1
|
Wang FL, Chang X, Shi Y, Yang T, Li J, Dong H, Wang Q, Zhang S, Liu J. β-Ionone enhances the inhibitory effects of 5-fluorouracil on the proliferation of gastric adenocarcinoma cells by the GSK-3β signaling pathway. PLoS One 2024; 19:e0309014. [PMID: 39241034 PMCID: PMC11379261 DOI: 10.1371/journal.pone.0309014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/03/2024] [Indexed: 09/08/2024] Open
Abstract
5-Fluorouracil (5-FU) is widely used in the treatment of gastric cancer, and the emergence of drug resistance and toxic effects has limited its application. Therefore, there is an urgent need for safe and effective novel drugs or new therapies. β-Ionone (BI) is found in vegetables and fruits and possesses an inhibitory proliferation of tumor cells in vitro and in vivo. In this study, we investigated whether BI could enhance the inhibitory effects of 5-FU on the proliferation of gastric adenocarcinoma cells and the growth of gastric cancer cell xenografts in a mouse model. The effects of BI and 5-FU alone or their combination on the cell viability, apoptosis, and mitochondrial membrane potential, the cell cycle, and its related proteins-Cyclin D1, and CDK4 as well as PCNA and GSK-3β were evaluated in SGC-7901 cells and MKN45 cells by MTT, MB, flow cytometry and Western blot. In addition, the effects of BI and 5-FU alone or their combination on the growth of SGC-7901 cell xenografts in nude mice were investigated. The results showed that BI significantly enhanced the sensitivity of gastric adenocarcinoma cells to 5-FU in vitro and in vivo, i.e. proliferation inhibited, apoptosis induced and GSK-3β protein activated. Therefore, our results suggest that BI increases the antitumor effect of 5-FU on gastric adenocarcinoma cells, at least partly from an activated GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Fa-Lin Wang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Xiaoxia Chang
- Department of Clinical Laboratory, Xi'an No. 9 Hospital, Beilin District, Xi'an City, China
| | - Yuanyang Shi
- Department of Laboratory, Shaoyang Central Hospital, Daxiang District, Shaoyang City, China
| | - Tingting Yang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Juan Li
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Hongwei Dong
- