1
|
Kono M, Ishihara N, Nakane T, Nabetani Y, Kajino M, Okuda T, Hayashi M, Koriyama C, Vogel CFA, Tsuji M, Ishihara Y. Enhancement of keratinocyte survival and migration elicited by interleukin 24 upregulation in dermal microvascular endothelium upon welding-fume exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:792-810. [PMID: 38940434 DOI: 10.1080/15287394.2024.2372403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Occupational exposure to welding fumes constitutes a serious health concern. Although the effects of fumes on the respiratory tract have been investigated, few apparent reports were published on their effects on the skin. The purpose of this study was to investigate the effects of exposure to welding fumes on skin cells, focusing on interleukin-24 (IL-24), a cytokine involved in the pathophysiology of skin conditions, such as atopic dermatitis and psoriasis. Treatment with welding fumes increased IL-24 expression and production levels in human dermal microvascular endothelial cells (HDMEC) which were higher than that in normal human epidermal keratinocytes. IL-24 levels in Trolox and deferoxamine markedly suppressed welding fume-induced IL-24 expression in HDMEC, indicating that oxidative stress may be involved in this cytokine expression. IL-24 released from HDMEC protected keratinocytes from welding fume-induced damage and enhanced keratinocyte migration. Serum IL-24 was higher in welding workers than in general subjects and was positively correlated with elevated serum levels of 8-hydroxy-2'-deoxyguanosine, an oxidative stress marker. In summary, welding fumes enhanced IL-24 expression in HDMEC, stimulating keratinocyte survival and migration. IL-24 expression in endothelial cells may act as an adaptive response to welding-fume exposure in the skin.
Collapse
Affiliation(s)
- Maori Kono
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
| | - Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tatsuto Nakane
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yu Nabetani
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Mizuo Kajino
- Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | | | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, CA, USA
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Center for Health and the Environment, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Dehghani F, Yousefinejad S, Walker DI, Omidi F. Metabolomics for exposure assessment and toxicity effects of occupational pollutants: current status and future perspectives. Metabolomics 2022; 18:73. [PMID: 36083566 DOI: 10.1007/s11306-022-01930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Work-related exposures to harmful agents or factors are associated with an increase in incidence of occupational diseases. These exposures often represent a complex mixture of different stressors, challenging the ability to delineate the mechanisms and risk factors underlying exposure-disease relationships. The use of omics measurement approaches that enable characterization of biological marker patterns provide internal indicators of molecular alterations, which could be used to identify bioeffects following exposure to a toxicant. Metabolomics is the comprehensive analysis of small molecule present in biological samples, and allows identification of potential modes of action and altered pathways by systematic measurement of metabolites. OBJECTIVES The aim of this study is to review the application of metabolomics studies for use in occupational health, with a focus on applying metabolomics for exposure monitoring and its relationship to occupational diseases. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2021. RESULTS Most of reviewed studies included worker populations exposed to heavy metals such as As, Cd, Pb, Cr, Ni, Mn and organic compounds such as tetrachlorodibenzo-p-dioxin, trichloroethylene, polyfluoroalkyl, acrylamide, polyvinyl chloride. Occupational exposures were associated with changes in metabolites and pathways, and provided novel insight into the relationship between exposure and disease outcomes. The reviewed studies demonstrate that metabolomics provides a powerful ability to identify metabolic phenotypes and bioeffect of occupational exposures. CONCLUSION Continued application to worker populations has the potential to enable characterization of thousands of chemical signals in biological samples, which could lead to discovery of new biomarkers of exposure for chemicals, identify possible toxicological mechanisms, and improved understanding of biological effects increasing disease risk associated with occupational exposure.
Collapse
Affiliation(s)
- Fatemeh Dehghani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health Sciences, Research Institute for Health, Department of Occupational Health and Safety Engineering, School of Health Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Research Institute for Health, Department of Occupational Health and Safety Engineering, School of Health Shiraz, University of Medical Sciences, Shiraz, Iran.
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fariborz Omidi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
McCarrick S, Karlsson HL, Carlander U. Modelled lung deposition and retention of welding fume particles in occupational scenarios: a comparison to doses used in vitro. Arch Toxicol 2022; 96:969-985. [PMID: 35188583 PMCID: PMC8921161 DOI: 10.1007/s00204-022-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Translating particle dose from in vitro systems to relevant human exposure remains a major challenge for the use of in vitro studies in assessing occupational hazard and risk of particle exposure. This study aimed to model the lung deposition and retention of welding fume particles following occupational scenarios and subsequently compare the lung doses to those used in vitro. We reviewed published welding fume concentrations and size distributions to identify input values simulating real-life exposure scenarios in the multiple path particle dosimetry (MPPD) model. The majority of the particles were reported to be below 0.1 μm and mass concentrations ranged between 0.05 and 45 mg/m3. Following 6-h exposure to 5 mg/m3 with a count median diameter of 50 nm, the tracheobronchial lung dose (0.89 µg/cm2) was found to exceed the in vitro cytotoxic cell dose (0.125 µg/cm2) previously assessed by us in human bronchial epithelial cells (HBEC-3kt). However, the tracheobronchial retention decreased rapidly when no exposure occurred, in contrast to the alveolar retention which builds-up over time and exceeded the in vitro cytotoxic cell dose after 1.5 working week. After 1 year, the tracheobronchial and alveolar retention was estimated to be 1.15 and 2.85 µg/cm2, respectively. Exposure to low-end aerosol concentrations resulted in alveolar retention comparable to cytotoxic in vitro dose in HBEC-3kt after 15-20 years of welding. This study demonstrates the potential of combining real-life exposure data with particle deposition modelling to improve the understanding of in vitro concentrations in the context of human occupational exposure.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ulrika Carlander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
4
|
Genotoxicity and inflammatory potential of stainless steel welding fume particles: an in vitro study on standard vs Cr(VI)-reduced flux-cored wires and the role of released metals. Arch Toxicol 2021; 95:2961-2975. [PMID: 34287684 PMCID: PMC8380239 DOI: 10.1007/s00204-021-03116-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Welders are daily exposed to various levels of welding fumes containing several metals. This exposure can lead to an increased risk for different health effects which serves as a driving force to develop new methods that generate less toxic fumes. The aim of this study was to explore the role of released metals for welding particle-induced toxicity and to test the hypothesis that a reduction of Cr(VI) in welding fumes results in less toxicity by comparing the welding fume particles of optimized Cr(VI)-reduced flux-cored wires (FCWs) to standard FCWs. The welding particles were thoroughly characterized, and toxicity (cell viability, DNA damage and inflammation) was assessed following exposure to welding particles as well as their released metal fraction using cultured human bronchial epithelial cells (HBEC-3kt, 5–100 µg/mL) and human monocyte-derived macrophages (THP-1, 10–50 µg/mL). The results showed that all Cr was released as Cr(VI) for welding particles generated using standard FCWs whereas only minor levels (< 3% of total Cr) were released from the newly developed FCWs. Furthermore, the new FCWs were considerably less cytotoxic and did not cause any DNA damage in the doses tested. For the standard FCWs, the Cr(VI) released in cell media seemed to explain a large part of the cytotoxicity and DNA damage. In contrast, all particles caused rather similar inflammatory effects suggesting different underlying mechanisms. Taken together, this study suggests a potential benefit of substituting standard FCWs with Cr(VI)-reduced wires to achieve less toxic welding fumes and thus reduced risks for welders.
