1
|
Yang C, Wu H, Chen J, Liao Y, Mkuye R, Deng Y, Du X. Integrated transcriptomic and metabolomic analysis reveals the response of pearl oyster (Pinctada fucata martensii) to long-term hypoxia. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106133. [PMID: 37586225 DOI: 10.1016/j.marenvres.2023.106133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The frequency at which organisms are exposed to hypoxic conditions in aquatic environments is increasing due to coastal eutrophication and global warming. To reveal the effects of long-term hypoxic stress on metabolic changes of pearl oyster, commonly known as Pinctada (Pinctada fucata martensii), the present study performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites following 25 days hypoxia challenge. Transcriptome analysis detected 1108 differentially expressed genes (DEGs) between the control group and the hypoxia group. The gene ontology (GO) analysis of DEGs revealed that they are significantly enriched in functions such as "microtubule-based process", "histone (H3-K4, H3-K27, and H4-K20) trimethylation", "histone H4 acetylation", "kinesin complex", and "ATPase activity", and KEGG pathway functions, such as "DNA replication", "Apoptosis", and "MAPK signaling pathways". Metabolome analysis identified 68 significantly different metabolites from all identified metabolites, and associated with 25 metabolic pathways between the control and hypoxia groups. These pathways included aminoacyl-tRNA biosynthesis, arginine and proline metabolism, and phenylalanine metabolism. Our integrated analysis suggested that pearl oysters were subject to oxidative stress, apoptosis, immune inhibition, and neuronal excitability reduction under long-term hypoxic conditions. We also found a remarkable depression in a variety of biological functions under long-term hypoxia, including metabolic rates, biomineralization activities, and the repression of reorganization of the cytoskeleton and cell metabolism. These findings provide a basis for elucidating the mechanisms used by marine bivalves to cope with long-term hypoxic stress.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hailing Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiayi Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Rachubik P, Rogacka D, Audzeyenka I, Szrejder M, Topolewska A, Rychłowski M, Piwkowska A. The Role of PKGIα and AMPK Signaling Interplay in the Regulation of Albumin Permeability in Cultured Rat Podocytes. Int J Mol Sci 2023; 24:ijms24043952. [PMID: 36835364 PMCID: PMC9964913 DOI: 10.3390/ijms24043952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The permeability of the glomerular filtration barrier (GFB) is mainly regulated by podocytes and their foot processes. Protein kinase G type Iα (PKGIα) and adenosine monophosphate-dependent kinase (AMPK) affect the contractile apparatus of podocytes and influence the permeability of the GFB. Therefore, we studied the interplay between PKGIα and AMPK in cultured rat podocytes. The glomerular permeability to albumin and transmembrane FITC-albumin flux decreased in the presence of AMPK activators and increased in the presence of PKG activators. The knockdown of PKGIα or AMPK with small-interfering RNA (siRNA) revealed a mutual interaction between PKGIα and AMPK and influenced podocyte permeability to albumin. Moreover, PKGIα siRNA activated the AMPK-dependent signaling pathway. AMPKα2 siRNA increased basal levels of phosphorylated myosin phosphate target subunit 1 and decreased the phosphorylation of myosin light chain 2. Podocytes that were treated with AMPK or PKG activators were characterized by the different organization of actin filaments within the cell. Our findings suggest that mutual interactions between PKGIα and AMPKα2 regulate the contractile apparatus and permeability of the podocyte monolayer to albumin. Understanding this newly identified molecular mechanism in podocytes provides further insights into the pathogenesis of glomerular disease and novel therapeutic targets for glomerulopathies.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Correspondence: ; Tel.: +48-585235486
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Anna Topolewska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Medical University of Gdansk, Abrahama 58 St., 80-307 Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Bijani S, Dizaji R, Sharafi A, Hosseini MJ. Neuroprotective Effect of Apigenin on Depressive-Like Behavior: Mechanistic Approach. Neurochem Res 2021; 47:644-655. [PMID: 34705188 DOI: 10.1007/s11064-021-03473-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
Apigenin, as a natural flavonoid present in several plants is characterized with potential anticancer, antioxidant, and anti-inflammatory properties. Recent studies proposed that apigenin affects depression disorder through unknown mechanistic pathways. The effects of apigenin's anti-depressive properties on streptozocin-mediated depression have been investigated through the evaluation of behavioral tests, oxidative stress, cellular energy homeostasis and inflammatory responses. The results demonstrated anti-depressive properties of apigenin in behavioral test including forced swimming and splash tests and oxidative stress biomarkers such as reduced glutathione, lipid peroxidation, total antioxidant power and coenzyme Q10 levels. Apigenin, also, demonstrated its regulatory potency in cellular energy homeostasis and immune system gene expression through inhibiting Nlrp3 and Tlr4 overexpression. Furthermore, failure in energy production as the key factor in various psychiatric disorders was reversed by apigenin modulating effect on AMPK gene expression. Overall, 20 mg/kg of apigenin was recognized as the dose suitable for minimizing the undesirable adverse effects in the STZ-mediated depression model proposed in this study. Our data suggested that apigenin could be able to adjust behavioral dysfunction, biochemical biomarkers and recovered cellular antioxidant level in depressed animals. The surprising results were achieved by raise in COQ10 level, which could regulate the overexpression of the AMPK gene in stressful conditions. The regulatory effect of apigenin in inflammatory signaling pathways such as Nlrp3, and Tlr4 gene expression was studied at the surface part of the hippocampus.
Collapse
Affiliation(s)
- Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P.O. Box 45139-56184, Zanjan, Iran
| | - Rana Dizaji
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, P.O. Box 45139-56184, Zanjan, Iran.
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P.O. Box 45139-56184, Zanjan, Iran.
| |
Collapse
|
4
|
Goodchild CG, DuRant SE. Bold Behavior Is Associated with Genes That Regulate Energy Use but Does Not Covary with Body Condition in Food-Restricted Snails. Physiol Biochem Zool 2021; 94:366-379. [PMID: 34477491 DOI: 10.1086/716431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractTheoretical models about the relationship between food restriction and individual differences in risk-taking behavior (i.e., boldness) have led to conflicting predictions: some models predict that food restriction increases boldness, while other models predict that food restriction decreases boldness. This discrepancy may be partially attributable to an underappreciation for animals' complex physiological responses to food restriction. To understand the proximate mechanisms mediating state-dependent boldness, we used freshwater snails (Helisoma trivolvis) to examine the relationships among food availability, body condition, boldness (latency to reemerge from shell and exploration), and mRNA expression of three genes (adenosine monophosphate-activated protein kinase [AMPK], molluscan insulin-like peptide [MIP], and serotonin receptor [5-HT]) involved in maintaining energy homeostasis during periods of moderate food restriction. Latency to reemerge and exploratory behavior decreased over time, but fed snails were bolder than fasted snails, suggesting that food restriction reduces bold behavior. Although food restriction decreased body condition, there was not a relationship between body condition and latency to reemerge from shell. However, expression of MIP was positively correlated with latency to reemerge from shell. Furthermore, AMPK was positively correlated with MIP and negatively correlated with body condition and 5-HT. Therefore, individual differences in physiological responses to food restriction, not overall body condition per se, appear to be more closely associated with state-dependent bold behavior. Finally, snails that experienced a novel assay environment returned to their initial "shy" behavior, suggesting that habituation to the assay environment may contribute to snails expressing bolder behavior over time.
