1
|
Tarahi M, Aghababaei F, McClements DJ, Pignitter M, Hadidi M. Bioactive peptides derived from insect proteins: Preparation, biological activities, potential applications, and safety issues. Food Chem 2025; 465:142113. [PMID: 39581148 DOI: 10.1016/j.foodchem.2024.142113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Bioactive peptides are polypeptides with specific amino acid sequences that exhibit biological activities and health benefits. Insects have emerged as a sustainable source of proteins in human food and animal feed due to their efficient resource utilization, low environmental footprint, and good nutritional profile. Moreover, insect-derived bioactive peptides (IBPs) offer potential applications in functional foods and pharmaceuticals due to their antioxidant, antimicrobial, antihypertensive, anti-inflammatory, antidiabetic, and anti-obesity activities. In this article, the isolation, purification, and properties of IBPs are reviewed, as well as their potential health benefits, commercial applications, and safety. Despite the growing interest in incorporating IBPs into food products, challenges regarding consumer acceptance, safety, and regulations still persist. Thus, there is a pressing need for further research in this area, as well as clarification of the regulatory framework, before the full potential of insects as a sustainable source of bioactive peptides for human consumption can be realized.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | | | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
2
|
Fernando JC, Batucan JD, Peran JE, Salvador-Reyes LA, Villaraza AJL. The Wheel of Fortune: Helical Wheel Alanine Scanning of a Spider Venom Antimicrobial Peptide Reveals Residues Involved in Antimicrobial and Cytotoxic Activity. ChemMedChem 2024; 19:e202400488. [PMID: 39128881 DOI: 10.1002/cmdc.202400488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
A preference for several amino acids is observed to occur at particular positions of cationic α-helical antimicrobial peptides (AMPs), which ensures the formation of amphipathic regions once they assume their correct secondary structure in membranes or membrane-mimicking environments and makes them active against pathogens. This study determined the effect of alanine mutations on the secondary structure and bioactivity of lyp1987 (GRLQAFLAKMKEIAAQTL-NH2), a cationic α-helical AMP obtained from the venom of Lycosa poonaensis which exhibits broad range activity against Gram-positive and Gram-negative bacteria with micromolar minimum inhibitory concentrations (MIC). CD spectroscopy revealed no significant difference in the secondary structure, with all alanine-substituted analogs exhibiting predominantly α-helical structure in buffered 2,2,2-trifluoroethanol solution. Alanine substitution at Glu12 and Thr17 increased the activity of lyp1987 against Gram-positive and -negative bacteria, while alanine substitution at Lys9 increased its selectivity against Gram-positive bacteria. Further investigation can be done to determine positions and substitutions that will give less cytotoxic analogs.
Collapse
Affiliation(s)
- Jomari C Fernando
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Jeremiah D Batucan
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Jacquelyn E Peran
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Lilibeth A Salvador-Reyes
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Aaron Joseph L Villaraza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| |
Collapse
|
3
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024; 16:2269-2304. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Bizzotto E, Zampieri G, Treu L, Filannino P, Di Cagno R, Campanaro S. Classification of bioactive peptides: A systematic benchmark of models and encodings. Comput Struct Biotechnol J 2024; 23:2442-2452. [PMID: 38867723 PMCID: PMC11168199 DOI: 10.1016/j.csbj.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Bioactive peptides are short amino acid chains possessing biological activity and exerting physiological effects relevant to human health. Despite their therapeutic value, their identification remains a major problem, as it mainly relies on time-consuming in vitro tests. While bioinformatic tools for the identification of bioactive peptides are available, they are focused on specific functional classes and have not been systematically tested on realistic settings. To tackle this problem, bioactive peptide sequences and functions were here gathered from a variety of databases to generate a unified collection of bioactive peptides from microbial fermentation. This collection was organized into nine functional classes including some previously studied and some unexplored such as immunomodulatory, opioid and cardiovascular peptides. Upon assessing their sequence properties, four alternative encoding methods were tested in combination with a multitude of machine learning algorithms, from basic classifiers like logistic regression to advanced algorithms like BERT. Tests on a total of 171 models showed that, while some functions are intrinsically easier to detect, no single combination of classifiers and encoders worked universally well for all classes. For this reason, we unified all the best individual models for each class and generated CICERON (Classification of bIoaCtive pEptides fRom micrObial fermeNtation), a classification tool for the functional classification of peptides. State-of-the-art classifiers were found to underperform on our realistic benchmark dataset compared to the models included in CICERON. Altogether, our work provides a tool for real-world peptide classification and can serve as a benchmark for future model development.
Collapse
Affiliation(s)
- Edoardo Bizzotto
- Department of Biology, University of Padua, Via U. Bassi 58/b, Padova 35131, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, Via U. Bassi 58/b, Padova 35131, Italy
| | - Laura Treu
- Department of Biology, University of Padua, Via U. Bassi 58/b, Padova 35131, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via G. Amendola 165/a, Bari 70126, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Universita, 5, Bolzano 39100, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, Padova 35131, Italy
| |
Collapse
|
5
|
Li X, Chen K, Liu R, Zheng Z, Hou X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front Immunol 2024; 15:1496147. [PMID: 39620214 PMCID: PMC11604648 DOI: 10.3389/fimmu.2024.1496147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge. These similarities extend to a wide range of antibacterial activities demonstrated in vitro, effectively protecting nerve tissue from microbial threats. This review systematically examines 12 neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), orexin-B (ORXB), ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST), identified for their antimicrobial properties, summarizing their structural features, antimicrobial effectiveness, and action mechanisms. Importantly, the majority of these antimicrobial neuropeptides (9 out of 12) also possess significant anti-inflammatory properties, potentially playing a key role in preserving immune tolerance in various disorders. However, the connection between this anti-inflammatory property and the brain's infection defense strategy has rarely been explored. Our review suggests that the combined antimicrobial and anti-inflammatory actions of neuropeptides could be integral to the brain's defense strategy against pathogens, marking an exciting direction for future research.
Collapse
Affiliation(s)
- Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Zhaodi Zheng
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Dasgupta P, Vinil K, Kanaujia SP. Evolutionary trends indicate a coherent organization of sap operons. Res Microbiol 2024; 175:104228. [PMID: 38972435 DOI: 10.1016/j.resmic.2024.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Human hosts possess a complex network of immune responses against microbial pathogens. The production of antimicrobial peptides (AMPs), which target the pathogen cell membranes and inhibit them from inhabiting the hosts, is one such mechanism. However, pathogens have evolved systems that encounter these host-produced AMPs. The Sap (sensitivity to antimicrobial peptides) transporter uptakes AMPs inside the microbial cell and proteolytically degrades them. The Sap transporters comprise five subunits encoded by genes in an operon. Despite its ubiquitous nature, its subunits are not found to be in tandem with many organisms. In this study, a total of 421 Sap transporters were analyzed for their operonic arrangement. Out of 421, a total of 352 operons were found to be in consensus arrangement, while the remaining 69 show a varying arrangement of genes. The analysis of the intergenic distance between the subunits of the sap operon suggests a signature pattern with sapAB (-4), sapBC (-14), sapCD (-1), and sapDF (-4 to 1). An evolutionary analysis of these operons favors the consensus arrangement of the Sap transporter systems, substantiating its prevalence in most of the Gram-negative pathogens. Overall, this study provides insight into bacterial evolution, favoring the maintenance of the genetic organization of essential pathogenicity factors.
Collapse
Affiliation(s)
- Pratik Dasgupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Kavya Vinil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
7
|
Yadav N, Chauhan VS. Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections. Adv Colloid Interface Sci 2024; 333:103282. [PMID: 39276418 DOI: 10.1016/j.cis.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
In recent years, multidrug-resistant pathogenic microorganisms (MDROs) have emerged as a severe threat to human health, exhibiting robust resistance to traditional antibiotics. This has created a formidable challenge in modern medicine as we grapple with limited options to combat these resilient bacteria. Despite extensive efforts by scientists to develop new antibiotics targeting these pathogens, the quest for novel antibacterial molecules has become increasingly arduous. Fortunately, nature offers a potential solution in the form of cationic antimicrobial peptides (AMPs) and their synthetic counterparts. AMPs, naturally occurring peptides, have displayed promising efficacy in fighting bacterial infections by disrupting bacterial cell membranes, hindering their survival and reproduction. These peptides, along with their synthetic mimics, present an exciting alternative in combating antibiotic resistance. They hold the potential to emerge as a formidable tool against MDROs, offering hope for improved strategies to protect communities. Extensive research has explored the diversity, history, and structure-properties relationship of AMPs, investigating their amphiphilic nature for membrane disruption and mechanisms of action. However, despite their therapeutic promise, AMPs face several documented limitations. Among these challenges, poor pharmacokinetic properties stand out, impeding the attainment of therapeutic levels in the body. Additionally, some AMPs exhibit toxicity and susceptibility to protease cleavage, leading to a short half-life and reduced efficacy in animal models. These limitations pose obstacles in developing effective treatments based on AMPs. Furthermore, the high manufacturing costs associated with AMPs could significantly hinder their widespread use. In this review, we aim to present experimental and theoretical insights into different AMPs, focusing specifically on antibacterial peptides (ABPs). Our goal is to offer a concise overview of peptide-based drug candidates, drawing from a wide array of literature and peer-reviewed studies. We also explore recent advancements in AMP development and discuss the challenges researchers face in moving these molecules towards clinical trials. Our main objective is to offer a comprehensive overview of current AMP and ABP research to guide the development of more precise and effective therapies for bacterial infections.