Collapse
|
5
|
Hedberg YS, Wei Z, McCarrick S, Romanovski V, Theodore J, Westin EM, Wagner R, Persson KA, Karlsson HL, Odnevall Wallinder I. Welding fume nanoparticles from solid and flux-cored wires: Solubility, toxicity, and role of fluorides. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125273. [PMID: 33581669 DOI: 10.1016/j.jhazmat.2021.125273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 05/28/2023]
Abstract
Welding fume particles are hazardous. Their toxicity likely depends on their composition and reactivity. This study aimed at exploring the role of sodium or other fluorides (NaF), which are intentionally added to flux-cored wire electrodes for stainless steel welding, on the solubility (in phosphate buffered saline) and toxicity of the generated welding fume particles. A multi-analytical particle characterization approach along with in-vitro cell assays was undertaken. The release of Cr(VI) and Mn from the particles was tested as a function of fluoride solution concentration. The welding fume particles containing NaF released significantly higher amounts of Cr(VI) compared with solid wire reference fumes, which was associated with increased cytotoxicity and genotoxicity in-vitro. No crystalline Na or potassium (K) containing chromates were observed. Cr(VI) was incorporated in an amorphous mixed oxide. Solution-added fluorides did not increase the solubility of Cr(VI), but contributed to a reduced Mn release from both solid and flux-cored wire fume particles and the reduction of Cr(VI) release from solid wire fume particles. Chemical speciation modeling suggested that metal fluoride complexes were not formed. The presence of NaF in the welding electrodes did not have any direct, but possibly an indirect, role in the Cr(VI) solubility of welding fumes.
Collapse
Affiliation(s)
- Y S Hedberg
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada; Surface Science Western, The University of Western Ontario, London, Ontario N6G 0J3, Canada.
| | - Z Wei
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden
| | - S McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - V Romanovski
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", 119049 Moscow, Russia; Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - J Theodore
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden
| | - E M Westin
- voestalpine Böhler Welding Group GmbH, Böhler-Welding-Str. 1, 8605 Kapfenberg, Austria
| | - R Wagner
- Linde GmbH/UniBw Munich, Germany
| | | | - H L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - I Odnevall Wallinder
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
6
|
Boudjema J, Lima B, Grare C, Alleman LY, Rousset D, Perdrix E, Achour D, Anthérieu S, Platel A, Nesslany F, Leroyer A, Nisse C, Lo Guidice JM, Garçon G. Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells. NANOIMPACT 2021; 23:100346. [PMID: 35559847 DOI: 10.1016/j.impact.2021.100346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/15/2023]
Abstract
Recent evidence has supported welding fume (WF)-derived ultrafine particles (UFP) could be the driving force of their adverse health effects. However, UFP have not yet been extensively studied and are currently not included in present air quality standards/guidelines. Here, attention was focused on the underlying genetic and epigenetic mechanisms by which the quasi-UFP (Q-UFP, i.e., ≤ 0.25 μm) of the WF emitted by gas metal arc welding-stainless steel (GMAW-SS) exert their toxicity in human bronchial epithelial BEAS-2B cells. The Q-UFP under study showed a monomodal size distribution in number centered on 104.4 ± 52.3 nm and a zeta potential of -13.8 ± 0.3 mV. They were enriched in Fe > Cr > Mn > Si, and displayed a relatively high intrinsic oxidative potential. Dose-dependent activation of nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B signaling pathway, glutathione alteration, and DNA, protein and lipid oxidative damage were reported in BEAS-2B cells acutely (1.5 and 9 μg/cm2, 24 h) or repeatedly (0.25 and 1.5 μg/cm2, 3 × 24 h) exposed to Q-UFP (p < 0.05). Alterations of the Histone H3 acetylation were reported for any exposure (p < 0.05). Differentially regulated miRNA and mRNA indicated the activation of some critical cell signaling pathways related to oxidative stress, inflammation, and cell cycle deregulation towards apoptosis. Taken together, these results highlighted the urgent need to better evaluate the respective toxicity of the different metals and to include the Q-UFP fraction of WF in current air quality standards/guidelines relevant to the occupational settings.
Collapse
Affiliation(s)
- J Boudjema
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France; Action Santé Travail, Aix-Noulette, France
| | - B Lima
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Grare
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L Y Alleman
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Rousset
- Institut National de Recherche et de Sécurité (INRS), Department of Pollutant Metrology, 54500 Vandœuvre-lès-Nancy, France
| | - E Perdrix
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Achour
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - S Anthérieu
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Platel
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - F Nesslany
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Leroyer
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Nisse
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - J-M Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - G Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
7
|
Khisroon M, Khan A, Shah AA, Ullah I, Farooqi J, Ullah A. Scalp Hair Metal Analysis Concerning DNA Damage in Welders of Peshawar Khyber Pakhtunkhwa Pakistan. Biol Trace Elem Res 2021; 199:1649-1656. [PMID: 32676939 DOI: 10.1007/s12011-020-02281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Welding is used throughout the world in refineries, thermal power plants, chemical facilities, and pressurized containers, and the welders are exposed to toxic heavy metals, electromagnetic fields, polycyclic aromatic hydrocarbon, and ultraviolet radiations. In the present study, 59 welders and an equal number of control subjects were assessed for DNA damage in the lymphocytes using the comet assay. Heavy metals such as lead (Pb), iron (Fe), nickel (Ni), chromium (Cr), manganese (Mn), and cadmium (Cd) levels in the scalp hair of the subjects were evaluated by using atomic absorption spectroscopy (AAS). The results of the current study showed that DNA damage in the lymphocytes of welders (121.8 ± 10.7) was significantly higher as compared with controls (56.5 ± 17.6) (P < 0.001). Besides, the levels of Pb, Fe, Ni, Cr, Mn, and Cd were remarkably higher in the scalp hair of workers as compared with the control group (P < 0.001). Regression analysis showed a prominent association between the heavy metals and total comet score (TCS) in the exposed subjects. Age and duration of occupational exposure had significant effects (P < 0.05) on TCS values. Our results concluded that occupational exposure to welding fumes may cause DNA damage and can lead to important health hazards in the workers.
Collapse
Affiliation(s)
- Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Ashraf Ali Shah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ihsan Ullah
- Poonch Medical College, Rawalakot, AJK, Pakistan
| | - Javeed Farooqi
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Abid Ullah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| |
Collapse
|
8
|
Phosphate Buffer Solubility and Oxidative Potential of Single Metals or Multielement Particles of Welding Fumes. ATMOSPHERE 2020. [DOI: 10.3390/atmos12010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To evaluate the chemical behavior and the health impact of welding fumes (WF), a complex and heterogeneous mixture of particulate metal oxides, two certified reference materials (CRMs) were tested: mild steel WF (MSWF-1) and stainless steel WF (SSWF-1). We determined their total chemical composition, their solubility, and their oxidative potential in a phosphate buffer (PB) solution under physiological conditions (pH 7.4 and 37 °C). The oxidative potential (OPDTT) of WF CRMs was evaluated using an acellular method by following the dithiothreitol (DTT) consumption rate (µmol DTT L−1 min−1). Pure metal salts present in the PB soluble fraction of the WF CRMs were tested individually at equivalent molarity to estimate their specific contribution to the total OPDTT. The metal composition of MSWF-1 consisted mainly of Fe, Zn, Mn, and Cu and the SSWF-1 composition consisted mainly of Fe, Mn, Cr, Ni, Cu, and Zn, in diminishing order. The metal PB solubility decreased from Cu (11%) to Fe (approximately 0.2%) for MSWF-1 and from Mn (9%) to Fe (<1%) for SSWF-1. The total OPDTT of SSWF-1 is 2.2 times the OPDTT of MSWF-1 due to the difference in oxidative capacity of soluble transition metals. Cu (II) and Mn (II) are the most sensitive towards DTT while Cr (VI), Fe (III), and Zn (II) are barely reactive, even at higher concentrations. The OPDTT measured for both WF CRMs extracts compare well with simulated extracts containing the main metals at their respective PB-soluble concentrations. The most soluble transition metals in the simulated extract, Mn (II) and Cu (II), were the main contributors to OPDTT in WF CRMs extracts. Mn (II), Cu (II), and Ni (II) might enhance the DTT oxidation by a redox catalytic reaction. However, summing the main individual soluble metal DTT response induces a large overestimation probably linked to modifications in the speciation of various metals when mixed. The complexation of metals with different ligands present in solution and the interaction between metals in the PB-soluble fraction are important phenomena that can influence OPDTT depletion and therefore the potential health effect of inhaled WF.
Collapse
|
9
|
Merk R, Heßelbach K, Osipova A, Popadić D, Schmidt-Heck W, Kim GJ, Günther S, Piñeres AG, Merfort I, Humar M. Particulate Matter (PM 2.5) from Biomass Combustion Induces an Anti-Oxidative Response and Cancer Drug Resistance in Human Bronchial Epithelial BEAS-2B Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8193. [PMID: 33171923 PMCID: PMC7664250 DOI: 10.3390/ijerph17218193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Nearly half of the world's population relies on combustion of solid biofuels to cover fundamental energy demands. Epidemiologic data demonstrate that particularly long-term emissions adversely affect human health. However, pathological molecular mechanisms are insufficiently characterized. Here we demonstrate that long-term exposure to fine particulate matter (PM2.5) from biomass combustion had no impact on cellular viability and proliferation but increased intracellular reactive oxygen species (ROS) levels in bronchial epithelial BEAS-2B cells. Exposure to PM2.5 induced the nuclear factor erythroid 2-related factor 2 (Nrf2) and mediated an anti-oxidative response, including enhanced levels of intracellular glutathione (GSH) and nuclear accumulation of heme oxygenase-1 (HO-1). Activation of Nrf2 was promoted by the c-Jun N-terminal kinase JNK1/2, but not p38 or Akt, which were also induced by PM2.5. Furthermore, cells exposed to PM2.5 acquired chemoresistance to doxorubicin, which was associated with inhibition of apoptosis and elevated levels of GSH in these cells. Our findings propose that exposure to PM2.5 induces molecular defense mechanisms, which prevent cellular damage and may thus explain the initially relative rare complications associated with PM2.5. However, consistent induction of pro-survival pathways may also promote the progression of diseases. Environmental conditions inducing anti-oxidative responses may have the potential to promote a chemoresistant cellular phenotype.
Collapse
Affiliation(s)
- Regina Merk
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| | - Katharina Heßelbach
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| | - Anastasiya Osipova
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| | - Désirée Popadić
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| | - Wolfgang Schmidt-Heck
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll Institute (HKI), 07745 Jena, Germany;
| | - Gwang-Jin Kim
- Department of Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany; (G.-J.K.); (S.G.)
| | - Stefan Günther
- Department of Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany; (G.-J.K.); (S.G.)
| | - Alfonso García Piñeres
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, 11501-2060 San José, Costa Rica;
- Escuela de Química, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Matjaz Humar
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany; (R.M.); (K.H.); (A.O.); (D.P.)
| |
Collapse
|
10
|
Stanislawska M, Janasik B, Kuras R, Malachowska B, Halatek T, Wasowicz W. Assessment of occupational exposure to stainless steel welding fumes – A human biomonitoring study. Toxicol Lett 2020; 329:47-55. [DOI: 10.1016/j.toxlet.2020.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022]
|
11
|
Ward RX, Tilly TB, Mazhar SI, Robinson SE, Eiguren-Fernandez A, Wang J, Sabo-Attwood T, Wu CY. Mimicking the human respiratory system: Online in vitro cell exposure for toxicity assessment of welding fume aerosol. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122687. [PMID: 32330784 PMCID: PMC7276288 DOI: 10.1016/j.jhazmat.2020.122687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 04/07/2020] [Indexed: 05/05/2023]
Abstract
In assessing the biological impact of airborne particles in vitro, air-liquid interface (ALI) exposure chambers are increasingly preferred over classical submerged exposure techniques, albeit historically limited by their inability to deliver sufficient aerosolized dose. A novel ALI system, the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), bioinspired by the human respiratory system, uses water-based condensation for highly efficient aerosol deposition to ALI cell culture. Here, welding fumes (well-studied and inherently toxic ultrafine particles) were used to assess the ability of DAVID to generate toxicological responses between differing welding conditions. After fume exposure, ALI-cultured cells showed reductions in viability that were both distinct between welding conditions and linearly dose-dependent with respect to exposure time; comparatively, submerged cell cultures ran in parallel did not show these trends across exposure levels. DAVID delivers a substantial dose in minutes (> 100 μg/cm2), making it preferable over previous ALI systems, which require hours of exposure to deliver sufficient dose, and over submerged techniques, which lack comparable physiological relevance. DAVID has the potential to provide the most accurate assessment of in vitro toxicity yet from the perspectives of physiological relevance to the human respiratory system and efficiency in collecting ultrafine aerosol common to hazardous exposure conditions.
Collapse
Affiliation(s)
- Ryan X Ward
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 1128 Center Dr, 220 Black Hall, Gainesville, FL, 32611, USA.
| | - Trevor B Tilly
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 1128 Center Dr, 220 Black Hall, Gainesville, FL, 32611, USA.
| | - Syeda Irsa Mazhar
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 1128 Center Dr, 220 Black Hall, Gainesville, FL, 32611, USA; Department of Environmental Science, International Islamic University, Female Campus, Room No. 23, Hazrat Maryam Block, H-10 Islamabad, Pakistan.
| | - Sarah E Robinson
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, HPNP 4157, 1225 Center Dr, PO Box 100188, Gainesville, FL, 32610, USA.
| | | | - Jun Wang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 Northeast 13thSt, Oklahoma City, OK, 73104, USA.
| | - Tara Sabo-Attwood
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, HPNP 4157, 1225 Center Dr, PO Box 100188, Gainesville, FL, 32610, USA.
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 1128 Center Dr, 220 Black Hall, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Welding Fumes, a Risk Factor for Lung Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072552. [PMID: 32276440 PMCID: PMC7177922 DOI: 10.3390/ijerph17072552] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022]
Abstract
(1) Background: Welding fumes (WFs) are composed of fine and ultrafine particles, which may reach the distal airways and represent a risk factor for respiratory diseases. (2) Methods: In vitro and in vivo studies to understand WFs pathogenesis were selected. Epidemiological studies, original articles, review, and meta-analysis to examine solely respiratory disease in welders were included. A systematic literature search, using PubMed, National Institute for Occupational Safety and Health Technical Information Center (NIOSHTIC), and Web of Science databases, was performed. (3) Results: Dose, time of exposure, and composition of WFs affect lung injury. Inflammation, lung defense suppression, oxidative stress, DNA damage, and genotoxic effects were observed after exposure both to mild and stainless steel WFs. (4) Conclusions: The detection of lung diseases associated with specific occupational exposure is crucial as complete avoidance or reduction of the exposure is difficult to achieve. Further studies in the area of particle research may aid the understanding of mechanisms involved in welding-related lung disease and to expand knowledge in welding-related cardiovascular diseases.
Collapse
|
13
|
Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry. METALS 2019. [DOI: 10.3390/met9020163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several studies have shown an increased mortality rate for different types of tumors, respiratory disease and cardiovascular morbidity associated with foundry work. Airborne particles were investigated in a steelmaking foundry using an electric low-pressure impactor (ELPI+™), a Philips Aerasense Nanotracer and traditional sampling equipment. Determination of metallic elements in the collected particles was carried out by inductively coupled plasma mass spectrometry. The median of ultrafine particle (UFP) concentration was between 4.91 × 103 and 2.33 × 105 part/cm3 (max. 9.48 × 106 part/cm3). Background levels ranged from 1.97 × 104 to 3.83 × 104 part/cm3. Alveolar and deposited tracheobronchial surface area doses ranged from 1.3 × 102 to 8.7 × 103 mm2, and 2.6 × 101 to 1.3 × 103 mm2, respectively. Resulting inhalable and respirable fraction and metallic elements were below limit values set by Italian legislation. A variable concentration of metallic elements was detected in the different fractions of UFPs in relation to the sampling site, the emission source and the size range. This data could be useful in order to increase the knowledge about occupational exposure to fine and ultrafine particles and to design studies aimed to investigate early biological effects associated with the exposure to particulate matter in the foundry industries.