Collapse
|
5
|
Sun X, Tu K, Li L, Wu B, Wu L, Liu Z, Zhou L, Tian J, Yang A. Integrated transcriptome and metabolome analysis reveals molecular responses of the clams to acute hypoxia. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105317. [PMID: 33819872 DOI: 10.1016/j.marenvres.2021.105317] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Mudflat shellfish have evolved well-adapted strategies for coping with dynamic environmental fluxes and stressful conditions, including oxygen availability. The Manila clams Ruditapes philippinarum are worldwide cultured shellfish in marine intertidal zone, which usually encounter great risk of acute hypoxia exposure in coastal habitats. To reveal the effects of acute hypoxia on metabolic changes of the clams, we performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites during acute hypoxia stress at the whole-organism level. The comparative transcriptome analysis reveals that the clams show the remarkable depression in a variety of biological performance, such as metabolic rates, neuronal activity, biomineralization activity, and cell proliferation and differentiation at the hypoxic condition. The metabolomic analysis reveals that amino acid metabolism plays a critical role in the metabolic changes of the clams in response to acute hypoxia. A variety of free amino acids may not only be served as the potential osmolytes for osmotic regulation, but also may contribute to energy production during the acute hypoxia exposure. The metabolite analysis also reveals several important biomarkers for metabolic changes, and provides new insights into how clams deal with acute hypoxia. These findings suggest that clams may get through acute hypoxia stress by the adaptive metabolic strategy to survive short-period of acute hypoxia which is likely to occur in their typical habitat. The present findings will not only shed lights on the molecular and metabolic mechanisms of adaptive strategies under stressful conditions, but also provide the signaling metabolites to assess the physiological states of clams in aquaculture.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Kang Tu
- Putian Institute of Aquaculture Science of Fujian Province, Putian, 351100, China
| | - Li Li
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Lei Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiteng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Aiguo Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
6
|
Effects of crustacean hyperglycaemic hormone RNA interference on regulation of glucose metabolism in Litopenaeus vannamei after ammonia-nitrogen exposure. Br J Nutr 2021; 127:823-836. [PMID: 33988091 DOI: 10.1017/s0007114521001574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To unveil the adaptation of Litopenaeus vannamei to elevated ambient ammonia-N, crustacean hyperglycaemic hormone (CHH) was knocked down to investigate its function in glucose metabolism pathway under ammonia-N exposure. When CHH was silenced, haemolymph glucose increased significantly during 3-6 h, decreased significantly during 12-48 h and recovered to the control groups' level at 72 h. After CHH knock-down, dopamine (DA) contents reduced significantly during 3-24 h, which recovered after 48 h. Besides, the expressions of guanylyl cyclase (GC) and DA1R in the hepatopancreas decreased significantly, while DA4R increased significantly. Correspondingly, the contents of cyclic AMP (cAMP), cyclic GMP (cGMP) and diacylglycerol (DAG) and the expressions of protein kinase A (PKA), protein kinase G (PKG), AMP active protein kinase α (AMPKα) and AMPKγ were significantly down-regulated, while the levels of protein kinase C (PKC) and AMPKβ were significantly up-regulated. The expressions of cyclic AMP response element-binding protein (CREB) and GLUT2 decreased significantly, while GLUT1 increased significantly. Moreover, glycogen content, glycogen synthase and glycogen phosphorylase activities in hepatopancreas and muscle were significantly increased. Furthermore, the levels of key enzymes hexokinase, pyruvate kinase and phosphofructokinase in glycolysis (GLY), rate-limiting enzymes citrate synthase in tricarboxylic acid and critical enzymes phosphoenolpyruvate carboxykinase, fructose diphosphate and glucose-6-phosphatase in gluconeogenesis (GNG) were significantly decreased in hepatopancreas. These results suggest that CHH affects DA and then they affect their receptors to transmit glucose metabolism signals into the hepatopancreas of L. vannamei under ammonia-N stress. CHH acts on the cGMP-PKG-AMPKα-CREB pathway through GC, and CHH affects DA to influence cAMP-PKA-AMPKγ-CREB and DAG-PKC-AMPKβ-CREB pathways, thereby regulating GLUT, inhibiting glycogen metabolism and promoting GLY and GNG. This study contributes to further understand glucose metabolism mechanism of crustacean in response to environmental stress.
Collapse
|
7
|
Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, Titze J. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol 2020; 17:65-77. [PMID: 33005037 DOI: 10.1038/s41581-020-00350-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic inhibition of the sodium-glucose co-transporter 2 (SGLT2) leads to substantial loss of energy (in the form of glucose) and additional solutes (in the form of Na+ and its accompanying anions) in urine. However, despite the continuously elevated solute excretion, long-term osmotic diuresis does not occur in humans with SGLT2 inhibition. Rather, patients on SGLT2 inhibitor therapy adjust to the reduction in energy availability and conserve water. The metabolic adaptations that are induced by SGLT2 inhibition are similar to those observed in aestivation - an evolutionarily conserved survival strategy that enables physiological adaptation to energy and water shortage. Aestivators exploit amino acids from muscle to produce glucose and fatty acid fuels. This endogenous energy supply chain is coupled with nitrogen transfer for organic osmolyte production, which allows parallel water conservation. Moreover, this process is often accompanied by a reduction in metabolic rate. By comparing aestivation metabolism with the fuel switches that occur during therapeutic SGLT2 inhibition, we suggest that SGLT2 inhibitors induce aestivation-like metabolic patterns, which may contribute to the improvements in cardiac and renal function observed with this class of therapeutics.
Collapse
Affiliation(s)
- Adriana Marton
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Tatsuroh Kaneko
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Atsutaka Yasui
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Jens Titze
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore. .,Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany. .,Division of Nephrology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
8
|
Rogacka D, Audzeyenka I, Piwkowska A. Regulation of podocytes function by AMP-activated protein kinase. Arch Biochem Biophys 2020; 692:108541. [PMID: 32781053 DOI: 10.1016/j.abb.2020.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that form an essential, integral part of the glomerular filter. These cells limit the outside border of the glomerular basement membrane, forming a tight barrier that prevents significant protein loss from the capillary space. The slit diaphragm formed by podocytes is crucial for maintaining glomerular integrity and function. They are the target of injury in many glomerular diseases, including hypertension and diabetes mellitus. Accumulating studies have revealed that AMP-activated protein kinase (AMPK), an essential cellular energy sensor, might play a fundamental role in regulating podocyte metabolism and function. AMPK participates in insulin signaling, therefore controls glucose uptake and podocytes insulin sensitivity. It is also involved in insulin-dependent cytoskeleton reorganization in podocytes, mediating glomerular albumin permeability. AMPK plays an important role in the regulation of autophagy/apoptosis processes, which influence podocytes viability. The present review aimed to highlight the molecular mechanisms associated with AMPK that are involved in the regulation of podocyte function in health and disease states.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Irena Audzeyenka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
9
|
Chang DC, Basolo A, Piaggi P, Votruba SB, Krakoff J. Hydration biomarkers and copeptin: relationship with ad libitum energy intake, energy expenditure, and metabolic fuel selection. Eur J Clin Nutr 2019; 74:158-166. [PMID: 31160665 PMCID: PMC6888878 DOI: 10.1038/s41430-019-0445-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Background/Objective Evidence from non-human species indicate that hydration and arginine vasopressin (AVP) influence fuel selection, energy expenditure (EE), and food intake, but these relationships are unclear in humans. We sought to assess whether hydration biomarkers [24-h urine volume (UVol) and urine urea nitrogen concentration (UUN)] and copeptin (a surrogate for AVP) are associated with 24-h EE, respiratory quotient (RQ), and daily energy intake (DEI). Subjects/Methods In a secondary analysis of collected data, we selected healthy adults (Group 1, n = 177) who had 24-h whole-room indirect calorimetry measurements in energy balance with 24-h urine collection and fasting copeptin measurements (n=117), followed by 3 days ad libitum food intake. A separate group (Group 2, n=284) with hydration markers and calorimetry measurements was also studied. The main outcome measures were 24-h RQ, 24-h EE, DEI, substrate oxidation. Results In Group 1, lower 24-h UVol and higher 24-h UUN, indicating lower hydration, were correlated with lower 24-h RQ (r = 0.35, p <0.0001, and r = −0.29, p = 0.0001, respectively; results similar in Group 2) and predicted subsequent reduced DEI (r = 0.20, p = 0.01, and r = −0.27, p = 0.0003, respectively), adjusted for confounders. Copeptin was independently associated with 24-h lipid oxidation (r = −0.23, p = 0.01). In Group 2, lower hydration was associated with reduced 24-h EE (24-h UVol: r = 0.29, p <0.0001; 24-h UUN: r = −0.25, p <0.0001). Conclusions Hydration biomarkers were associated with metabolic differences characterized by altered food intake, fuel selection, and possibly EE. Independently, copeptin was associated with higher lipid oxidation.