Collapse
Affiliation(s)
- Nitin Yadav
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| | - Virander S Chauhan
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| |
Collapse
|
8
|
Asad R, Shahzad MA, Knawal S, Bano S, Javed M, Anwar A, Shah SSUD. Evaluation of Antimicrobial Peptides in Saliva as Potential Therapeutic Agents Against Oral Pathogens in Pakistan. Cureus 2024; 16:e73758. [PMID: 39677072 PMCID: PMC11646478 DOI: 10.7759/cureus.73758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Maintaining optimal oral health is essential for overall well-being; however, conditions such as dental caries and gingivitis remain prevalent in Pakistan and are further worsened by increasing antibiotic resistance. OBJECTIVE To evaluate the antimicrobial properties of salivary peptides as potential therapeutic agents against common oral pathogens in Pakistan. METHODOLOGY A one-year cross-sectional study was conducted in Lahore, Pakistan, at Sharif Medical and Dental College and Akhter Saeed Medical and Dental College, involving 384 participants aged 18-65 years. High-performance liquid chromatography (HPLC) was used to isolate antimicrobial peptides (AMPs) from oral swabs and saliva samples. Using the enzyme-linked immunosorbent test (ELISA), the minimum inhibitory concentration (MIC) of histatin, defensin, and cathelicidin against Streptococcus mutans and Candida albicans was determined. T-tests and other statistical analyses were used to assess the significance of the results across demographic variables. RESULTS There were 210 men (54.69%) and 174 women (45.31%) in the participation group. A total of 298 individuals (77.60%) did not smoke, while 221 participants (57.56%) said they brushed their teeth every day. Moreover, 198 individuals (51.56%) had oral infections with S. mutans alone, 71 participants (18.49%) had oral pathogens with C. albicans alone, and 52 people (13.54%) had both. Histatin of 8.09 ± 2.13 µg/mL, defensin of 7.83 ± 2.31 µg/mL, and cathelicidin of 6.19 ± 1.57 µg/mL were the MIC values for salivary AMPs against S. mutans. MIC values for histatin, defensin, and cathelicidin against C. albicans were 10.57 ± 1.82 µg/mL, 9.01 ± 2.03 µg/mL, and 7.42 ± 1.73 µg/mL, respectively. Males had higher MIC values than females, and there were significant variations according to smoking status (p < 0.05) and age (p < 0.05), suggesting that smokers had lower AMP effectiveness. CONCLUSION Salivary AMPs, particularly histatin, defensin, and cathelicidin, demonstrate strong potential as therapeutic alternatives against oral infections such as dental caries and gingivitis, suggesting a promising strategy to mitigate antibiotic resistance in Pakistan. Further research is needed to explore their application in clinical practice.
Collapse
Affiliation(s)
- Rabia Asad
- Department of Community and Preventive Dentistry, Akhtar Saeed Medical and Dental College, Lahore, PAK
| | - Muhammad Asif Shahzad
- Department of Oral and Maxillofacial Surgery, Azra Naheed Dental College, Superior University, Lahore, PAK
| | - Sana Knawal
- Office of the Registrar, University of Medical and Dental College, Faisalabad, PAK
| | - Shaher Bano
- Department of Oral Biology, Rahbar College of Dentistry, Lahore, PAK
| | - Mariyah Javed
- Department of Oral Biology, Rahbar College of Dentistry, Lahore, PAK
| | - Ammara Anwar
- Department of Oral Medicine, Rahbar College of Dentistry, Lahore, PAK
| | - Syed Shahab Ud Din Shah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, PAK
| |
Collapse
|
9
|
Giraldo-Lorza JM, Leidy C, Manrique-Moreno M. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. MEMBRANES 2024; 14:220. [PMID: 39452832 PMCID: PMC11509253 DOI: 10.3390/membranes14100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Cholesterol is a biological molecule that is essential for cellular life. It has unique features in terms of molecular structure and function, and plays an important role in determining the structure and properties of cell membranes. One of the most recognized functions of cholesterol is its ability to increase the level of lipid packing and rigidity of biological membranes while maintaining high levels of lateral mobility of the bulk lipids, which is necessary to sustain biochemical signaling events. There is increased interest in designing bioactive peptides that can act as effective antimicrobial agents without causing harm to human cells. For this reason, it becomes relevant to understand how cholesterol can affect the interaction between bioactive peptides and lipid membranes, in particular by modulating the peptides' ability to penetrate and disrupt the membranes through these changes in membrane rigidity. Here we discuss cholesterol and its role in modulating lipid bilayer properties and discuss recent evidence showing how cholesterol modulates bioactive peptides to different degrees.
Collapse
Affiliation(s)
- Juan M. Giraldo-Lorza
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
10
|
Lach K, Skrzyniarz K, Takvor-Mena S, Łysek-Gładysińska M, Furmańczyk P, Barrios-Gumiel O, Sanchez-Nieves J, Ciepluch K. Endolysin CHAP domain-carbosilane metallodendrimer complexes with triple action on Gram-negative bacteria: Membrane destabilization, reactive oxygen species production and peptidoglycan degradation. Int J Biol Macromol 2024; 278:134634. [PMID: 39128760 DOI: 10.1016/j.ijbiomac.2024.134634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Bacterial resistance to antibiotics is a significant challenge that is associated with increased morbidity and mortality. Gram-negative bacteria are particularly problematic due to an outer membrane (OM). Current alternatives to antibiotics include antimicrobial peptides or proteins and multifunctional systems such as dendrimers. Antimicrobial proteins such as lysins can degrade the bacterial cell wall, whereas dendrimers can permeabilize the OM, enhancing the activity of endolysins against gram-negative bacteria. In this study, we present a three-stage action of endolysin combined with two different carbosilane (CBS) silver metallodendrimers, in which the periphery is modified with N-heterocyclic carbene (NHC) ligands coordinating a silver atom. The different NHC ligands contained hydrophobic methyl or N-donor pyridyl moieties. The effects of these endolysin/dendrimer combinations are based on OM permeabilization, peptidoglycan degradation, and reactive oxygen species production. The results showed that CBS possess a permeabilization effect (first action), significantly reduced bacterial growth at higher concentrations alone and in the presence of endolysin, increased ROS production (second action), and led to bacterial cell damage (third action). The complex formed between the CHAP domain of endolysin and a CBS silver metallodendrimer, with a triple mechanism of action, may represent an excellent alternative to other antimicrobials with only one resistance mechanism.
Collapse
Affiliation(s)
- Karolina Lach
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Samuel Takvor-Mena
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain
| | | | - Piotr Furmańczyk
- Department of Machine Design, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland
| | - Oscar Barrios-Gumiel
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain
| | - Javier Sanchez-Nieves
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research (IRYCIS), Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland.
| |
Collapse
|
11
|
Andrés CMC, Pérez de la Lastra JM, Munguira EB, Andrés Juan C, Pérez-Lebeña E. Dual-Action Therapeutics: DNA Alkylation and Antimicrobial Peptides for Cancer Therapy. Cancers (Basel) 2024; 16:3123. [PMID: 39335095 PMCID: PMC11429518 DOI: 10.3390/cancers16183123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains one of the most difficult diseases to treat, requiring continuous research into innovative therapeutic strategies. Conventional treatments such as chemotherapy and radiotherapy are effective to a certain extent but often have significant side effects and carry the risk of resistance. In recent years, the concept of dual-acting therapeutics has attracted considerable attention, particularly the combination of DNA alkylating agents and antimicrobial peptides. DNA alkylation, a well-known mechanism in cancer therapy, involves the attachment of alkyl groups to DNA, leading to DNA damage and subsequent cell death. Antimicrobial peptides, on the other hand, have been shown to be effective anticancer agents due to their ability to selectively disrupt cancer cell membranes and modulate immune responses. This review aims to explore the synergistic potential of these two therapeutic modalities. It examines their mechanisms of action, current research findings, and the promise they offer to improve the efficacy and specificity of cancer treatments. By combining the cytotoxic power of DNA alkylation with the unique properties of antimicrobial peptides, dual-action therapeutics may offer a new and more effective approach to fighting cancer.
Collapse
Affiliation(s)
- Celia María Curieses Andrés
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Elena Bustamante Munguira
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | |
Collapse
|
12
|
Wyżga B, Kamiński K, Hąc-Wydro K. The influence of Leucidal, a natural cosmetic preservative, on fibroblast and keratinocytes. Studies on cells and on model membrane systems. Arch Biochem Biophys 2024; 757:110044. [PMID: 38797227 DOI: 10.1016/j.abb.2024.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The aim of this work was to investigate the influence of Leucidal® Liquid (abbr. Leucidal), which is recommended as a natural cosmetic ingredient of antimicrobial properties, on model membranes of keratinocytes and fibroblasts. The toxicity tests on cell lines were also performed to allow for a more detailed discussion of the results. As model membrane systems the lipid Langmuir monolayers were applied. During the investigations, the surface pressure/area measurements, penetration studies and Brewster Angle Microscopy (BAM) visualization were performed for one component and mixed lipid monolayers. It was evidenced that at the membrane - corresponding conditions, the components of Leucidal do not penetrate either model keratinocyte and fibroblast membranes or one component films composed of the major lipids of skin cell membranes. Leucidal makes these systems slightly more expanded and less stable, however this is not reflected in the changes in the film morphology. Only the ceramide systems were sensitive to the presence of Leucidal, i.e. the incorporation of Leucidal components manifested well in the decrease of the films' condensation and alterations in their morphology. The tests on cells demonstrated that Leucidal is non toxic for these types of cells at the concentrations suggested by the producer. A thorough comparison of these results with those published for bacteria model membranes enabled us to discuss them in the context of the mechanism of action of Leucidal components. It was concluded that Leucidal components are of low affinity to the skin cellular model membranes of low content of Leucidal-sensitive ceramides and are not toxic for fibroblast and keratinocyte cell lines. Moreover, the lipid composition of the membrane and its molecular organization can be important targets for Leucidal components, decisive from the point of view of the activity and selectivity of the studied composition.