Collapse
|
14
|
Krawic C, Zhitkovich A. Toxicological Antagonism among Welding Fume Metals: Inactivation of Soluble Cr(VI) by Iron. Chem Res Toxicol 2018; 31:1172-1184. [PMID: 30362728 PMCID: PMC6247247 DOI: 10.1021/acs.chemrestox.8b00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Epidemiological studies in chromate production have established hexavalent chromium as a potent lung carcinogen. Inhalation of chromium(VI) most often occurs in mixtures with other metals as among stainless steel welders, which is the largest occupational group with Cr(VI) exposure. Surprisingly, carcinogenicity of Cr(VI)-containing welding fumes is moderate and not consistently higher than that of Cr-free welding. Here, we investigated interactions between chromate and three other metal ions [Fe(III), Mn(II), Ni(II)] that are typically released from stainless steel welding particles. In human lung epithelial cells with physiological levels of ascorbate and glutathione, Cr(VI) was by far the most cytotoxic metal in single exposures. Coexposure with Fe(III) suppressed cytotoxicity and genotoxicity of Cr(VI), which resulted from a severe inhibition of Cr uptake by cells and required extracellular ascorbate/glutathione. Chemically, detoxification of Cr(VI) occurred via its rapid extracellular reduction by Fe(II) that primarily originated from ascorbate-reduced Fe(III). Glutathione was a significant contributor to reduction of Cr(VI) by Fe only in the presence of ascorbate. We further found that variability in Cr(VI) metabolism among common cell culture media was caused by their different Fe content. Ni(II) and Mn(II) had no detectable effects on metabolism, cellular uptake or cytotoxicity of Cr(VI). The main biological findings were confirmed in three human lung cell lines, including stem cell-like and primary cells. We discovered extracellular detoxification of carcinogenic chromate in coexposures with Fe(III) ions and identified the underlying chemical mechanism. Our findings established an important case when exposure to mixtures causes inactivation of a potent human carcinogen.
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory
Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory
Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
15
|
Shoeb M, Kodali V, Farris B, Bishop LM, Meighan T, Salmen R, Eye T, Roberts JR, Zeidler-Erdely P, Erdely A, Antonini JM. Evaluation of the molecular mechanisms associated with cytotoxicity and inflammation after pulmonary exposure to different metal-rich welding particles. Nanotoxicology 2017; 11:725-736. [PMID: 28660804 PMCID: PMC6324175 DOI: 10.1080/17435390.2017.1349200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Welding generates a complex aerosol of incidental nanoparticles and cytotoxic metals, such as chromium (Cr), manganese (Mn), nickel (Ni), and iron (Fe). The goal was to use both in vivo and in vitro methodologies to determine the mechanisms by which different welding fumes may damage the lungs. Sprague-Dawley rats were treated by intratracheal instillation (ITI) with 2.0 mg of gas metal arc-mild steel (GMA-MS) or manual metal arc-stainless steel (MMA-SS) fumes or saline (vehicle control). At 1, 3, and 10 days, bronchoalveolar lavage (BAL) was performed to measure lung toxicity. To assess molecular mechanisms of cytotoxicity, RAW264.7 cells were exposed to both welding fumes for 24 h (0-100 μg/ml). Fume composition was different: MMA-SS (41% Fe, 29% Cr, 17% Mn, 3% Ni) versus GMA-MS (85% Fe, 14% Mn). BAL indicators of lung injury and inflammation were increased by MMA-SS at all time points and by GMA-MS at 3 and 10 days after exposure. RAW264.7 cells exposed to MMA-SS had elevated generation of reactive oxygen species (ROS), protein-HNE (P-HNE) adduct formation, activation of ERK1/2, and expression of cyclooxygenase-2 (COX-2) compared to GMA-MS and control. Increased generation of ROS due to MMA-SS exposure was confirmed by increased expression of Nrf2 and heme oxygenase-1 (HO-1). Results of in vitro studies provide evidence that stainless steel welding fume mediate inflammatory responses via activation of ROS/P-HNE/ERK1/2/Nrf2 signaling pathways. These findings were corroborated by elevated expression of COX-2, Nrf2, and HO-1 in homogenized lung tissue collected 1 day after in vivo exposure.
Collapse
Affiliation(s)
- Mohammad Shoeb
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Vamsi Kodali
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Breanne Farris
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Lindsey M Bishop
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Terence Meighan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Rebecca Salmen
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Tracy Eye
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Jenny R Roberts
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Patti Zeidler-Erdely
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Aaron Erdely
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - James M Antonini
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
16
|
Wong JYY, Bassig BA, Seow WJ, Hu W, Ji BT, Blair A, Silverman DT, Lan Q. Lung cancer risk in welders and foundry workers with a history of heavy smoking in the USA: The National Lung Screening Trial. Occup Environ Med 2017; 74:440-448. [PMID: 28069970 PMCID: PMC6400285 DOI: 10.1136/oemed-2016-104168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Foundry work is a risk factor for lung cancer; however, the association with welding is unclear, as smoking is common among metalworkers and may mask the relationship. We evaluated whether history of welding and foundry work, independently and jointly, and employment duration were associated with lung cancer risk in heavy smokers. METHODS We analysed data from the National Lung Screening Trial, a prospective randomised trial of 53 454 heavy smokers (>30 pack-years) in the USA. Cox regression models were used to estimate the HRs and 95% CIs of medically/histologically confirmed incident lung cancer during the follow-up period (2002-2009) in relation to history and duration of welding and foundry work assessed via questionnaires, adjusted for screening arm, component study, sex, age, race/ethnicity, education, smoking status and pack-years, body mass index and personal/family medical history. RESULTS There were 2034 incident lung cancer cases throughout the follow-up. Increasing years of employment in welding (p-trend =0.039) and foundry work (p-trend =0.005) were related to increased lung cancer risk among heavy smokers. Having ever been employed (≥1 yr) as either a welder or foundry worker alone was associated with non-significant increased risks of lung cancer (HR=1.12 (95% CI 0.91 to 1.37) and HR=1.09 (95% CI 0.85 to 1.39), respectively). Further, there was a joint-effect in that those who were ever employed in both occupations had significantly increased risks (HR=1.48 (95% CI 1.08 to 2.04)). CONCLUSIONS Our findings provide further evidence that exposure to welding/metal fumes may be associated with elevated lung cancer risk. TRIAL REGISTRATION NUMBER NCT00047385.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Wei Jie Seow
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
17
|
Krishnaraj J, Kowshik J, Sebastian R, Raghavan SC, Nagini S. Exposure to welding fumes activates DNA damage response and redox-sensitive transcription factor signalling in Sprague-Dawley rats. Toxicol Lett 2017; 274:8-19. [DOI: 10.1016/j.toxlet.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
18
|
Halatek T, Stanislawska M, Kaminska I, Cieslak M, Swiercz R, Wasowicz W. The time-dependent health and biochemical effects in rats exposed to stainless steel welding dust and its soluble form. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:265-273. [PMID: 27901646 DOI: 10.1080/10934529.2016.1253397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. The principal objective of this study was to determine the dynamics of toxic effects of inhalation exposure to morphologically rated welding dust from stainless steel welding and its soluble form in TSE System with a dynamic airflow. We assessed the pulmonary toxicity of welding dust in Wistar rats exposed to 60.0 mg/m3 of respirable-size welding dust (mean diameter 1.17 µm) for 2 weeks (6 h/day, 5 days/week); the aerosols were generated in the nose-only exposure chambers (NOEC). An additional aim included the study of the effect of betaine supplementation on oxidative deterioration in rat lung during 2 weeks of exposure to welding dust or water-soluble dust form. The animals were divided into eight groups (n = 8 per group): control, dust, betaine, betaine + dust, soluble-form dust, soluble-form dust + betaine, saline and saline + betaine groups. Rats were euthanized 1 or 2 weeks after the last exposure for assessment of pulmonary toxicity. Differential cell counts, total protein concentrations and cellular enzyme (lactate dehydrogenase-LDH) activities were determined in bronchoalveolar lavage (BAL) fluid, and corticosterone and thiobarbituric acid reactive substances (TBARS) concentrations were assessed in serum. The increase in polymorphonuclear (PMN) leukocytes in BAL fluid (a cytological index of inflammatory responses of the lung) is believed to reflect pulmonary toxicity of heavy metals. Biomarkers of toxicity assessed in bronchoalveolar fluids indicate that the level of the toxic effect depends mainly on the solubility of studied metal compounds; biomarkers that showed treatment effects included: total cell, neutrophil and lymphocyte counts, total protein concentrations, and cellular enzyme (lactate dehydrogenase) activity. Betaine supplementation at 250 mg/kg/day in all study rats groups attenuated stress indices, and corticosterone and TBARS serum levels, and simultaneously stimulated increase of polymorphonuclear cells in BALF of rats. The study confirmed deleterious effect of transitory metals and particles during experimental inhalation exposure to welding dusts, evidenced in the lungs and brain by increased levels of total protein, higher cellular influx, rise of LDH in BALF, elevated TBARS and increased corticosterone in serum of rats. Our result confirm also the hypothesis about the effect of the welding dusts on the oxidative stress responsible for disturbed systemic homeostasis and impairment of calcium regulation.