Collapse
Affiliation(s)
- Douglas C Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
| | - Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Susanne B Votruba
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
10
|
Moreno-Méndez E, Hernández-Vázquez A, Fernández-Mejía C. Effect of biotin supplementation on fatty acid metabolic pathways in 3T3-L1 adipocytes. Biofactors 2019; 45:259-270. [PMID: 30575140 DOI: 10.1002/biof.1480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
Abstract
Several studies have shown that pharmacological concentrations of biotin decrease serum lipid concentrations and the expression of lipogenic genes. Previous studies on epididymal adipose tissue in mice revealed that 8 weeks of dietary biotin supplementation increased the protein abundance of the active form of AMPK and the inactive forms acetyl CoA carboxylase (ACC)-1 and - 2, and decreased serum free fatty acid concentrations but did not affect lipolysis. These data suggest that pharmacological concentrations of the vitamin might affect fatty acid metabolism. In this work, we investigated the effects of pharmacological biotin concentrations on fatty acid synthesis, oxidation, and uptake in 3T3-L1 adipocytes. Similar to observations in mice, biotin-supplemented 3T3-L1 adipose cells increased the protein abundance of active T172 -AMPK and inactive ACC-1 and -2 forms. No changes were observed in the expression of the transcriptional factor PPARα and carnitine-palmitoyltransferase-1 (CPT-1). Radiolabeled assays indicated a decrease in fatty acid synthesis; an increase in fatty acid oxidation and fatty acid incorporation rate into the lipid fraction between control cells and biotin-supplemented cells. The data revealed an increase in the mRNA abundance of the fatty acid transport proteins Fatp1 and Acsl1 but not Cd36 or Fatp4 mRNA. Furthermore, the abundance of glycerol phosphate acyl transferase-3 protein was increased. Triglyceride content was not affected. Lipid droplet numbers showed an increase and their areas were smaller in the biotin-supplemented group. In conclusion, these data indicate that biotin supplementation causes a decrease in fatty acid synthesis and an increase in its oxidation and uptake. © 2018 BioFactors, 45(2):259-270, 2019.
Collapse
Affiliation(s)
- Ericka Moreno-Méndez
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Instituto Nacional de Pediatria, Unidad de Genética de la Nutrición, Ciudad de México, Mexico
| | - Alain Hernández-Vázquez
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Instituto Nacional de Pediatria, Unidad de Genética de la Nutrición, Ciudad de México, Mexico
| | - Cristina Fernández-Mejía
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Instituto Nacional de Pediatria, Unidad de Genética de la Nutrición, Ciudad de México, Mexico
| |
Collapse
|
11
|
Hoyeck MP, Hadj-Moussa H, Storey KB. Estivation-responsive microRNAs in a hypometabolic terrestrial snail. PeerJ 2019; 7:e6515. [PMID: 30809463 PMCID: PMC6387573 DOI: 10.7717/peerj.6515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
When faced with extreme environmental conditions, the milk snail (Otala lactea) enters a state of dormancy known as estivation. This is characterized by a strong reduction in metabolic rate to <30% of normal resting rate that is facilitated by various behavioural, physiological, and molecular mechanisms. Herein, we investigated the regulation of microRNA in the induction of estivation. Changes in the expression levels of 75 highly conserved microRNAs were analysed in snail foot muscle, of which 26 were significantly upregulated during estivation compared with controls. These estivation-responsive microRNAs were linked to cell functions that are crucial for long-term survival in a hypometabolic state including anti-apoptosis, cell-cycle arrest, and maintenance of muscle functionality. Several of the microRNA responses by snail foot muscle also characterize hypometabolism in other species and support the existence of a conserved suite of miRNA responses that regulate environmental stress responsive metabolic rate depression across phylogeny.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Med Hypotheses 2018; 118:151-162. [PMID: 30037605 DOI: 10.1016/j.mehy.2018.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by an accelerated aging phenotype that typically leads to death via stroke or myocardial infarction at approximately 14.6 years of age. Most cases of HGPS have been linked to the extensive use of a cryptic splice donor site located in the LMNA gene due to a de novo mutation, generating a truncated and toxic protein known as progerin. Progerin accumulation in the nuclear membrane and within the nucleus distorts the nuclear architecture and negatively effects nuclear processes including DNA replication and repair, leading to accelerated cellular aging and premature senescence. The serine-arginine rich splicing factor SRSF1 (also known as ASF/SF2) has recently been shown to modulate alternative splicing of the LMNA gene, with SRSF1 inhibition significantly reducing progerin at both the mRNA and protein levels. In 2014, we hypothesized for the first time that compounds including metformin that induce activation of AMP-activated protein kinase (AMPK), a master metabolic regulator activated by cellular stress (e.g. increases in intracellular calcium, reactive oxygen species, and/or an AMP(ADP)/ATP ratio increase, etc.), will beneficially alter gene splicing in progeria cells by inhibiting SRSF1, thus lowering progerin levels and altering the LMNA pre-mRNA splicing ratio. Recent evidence has substantiated this hypothesis, with metformin significantly reducing the mRNA and protein levels of both SRSF1 and progerin, activating AMPK, and alleviating pathological defects in HGPS cells. Metformin has also recently been shown to beneficially alter gene splicing in normal humans. Interestingly, several chemically distinct compounds, including rapamycin, methylene blue, all-trans retinoic acid, MG132, 1α,25-dihydroxyvitamin D3, sulforaphane, and oltipraz have each been shown to alleviate accelerated aging defects in patient-derived HGPS cells. Each of these compounds has also been independently shown to induce AMPK activation. Because these compounds improve accelerated aging defects in HGPS cells either by enhancing mitochondrial functionality, increasing Nrf2 activity, inducing autophagy, or by altering gene splicing and because AMPK activation beneficially modulates each of the aforementioned processes, it is our hypothesis that cellular stress-induced AMPK activation represents an indirect yet common mechanism of action linking such chemically diverse compounds with the beneficial effects of those compounds observed in HGPS cells. As normal humans also produce progerin at much lower levels through a similar mechanism, compounds that safely induce AMPK activation may have wide-ranging implications for both normal and pathological aging.