Collapse
Affiliation(s)
- Beata Wyżga
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Kamil Kamiński
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
13
|
Park G, Yun H, Min HJ, Lee CW. A Novel Dimeric Short Peptide Derived from α-Defensin-Related Rattusin with Improved Antimicrobial and DNA-Binding Activities. Biomolecules 2024; 14:659. [PMID: 38927062 PMCID: PMC11201828 DOI: 10.3390/biom14060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rattusin, an α-defensin-related antimicrobial peptide isolated from the small intestine of rats, has been previously characterized through NMR spectroscopy to elucidate its three-dimensional structure, revealing a C2 homodimeric scaffold stabilized by five disulfide bonds. This study aimed to identify the functional region of rattusin by designing and synthesizing various short analogs, subsequently leading to the development of novel peptide-based antibiotics. The analogs, designated as F1, F2, F3, and F4, were constructed based on the three-dimensional configuration of rattusin, among which F2 is the shortest peptide and exhibited superior antimicrobial efficacy compared to the wild-type peptide. The central cysteine residue of F2 prompted an investigation into its potential to form a dimer at neutral pH, which is critical for its antimicrobial function. This activity was abolished upon the substitution of the cysteine residue with serine, indicating the necessity of dimerization for antimicrobial action. Further, we synthesized β-hairpin-like analogs, both parallel and antiparallel, based on the dimeric structure of F2, which maintained comparable antimicrobial potency. In contrast to rattusin, which acts by disrupting bacterial membranes, the F2 dimer binds directly to DNA, as evidenced by fluorescence assays and DNA retardation experiments. Importantly, F2 exhibited negligible cytotoxicity up to 515 μg/mL, assessed via hemolysis and MTT assays, underscoring its potential as a lead compound for novel peptide-based antibiotic development.
Collapse
Affiliation(s)
- Gwansik Park
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (G.P.); (H.Y.)
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (G.P.); (H.Y.)
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women’s University, Gwangju 62396, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea; (G.P.); (H.Y.)
| |
Collapse
|
14
|
Jiao C, Ruan J, Sun W, Zhang X, Liu X, Sun G, Liu C, Sun C, Tian X, Yang D, Chen L, Wang Z. Molecular characterization, expression and antibacterial function of a macin, HdMac, from Haliotis discus hannai. J Invertebr Pathol 2024; 204:108113. [PMID: 38631559 DOI: 10.1016/j.jip.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Macins are a family of antimicrobial peptides, which play multiple roles in the elimination of invading pathogens. In the present study, a macin was cloned and characterized from Pacific abalone Haliotis discus hannai (Designated as HdMac). Analysis of the conserved domain suggested that HdMac was a new member of the macin family. In non-stimulated abalones, HdMac transcripts were constitutively expressed in all five tested tissues, especially in hemocytes. After Vibrio harveyi stimulation, the expression of HdMac mRNA in hemocytes was significantly up-regulated at 12 hr (P < 0.01). RNAi-mediated knockdown of HdMac transcripts affected the survival rates of abalone against V. harveyi. Moreover, recombinant protein of HdMac (rHdMac) exhibited high antibacterial activities against invading bacteria, especially for Vibrio anguillarum. In addition, rHdMac possessed binding activities towards glucan, lipopolysaccharides (LPS), and peptidoglycan (PGN), but not chitin in vitro. Membrane integrity analysis revealed that rHdMac could increase the membrane permeability of bacteria. Meanwhile, both the phagocytosis and chemotaxis ability of hemocytes could be significantly enhanced by rHdMac. Overall, the results showed that HdMac could function as a versatile molecule involved in immune responses of H. discus hannai.
Collapse
Affiliation(s)
- Chunli Jiao
- Yantai Center for Food and Drug Control, Yantai 264003, PR China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264003, PR China
| | - Wei Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xinze Zhang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiaobo Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Guodong Sun
- Tianjin Xiqing District Agriculture and Rural Development Service Center, Tianjin 300380, PR China
| | - Caili Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Chunxiao Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiuhui Tian
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Lizhu Chen
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| | - Zhongquan Wang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| |
Collapse
|
15
|
Corrie LM, Kuecks-Winger H, Ebrahimikondori H, Birol I, Helbing CC. Transcriptomic profiling of Rana [Lithobates] catesbeiana back skin during natural and thyroid hormone-induced metamorphosis under different temperature regimes with particular emphasis on innate immune system components. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101238. [PMID: 38714098 DOI: 10.1016/j.cbd.2024.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
As amphibians undergo thyroid hormone (TH)-dependent metamorphosis from an aquatic tadpole to the terrestrial frog, their innate immune system must adapt to the new environment. Skin is a primary line of defense, yet this organ undergoes extensive remodelling during metamorphosis and how it responds to TH is poorly understood. Temperature modulation, which regulates metamorphic timing, is a unique way to uncover early TH-induced transcriptomic events. Metamorphosis of premetamorphic tadpoles is induced by exogenous TH administration at 24 °C but is paused at 5 °C. However, at 5 °C a "molecular memory" of TH exposure is retained that results in an accelerated metamorphosis upon shifting to 24 °C. We used RNA-sequencing to identify changes in Rana (Lithobates) catesbeiana back skin gene expression during natural and TH-induced metamorphosis. During natural metamorphosis, significant differential expression (DE) was observed in >6500 transcripts including classic TH-responsive transcripts (thrb and thibz), heat shock proteins, and innate immune system components: keratins, mucins, and antimicrobial peptides (AMPs). Premetamorphic tadpoles maintained at 5 °C showed 83 DE transcripts within 48 h after TH administration, including thibz which has previously been identified as a molecular memory component in other tissues. Over 3600 DE transcripts were detected in TH-treated tadpoles at 24 °C or when tadpoles held at 5 °C were shifted to 24 °C. Gene ontology (GO) terms related to transcription, RNA metabolic processes, and translation were enriched in both datasets and immune related GO terms were observed in the temperature-modulated experiment. Our findings have implications on survival as climate change affects amphibia worldwide.
Collapse
Affiliation(s)
- Lorissa M Corrie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Haley Kuecks-Winger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Hossein Ebrahimikondori
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
16
|
Wang Y, Zhang Y, Su R, Wang Y, Qi W. Antimicrobial therapy based on self-assembling peptides. J Mater Chem B 2024; 12:5061-5075. [PMID: 38726712 DOI: 10.1039/d4tb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The emergence of drug-resistant microorganisms has threatened global health, and microbial infections have severely limited the use of medical materials. For example, the attachment and colonization of pathogenic bacteria to medical implant materials can lead to wound infections, inflammation and complications, as well as implant failure, shortening their lifespan and even resulting in patient death. In the era of antibiotic resistance, antimicrobial drug discovery needs to prioritize unconventional therapies that act on new targets or adopt new mechanisms. In this regard, supramolecular antimicrobial peptides have emerged as attractive therapeutic platforms, both as bactericides for combination antibiotics and as delivery vehicles. By taking advantage of their programmable intermolecular and intramolecular interactions, peptides can be modified to form higher-order structures (including nanofibers and nanoparticles) with unique functionality. This paper begins with an analysis of the relationship between peptide self-assembly and antimicrobial activity, describes in detail the research and development of various self-assembled antimicrobial peptides in recent years, and finally explores different combinatorial strategies for self-assembling antimicrobial peptides.
Collapse
Affiliation(s)
- Yuqi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yexi Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
17
|
Nobakht MS, Bazyar K, Langeroudi MSG, Mirzaei M, Goudarzi M, Shivaee A. Investigating the Antimicrobial Effects of a Novel Peptide Derived From Listeriolysin S on S aureus, E coli, and L plantarum: An In Silico and In Vitro Study. Bioinform Biol Insights 2024; 18:11779322241252513. [PMID: 38765021 PMCID: PMC11100392 DOI: 10.1177/11779322241252513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Aims The emergence of antibiotic resistance is one of the most significant issues today. Modifying antimicrobial peptides (AMPs) can improve their effects. In this study, the active region of Listeriolysin S (LLS) as a peptidic toxin has been recognized, and its antibacterial properties have been evaluated by modifying that region. Methods After extracting the sequence, the structure of LLS was predicted by PEP-FOLD3. AntiBP and AMPA servers identified its antimicrobial active site. It was modified by adding arginine residue to its 3- and N-terminal regions. Its antimicrobial properties on Staphylococcus aureus, Escherichia coli, and Lactobacillus Plantarum were estimated. Findings The results of AntiBP and AntiBP servers demonstrated that a region of 15 amino acids has the most antimicrobial properties (score = 1.696). After adding arginine to the chosen region, the physicochemical evaluation and antimicrobial properties revealed that the designed peptide is a stable AMP with a positive charge of 4, which is not toxic to human erythrocyte cells and has antigenic properties. The results of in vitro and colony counting indicated that at different hours, it caused a significant reduction in the count of S aureus, E coli, and L Plantarum compared with the control sample. Conclusions Upcoming research implies that identifying and enhancing the active sites of natural peptides can help combat bacteria.
Collapse
Affiliation(s)
- Mojgan Sarabi Nobakht
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Sirjan, Iran
| | - Kaveh Bazyar
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mandana Mirzaei
- Department of Microbiology, Faculty of Science, Islamic Azad University, Karaj, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Shivaee
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
19
|
Chi H, Qin Q, Hao X, Dalmo RA, Tang X, Xing J, Sheng X, Zhan W. Adjuvant effects of β-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109502. [PMID: 38471627 DOI: 10.1016/j.fsi.2024.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
β-defensin of flounder plays an important role in immunomodulation by recruiting immune cells and has a potential vaccine adjuvant effect in addition to its bactericidal activity. In this study, adjuvant effects of β-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus) were investigated. The bicistronic eukaryotic expression plasmid pBudCE4.1 plasmid vector with two independent coding regions was selected to construct DNA vaccine of p-OmpC which express only the gene for the outer membrane protein of Edwardsiella tarda and the vaccine of p-OmpC-βdefensin which express both the outer membrane protein of the bacterium and β-defensin of flounder. In vitro and in vivo studies have shown that the constructed plasmids can be expressed in flounder embryonic cell lines and injection sites of muscles. After vaccination by intramuscular injection, both p-OmpC and p-OmpC-βdefensin groups showed significant upregulation of immune-response. Compared to the pBbudCE4.1 and the p-OmpC vaccinated groups, the p-OmpC-βdefensin vaccinated group showed significantly more cell aggregation at the injection site and intense immune response. The proportion of sIgM+ cells, as well as the CD4-1+ and CD4-2+ cells in both spleen and kidney was significantly higher in the p-OmpC-βdefensin vaccinated group at peak time point than in the control groups. The relative survival rate of the p-OmpC-βdefensin vaccine was 74.17%, which was significantly higher than that of the p-OmpC vaccinated group 48.33%. The results in this study determined that β-defensin enhances the responses in cellular and humoral immunity and evokes a high degree of protection against E. tarda, which is a promising candidate for vaccine adjuvant.
Collapse
Affiliation(s)
- Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Qingqing Qin
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaokai Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
20
|
Kozuka Y, Masuda T, Isu N, Takai M. Antimicrobial Peptide Assembly on Zwitterionic Polymer Films to Slow Down Biofilm Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7029-7037. [PMID: 38520398 DOI: 10.1021/acs.langmuir.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Formation of biofilms on equipment used in various fields, such as medicine, domestic sanitation, and marine transportation, can cause serious problems. The use of antibiofouling and bactericidal modifications is a promising strategy for inhibiting bacterial adhesion and biofilm formation. To further enhance the antibiofilm properties of a surface, various combinations of bactericidal modifications alongside antibiofouling modifications have been developed. Optimization of the arrangements of antimicrobial peptides on the antibiofouling surface would allow us to design longer-life antibiofilm surface modifications. In this study, a postmodification was conducted with different design using the antimicrobial peptide KR12 on an antibiofouling copolymer film consisting of 2-methacryloyloxyethyl phosphorylcholine, 3-methacryloxypropyl trimethoxysilane, and 3-(methacryloyloxy) propyl-tris(trimethylsilyloxy) silane. The distance of KR12 from the film was adjusted by combining different lengths of poly(ethylene glycol) (PEG) spacers (molecular weights are 2000 and 5000). The density of KR12 was ranged from 0.06 to 0.22 nm-2. When these modified surfaces were exposed to a nutrient-rich TSB suspension, the bacterial area formed by E. coli covered 5-127% of the original copolymer film. We found that a significant distance between the bactericidal and antibiofouling modifications, along with a higher density of bactericidal modifications, slows down the biofilm formation.
Collapse
Affiliation(s)
- Yuta Kozuka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Norifumi Isu
- LIXIL Corporation, 2-1-1 Ojima, Koto-ku, 136-8535 Tokyo, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
21
|
Elazzazy AM, Mobarki MO, Baghdadi AM, Bataweel NM, Al-Hejin AM. Optimization of Culture Conditions and Batch Process Control for the Augmented Production of Bacteriocin by Bacillus Species. Microorganisms 2024; 12:651. [PMID: 38674596 PMCID: PMC11051734 DOI: 10.3390/microorganisms12040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of antibiotic-resistant microorganisms poses a significant threat to human health worldwide. Recent advances have led to the discovery of molecules with potent antimicrobial activity from environmental sources. In this study, fifteen bacterial isolates were obtained from agricultural and polluted soil samples collected from different areas of the cities of Jizan and Jeddah. These isolates were screened for antagonistic activity against a set of human pathogenic bacterial strains. The results showed that two Bacillus strains, identified as Bacillus atrophaeus and Bacillus amyloliquefaciens based on 16S rDNA, synthesized bacteriocin with strong antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591, Pseudomonas aeruginosa ATCC 9027, Salmonella typhimum ATCC 14028, carbapenem-resistant E. coli, and MRSA 2. To optimize bacteriocin production, the effects of medium composition, incubation period, temperature, and pH were investigated. Nutrient broth and Mueller-Hinton broth were chosen as the optimal original media for bacteriocin production. The optimal incubation period, temperature, and pH were found to be 48 h at 37 °C and 7 pH in Bacillus atrophaeus and 72 h at 37 °C and 8 pH in Bacillus amyloliquefaciens. Batch cultures of Bacillus atrophaeus and Bacillus amyloliquefaciens were grown in a 10 L benchtop bioreactor, and pH control was found to significantly increase the production of bacteriocin by two-fold compared to uncontrolled conditions. The time course of growth, substrate consumption, pH, and enzyme production were investigated. This study demonstrates the potential of optimizing culture conditions and batch process control to enhance bacteriocin production by Bacillus spp.
Collapse
Affiliation(s)
- Ahmed M. Elazzazy
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia; (M.O.M.); (A.M.B.)
| | - Mona O. Mobarki
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia; (M.O.M.); (A.M.B.)
| | - Afra M. Baghdadi
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia; (M.O.M.); (A.M.B.)
| | - Noor M. Bataweel
- King Fahad Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (N.M.B.); (A.M.A.-H.)
| | - Ahmed M. Al-Hejin
- King Fahad Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (N.M.B.); (A.M.A.-H.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Belagal P. Current alternative therapies for treating drug-resistant Neisseria gonorrhoeae causing ophthalmia neonatorum. Future Microbiol 2024; 19:631-647. [PMID: 38512111 PMCID: PMC11229588 DOI: 10.2217/fmb-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/03/2024] [Indexed: 03/22/2024] Open
Abstract
Ophthalmia neonatorum is a microbial contraction, damaging eyesight, occurring largely among neonates. Infants are particularly vulnerable to bacterial infections acquired during birth from infected mothers, especially from Neisseria gonorrhoeae and Chlamydia trachomatis. Over the decades, N. gonorrhoeae is alarmingly developing a resistance to most antibiotics currently prescribed. To counter this challenge, it is imperative to find potent and cost-effective therapeutic agents for prophylaxis and treatment, to which the N. gonorrhoeae cannot easily develop resistance. This review showcases alternate therapies such as antimicrobial-fatty acids, -peptides, -nano-formulations etc., currently evident against N. gonorrhoeae-mediated ophthalmia neonatorum, which remains a major cause of ocular morbidity, blindness and even death among neonates in developing countries.
Collapse
|
23
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
24
|
Sun Y, Li H, Duan X, Ma X, Liu C, Shang D. Chensinin-1b Alleviates DSS-Induced Inflammatory Bowel Disease by Inducing Macrophage Switching from the M1 to the M2 Phenotype. Biomedicines 2024; 12:345. [PMID: 38397947 PMCID: PMC10886634 DOI: 10.3390/biomedicines12020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder with an increasing prevalence worldwide. Macrophage polarization is involved in the pathogenesis of IBD. Repolarization of macrophage has thus emerged as a novel therapeutic approach for managing IBD. Chensinin-1b, derived from the skin of Rana chensinensis, is a derivative of a native antimicrobial peptide (AMP). It shows anti-inflammatory effects in sepsis models and can potentially modulate macrophage polarization. The objective of this research was to study the role of chensinin-1b in macrophage polarization and dextran sulfate sodium (DSS)-induced colitis. RAW264.7 macrophages were polarized to the M1 phenotype using lipopolysaccharide (LPS) and simultaneously administered chensinin-1b at various concentrations. The ability of chenisnin-1b to reorient macrophage polarization was assessed by ELISA, qRT-PCR, and flow cytometry analysis. The addition of chensinin-1b significantly restrained the expression of M1-associated proinflammatory cytokines and surface markers, including TNF-α, IL-6, NO, and CD86, and exaggerated the expression of M2-associated anti-inflammatory cytokines and surface markers, including IL-10, TGF-β1, Arg-1, Fizz1, Chil3, and CD206. Mechanistically, via Western Blotting, we revealed that chensinin-1b induces macrophage polarization from the M1 to the M2 phenotype by inhibiting the phosphorylation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). In mouse models of colitis, intraperitoneal administration of chensinin-1b alleviated symptoms induced by DSS, including weight loss, elevated disease activity index (DAI) scores, colon shortening, colonic tissue damage, and splenomegaly. Consistent with our in vitro data, chensinin-1b induced significant decreases in the expression of M1 phenotype biomarkers and increases in the expression of M2 phenotype biomarkers in the mouse colitis model. Furthermore, chensinin-1b treatment repressesed NF-κB phosphorylation in vivo. Overall, our data showed that chensinin-1b attenuates IBD by repolarizing macrophages from the M1 to the M2 phenotype, suggesting its potential as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Huiyu Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Xingpeng Duan
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Xiaoxiao Ma
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Chenxi Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
25
|
Zhu Z, Pan F, Wang O, Zhao L, Zhao L. Antibacterial Effect of Sesame Protein-Derived Peptides against Escherichia coli and Staphylococcus aureus: In Silico and In Vitro Analysis. Nutrients 2024; 16:175. [PMID: 38202004 PMCID: PMC10780390 DOI: 10.3390/nu16010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
This study aimed to screen out antibacterial peptides derived from sesame (Sesamum indicum L.) through in silico and in vitro methods. In silico proteolysis of sesame proteins with pepsin, trypsin, and chymotrypsin was performed with the online server BIOPEP-UWM. The CAMPR3 online server was used to predict the antimicrobial effect of peptides. The ToxinPred, PepCalc, and AllergenFP tools were utilized to forecast the physicochemical properties, toxicity, and allergen of the peptides. Molecular docking analysis showed that six cationic antimicrobial peptides could directly interact with the key sites of dihydropteroate synthase, whereas Ala-Gly-Gly-Val-Pro-Arg and Ser-Thr-Ile-Arg exhibited the strongest binding affinity. In vitro antibacterial experiment showed the minimum inhibitory concentration (MIC) of Ser-Thr-Ile-Arg against Escherichia coli and Staphylococcus aureus was 1024 and 512 µg/mL, respectively. Meanwhile, MIC of Ala-Gly-Gly-Val-Pro-Arg against both bacterial species was 512 µg/mL. Our results suggest that peptides from sesame possess the ability to potentially hinder bacterial activity.
Collapse
Affiliation(s)
- Zehui Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Fei Pan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| |
Collapse
|
26
|
Goki NH, Tehranizadeh ZA, Saberi MR, Khameneh B, Bazzaz BSF. Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides. Curr Pharm Biotechnol 2024; 25:1041-1057. [PMID: 37921126 DOI: 10.2174/0113892010194428231017051836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 11/04/2023]
Abstract
Antimicrobial peptides (AMPs), a class of antimicrobial agents, possess considerable potential to treat various microbial ailments. The broad range of activity and rare complete bacterial resistance to AMPs make them ideal candidates for commercial development. These peptides with widely varying compositions and sources share recurrent structural and functional features in mechanisms of action. Studying the mechanisms of AMP activity against bacteria may lead to the development of new antimicrobial agents that are more potent. Generally, AMPs are effective against bacteria by forming pores or disrupting membrane barriers. The important structural aspects of cytoplasmic membranes of pathogens and host cells will also be outlined to understand the selective antimicrobial actions. The antimicrobial activities of AMPs are related to multiple physicochemical properties, such as length, sequence, helicity, charge, hydrophobicity, amphipathicity, polar angle, and also self-association. These parameters are interrelated and need to be considered in combination. So, gathering the most relevant available information will help to design and choose the most effective AMPs.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Wyżga B, Skóra M, Hąc-Wydro K. The influence of Leucidal - eco-preservative from radish - on model lipid membranes and selected pathogenic bacteria. Chem Phys Lipids 2023; 256:105338. [PMID: 37716416 DOI: 10.1016/j.chemphyslip.2023.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In this work the effect of Leucidal - a natural preservative from radish dedicated to be used in cosmetics - on bacteria cells and model bacteria membranes was investigated. To get insight into the mechanism of action of this formulation the lipid Langmuir monolayers imitating Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) membranes were prepared. Then, the influence of Leucidal on model systems was investigated by means of the surface pressure/area measurements, penetration studies and Brewster Angle Microscopy (BAM) visualization. Similar experiments were done also for one component monolayers formed from the model membrane lipids. The in vitro tests were done on five different bacteria species (E. coli, Enterococcus faecalis, S. aureus, Salmonella enterica, Pseudomonas aeruginosa). Leucidal was found to decrease packing of the monolayers, however, it was excluded from the films at higher concentrations. Model membrane experiments evidenced also a stronger affinity of the components of this eco-preservative to E. coli vs S. aureus membrane. Among one component films, those formed from phosphatidylglycerols and cardiolipins were more sensitive to the presence of Leucidal. However, in vitro tests evidenced that Leucidal exerts stronger inhibitory effect against S. aureus bacteria as compared to E. coli strain. These findings were discussed from the point of view of the role of Leucidal components and the lipid membrane properties in the membrane - based mechanism of action of this preservative. The results allow one to suggest that the membrane may not be the main site of action of Leucidal on bacteria. Moreover, since high concentration of the tested preparation exerted antibacterial activity in relation to all tested bacteria, a low selectivity of Leucidal can be postulated, which may be problematic from the point of view of its effect on the skin microbiome.
Collapse
Affiliation(s)
- Beata Wyżga
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Magdalena Skóra
- Jagiellonian University Medical College, Chair of Microbiology, Department of Infections Control and Mycology, Czysta 18, 31-121 Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
28
|
Skrzyniarz K, Kuc-Ciepluch D, Lasak M, Arabski M, Sanchez-Nieves J, Ciepluch K. Dendritic systems for bacterial outer membrane disruption as a method of overcoming bacterial multidrug resistance. Biomater Sci 2023; 11:6421-6435. [PMID: 37605901 DOI: 10.1039/d3bm01255g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The alarming rise of multi-drug resistant microorganisms has increased the need for new approaches through the development of innovative agents that are capable of attaching to the outer layers of bacteria and causing permanent damage by penetrating the bacterial outer membrane. The permeability (disruption) of the outer membrane of Gram-negative bacteria is now considered to be one of the main ways to overcome multidrug resistance in bacteria. Natural and synthetic permeabilizers such as AMPs and dendritic systems seem promising. However, due to their advantages in terms of biocompatibility, antimicrobial capacity, and wide possibilities for modification and synthesis, highly branched polymers and dendritic systems have gained much more interest in recent years. Various forms of arrangement, and structure of the skeleton, give dendritic systems versatile applications, especially the possibility of attaching other ligands to their surface. This review will focus on the mechanisms used by different types of dendritic polymers, and their complexes with macromolecules to enhance their antimicrobial effect, and to permeabilize the bacterial outer membrane. In addition, future challenges and potential prospects are illustrated in the hope of accelerating the advancement of nanomedicine in the fight against resistant pathogens.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | | | - Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | - Michał Arabski
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | - Javier Sanchez-Nieves
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH), Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química "Andrés M. del Río" (IQAR, UAH), Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Institute for Health Research Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| |
Collapse
|
29
|
Tiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel Peptide-Based Therapeutics in Plant Systems. Life (Basel) 2023; 13:1875. [PMID: 37763279 PMCID: PMC10532476 DOI: 10.3390/life13091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The increased prevalence of antibiotic resistance is alarming and has a significant impact on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions, across the globe. Potent antimicrobials from biological sources have been extensively explored as a ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple research initiatives. Recent advances and developments in antimicrobial discovery and research have increased our understanding of the structure, characteristics, and function of AMPs; nevertheless, knowledge gaps still need to be addressed before these therapeutic options can be fully exploited. This thematic article provides a comprehensive insight into the potential of AMPs as potent arsenals to counter drug-resistant pathogens, a historical overview and recent advances, and their efficient production in plants, defining novel upcoming trends in drug discovery and research. The advances in synthetic biology and plant-based expression systems for AMP production have defined new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective approach to countering drug-resistant pathogens.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Yashdeep Srivastava
- RR Institute of Modern Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226201, Uttar Pradesh, India;
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, Gujarat, India;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
30
|
Li S, Liu G, Kang J, Li Z, Cao Z. The inhibitory activity of a new scorpion venom-derived antimicrobial peptide Hp1470 against Gram-positive bacteria. Toxicon 2023; 231:107189. [PMID: 37295751 DOI: 10.1016/j.toxicon.2023.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides (AMPs) are a new type of antibiotic and target a variety of microbes, including antibiotic-resistant strains; thus, AMPs have attracted widespread interest. Scorpion venoms contain many bioactive peptides, including AMPs, and have become an important natural resource of peptide-based drugs. Here, the antibacterial peptide gene Hp1470 from the venom of the scorpion Heterometrus petersii was characterized, and its antibacterial activity was determined. The cDNA sequence of Hp1470 is 300 nt in length and contains an open reading frame (ORF) of 207 nt. The ORF was shown to encode 68 amino acid residues, including a signal peptide (23 aa), a mature peptide (13 aa), a C-terminal posttranslational processing signal (3 aa), and a propeptide (29 aa). Multiple sequence alignment results indicated that Hp1470 is an antibacterial peptide. The mature peptide Hp1470, which has a molecular mass of 1564.09 Da, was further chemically synthesized with a purity of greater than 95%. Antimicrobial assays showed that the synthesized Hp1470 exerted an inhibitory effect on Gram-positive bacteria and clinical drug-resistant strains, including PRSA and MRSA, but not Gram-negative bacteria. Hp1470 was further found to protect mice from MRSA infection, suggesting its potential application as an in vivo antimicrobial agent. Interestingly, Hp1470 only inhibited bacterial growth but did not kill bacteria, which was consistent with scanning electron microscopy results showing that Hp1470 did not lyse the cell membrane of Staphylococcus aureus. Our work provides a new direction for developing antibacterial agents with different modes of action from natural scorpion venoms.
Collapse
Affiliation(s)
- Songryong Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Center for BioDrug Research, Wuhan University, Wuhan, 430072, China; Faculty of Life Science, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Gaomin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jongguk Kang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongjie Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Center for BioDrug Research, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
31
|
Bakare OO, Gokul A, Niekerk LA, Aina O, Abiona A, Barker AM, Basson G, Nkomo M, Otomo L, Keyster M, Klein A. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides. Int J Mol Sci 2023; 24:11864. [PMID: 37511621 PMCID: PMC10380191 DOI: 10.3390/ijms241411864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases are constantly evolving to bypass antibiotics or create resistance against them. There is a piercing alarm for the need to improve the design of new effective antimicrobial agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity. This would guard public health in combating and overcoming stubborn pathogens and mitigate incurable diseases; however, the emergence of antimicrobial peptides' shortcomings ranging from untimely degradation by enzymes to difficulty in the design against specific targets is a major bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices, synthesis and characterization, their doping and coating, and the shortfall of these approaches. This review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The knowledge from this development would guide the future design of these novel peptides and allow the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment regimens in patients to enable them to have accommodating lifestyles.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ademola Abiona
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Mbukeni Nkomo
- Department of Botany, H13 Botany Building, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Laetitia Otomo
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
32
|
Chakraborty S, Katsifis G, Roohani I, Boyer C, McKenzie D, Willcox MDP, Chen R, Kumar N. Electrostatic and Covalent Binding of an Antibacterial Polymer to Hydroxyapatite for Protection against Escherichia coli Colonization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5045. [PMID: 37512322 PMCID: PMC10385198 DOI: 10.3390/ma16145045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Orthopedic-device-related infections are notorious for causing physical and psychological trauma to patients suffering from them. Traditional methods of treating these infections have relied heavily on antibiotics and are becoming ineffectual due to the rise of antibiotic-resistant bacteria. Mimics of antimicrobial peptides have emerged as exciting alternatives due to their favorable antibacterial properties and lack of propensity for generating resistant bacteria. In this study, the efficacy of an antibacterial polymer as a coating material for hydroxyapatite and glass surfaces, two materials with wide ranging application in orthopedics and the biomedical sciences, is demonstrated. Both physical and covalent modes of attachment of the polymer to these materials were explored. Polymer attachment to the material surfaces was confirmed via X-ray photoelectron spectroscopy and contact angle measurements. The modified surfaces exhibited significant antibacterial activity against the Gram-negative bacterium E. coli, and the activity was retained for a prolonged period on the surfaces of the covalently modified materials.
Collapse
Affiliation(s)
| | - Georgio Katsifis
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| | - Iman Roohani
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - David McKenzie
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Renxun Chen
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
33
|
Fandiño-Devia E, Santa-González GA, Klaiss-Luna MC, Guevara-Lora I, Tamayo V, Manrique-Moreno M. ΔM4: Membrane-Active Peptide with Antitumoral Potential against Human Skin Cancer Cells. MEMBRANES 2023; 13:671. [PMID: 37505037 PMCID: PMC10385147 DOI: 10.3390/membranes13070671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Peptides have become attractive potential agents due to their affinity to cancer cells. In this work, the biological activity of the peptide ΔM4 against melanoma cancer cell line A375, epidermoid carcinoma cell line A431, and non-tumoral HaCaT cells was evaluated. The cytotoxic MTT assay demonstrates that ΔM4 show five times more activity against cancer than non-cancer cells. The potential membrane effect of ΔM4 was evaluated through lactate dehydrogenase release and Sytox uptake experiments. The results show a higher membrane activity of ΔM4 against A431 in comparison with the A375 cell line at a level of 12.5 µM. The Sytox experiments show that ΔM4 has a direct effect on the permeability of cancer cells in comparison with control cells. Infrared spectroscopy was used to study the affinity of the peptide to membranes resembling the composition of tumoral and non-tumoral cells. The results show that ΔM4 induces a fluidization effect on the tumoral lipid system over 5% molar concentration. Finally, to determine the appearance of phosphatidylserine on the surface of the cell, flow cytometry analyses were performed employing an annexin V-PE conjugate. The results suggest that 12.5 µM of ΔM4 induces phosphatidylserine translocation in A375 and A431 cancer cells. The findings of this study support the potential of ΔM4 as a selective agent for targeting cancer cells. Its mechanism of action demonstrated selectivity, membrane-disrupting effects, and induction of phosphatidylserine translocation.
Collapse
Affiliation(s)
- Estefanía Fandiño-Devia
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Gloria A Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, A.A. 54959, Medellín 050010, Colombia
| | - Maria C Klaiss-Luna
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Verónica Tamayo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia
| |
Collapse
|
34
|
da Silva Sanches PR, Sanchez-Velazquez R, Batista MN, Carneiro BM, Bittar C, De Lorenzo G, Rahal P, Patel AH, Cilli EM. Antiviral Evaluation of New Synthetic Bioconjugates Based on GA-Hecate: A New Class of Antivirals Targeting Different Steps of Zika Virus Replication. Molecules 2023; 28:4884. [PMID: 37446546 PMCID: PMC10343505 DOI: 10.3390/molecules28134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Re-emerging arboviruses represent a serious health problem due to their rapid vector-mediated spread, mainly in urban tropical areas. The 2013-2015 Zika virus (ZIKV) outbreak in South and Central America has been associated with cases of microcephaly in newborns and Guillain-Barret syndrome. We previously showed that the conjugate gallic acid-Hecate (GA-FALALKALKKALKKLKKALKKAL-CONH2)-is an efficient inhibitor of the hepatitis C virus. Here, we show that the Hecate peptide is degraded in human blood serum into three major metabolites. These metabolites conjugated with gallic acid were synthesized and their effect on ZIKV replication in cultured cells was evaluated. The GA-metabolite 5 (GA-FALALKALKKALKKL-COOH) was the most efficient in inhibiting two ZIKV strains of African and Asian lineage at the stage of both virus entry (virucidal and protective) and replication (post-entry). We also demonstrate that GA-metabolite 5 does not affect cell growth after 7 days of continuous treatment. Thus, this study identifies a new synthetic antiviral compound targeting different steps of ZIKV replication in vitro and with the potential for broad reactivity against other flaviviruses. Our work highlights a promising strategy for the development of new antivirals based on peptide metabolism and bioconjugation.
Collapse
Affiliation(s)
- Paulo Ricardo da Silva Sanches
- School of Pharmaceutical Science, São Paulo State University, Araraquara 14800-903, SP, Brazil
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
- Institute of Chemistry, São Paulo State University, Araraquara 14800-900, SP, Brazil
| | - Ricardo Sanchez-Velazquez
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Mariana Nogueira Batista
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; (M.N.B.)
| | - Bruno Moreira Carneiro
- School of Health Science, Federal University of Rondonópolis, Rondonópolis 78736-900, MT, Brazil;
| | - Cintia Bittar
- School of Health Science, Federal University of Rondonópolis, Rondonópolis 78736-900, MT, Brazil;
| | - Giuditta De Lorenzo
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Paula Rahal
- Institute of Bioscience, Humanities and Exact Science, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil;
| | - Arvind H. Patel
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University, Araraquara 14800-900, SP, Brazil
| |
Collapse
|
35
|
Shang C, Ye T, Zhou Q, Chen P, Li X, Li W, Chen S, Hu Z, Zhang W. Genome-Wide Identification and Bioinformatics Analyses of Host Defense Peptides Snakin/GASA in Mangrove Plants. Genes (Basel) 2023; 14:genes14040923. [PMID: 37107683 PMCID: PMC10137857 DOI: 10.3390/genes14040923] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Host defense peptides (HDPs) are components of plant defensive barriers that resist microbial infection. Members of the Snakin/GASA protein family in plants have functions of regulating plant growth, defense, and bacteriostasis. Most mangrove plants grow in coastal zones. In order to survive in harsh environments, mangrove plants have evolved complex adaptations against microbes. In this study, Snakin/GASA family members were identified and analyzed in the genomes of three mangrove species. Twenty-seven, thirteen, and nine candidate Snakin/GASA family members were found in Avicennia marina, Kandelia obovata, and Aegiceras corniculatum, respectively. These Snakin/GASA family members were identified and categorized into three subfamilies via phylogenetic analysis. The genes coding for the Snakin/GASA family members were unevenly distributed on chromosomes. Collinearity and conservative motif analyses showed that the Snakin/GASA family members in K. obovata and A. corniculatum underwent multiple gene duplication events. Snakin/GASA family member expression in normal leaves and leaves infected with pathogenic microorganisms of the three mangrove species was verified using real-time quantitative polymerase chain reaction. The expression of KoGASA3 and 4, AcGASA5 and 10, and AmGASA1, 4, 5, 15, 18, and 23 increased after microbial infection. This study provides a research basis for the verification of HDPs from mangrove plants and suggests directions for the development and utilization of marine biological antimicrobial peptides.
Collapse
Affiliation(s)
- Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Qiao Zhou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Pengyu Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangyu Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Si Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wei Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
36
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
37
|
Espeche JC, Varas R, Maturana P, Cutro AC, Maffía PC, Hollmann A. Membrane permeability and antimicrobial peptides: Much more than just making a hole. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
38
|
Sengkhui S, Klubthawee N, Aunpad R. A novel designed membrane-active peptide for the control of foodborne Salmonella enterica serovar Typhimurium. Sci Rep 2023; 13:3507. [PMID: 36864083 PMCID: PMC9981719 DOI: 10.1038/s41598-023-30427-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
The main cause of non-typhoidal Salmonella (NTS) infection in humans is ingestion of contaminated animal-derived foods such as eggs, poultry and dairy products. These infections highlight the need to develop new preservatives to increase food safety. Antimicrobial peptides (AMPs) have the potential to be further developed as food preservative agents and join nisin, the only AMP currently approved, for use as a preservative in food. Acidocin J1132β, a bacteriocin produced by probiotic Lactobacillus acidophilus, displays no toxicity to humans, however it exhibits only low and narrow-spectrum antimicrobial activity. Accordingly, four peptide derivatives (A5, A6, A9, and A11) were modified from acidocin J1132β by truncation and amino acid substitution. Among them, A11 showed the most antimicrobial activity, especially against S. Typhimurium, as well as a favorable safety profile. It tended to form an α-helix structure upon encountering negatively charged-mimicking environments. A11 caused transient membrane permeabilization and killed bacterial cells through membrane depolarization and/or intracellular interactions with bacterial DNA. A11 maintained most of its inhibitory effects when heated, even when exposed to temperatures up to 100 °C. Notably, it inhibited drug-resistant S. Typhimurium and its monophasic variant strains. Furthermore, the combination of A11 and nisin was synergistic against drug-resistant strains in vitro. Taken together, this study indicated that a novel antimicrobial peptide derivative (A11), modified from acidocin J1132β, has the potential to be a bio-preservative to control S. Typhimurium contamination in the food industry.
Collapse
Affiliation(s)
- Siriwan Sengkhui
- grid.412434.40000 0004 1937 1127Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Natthaporn Klubthawee
- grid.444093.e0000 0004 0398 9950Department of Medical Technology, Faculty of Allied Health Sciences, Pathumthani University, Pathum Thani, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.
| |
Collapse
|
39
|
Li M, Xin D, Gao J, Yi Q, Yuan J, Bao Y, Gong Y. The protective effect of URP20 on ocular Staphylococcus aureus and Escherichia coli infection in rats. BMC Ophthalmol 2022; 22:517. [PMID: 36585631 PMCID: PMC9801630 DOI: 10.1186/s12886-022-02752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Infectious keratitis, a medical emergency with acute and rapid disease progression may lead to severe visual impairment and even blindness. Herein, an antimicrobial polypeptide from Crassostrea hongkongensis, named URP20, was evaluated for its therapeutic efficacy against keratitis caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infection in rats, respectively. METHODS A needle was used to scratch the surface of the eyeballs of rats and infect them with S. aureus and E.coli to construct a keratitis model. The two models were treated by giving 100 μL 100 μM URP20 drops. Positive drugs for S. aureus and E. coli infection were cefazolin eye drops and tobramycin eye drops, respectively. For the curative effect, the formation of blood vessels in the fundus was observed by a slit lamp (the third day). At the end of the experiment, the condition of the injured eye was photographed by cobalt blue light using 5 μL of 1% sodium fluorescein. The pathological damage to corneal tissues was assessed using hematoxylin-eosin staining, and the expression level of vascular endothelial growth factor (VEGF) was detected by immunohistochemistry. RESULTS URP20 alleviated the symptoms of corneal neovascularization as observed by slit lamp and cobalt blue lamp. The activity of S. aureus and E.coli is inhibited by URP20 to protect corneal epithelial cells and reduce corneal stromal bacterial invasion. It also prevented corneal thickening and inhibited neovascularization by reducing VEGF expression at the cornea. CONCLUSION URP20 can effectively inhibit keratitis caused by E.coli as well as S. aureus in rats, as reflected by the inhibition of corneal neovascularization and the reduction in bacterial damage to the cornea.
Collapse
Affiliation(s)
- Meng Li
- grid.203507.30000 0000 8950 5267School of Medicine, Ningbo University, Ningbo, 315042 China ,Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Danli Xin
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Jian Gao
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Quanyong Yi
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Jianshu Yuan
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Yongbo Bao
- grid.413076.70000 0004 1760 3510College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
| | - Yan Gong
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China ,grid.203507.30000 0000 8950 5267Department of Ophtalmology, Medical College of Ningbo University, Ningbo Eye Hospital, No. 599, Beiming Cheng Road, Yinzhou District, Ningbo, 315042 China
| |
Collapse
|
40
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
41
|
Wang L, Liu H, Li X, Yao C. Assessment of New Strategies to Improve the Performance of Antimicrobial Peptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3691. [PMID: 36296881 PMCID: PMC9610275 DOI: 10.3390/nano12203691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this research, we constructed a novel engineered tripeptide modified with lipoic acid (LA-RWR), followed by crosslinking of lipoic acid to form nanoparticles (c-LA-RWR). LA-RWR was also modified with phenethylamine (PEA) on the C-terminus to achieve better antibacterial activities. The as-prepared c-LA-RWR and LA-RWR-PEA were effective against E.coli, S.aureus, C.albicans, and methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration values ranging from 2 to 16 µg/mL, which greatly improved the performance of LA-RWR. Similar antibacterial activities were demonstrated in anti-biofilm activity; there was no matter on the biofilm that was already established or forming. Moreover, c-LA-RWR/LA-RWR-PEA remarkably induced cytoplasmic membrane depolarization and outer membrane permeabilization, resulting in varying degrees of damage to the bacterial morphology, which were consistent with the results obtained via electron microscopy. Thus, our results show that c-LA-RWR/LA-RWR-PEA exhibited excellent efficacy against a variety of microorganisms with good biosafety, providing new strategies by which to improve the performance of antimicrobial peptides.
Collapse
Affiliation(s)
| | | | | | - Chen Yao
- Correspondence: ; Tel.: +86-138-1386-1022
| |
Collapse
|
42
|
Liang W, Yu Q, Zheng Z, Liu J, Cai Q, Liu S, Lin S. Design and Synthesis of Phenyl Sulfide-Based Cationic Amphiphiles as Membrane-Targeting Antimicrobial Agents against Gram-Positive Pathogens. J Med Chem 2022; 65:14221-14236. [PMID: 36256884 DOI: 10.1021/acs.jmedchem.2c01437] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the emergence of antimicrobial resistance and the lack of new antibacterial agents, it has become urgent to discover and develop new antibacterial agents against multidrug-resistant pathogens. Antimicrobial peptides (AMPs) serve as the first line of defense for the host. In this work, we have designed, synthesized, and biologically evaluated a series of phenyl sulfide derivatives by biomimicking the structural features and biological functions of AMPs. Among these derivatives, the most promising compound 17 exhibited potent antibacterial activity against Gram-positive bacteria (minimum inhibitory concentrations = 0.39-1.56 μg/mL), low hemolytic activity (HC50 > 200 μg/mL), and high membrane selectivity. In addition, 17 can rapidly kill Gram-positive bacteria within 0.5 h through membrane-targeting action and avoid antibiotic resistance. More importantly, 17 showed high in vivo efficacy against Staphylococcus aureus in a murine corneal infection model. Therefore, 17 has great potential as a lead compound for the treatment of Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Wanxin Liang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qian Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zixian Zheng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiayong Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qiongna Cai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shouping Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuimu Lin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
43
|
Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep 2022; 49:10039-10050. [PMID: 35606604 PMCID: PMC9126628 DOI: 10.1007/s11033-022-07572-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are a diverse class of molecules that represent a vital part of innate immunity. AMPs are evolutionarily conserved molecules that exhibit structural and functional diversity. They provide a possible solution to the antibiotic-resistance crisis. MAIN TEXT These small cationic peptides can target bacteria, fungi, and viruses, as well as cancer cells. Their unique action mechanisms, rare antibiotic-resistant variants, broad-spectrum activity, low toxicity, and high specificity encourage pharmaceutical industries to conduct clinical trials to develop them as therapeutic drugs. The rapid development of computer-assisted strategies accelerated the identification of AMPs. The Antimicrobial Peptide Database (APD) so far contains 3324 AMPs from different sources. In addition to their applications in different fields, some AMPs demonstrated the potential to combat COVID-19, and hinder viral infectivity in diverse ways. CONCLUSIONS This review provides a brief history of AMPs and their features, including classification, evolution, sources and mechanisms of action, biosynthesis pathway, and identification techniques. Furthermore, their different applications, challenges to clinical applications, and their potential use against COVID-19 are presented.