Collapse
Affiliation(s)
- Tadeusz Halatek
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Magdalena Stanislawska
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Irena Kaminska
- b Scientific Department of Unconventional Technologies and Textiles , Textile Research Institute , Lodz , Poland
| | - Malgorzata Cieslak
- b Scientific Department of Unconventional Technologies and Textiles , Textile Research Institute , Lodz , Poland
| | - Radoslaw Swiercz
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Wojciech Wasowicz
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| |
Collapse
|
19
|
Graczyk H, Lewinski N, Zhao J, Sauvain JJ, Suarez G, Wild P, Danuser B, Riediker M. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study. Part Fibre Toxicol 2016; 13:31. [PMID: 27286820 PMCID: PMC4901438 DOI: 10.1186/s12989-016-0143-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/03/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. METHODS Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. RESULTS Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). CONCLUSION A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is recommended that additional exposure metrics such as PNC are considered for occupational risk assessments. Our findings highlight the importance of increasing awareness of TIG welding fume toxicity, especially given the realities of welding workplaces that may lack ventilation; and beliefs among interviewed welders that TIG represents a cleaner and safer welding process.
Collapse
Affiliation(s)
- Halshka Graczyk
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Nastassja Lewinski
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jiayuan Zhao
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA, 02115, USA
| | - Jean-Jacques Sauvain
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Guillaume Suarez
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Pascal Wild
- Department of Scientific Management, National Institute for Research and Security, INRS, Vandoeuvre, 54500, France
| | - Brigitta Danuser
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland
| | - Michael Riediker
- Institute for Work and Health, University of Lausanne and Geneva, Lausanne, CH-1066, Switzerland. .,SAFENANO, IOM Singapore, Singapore, 048622, Singapore.
| |
Collapse
|
20
|
Marongiu A, Hasan O, Ali A, Bakhsh S, George B, Irfan N, Minelli C, Canova C, Schofield S, De Matteis S, Cullinan P. Are welders more at risk of respiratory infections? Findings from a cross-sectional survey and analysis of medical records in shipyard workers: the WELSHIP project. Thorax 2016; 71:601-6. [DOI: 10.1136/thoraxjnl-2015-207912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/04/2016] [Indexed: 11/04/2022]
|
21
|
Graczyk H, Lewinski N, Zhao J, Concha-Lozano N, Riediker M. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders. ANNALS OF OCCUPATIONAL HYGIENE 2015; 60:205-19. [PMID: 26464505 PMCID: PMC4738234 DOI: 10.1093/annhyg/mev074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022]
Abstract
Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training.
Collapse
Affiliation(s)
- Halshka Graczyk
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Nastassja Lewinski
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland; 2.Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jiayuan Zhao
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Nicolas Concha-Lozano
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland
| | - Michael Riediker
- 1.Institute for Work and Health, University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland; 3.SAFENANO, IOM Singapore, Singapore 048622
| |
Collapse
|
22
|
Jara-Ettinger AC, López-Tavera JC, Zavala-Cerna MG, Torres-Bugarín O. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study. PLoS One 2015; 10:e0131548. [PMID: 26244938 PMCID: PMC4526553 DOI: 10.1371/journal.pone.0131548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders. MATERIAL AND METHODS We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls). Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age. RESULTS Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis) did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor. CONCLUSIONS Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject.
Collapse
Affiliation(s)
| | | | | | - Olivia Torres-Bugarín
- Faculty of medicine, International Program, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
23
|
Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 2014; 65:125-202. [PMID: 25476766 DOI: 10.1016/bs.ampbs.2014.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages are critical mediators of innate immune responses against bacteria. The Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus express a range of virulence factors, which challenge macrophages' immune competence. We review how macrophages respond to this challenge. Macrophages employ a range of strategies to phagocytose and kill each pathogen. When the macrophages capacity to clear bacteria is overwhelmed macrophages play important roles in orchestrating the inflammatory response through pattern recognition receptor-mediated responses. Macrophages also ensure the inflammatory response is tightly constrained, to avoid tissue damage, and play an important role in downregulating the inflammatory response once initial bacterial replication is controlled.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jody Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom.
| |
Collapse
|
24
|
Antonini JM, Badding MA, Meighan TG, Keane M, Leonard SS, Roberts JR. Evaluation of the Pulmonary Toxicity of a Fume Generated from a Nickel-, Copper-Based Electrode to be Used as a Substitute in Stainless Steel Welding. ENVIRONMENTAL HEALTH INSIGHTS 2014; 8:11-20. [PMID: 25392698 PMCID: PMC4216652 DOI: 10.4137/ehi.s15260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 06/04/2023]
Abstract
Epidemiology has indicated a possible increase in lung cancer among stainless steel welders. Chromium (Cr) is a primary component of stainless steel welding fume. There is an initiative to develop alternative welding consumables [nickel (Ni)- and copper (Cu)-based alloys] that do not contain Cr. No study has been performed to evaluate the toxicity of fumes generated from Ni- and Cu-based consumables. Dose-response and time-course effects on lung toxicity of a Ni- and Cu-based welding fume (Ni-Cu WF) were examined using an in vivo and in vitro bioassay, and compared with two other well-characterized welding fumes. Even though only trace amounts of Cr were present, a persistent increase in lung injury and inflammation was observed for the Ni-Cu WF compared to the other fumes. The difference in response appears to be due to a direct cytotoxic effect by the Ni-Cu WF sample on lung macrophages as opposed to an elevated production of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Melissa A Badding
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Terence G Meighan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Keane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stephen S Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
25
|
Erdely A, Antonini JM, Young SH, Kashon ML, Gu JK, Hulderman T, Salmen R, Meighan T, Roberts JR, Zeidler-Erdely PC. Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats. Part Fibre Toxicol 2014; 11:34. [PMID: 25123171 PMCID: PMC4151022 DOI: 10.1186/s12989-014-0034-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/24/2014] [Indexed: 11/10/2022] Open
Abstract
Welding fume is an exposure that consists of a mixture of metal-rich particulate matter with gases (ozone, carbon monoxide) and/or vapors (VOCs). Data suggests that welders are immune compromised. Given the inability of pulmonary leukocytes to properly respond to a secondary infection in animal models, the question arose whether the dysfunction persisted systemically. Our aim was to evaluate the circulating leukocyte population in terms of cellular activation, presence of oxidative stress, and functionality after a secondary challenge, following welding fume exposure. Rats were intratracheally instilled (ITI) with PBS or 2 mg of welding fume collected from a stainless steel weld. Rats were sacrificed 4 and 24 h post-exposure and whole blood was collected. Whole blood was used for cellular differential counts, RNA isolation with subsequent microarray and Ingenuity Pathway Analysis, and secondary stimulation with LPS utilizing TruCulture technology. In addition, mononuclear cells were isolated 24 h post-exposure to measure oxidative stress by flow cytometry and confocal microscopy. Welding fume exposure had rapid effects on the circulating leukocyte population as identified by relative mRNA expression changes. Instillation of welding fume reduced inflammatory protein production of circulating leukocytes when challenged with the secondary stimulus LPS. The effects were not related to transcription, but were observed in conjunction with oxidative stress. These findings support previous studies of an inadequate pulmonary immune response following a metal-rich exposure and extend those findings showing leukocyte dysfunction occurs systemically.
