc to the cell membrane by direct interaction. This is supported by the fact that in yeast two hybrid assays the tetratricopeptide repeat E (TPR E) of Rols7 shows interaction with the intracellular domain of Duf/Kirre. The colocalisation of Rols7 with alpha-Actn and with D-Titin/Kettin/Zormin in the Z-dics is reflected in interactions with different domains of Rols7 in this assay. In summary, these data show that besides the role in myoblast fusion, Rols7 is a scaffold protein during myofibrillogenesis and in the Z-line of the sarcomere as well as in the terminal Z-disc linking the muscle to the epidermal attachment sites.
Collapse
Affiliation(s)
- Nina Kreisköther
- Fachbereich Biologie, Entwicklungsbiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Ono K, Yu R, Mohri K, Ono S. Caenorhabditis elegans kettin, a large immunoglobulin-like repeat protein, binds to filamentous actin and provides mechanical stability to the contractile apparatuses in body wall muscle. Mol Biol Cell 2006; 17:2722-34. [PMID: 16597697 PMCID: PMC1474806 DOI: 10.1091/mbc.e06-02-0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kettin is a large actin-binding protein with immunoglobulin-like (Ig) repeats, which is associated with the thin filaments in arthropod muscles. Here, we report identification and functional characterization of kettin in the nematode Caenorhabditis elegans. We found that one of the monoclonal antibodies that were raised against C. elegans muscle proteins specifically reacts with kettin (Ce-kettin). We determined the entire cDNA sequence of Ce-kettin that encodes a protein of 472 kDa with 31 Ig repeats. Arthropod kettins are splice variants of much larger connectin/titin-related proteins. However, the gene for Ce-kettin is independent of other connectin/titin-related genes. Ce-kettin localizes to the thin filaments near the dense bodies in both striated and nonstriated muscles. The C-terminal four Ig repeats and the adjacent non-Ig region synergistically bind to actin filaments in vitro. RNA interference of Ce-kettin caused weak disorganization of the actin filaments in body wall muscle. This phenotype was suppressed by inhibiting muscle contraction by a myosin mutation, but it was enhanced by tetramisole-induced hypercontraction. Furthermore, Ce-kettin was involved in organizing the cytoplasmic portion of the dense bodies in cooperation with alpha-actinin. These results suggest that kettin is an important regulator of myofibrillar organization and provides mechanical stability to the myofibrils during contraction.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Robinson Yu
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Kurato Mohri
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|