Collapse
|
13
|
Kang SW, Patnaik BB, Park SY, Hwang HJ, Chung JM, Sang MK, Min HR, Park JE, Seong J, Jo YH, Noh MY, Lee JD, Jung KY, Park HS, Han YS, Lee JS, Lee YS. Transcriptome analysis of the threatened snail Ellobium chinense reveals candidate genes for adaptation and identifies SSRs for conservation genetics. Genes Genomics 2017; 40:333-347. [PMID: 29892840 DOI: 10.1007/s13258-017-0620-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
Ellobium chinense (Pfeiffer, 1854) is a brackish pulmonate species that inhabits the bases of mangrove trees and is most commonly found in salt grass meadows. Threats to mangrove ecosystems due to habitat degradation and overexploitation have threatened the species with extinction. In South Korea, E. chinense has been assessed as vulnerable, but there are limited data on its population structure and distribution. The nucleotide and protein sequences for this species are not available in databases, which limits the understanding of adaptation-related traits. We sequenced an E. chinense cDNA library using the Illumina platform, and the subsequent bioinformatics analysis yielded 227,032 unigenes. Of these unigenes, 69,088 were annotated to matched protein and nucleotide sequences in databases, for an annotation rate of 30.42%. Among the predominant gene ontology terms, cellular and metabolic processes (under the biological process category), membrane and cell (under the cellular component category), and binding and catalytic activity (under the molecular function category) were noteworthy. In addition, 4850 unigenes were distributed to 15 Kyoto Encyclopaedia of Genes and Genomes based enrichment categories. Among the candidate genes related to adaptation, angiotensin I converting enzyme, adenylate cyclase activating polypeptide, and AMP-activated protein kinase were the most prominent. A total of 15,952 simple sequence repeats (SSRs) were identified in sequences of > 1 kb in length. The di- and trinucleotide repeat motifs were the most common. Among the repeat motif types, AG/CT, AC/GT, and AAC/GTT dominated. Our study provides the first comprehensive genomics dataset for E. chinense, which favors conservation programs for the restoration of the species and provides sufficient evidence for genetic variability among the wild populations.
Collapse
Affiliation(s)
- Se Won Kang
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jungeup-si, Jeollabuk-do, 56212, South Korea
| | - Bharat Bhusan Patnaik
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - So Young Park
- Nakdonggang National Institute of Biological Resources, Biodiversity Conservation and Climate Change Division, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do, 37242, South Korea
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Min Kyu Sang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Hye Rin Min
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Jie Eun Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Jiyeon Seong
- Genomic Informatics Center, Hankyong National University, 327 Chungang-ro, Anseong-si, Kyonggi-do, 17579, South Korea
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly (IEFA), College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Mi Young Noh
- Division of Plant Biotechnology, Institute of Environmentally-Friendly (IEFA), College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jong Dae Lee
- Department of Environmental Health Science, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Ki Yoon Jung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, South Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly (IEFA), College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 243341, South Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea.
| |
Collapse
|
14
|
Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, Lantier L, LaRocque LM, Marton A, Neubert P, Schröder A, Rakova N, Jantsch J, Dikalova AE, Dikalov SI, Harrison DG, Müller DN, Nishiyama A, Rauh M, Harris RC, Luft FC, Wassermann DH, Sands JM, Titze J. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest 2017; 127:1944-1959. [PMID: 28414295 DOI: 10.1172/jci88532] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter-driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.
Collapse
|
15
|
MacLean IA, Mattice AMS, Adam NJ, Storey KB. Purification and Characterization of Lactate Dehydrogenase in the Foot Muscle and Hepatopancreas of Otala lactea. Protein J 2016; 35:467-480. [DOI: 10.1007/s10930-016-9689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Jia Y, Wang B, Wu X, Li S, Hu J, Wang D, Zhu H, Li Y. Simultaneous quantification of 2',3',5'-tri-O-acetyl-N6-(3-hydroxylaniline)adenosine and its principal metabolites in hamster blood by LC-MS/MS and its application in pharmacokinetics study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:46-53. [PMID: 27082762 DOI: 10.1016/j.jchromb.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
2',3',5'-Tri-O-acetyl-N6-(3-hydroxylaniline)adenosine (IMM-H007, once called WS070117) is being developed as a novel anti-hyperlipidemia agent for its high efficacy and low toxicity. In this study, a sensitive and specific liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was established for the simultaneous quantification of IMM-H007 and its two major metabolites (3S,4R,5R)-2-(hydroxymethyl)-5-(6-((3-hydroxyphenyl)amino)-9H-purin-9-yl)tetrahdrofuran-3,4-diol (M1) and ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl)amino)-9H-purin-9-yl)tetrahydrofuran-2-yl)methyl dihydrogen phosphate (MP) in hamster blood. An analogue of IMM-H007, WS070119 was used as the internal standard. Blood samples were prepared by a simple protein precipitation with acetonitrile. The chromatographic separation was performed on a ReproSil-Pur 120C18 column (3μm, 2mm×100mm) with a gradient mobile phase of methanol/water containing 0.1% formic acid (v/v) in a flow rate of 0.2mL/min. Detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization (ESI) in positive ion selective reaction monitoring (SRM) mode. The monitored transitions were 486.2→228.1 for IMM-H007, 360.0→228.0 for M1, 440.0→228.0 for MP and 374.1→242.0 for the internal standard, respectively. Satisfactory linearity was obtained for the analytes over the range of 1-500ng/mL for IMM-H007, 2-1000ng/mL for M1 and 10-5000ng/mL for MP. The lower limits of the quantification (LLOQs) were 1ng/mL for IMM-H007, 2ng/mL for M1 and 10ng/mL for MP. The intra-day and inter-day precisions (RSD, %) of the analytes were within 14.2%, and the accuracy (RE, %) ranged from -9.4% to 10.7%. The average recoveries of the analytes were more than 80.0%. The analytes were proved to be stable during given storage, preparation, and analytic procedures. The method was successfully applied to the pharmacokinetic study in hamsters after oral administration of IMM-H007.
Collapse
Affiliation(s)
- Yufei Jia
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Baolian Wang
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiangmeng Wu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Sheng Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jinping Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Dongmei Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Synthetic Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Haibo Zhu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
17
|
Li N, Huang D, Lu N, Luo L. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol Rep 2015; 34:2821-6. [PMID: 26398719 DOI: 10.3892/or.2015.4288] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Liver kinase B1 (LKB1), also known as serine/threo-nine kinase 11 (STK11), is a tumor suppressor that is inactivated in Peutz-Jeghers familial cancer syndrome. LKB1 phosphorylates and activates AMP-activated protein kinase (AMPK), which negatively regulates cancer cell proliferation and metabolism. However, recent evidence demonstrates that the LKB1/AMPK pathway is involved in the process of tumor invasion and migration, which is an important hallmark of carcinoma progression to higher pathological grades of malignancy. This review focuses on the function of the LKB1/AMPK pathway in the invasion and migration of cancer cells and provides an overview of therapeutic strategies aimed at this pathway in malignant tumors.