Collapse
Affiliation(s)
- Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown 26505, WV, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Badding MA, Fix NR, Antonini JM, Leonard SS. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages. PLoS One 2014; 9:e101310. [PMID: 24977413 PMCID: PMC4076336 DOI: 10.1371/journal.pone.0101310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/04/2014] [Indexed: 02/02/2023] Open
Abstract
Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI), this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI) and Mn. A new nickel (Ni) and copper (Cu)-based material (Ni-Cu WF) is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS) or stainless steel (GMA-SS) electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml) for up to 24 hours. Cell viability, reactive oxygen species (ROS) production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI) and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu) may not necessarily improve welder safety.
Collapse
Affiliation(s)
- Melissa A. Badding
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- * E-mail:
| | - Natalie R. Fix
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - James M. Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Stephen S. Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| |
Collapse
|
27
|
Tutkun E, Abusoglu S, Yilmaz H, Gunduzoz M, Evcik E, Ozis TN, Keskinkilic B, Unlu A. Farewell to an old friend: chest X-ray vs high-resolution computed tomography in welders' lung disease. CLINICAL RESPIRATORY JOURNAL 2013; 8:220-4. [PMID: 24131487 DOI: 10.1111/crj.12063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/23/2013] [Accepted: 10/13/2013] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Welder's lung disease originated from a mixed exposure to different kinds of metals and chemicals from welding fumes. Because of these various harmful effects, irreversible morphological changes may occur in all parts of the respiratory tract, airways and lung parenchyma. Parenchymal changes are the main lesions that define the severity of exposure. The grade of these lesions is the main criteria for compensation claims and the clinical threshold for the occupational health physician's decision making of work change in order to protect the worker's health. In this study, our aim was to compare the diagnostic performance of chest X-ray (CXR) and high-resolution computed tomography (HRCT) for welders' lung disease. OBJECTIVES Seventy-four male welders aged between 25 and 55 years were enrolled to this study. METHODS Clinical diagnoses were compared by CXR and HRCT. Same radiologists evaluated the scans without any knowledge about the medical history of the patient (double-blinded evaluation). The agreement between radiologists was compared with Cohen's kappa statistics. RESULTS The mean age for 74 welders was 40.7 years. The mean duration of exposure was 18.9 years. Although all were found to be nonpathological on the CXR, 27 mild nodular and nine mild linear opacities, five emphysematous changes, three ground glass infiltrates and one pleural thickening were detected by HRCT. CONCLUSIONS HRCT provides better diagnostic performance compared to CXR for the diagnosis of welders' lung disease.
Collapse
Affiliation(s)
- Engin Tutkun
- Department Occupational Diseases Service, Ankara Occupational Diseases Hospital, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wei Y, Wang Z, Chang CY, Fan T, Su L, Chen F, Christiani DC. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids. PLoS One 2013; 8:e77413. [PMID: 24143234 PMCID: PMC3797131 DOI: 10.1371/journal.pone.0077413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/10/2013] [Indexed: 12/19/2022] Open
Abstract
Background Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. Objectives To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. Methods The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. Results Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5) exposure (p<0.05). The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [(95% CI) = −0.013(−0.022∼−0.004); p = 0.005], docosapentaenoic acid n3 [(95% CI) = −0.010(−0.018∼−0.002); p = 0.017], and docosapentaenoic acid n6 [(95% CI) = −0.007(−0.013∼−0.001); p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (pStudy−2011 = 0.025; pStudy−2012 = 0.021; pCombined = 0.009). The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. Conclusions High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.
Collapse
Affiliation(s)
- Yongyue Wei
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- Department of Epidemiology and Biostatistics, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Chiung-yu Chang
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Tianteng Fan
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Feng Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Kile ML, Fang S, Baccarelli AA, Tarantini L, Cavallari J, Christiani DC. A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ Health 2013; 12:47. [PMID: 23758843 PMCID: PMC3700827 DOI: 10.1186/1476-069x-12-47] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 06/04/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Exposure to pollutants including metals and particulate air pollution can alter DNA methylation. Yet little is known about intra-individual changes in DNA methylation over time in relationship to environmental exposures. Therefore, we evaluated the effects of acute- and chronic metal-rich PM2.5 exposures on DNA methylation. METHODS Thirty-eight male boilermaker welders participated in a panel study for a total of 54 person days. Whole blood was collected prior to any welding activities (pre-shift) and immediately after the exposure period (post-shift). The percentage of methylated cytosines (%mC) in LINE-1, Alu, and inducible nitric oxide synthase gene (iNOS) were quantified using pyrosequencing. Personal PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) was measured over the work-shift. A questionnaire assessed job history and years worked as a boilermaker. Linear mixed models with repeated measures evaluated associations between DNA methylation, PM2.5 concentration (acute exposure), and years worked as a boilermaker (chronic exposure). RESULTS PM2.5 exposure was associated with increased methylation in the promoter region of the iNOS gene (β = 0.25, SE: 0.11, p-value = 0.04). Additionally, the number of years worked as a boilermaker was associated with increased iNOS methylation (β = 0.03, SE: 0.01, p-value = 0.03). No associations were observed for Alu or LINE-1. CONCLUSIONS Acute and chronic exposure to PM2.5 generated from welding activities was associated with a modest change in DNA methylation of the iNOS gene. Future studies are needed to confirm this association and determine if the observed small increase in iNOS methylation are associated with changes in NO production or any adverse health effect.
Collapse
Affiliation(s)
- Molly L Kile
- Oregon State University, College of Public Health and Human Sciences, 15 Milam, Corvallis, OR 97331, USA
| | - Shona Fang
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Andrea A Baccarelli
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Letizia Tarantini
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan, Milan, Italy
| | - Jennifer Cavallari
- University of Connecticut, School of Medicine, Community Medicine & Health Care, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - David C Christiani
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
30
|
Levels and predictors of airborne and internal exposure to chromium and nickel among welders—Results of the WELDOX study. Int J Hyg Environ Health 2013; 216:175-83. [DOI: 10.1016/j.ijheh.2012.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/02/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022]
|
31
|
Chang C, Demokritou P, Shafer M, Christiani D. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:214-24. [PMID: 24592438 DOI: 10.1039/c2em30505d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be greatly influenced by these factors. Furthermore, the results also confirmed the hypothesis that smaller particles generate more ROS activity and should be evaluated carefully for risk assessment.