Collapse
Affiliation(s)
- Dalia Mamdouh Mabrouk
- Cell Biology Department, National Research Centre, 33 El Bohouth, St., P.O.12622, Dokki, Giza, Egypt.
| |
Collapse
|
44
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
45
|
Yin R, Cheng J, Wang J, Li P, Lin J. Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Front Microbiol 2022; 13:955286. [PMID: 36090087 PMCID: PMC9459144 DOI: 10.3389/fmicb.2022.955286] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is one of the major pathogens implicated in human opportunistic infection and a common cause of clinically persistent infections such as cystic fibrosis, urinary tract infections, and burn infections. The main reason for the persistence of P. aeruginosa infections is due to the ability of P. aeruginosa to secrete extracellular polymeric substances such as exopolysaccharides, matrix proteins, and extracellular DNA during invasion. These substances adhere to and wrap around bacterial cells to form a biofilm. Biofilm formation leads to multiple antibiotic resistance in P. aeruginosa, posing a significant challenge to conventional single antibiotic therapeutic approaches. It has therefore become particularly important to develop anti-biofilm drugs. In recent years, a number of new alternative drugs have been developed to treat P. aeruginosa infectious biofilms, including antimicrobial peptides, quorum-sensing inhibitors, bacteriophage therapy, and antimicrobial photodynamic therapy. This article briefly introduces the process and regulation of P. aeruginosa biofilm formation and reviews several developed anti-biofilm treatment technologies to provide new directions for the treatment of P. aeruginosa biofilm infection.
Collapse
|
46
|
Sayed-Ahmed ETA, Salah KBH, El-Mekkawy RM, Rabie NA, Ashkan MF, Alamoudi SA, Alruhaili MH, Al Jaouni SK, Almuhayawi MS, Selim S, Saad AM, Namir M. The Preservative Action of Protein Hydrolysates from Legume Seed Waste on Fresh Meat Steak at 4 °C: Limiting Unwanted Microbial and Chemical Fluctuations. Polymers (Basel) 2022; 14:polym14153188. [PMID: 35956703 PMCID: PMC9371118 DOI: 10.3390/polym14153188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Valorizing agricultural wastes to preserve food or to produce functional food is a general trend regarding the global food shortage. Therefore, natural preservatives were developed from the seed waste of the cluster bean and the common bean to extend the shelf life of fresh buffalo meat steak and boost its quality via immersion in high-solubility peptides, cluster bean protein hydrolysate (CBH), and kidney bean protein hydrolysate (RCH). The CBH and the RCH were successfully obtained after 60 min of pepsin hydrolysis with a hydrolysis degree of 27−30%. The SDS-PAGE electropherogram showed that at 60 min of pepsin hydrolysis, the CBH bands disappeared, and RCH (11−48 kD bands) nearly disappeared, assuring the high solubility of the obtained hydrolysates. The CBH and the RCH have considerable antioxidant activity compared to ascorbic acid, antimicrobial activity against tested microorganisms compared to antibiotics, and significant functional properties. The CBH and the RCH (500 µg/mL) successfully scavenged 93 or 89% of DPPH radicals. During the 30-day cold storage (4 °C), the quality of treated and untreated fresh meat steaks was monitored. Protein hydrolysates (500 g/g) inhibited lipid oxidation by 130−153% compared to the control and nisin and eliminated 31−55% of the bacterial load. The CBH and the RCH (500 µg/g) significantly enhanced meat redness (a* values). The protein maintained 80−90% of the steak’s flavor and color (p < 0.05). In addition, it increased the juiciness of the steak. CBH and RCH are ways to valorize wastes that can be safely incorporated into novel foods.
Collapse
Affiliation(s)
| | - Karima Bel Hadj Salah
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5089, Tunisia
| | - Rasha M. El-Mekkawy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| | - Nourhan A. Rabie
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mada F. Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Soha A. Alamoudi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed H. Alruhaili
- Medical Microbiology and Parasitology Department, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Medical Microbiology and Parasitology Department, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.S.); (A.M.S.)
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (S.S.); (A.M.S.)
| | - Mohammad Namir
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
47
|
Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A. Mesenchymal Stem Cell-Derived Antimicrobial Peptides as Potential Anti-Neoplastic Agents: New Insight into Anticancer Mechanisms of Stem Cells and Exosomes. Front Cell Dev Biol 2022; 10:900418. [PMID: 35874827 PMCID: PMC9298847 DOI: 10.3389/fcell.2022.900418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs), as adult multipotent cells, possess considerable regenerative and anti-neoplastic effects, from inducing apoptosis in the cancer cells to reducing multidrug resistance that bring them up as an appropriate alternative for cancer treatment. These cells can alter the behavior of cancer cells, the condition of the tumor microenvironment, and the activity of immune cells that result in tumor regression. It has been observed that during inflammatory conditions, a well-known feature of the tumor microenvironment, the MSCs produce and release some molecules called “antimicrobial peptides (AMPs)” with demonstrated anti-neoplastic effects. These peptides have remarkable targeted anticancer effects by attaching to the negatively charged membrane of neoplastic cells, disrupting the membrane, and interfering with intracellular pathways. Therefore, AMPs could be considered as a part of the wide-ranging anti-neoplastic effects of MSCs. This review focuses on the possible anti-neoplastic effects of MSCs-derived AMPs and their mechanisms. It also discusses preconditioning approaches and using exosomes to enhance AMP production and delivery from MSCs to cancer cells. Besides, the clinical administration of MSCs-derived AMPs, along with their challenges in clinical practice, were debated.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics (Basel) 2022; 11:951. [PMID: 35884205 PMCID: PMC9311968 DOI: 10.3390/antibiotics11070951] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotics are regarded as a miracle in the medical field as it prevents disease caused by pathogenic bacteria. Since the discovery of penicillin, antibiotics have become the foundation for modern medical discoveries. However, bacteria soon became resistant to antibiotics, which puts a burden on the healthcare system. Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most prominent antibiotic-resistant bacteria in the world since 1961. MRSA primarily developed resistance to beta-lactamases antibiotics and can be easily spread in the healthcare system. Thus, alternatives to combat MRSA are urgently required. Antimicrobial peptides (AMPs), an innate host immune agent and silver nanoparticles (AgNPs), are gaining interest as alternative treatments against MRSA. Both agents have broad-spectrum properties which are suitable candidates for controlling MRSA. Although both agents can exhibit antimicrobial effects independently, the combination of both can be synergistic and complementary to each other to exhibit stronger antimicrobial activity. The combination of AMPs and AgNPs also reduces their own weaknesses as their own, which can be developed as a potential agent to combat antibiotic resistance especially towards MRSA. Thus, this review aims to discuss the potential of antimicrobial peptides and silver nanoparticles towards controlling MRSA pathogen growth.
Collapse
Affiliation(s)
- Mohammad Asyraf Adhwa Masimen
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Noor Aniza Harun
- Advanced NanoMaterials (ANOMA) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - M. Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Wan Iryani Wan Ismail
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
- Biological Security and Sustainability Research Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| |
Collapse
|
49
|
Zheng X, Yuan C, Zhang Y, Zha S, Mao F, Bao Y. Prediction and characterization of a novel hemoglobin-derived mutant peptide (mTgHbP7) from Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2022; 125:84-89. [PMID: 35537672 DOI: 10.1016/j.fsi.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
The hemoglobin (Hb) is identified in Tegillarca granosa and its derived peptides have been proved to possess antibacterial activity against gram-positive and gram-negative bacteria. In this study, we identified a series of novel antimicrobial peptides (AMPs) and artificially mutated AMPs derived from subunits of T. granosa Hbs, among which, a mutant T. granosa hemoglobin peptide (mTgHbP) mTgHbP7, was proved to possess predominant antibacterial activity against three bacteria strains (Vibrio alginolyticus, V. parahaemolyticus and Escherichia coli). Besides, mTgHbP7 was predicted to form α-helical structure, which was known to be an important feature of bactericidal AMPs. Furthermore, upon contact with HEK293 cell line, we confirmed that mTgHbP7 had no cytotoxicity to mammalian cell even at a high concentration of 160 μM. Therefore, the findings reported here provide a rationalization for antimicrobial peptide prediction and optimization from mollusk hemoglobin, which will be useful for future development of antimicrobial agents.
Collapse
Affiliation(s)
- Xiaoying Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Chun Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Shanjie Zha
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
| |
Collapse
|
50
|
Amorim-Carmo B, Parente AMS, Souza ES, Silva-Junior AA, Araújo RM, Fernandes-Pedrosa MF. Antimicrobial Peptide Analogs From Scorpions: Modifications and Structure-Activity. Front Mol Biosci 2022; 9:887763. [PMID: 35712354 PMCID: PMC9197468 DOI: 10.3389/fmolb.2022.887763] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The rapid development of multidrug-resistant pathogens against conventional antibiotics is a global public health problem. The irrational use of antibiotics has promoted therapeutic limitations against different infections, making research of new molecules that can be applied to treat infections necessary. Antimicrobial peptides (AMPs) are a class of promising antibiotic molecules as they present broad action spectrum, potent activity, and do not easily induce resistance. Several AMPs from scorpion venoms have been described as a potential source for the development of new drugs; however, some limitations to their application are also observed. Here, we describe strategies used in several approaches to optimize scorpion AMPs, addressing their primary sequence, biotechnological potential, and characteristics that should be considered when developing an AMP derived from scorpion venoms. In addition, this review may contribute towards improving the understanding of rationally designing new molecules, targeting functional AMPs that may have a therapeutic application.
Collapse
Affiliation(s)
- Bruno Amorim-Carmo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Adriana M. S. Parente
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Eden S. Souza
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Arnóbio A. Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Renata M. Araújo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Matheus F. Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| |
Collapse
|