Collapse
Affiliation(s)
- Nianshuang Li
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nonghua Lu
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Rider MH. Role of AMP-activated protein kinase in metabolic depression in animals. J Comp Physiol B 2015; 186:1-16. [PMID: 26174210 DOI: 10.1007/s00360-015-0920-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 01/24/2023]
Abstract
AMP-activated protein kinase (AMPK) is a highly conserved eukaryotic protein serine/threonine kinase that controls cellular and whole body energy homoeostasis. AMPK is activated during energy stress by a rise in AMP:ATP ratio and maintains energy balance by phosphorylating targets to switch on catabolic ATP-generating pathways, while at the same time switching off anabolic ATP-consuming processes. Metabolic depression is a strategy used by many animals to survive environmental stress and has been extensively studied across phylogeny by comparative biochemists and physiologists, but the role of AMPK has only recently been addressed. This review first deals with the evolution of AMPK in eukaryotes (excluding plants and fungi) and its regulation. Changes in adenine nucleotides and AMPK activation are described in animals during environmental energy stress, before considering the involvement of AMPK in controlling β-oxidation, fatty acid synthesis, triacylglycerol mobilization and protein synthesis. Lastly, strategies are presented to validate the role of AMPK in mediating metabolic depression by phosphorylating downstream targets.
Collapse
Affiliation(s)
- Mark H Rider
- de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium.
| |
Collapse
|
19
|
Loos JA, Cumino AC. In Vitro Anti-Echinococcal and Metabolic Effects of Metformin Involve Activation of AMP-Activated Protein Kinase in Larval Stages of Echinococcus granulosus. PLoS One 2015; 10:e0126009. [PMID: 25965910 PMCID: PMC4429119 DOI: 10.1371/journal.pone.0126009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
Metformin (Met) is a biguanide anti-hyperglycemic agent, which also exerts antiproliferative effects on cancer cells. This drug inhibits the complex I of the mitochondrial electron transport chain inducing a fall in the cell energy charge and leading 5'-AMP-activated protein kinase (AMPK) activation. AMPK is a highly conserved heterotrimeric complex that coordinates metabolic and growth pathways in order to maintain energy homeostasis and cell survival, mainly under nutritional stress conditions, in a Liver Kinase B1 (LKB1)-dependent manner. This work describes for the first time, the in vitro anti-echinococcal effect of Met on Echinococcus granulosus larval stages, as well as the molecular characterization of AMPK (Eg-AMPK) in this parasite of clinical importance. The drug exerted a dose-dependent effect on the viability of both larval stages. Based on this, we proceeded with the identification of the genes encoding for the different subunits of Eg-AMPK. We cloned one gene coding for the catalytic subunit (Eg-ampkɑ) and two genes coding for the regulatory subunits (Eg-ampkβ and Eg-ampkγ), all of them constitutively transcribed in E. granulosus protoscoleces and metacestodes. Their deduced amino acid sequences show all the conserved functional domains, including key amino acids involved in catalytic activity and protein-protein interactions. In protoscoleces, the drug induced the activation of AMPK (Eg-AMPKɑ-P176), possibly as a consequence of cellular energy charge depletion evidenced by assays with the fluorescent indicator JC-1. Met also led to carbohydrate starvation, it increased glucogenolysis and homolactic fermentation, and decreased transcription of intermediary metabolism genes. By in toto immunolocalization assays, we detected Eg-AMPKɑ-P176 expression, both in the nucleus and the cytoplasm of cells as in the larval tegument, the posterior bladder and the calcareous corpuscles of control and Met-treated protoscoleces. Interestingly, expression of Eg-AMPKɑ was observed in the developmental structures during the de-differentiation process from protoscoleces to microcysts. Therefore, the Eg-AMPK expression during the asexual development of E. granulosus, as well as the in vitro synergic therapeutic effects observed in presence of Met plus albendazole sulfoxide (ABZSO), suggest the importance of carrying out chemoprophylactic and clinical efficacy studies combining Met with conventional anti-echinococcal agents to test the potential use of this drug in hydatidosis therapy.
Collapse
Affiliation(s)
- Julia A. Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, (7600), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, (7600), Mar del Plata, Argentina
- * E-mail:
| |
Collapse
|
20
|
Boone-Villa D, Aguilera-Méndez A, Miranda-Cervantes A, Fernandez-Mejia C. Effects of Biotin Supplementation in the Diet on Adipose Tissue cGMP Concentrations, AMPK Activation, Lipolysis, and Serum-Free Fatty Acid Levels. J Med Food 2015; 18:1150-6. [PMID: 25835526 DOI: 10.1089/jmf.2014.0170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Several studies have shown that pharmacological concentrations of biotin decrease hyperlipidemia. The molecular mechanisms by which pharmacological concentrations of biotin modify lipid metabolism are largely unknown. Adipose tissue plays a central role in lipid homeostasis. In the present study, we analyzed the effects of biotin supplementation in adipose tissue on signaling pathways and critical proteins that regulate lipid metabolism, as well as on lipolysis. In addition, we assessed serum fatty acid concentrations. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (control: 1.76 mg biotin/kg; supplemented: 97.7 mg biotin/kg diet) over 8 weeks postweaning. Compared with the control group, biotin-supplemented mice showed an increase in the levels of adipose guanosine 3',5'-cyclic monophosphate (cGMP) (control: 30.3±3.27 pmol/g wet tissue; supplemented: 49.5±3.44 pmol/g wet tissue) and of phosphorylated forms of adenosine 5'-monophosphate-activated protein kinase (AMPK; 65.2%±1.06%), acetyl-coenzyme A (CoA), carboxylase-1 (196%±68%), and acetyl-CoA carboxylase-2 (78.1%±18%). Serum fatty acid concentrations were decreased (control: 1.12±0.04 mM; supplemented: 0.91±0.03 mM), and no change in lipolysis was found (control: 0.29±0.05 μmol/mL; supplemented: 0.33±0.08 μmol/mL). In conclusion, 8 weeks of dietary biotin supplementation increased adipose tissue cGMP content and protein expression of the active form of AMPK and of the inactive forms of acetyl-CoA carboxylase-1 and acetyl-CoA carboxylase-2. Serum fatty acid levels fell, and no change in lipolysis was observed. These findings provide insight into the effects of biotin supplementation on adipose tissue and support its use in the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Daniel Boone-Villa
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Asdrubal Aguilera-Méndez
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Adriana Miranda-Cervantes
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Instituto Nacional de Pediatría, Mexico City, Mexico
| |
Collapse
|
21
|
Li X, Li X, Chen H, Lei L, Liu J, Guan Y, Liu Z, Zhang L, Yang W, Zhao C, Fu S, Li P, Liu G, Wang Z. Non-esterified fatty acids activate the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. Cell Biochem Biophys 2014; 67:1157-69. [PMID: 23690240 DOI: 10.1007/s12013-013-9629-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Non-esterified fatty acids (NEFAs) act as signaling molecules involved in regulating genes expression to modulate lipid metabolism. However, the regulation mechanism of NEFAs on lipid metabolism in dairy cows is unclear. The AMP-activated protein kinase (AMPK) signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of NEFAs and AMPKα inhibitors (BML-275). NEFAs increased AMPKα phosphorylation through up-regulating the protein levels of liver kinase B1. Activated AMPKα increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α (PPARα). NEFAs also directly activate the PPARα independent of AMPKα. Activated PPARα increased the lipolytic genes expression to increase lipid oxidation. Furthermore, activated AMPKα inhibited the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid synthesis. Activated AMPKα phosphorylated and inhibited acetyl-CoA carboxylase and increased carnitine palmitoyltransferase-1 activity, which increased lipid oxidation. Consequently, the triglyceride content in the NEFAs-treated hepatocytes was significantly decreased. These results indicate that NEFAs activate the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in hepatocytes, which in turn, generates more ATP to relieve the negative energy balance in transition dairy cows.