Collapse
|
32
|
Chen HL, Chung SH, Jhuo ML. Efficiency of different respiratory protective devices for removal of particulate and gaseous reactive oxygen species from welding fumes. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2013; 68:101-6. [PMID: 23428060 DOI: 10.1080/19338244.2011.650799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ultraviolet (UV) light inherent to welding processes generates ozone (O(3)) with subsequent formation of reactive oxygen species (ROS) through photochemical reactions when UV light is present with O(3). This study aimed to determine the performance of filters used as respiratory protective devices by welding personnel to simultaneously mitigate particulate and gaseous inhalation hazards. Four respiratory protective devices were selected for this study, including a surgical facemask, a cotton-fabric facemask, an activated-carbon facemask, and an N95 respirator. The removal efficiencies for the particulates in welding fumes were all above 98%. For particulate-phase ROS, the removal efficiencies of the different respiratory protective devices ranged from 83.5% to 94.1%; however, the removal efficiencies for gaseous ROS were only 1.3% (active carbon facemask) to 21.1% (N95 respirator). The data indicated that the respiratory protective devices commercially available cannot block the passage of the gas-phase ROS found in welding fumes.
Collapse
Affiliation(s)
- Hsiu-Ling Chen
- Institute of Occupational Safety and Hazard Prevention, Hung Kuang University, Taichung 433, Taiwan.
| | | | | |
Collapse
|
33
|
Taube F. Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility. ACTA ACUST UNITED AC 2012; 57:6-25. [PMID: 22997412 DOI: 10.1093/annhyg/mes053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Physicochemical properties, such as particle sizes, composition, and solubility of welding fumes are decisive for the bioaccessibility of manganese and thereby for the manganese cytotoxic and neurotoxic effects arising from various welding fumes. Because of the diverse results within the research on welding fume solubility, this article aims to review and discuss recent literature on physicochemical properties of gas metal arc welding, shielded metal arc welding, and flux-cored arc welding fumes, with focus on solubility properties. This article also presents a short introduction to the literature on arc welding techniques, health effects from manganese, and occupational exposure to manganese among welders.
Collapse
Affiliation(s)
- Fabian Taube
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Box 414, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
34
|
Zeidler-Erdely PC, Battelli LA, Salmen-Muniz R, Li Z, Erdely A, Kashon ML, Simeonova PP, Antonini JM. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:728-736. [PMID: 21480047 DOI: 10.1080/15287394.2011.556063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road (M/S L2015), Morgantown, WV 26505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Assem FL, Holmes P, Levy LS. The mutagenicity and carcinogenicity of inorganic manganese compounds: a synthesis of the evidence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:537-570. [PMID: 22008092 DOI: 10.1080/10937404.2011.615111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Manganese (Mn), a naturally occurring element present in many foodstuffs, is an essential trace element with many biological functions. In industry, inorganic Mn compounds have a range of different applications, although the majority of Mn is used to make alloys and steel. For the general population, the major source of exposure to Mn is dietary, although drinking water may constitute an additional source in some regions. However, in occupationally exposed humans, inhalation of Mn is likely to be an important additional route. In general, Mn and its inorganic compounds are considered to possess low mutagenic or carcinogenic potential compared with some heavy metals. In this review, an up-to-date analysis of the available published studies on the carcinogenic and genotoxic potential of inorganic Mn is provided (organic Mn compounds are not considered). The current literature indicates that Mn may be weakly mutagenic in vitro and possibly clastogenic in vivo, with unknown genotoxic effects in humans; the possible mechanisms underlying these effects are discussed. The experimental evidence on carcinogenicity (quantitative increase in incidence of thyroid tumors in mice but not rats) does not provide any clear evidence, while the available occupational and environmental epidemiological evidence is equivocal as to whether exposure to inorganic Mn is associated with a significant cancer risk. Hence, it is concluded that there is insufficient evidence to indicate that inorganic Mn exposure produces cancer in animals or humans.
Collapse
|
36
|
Leonard SS, Chen BT, Stone SG, Schwegler-Berry D, Kenyon AJ, Frazer D, Antonini JM. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species. Part Fibre Toxicol 2010; 7:32. [PMID: 21047424 PMCID: PMC2987950 DOI: 10.1186/1743-8977-7-32] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/03/2010] [Indexed: 01/31/2023] Open
Abstract
Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of fume generated, particle size, and elapsed time after generation of the welding exposure are significant factors in radical generation and particle deposition these factors should be considered when developing protective strategies.
Collapse
Affiliation(s)
- Stephen S Leonard
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Biological monitoring of hexavalent chromium and serum levels of the senescence biomarker apolipoprotein J/Clusterin in welders. Bioinorg Chem Appl 2010:420578. [PMID: 18464919 PMCID: PMC2366075 DOI: 10.1155/2008/420578] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 01/12/2008] [Accepted: 03/13/2008] [Indexed: 11/18/2022] Open
Abstract
Welding fumes contain metals and other toxic substances known or strongly suspected to be related with oxidative stress and premature cellular senescence. Apolipoprotein J/Clusterin (ApoJ/CLU) is a glycoprotein that is differentially regulated in various physiological and disease states including ageing and age-related diseases. In vitro data showed that exposure of human diploid fibroblasts to hexavalent chromium (Cr(VI)) resulted in premature senescence and significant upregulation of the ApoJ/CLU protein. In this study we analyzed blood and urine samples from shipyard industry welders being exposed to different levels of Cr(VI) over a period of five months in order to assay in vivo the relation of ApoJ/CLU serum levels with Cr(VI). Our findings confirmed the previously reported in vitro data since reduction of Cr levels, after a worksite intervention, associated with lower levels of ApoJ/CLU serum levels. We concluded that the human ApoJ/CLU gene is responsive to the acute in vivo oxidative stress induced by heavy metals such as hexavalent chromium.
Collapse
|
38
|
Chuang CH, Huang CE, Chen HL. DNA strand breakage and lipid peroxidation after exposure to welding fumes in vivo. Mutagenesis 2009; 25:71-6. [PMID: 19884118 DOI: 10.1093/mutage/gep047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A remarkable number of complex aerosols are generated from welding processes. The objective of this study was to compare DNA damage and lipid peroxidation in plasma and in lung and in liver tissue of rats exposed to welding fumes in an exposure chamber with those of control animals. Three air samples from the chamber were also collected to assess the exposure dose for each exposure (total samplings = 18). Eight male Sprague-Dawley rats were exposed to welding fumes at a concentration of 1540.76 mg/m(3) for 10 min/day six times on day 1, day 3, day 7, day 15, day 30 and day 40. Lung, liver and kidney injury was measured following exposure, as well as in unexposed control rats (n = 4 at the beginning of the study). DNA strand breakage [tail moment (TMOM)] in exposed animals showed significant differences at day 1, day 4, day 7 and day 15 relative to the levels in control animals. Malondialdehyde (MDA, a lipid peroxidation product) levels increased gradually post-welding to 0.4 microM at 7 days. MDA and TMOM both reached maximum levels 7 days after the first exposure. At the start, an increasing trend in DNA strand breakage was more obvious than increases in MDA levels; MDA seemed to reflect long-term effects of exposure to welding fumes since it increased after 7 days and was sustained to 40 days in vivo. Significant differences in both MDA levels and DNA strand breakage were seen in lung, liver and kidney 40 days after the first fume inhalation. We conclude that acute exposure of rats to welding fumes causes noticeable oxidative damage and lipid peroxidation effects and that DNA damage may recover after long and repeat exposure. More chronic inhalation and low-dose studies are needed in order to further assess the effects of inhalation of welding fumes on DNA and to elucidate the possible causal mechanisms associated with the biologically damaging effects of welding fumes.
Collapse
Affiliation(s)
- Cheng-Hung Chuang
- Department of Food Science and Applied Biotechnology, Hung Kuang University, Taichung, Taiwan
| | | | | |
Collapse
|
39
|
|
40
|
Zeidler-Erdely PC, Kashon ML, Battelli LA, Young SH, Erdely A, Roberts JR, Reynolds SH, Antonini JM. Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume. Part Fibre Toxicol 2008; 5:12. [PMID: 18778475 PMCID: PMC2546436 DOI: 10.1186/1743-8977-5-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/08/2008] [Indexed: 12/05/2022] Open
Abstract
Background Welding fume has been categorized as "possibly carcinogenic" to humans. Our objectives were to characterize the lung response to carcinogenic and non-carcinogenic metal-containing welding fumes and to determine if these fumes caused increased lung tumorigenicity in A/J mice, a lung tumor susceptible strain. We exposed male A/J and C57BL/6J, a lung tumor resistant strain, by pharyngeal aspiration four times (once every 3 days) to 85 μg of gas metal arc-mild steel (GMA-MS), GMA-stainless steel (SS), or manual metal arc-SS (MMA-SS) fume, or to 25.5 μg soluble hexavalent chromium (S-Cr). Shams were exposed to saline vehicle. Bronchoalveolar lavage (BAL) was done at 2, 7, and 28 days post-exposure. For the lung tumor study, gross tumor counts and histopathological changes were assessed in A/J mice at 48 and 78 weeks post-exposure. Results BAL revealed notable strain-dependent differences with regards to the degree and resolution of the inflammatory response after exposure to the fumes. At 48 weeks, carcinogenic metal-containing GMA-SS fume caused the greatest increase in tumor multiplicity and incidence, but this was not different from sham. By 78 weeks, tumor incidence in the GMA-SS group versus sham approached significance (p = 0.057). A significant increase in perivascular/peribronchial lymphoid infiltrates for the GMA-SS group versus sham and an increased persistence of this fume in lung cells compared to the other welding fumes was found. Conclusion The increased persistence of GMA-SS fume in combination with its metal composition may trigger a chronic, but mild, inflammatory state in the lung possibly enhancing tumorigenesis in this susceptible mouse strain.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Marriott HM, Dockrell DH. The role of the macrophage in lung disease mediated by bacteria. Exp Lung Res 2008; 33:493-505. [PMID: 18075824 DOI: 10.1080/01902140701756562] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Respiratory infections are a major cause of human morbidity and a leading cause of death. The lower respiratory tract is a sterile environment and host defense is well developed to clear bacteria. This response includes both humeral factors and resident and recruited cells. The alveolar macrophage is an integral component and its long-lifespan aids function. Following low-dose challenge alveolar macrophages clear bacteria from the lung, employing an over-lapping set of microbicidal strategies. At a higher-dose the phagocytic capacity of alveolar macrophages is overwhelmed but alveolar macrophages help orchestrate the inflammatory response. In the resolution phase of infection alveolar macrophages contribute to apoptosis induction and clearance of recruited cells. This process down-regulates pro-inflammatory cytokine production. Macrophage function is controlled by induction of apoptosis. Delayed-onset macrophage apoptosis contributes both to bacterial clearance and to resolution of the inflammatory response. Mcl-1, an anti-apoptotic protein with a very short half-life, is a key regulator of macrophage survival and therefore of host responses to common bacterial pathogens in the lung. Studies involving Streptococcus pneumoniae and other respiratory bacteria are discussed to illustrate these points and ephasise that the timing of macrophage apoptosis is important in determining its overall effect on the host pathogen interaction.
Collapse
Affiliation(s)
- Helen M Marriott
- Section of Infection, Inflammation and Immunity, University of Sheffield School of Medicine and Biomedical Sciences, Sheffield, UK
| | | |
Collapse
|
42
|
Mossman BT, Borm PJ, Castranova V, Costa DL, Donaldson K, Kleeberger SR. Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Part Fibre Toxicol 2007; 4:4. [PMID: 17537262 PMCID: PMC1894816 DOI: 10.1186/1743-8977-4-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 05/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A symposium on the mechanisms of action of inhaled airborne particulate matter (PM), pathogenic particles and fibers such as silica and asbestos, and nanomaterials, defined as synthetic particles or fibers less than 100 nm in diameter, was held on October 27 and 28, 2005, at the Environmental Protection Agency (EPA) Conference Center in Research Triangle Park, North Carolina. The meeting was the eighth in a series of transatlantic conferences first held in Penarth, Wales, at the Medical Research Council Pneumoconiosis Unit (1979), that have fostered long-standing collaborations between researchers in the fields of mineralogy, cell and molecular biology, pathology, toxicology, and environmental/occupational health. RESULTS The goal of this meeting, which was largely supported by a conference grant from the NHLBI, was to assemble a group of clinical and basic research scientists who presented and discussed new data on the mechanistic effects of inhaled particulates on the onset and development of morbidity and mortality in the lung and cardiovascular system. Another outcome of the meeting was the elucidation of a number of host susceptibility factors implicated in adverse health effects associated with inhaled pathogenic particulates. CONCLUSION New models and data presented supported the paradigm that both genetic and environmental (and occupational) factors affect disease outcomes from inhaled particulates as well as cardiopulmonary responses. These future studies are encouraged to allow the design of appropriate strategies for prevention and treatment of particulate-associated morbidity and mortality, especially in susceptible populations.
Collapse
Affiliation(s)
- Brooke T Mossman
- Department of Pathology, University of Vermont, 89 Beaumont Avenue, HSRF 218, Burlington, VT 05405, USA
| | - Paul J Borm
- University of Heerlen, CEL, Nieuw Eyckholt 300, Heerlen, 6400 AN, The Netherlands
| | - Vincent Castranova
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Pathology and Physiology Research Branch, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Daniel L Costa
- Environmental Protection Agency, E205-09, EPA/ORD, Research Triangle Park, NC 27711, USA
| | - Kenneth Donaldson
- Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Steven R Kleeberger
- National Institute of Environmental Health Sciences, MD D2-01, P. O. Box 12233, Research Triangle Park, NC 27709, USA
| |
Collapse
|
43
|
. SI, . MF, . SH. Cytosolic Reduction of Toxic Cr (VI) by Indigenous Microorganism. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/rjes.2007.77.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Iarmarcovai G, Sari-Minodier I, Orsière T, De Méo M, Gallice P, Bideau C, Iniesta D, Pompili J, Bergé-Lefranc JL, Botta A. A combined analysis of XRCC1, XRCC3, GSTM1 and GSTT1 polymorphisms and centromere content of micronuclei in welders. Mutagenesis 2006; 21:159-65. [PMID: 16551674 DOI: 10.1093/mutage/gel010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aims of the present study were to assess clastogenic and aneugenic properties of welding fumes using fluorescent in situ hybridization (FISH) with a human pancentromeric DNA probe. The involvement of genetic polymorphisms in DNA repair genes (p.Arg399Gln of XRCC1 and p.Thr241Met of XRCC3) and in detoxification genes (GSTM1 and GSTT1) on the centromere content of micronuclei (MN) was also evaluated. This study included 27 male welders working without any collective protection device and a control group (n = 30). The welders showed significantly higher levels of chromosome/genome damage compared to the controls. The frequencies of MN and centromere-positive MN (C+MN) per 1,000 binucleated cells were significantly higher in the exposed group than in the control group (7.1 per thousand +/- 3.7 versus 4.9 per thousand +/- 1.8; P = 0.012 and 3.5 per thousand +/- 1.8 versus 2.4 per thousand +/- 1.2; P = 0.018, respectively, Mann-Whitney U-test). The centromere-negative MN (C-MN) frequency was higher in the exposed subjects than in the controls (3.6 per thousand +/- 3.4 versus 2.5 per thousand +/- 1.4), but the Mann-Whitney U-test did not yield a significant result. In the total population, the GSTM1 and GSTT1 polymorphisms significantly affected the frequencies of C-MN and C+MN defined by FISH. GSTM1 positive subjects showed an increased C-MN frequency and GSTT1 null subjects showed an elevated C+MN frequency. When GSTM1 and GSTT1 genotypes were included in multiple regression analysis, the effect of the occupational exposure could better be demonstrated; both C+MN and C-MN were significantly increased in the welders. Our results suggest that the combined analysis of genetic polymorphisms and centromeres in MN may improve the sensitivity of the micronucleus assay in detecting genotoxic effects.
Collapse
Affiliation(s)
- G Iarmarcovai
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale, EA 1784; IFR PMSE 112, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|