Collapse
Affiliation(s)
- Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reduction in neural performance following recovery from anoxic stress is mimicked by AMPK pathway activation. PLoS One 2014; 9:e88570. [PMID: 24533112 PMCID: PMC3922926 DOI: 10.1371/journal.pone.0088570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023] Open
Abstract
Nervous systems are energetically expensive to operate and maintain. Both synaptic and action potential signalling require a significant investment to maintain ion homeostasis. We have investigated the tuning of neural performance following a brief period of anoxia in a well-characterized visual pathway in the locust, the LGMD/DCMD looming motion-sensitive circuit. We hypothesised that the energetic cost of signalling can be dynamically modified by cellular mechanisms in response to metabolic stress. We examined whether recovery from anoxia resulted in a decrease in excitability of the electrophysiological properties in the DCMD neuron. We further examined the effect of these modifications on behavioural output. We show that recovery from anoxia affects metabolic rate, flight steering behaviour, and action potential properties. The effects of anoxia on action potentials can be mimicked by activation of the AMPK metabolic pathway. We suggest this is evidence of a coordinated cellular mechanism to reduce neural energetic demand following an anoxic stress. Together, this represents a dynamically-regulated means to link the energetic demands of neural signaling with the environmental constraints faced by the whole animal.
Collapse
|
23
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
24
|
Qu C, Zhang W, Zheng G, Zhang Z, Yin J, He Z. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem 2013; 386:63-71. [PMID: 24096736 DOI: 10.1007/s11010-013-1845-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/26/2013] [Indexed: 11/26/2022]
Abstract
Breast cancer is the most frequently diagnosed tumor type and the primary leading cause of cancer deaths in women worldwide and multidrug resistance is the major obstacle for breast cancer treatment improvement. Emerging evidence suggests that metformin, the most widely used antidiabetic drug, resensitizes and cooperates with some anticancer drugs to exert anticancer effect. However, there are no data regarding the reversal effect of metformin on chemoresistance in breast cancer. In the present study, we investigated the resistance reversal effect of metformin on acquired multidrug-resistant breast cancer cells MCF-7/5-Fu derived from MCF-7 breast cancer cells and innate multidrug-resistant MDA-MB-231 breast cancer cells, and we found that metformin resensitized MCF7/5-FU and MDA-MB-231 to 5-fluorouracil (5-FU), adriamycin, and paclitaxel. We also observed that metformin reversed epithelial-mesenchymal transition (EMT) phenotype and decreased the invasive capacity of MCF7/5-FU and MDA-MB-231 cells. However, there were no significant changes upon metformin-treated MCF7 cells. Moreover, we found metformin treatment activated AMPK signal pathway in MCF7/5-FU and MDA-MB-231 cells and compound C, the AMPK inhibitor, could partly abolish the resensitization and EMT reversal effect of metformin. To the best of our knowledge, we are the first to report that metformin can resensitize multidrug-resistant breast cancer cells due to activating AMPK signal pathway. Our study will help elucidate the mechanism of chemoresistance and establish new strategies of chemotherapy for human breast cancer.
Collapse
Affiliation(s)
- Chen Qu
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Sun J, Mu H, Zhang H, Chandramouli KH, Qian PY, Wong CKC, Qiu JW. Understanding the Regulation of Estivation in a Freshwater Snail through iTRAQ-Based Comparative Proteomics. J Proteome Res 2013; 12:5271-80. [DOI: 10.1021/pr400570a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jin Sun
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huawei Mu
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huoming Zhang
- Biosciences
Core Laboratory, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | | | - Pei-Yuan Qian
- Division
of Life Science, the Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Jian-Wen Qiu
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
26
|
Wu CW, Biggar KK, Storey KB. Dehydration mediated microRNA response in the African clawed frog Xenopus laevis. Gene 2013; 529:269-75. [PMID: 23958654 DOI: 10.1016/j.gene.2013.07.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 12/24/2022]
Abstract
Exposure to various environmental stresses induces metabolic rate depression in many animal species, an adaptation that conserves energy until the environment is again conducive to normal life. The African clawed frog, Xenopus laevis, is periodically subjected to arid summers in South Africa, and utilizes entry into the hypometabolic state of estivation as a mechanism of long term survival. During estivation, frogs must typically deal with substantial dehydration as their ponds dry out and X. laevis can endure >30% loss of its body water. We hypothesize that microRNAs play a vital role in establishing a reversible hypometabolic state and responding to dehydration stress that is associated with amphibian estivation. The present study analyzes the effects of whole body dehydration on microRNA expression in three tissues of X. laevis. Compared to controls, levels of miR-1, miR-125b, and miR-16-1 decreased to 37±6, 64±8, and 80±4% of control levels during dehydration in liver. By contrast, miR-210, miR-34a and miR-21 were significantly elevated by 3.05±0.45, 2.11±0.08, and 1.36±0.05-fold, respectively, in the liver. In kidney tissue, miR-29b, miR-21, and miR-203 were elevated by 1.40±0.09, 1.31±0.05, and 2.17±0.31-fold, respectively, in response to dehydration whereas miR-203 and miR-34a were elevated in ventral skin by 1.35±0.05 and 1.74±0.12-fold, respectively. Bioinformatic analysis of the differentially expressed microRNAs suggests that these are mainly involved in two processes: (1) expression of solute carrier proteins, and (2) regulation of mitogen-activated protein kinase signaling. This study is the first report that shows a tissue specific mode of microRNA expression during amphibian dehydration, providing evidence for microRNAs as crucial regulators of metabolic depression.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | | | | |
Collapse
|
27
|
Sokolova IM. Energy-Limited Tolerance to Stress as a Conceptual Framework to Integrate the Effects of Multiple Stressors. Integr Comp Biol 2013; 53:597-608. [DOI: 10.1093/icb/ict028] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Guévélou E, Huvet A, Sussarellu R, Milan M, Guo X, Li L, Zhang G, Quillien V, Daniel JY, Quéré C, Boudry P, Corporeau C. Regulation of a truncated isoform of AMP-activated protein kinase α (AMPKα) in response to hypoxia in the muscle of Pacific oyster Crassostrea gigas. J Comp Physiol B 2013; 183:597-611. [PMID: 23354411 DOI: 10.1007/s00360-013-0743-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase α (AMPKα) is a key regulator of energy balance in many model species during hypoxia. In a marine bivalve, the Pacific oyster Crassostrea gigas, we analyzed the protein content of adductor muscle in response to hypoxia during 6 h. In both smooth and striated muscles, the amount of full-length AMP-activated protein kinase α (AMPKα) remained unchanged during hypoxia. However, hypoxia induced a rapid and muscle-specific response concerning truncated isoforms of AMPKα. In the smooth muscle, a truncated isoform of AMPKα was increased from 1 to 6 h of hypoxia, and was linked with accumulation of AKT kinase, a key enzyme of the insulin signaling pathway which controls intracellular glucose metabolism. In this muscle, aerobic metabolism was maintained over the 6 h of hypoxia, as mitochondrial citrate synthase activity remained constant. In contrast, in striated muscle, hypoxia did not induce any significant modification of neither truncated AMPKα nor AKT protein content, and citrate synthase activity was altered after 6 h of hypoxia. Together, our results demonstrate that hypoxia response is specific to muscle type in Pacific oyster, and that truncated AMPKα and AKT proteins might be involved in maintaining aerobic metabolism in smooth muscle. Such regulation might occur in vivo during tidal intervals that cause up to 6 h of hypoxia.
Collapse
Affiliation(s)
- Eric Guévélou
- Ifremer, UMR 6539 LEMAR, Centre Bretagne Z.I. Pointe du Diable, 29280, Plouzané, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Suresh Babu S, Wojtowicz A, Freichel M, Birnbaumer L, Hecker M, Cattaruzza M. Mechanism of stretch-induced activation of the mechanotransducer zyxin in vascular cells. Sci Signal 2012; 5:ra91. [PMID: 23233529 DOI: 10.1126/scisignal.2003173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vascular cells respond to supraphysiological amounts of stretch with a characteristic phenotypic change that results in dysfunctional remodeling of the affected arteries. Although the pathophysiological consequences of stretch-induced signaling are well characterized, the mechanism of mechanotransduction is unclear. We focused on the mechanotransducer zyxin, which translocates to the nucleus to drive gene expression in response to stretch. In cultured human endothelial cells and perfused femoral arteries isolated from wild-type and several knockout mouse strains, we characterized a multistep signaling pathway whereby stretch led to a transient receptor potential channel 3-mediated release of the endothelial vasoconstrictor peptide endothelin-1 (ET-1). ET-1, through autocrine activation of its B-type receptor, elicited the release of pro-atrial natriuretic peptide (ANP), which caused the autocrine activation of the ANP receptor guanylyl cyclase A (GC-A). Activation of GC-A, in turn, led to protein kinase G-mediated phosphorylation of zyxin at serine 142, thereby triggering the translocation of zyxin to the nucleus, where it was required for stretch-induced gene expression. Thus, we have identified a stretch-induced signaling pathway in vascular cells that leads to the activation of zyxin, a cytoskeletal protein specifically involved in transducing mechanical stimuli.
Collapse
Affiliation(s)
- Sahana Suresh Babu
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Aguilera-Méndez A, Fernández-Mejía C. The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation. Biofactors 2012; 38:387-94. [PMID: 22806917 DOI: 10.1002/biof.1034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/22/2012] [Indexed: 12/26/2022]
Abstract
In addition to its role as a carboxylase cofactor, biotin modifies gene expression and has manifold effects on systemic processes. Several studies have shown that biotin supplementation reduces hypertriglyceridemia. We have previously reported that this effect is related to decreased expression of lipogenic genes. In the present work, we analyzed signaling pathways and posttranscriptional mechanisms involved in the hypotriglyceridemic effects of biotin. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg of free biotin/kg diet, respectively for 8 weeks after weaning. The abundance of mature sterol regulatory element-binding protein (SREBP-1c), fatty-acid synthase (FAS), total acetyl-CoA carboxylase-1 (ACC-1) and its phosphorylated form, and AMP-activated protein kinase (AMPK) were evaluated in the liver. We also determined the serum triglyceride concentrations and the hepatic levels of triglycerides and cyclic GMP (cGMP). Compared to the control group, biotin-supplemented mice had lower serum and hepatic triglyceride concentrations. Biotin supplementation increased the levels of cGMP and the phosphorylated forms of AMPK and ACC-1 and decreased the abundance of the mature form of SREBP-1c and FAS. These data provide evidence that the mechanisms by which biotin supplementation reduces lipogenesis involve increased cGMP content and AMPK activation. In turn, these changes lead to augmented ACC-1 phosphorylation and decreased expression of both the mature form of SREBP-1c and FAS. Our results demonstrate for the first time that AMPK is involved in the effects of biotin supplementation and offer new insights into the mechanisms of biotin-mediated hypotriglyceridemic effects.
Collapse
Affiliation(s)
- Asdrúbal Aguilera-Méndez
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Instituto Nacional de Pediatría, México City, Mexico
| | | |
Collapse
|
31
|
Abstract
Aestivation is a survival strategy used by many vertebrates and invertebrates to endure arid environmental conditions. Key features of aestivation include strong metabolic rate suppression, strategies to retain body water, conservation of energy and body fuel reserves, altered nitrogen metabolism, and mechanisms to preserve and stabilize organs, cells and macromolecules over many weeks or months of dormancy. Cell signaling is crucial to achieving both a hypometabolic state and reorganizing multiple metabolic pathways to optimize long-term viability during aestivation. This commentary examines the current knowledge about cell signaling pathways that participate in regulating aestivation, including signaling cascades mediated by the AMP-activated kinase, Akt, ERK, and FoxO1.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6.
| | | |
Collapse
|
32
|
Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. MARINE ENVIRONMENTAL RESEARCH 2012; 79:1-15. [PMID: 22622075 DOI: 10.1016/j.marenvres.2012.04.003] [Citation(s) in RCA: 708] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 05/22/2023]
Abstract
Energy balance is a fundamental requirement of stress adaptation and tolerance. We explore the links between metabolism, energy balance and stress tolerance using aquatic invertebrates as an example and demonstrate that using key parameters of energy balance (aerobic scope for growth, reproduction and activity; tissue energy status; metabolic rate depression; and compensatory onset of anaerobiosis) can assist in integrating the effects of multiple stressors and their interactions and in predicting the whole-organism and population-level consequences of environmental stress. We argue that limitations of both the amount of available energy and the rates of its acquisition and metabolic conversions result in trade-offs between basal maintenance of a stressed organism and energy costs of fitness-related functions such as reproduction, development and growth and can set limit to the tolerance of a broad range of environmental stressors. The degree of stress-induced disturbance of energy balance delineates transition from moderate stress compatible with population persistence (pejus range) to extreme stress where only time-limited existence is possible (pessimum range). It also determines the predominant adaptive strategy of metabolic responses (energy compensation vs. conservation) that allows an organism to survive the disturbance. We propose that energy-related biomarkers can be used to determine the conditions when these metabolic transitions occur and thus predict ecological consequences of stress exposures. Bioenergetic considerations can also provide common denominator for integrating stress responses and predicting tolerance limits under the environmentally realistic scenarios when multiple and often variable stressors act simultaneously on an organism. Determination of bioenergetic sustainability at the organism's level (or lack thereof) has practical implications. It can help identify the habitats and/or conditions where a population can survive (even if at the cost of reduced reproduction and growth) and those that are incapable of supporting viable populations. Such an approach will assist in explaining and predicting the species' distribution limits in the face of the environmental change and informing the conservation efforts and resource management practices.
Collapse
Affiliation(s)
- Inna M Sokolova
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | | | | | | | | |
Collapse
|
33
|
The adenosine derivative 2′,3′,5′-tri-O-acetyl-N6-(3-hydroxylaniline) adenosine activates AMPK and regulates lipid metabolism in vitro and in vivo. Life Sci 2012; 90:1-7. [DOI: 10.1016/j.lfs.2011.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/27/2011] [Accepted: 08/28/2011] [Indexed: 01/02/2023]
|
34
|
Rider MH, Hussain N, Dilworth SM, Storey JM, Storey KB. AMP-activated protein kinase and metabolic regulation in cold-hardy insects. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1453-1462. [PMID: 21787782 DOI: 10.1016/j.jinsphys.2011.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 05/31/2023]
Abstract
Winter survival for many insects depends on cold hardiness adaptations as well as entry into a hypometabolic diapause state that minimizes energy expenditure. We investigated whether AMP-activated protein kinase (AMPK) could be involved in this adaptation in larvae of two cold-hardy insects, Eurosta solidaginis that is freeze tolerant and Epiblema scudderiana that uses a freeze avoidance strategy. AMPK activity was almost 2-fold higher in winter larvae (February) compared with animals collected in September. Immunoblotting revealed that phosphorylation of AMPK in the activation loop and phosphorylation of acetyl-CoA carboxylase (ACC), a key target of AMPK, were higher in Epiblema during midwinter whereas no seasonal change was seen in Eurosta. Immunoblotting also revealed a significant increase in ribosomal protein S6 phosphorylation in overwintering Epiblema larvae, and in both Eurosta and Epiblema, phosphorylation of eukaryotic initiation factor 4E-binding protein-1 dramatically increased in the winter. Pyruvate dehydrogenase (PDH) E1α subunit site 1 phosphorylation was 2-fold higher in extracts of Eurosta larvae collected in February versus September while PDH activity decreased by about 50% in Eurosta and 80% in February Eurosta larvae compared with animals collected in September. Glycogen phosphorylase phosphorylation was 3-fold higher in Epiblema larvae collected in February compared with September and also in these animals, triglyceride lipase activity increased by 70% during winter. Overall, our study suggests a re-sculpting of metabolism during insect diapause, which shifted to a more catabolic poise in freeze-avoiding overwintering Epiblema larvae, possibly involving AMPK.
Collapse
Affiliation(s)
- Mark H Rider
- Université Catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
35
|
Lau GY, Richards JG. AMP-activated protein kinase plays a role in initiating metabolic rate suppression in goldfish hepatocytes. J Comp Physiol B 2011; 181:927-39. [DOI: 10.1007/s00360-011-0575-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/02/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
|
36
|
Abstract
Managing metabolic resources is critical for insects during diapause when food sources are limited or unavailable. Insects accumulate reserves prior to diapause, and metabolic depression during diapause promotes reserve conservation. Sufficient reserves must be sequestered to both survive the diapause period and enable postdiapause development that may involve metabolically expensive functions such as metamorphosis or long-distance flight. Nutrient utilization during diapause is a dynamic process, and insects appear capable of sensing their energy reserves and using this information to regulate whether to enter diapause and how long to remain in diapause. Overwintering insects on a tight energy budget are likely to be especially vulnerable to increased temperatures associated with climate change. Molecular mechanisms involved in diapause nutrient regulation remain poorly known, but insulin signaling is likely a major player. We also discuss other possible candidates for diapause-associated nutrient regulation including adipokinetic hormone, neuropeptide F, the cGMP-kinase For, and AMPK.
Collapse
Affiliation(s)
- Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
37
|
An Z, Winnick JJ, Farmer B, Neal D, Lautz M, Irimia JM, Roach PJ, Cherrington AD. A soluble guanylate cyclase-dependent mechanism is involved in the regulation of net hepatic glucose uptake by nitric oxide in vivo. Diabetes 2010; 59:2999-3007. [PMID: 20823104 PMCID: PMC2992759 DOI: 10.2337/db10-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/25/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We previously showed that elevating hepatic nitric oxide (NO) levels reduced net hepatic glucose uptake (NHGU) in the presence of portal glucose delivery, hyperglycemia, and hyperinsulinemia. The aim of the present study was to determine the role of a downstream signal, soluble guanylate cyclase (sGC), in the regulation of NHGU by NO. RESEARCH DESIGN AND METHODS Studies were performed on 42-h-fasted conscious dogs fitted with vascular catheters. At 0 min, somatostatin was given peripherally along with 4× basal insulin and basal glucagon intraportally. Glucose was delivered at a variable rate via a leg vein to double the blood glucose level and hepatic glucose load throughout the study. From 90 to 270 min, an intraportal infusion of the sGC inhibitor 1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) was given in -sGC (n = 10) and -sGC/+NO (n = 6), whereas saline was given in saline infusion (SAL) (n = 10). The -sGC/+NO group also received intraportal SIN-1 (NO donor) to elevate hepatic NO from 180 to 270 min. RESULTS In the presence of 4× basal insulin, basal glucagon, and hyperglycemia (2× basal ), inhibition of sGC in the liver enhanced NHGU (mg/kg/min; 210-270 min) by ∼55% (2.9 ± 0.2 in SAL vs. 4.6 ± 0.5 in -sGC). Further elevating hepatic NO failed to reduce NHGU (4.5 ± 0.7 in -sGC/+NO). Net hepatic carbon retention (i.e., glycogen synthesis; mg glucose equivalents/kg/min) increased to 3.8 ± 0.2 in -sGC and 3.8 ± 0.4 in -sGC/+NO vs. 2.4 ± 0.2 in SAL (P < 0.05). CONCLUSIONS NO regulates liver glucose uptake through a sGC-dependent pathway. The latter could be a target for pharmacologic intervention to increase meal-associated hepatic glucose uptake in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Zhibo An
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee. USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Guo R, Scott GI, Ren J. Involvement of AMPK in alcohol dehydrogenase accentuated myocardial dysfunction following acute ethanol challenge in mice. PLoS One 2010; 5:e11268. [PMID: 20585647 PMCID: PMC2890411 DOI: 10.1371/journal.pone.0011268] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 06/01/2010] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca(2+) homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. METHODS ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Oral glucose tolerance test, cardiac AMP/ATP levels, cardiac contractile function, intracellular Ca(2+) handling and AMPK signaling (including ACC and LKB1) were examined. RESULTS Ethanol exposure led to glucose intolerance, elevated plasma insulin, compromised cardiac contractile and intracellular Ca(2+) properties, downregulated protein phosphatase PP2A subunit and PPAR-gamma, as well as phosphorylation of AMPK, ACC and LKB1, all of which except plasma insulin were overtly accentuated by ADH transgene. Interestingly, myocardium from ethanol-treated FVB mice displayed enhanced expression of PP2Calpha and PGC-1alpha, decreased insulin receptor expression as well as unchanged expression of Glut4, the response of which was unaffected by ADH. Cardiac AMP-to-ATP ratio was significantly enhanced by ethanol exposure with a more pronounced increase in ADH mice. In addition, the AMPK inhibitor compound C (10 microM) abrogated acute ethanol exposure-elicited cardiomyocyte mechanical dysfunction. CONCLUSIONS In summary, these data suggest that the ADH transgene exacerbated acute ethanol toxicity-induced myocardial contractile dysfunction, intracellular Ca(2+) mishandling and glucose intolerance, indicating a role of ADH in acute ethanol toxicity-induced cardiac dysfunction possibly related to altered cellular fuel AMPK signaling cascade.
Collapse
Affiliation(s)
- Rui Guo
- Center for Cardiovascular Research and Alternative Medicine, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Glenda I. Scott
- Center for Cardiovascular Research and Alternative Medicine, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|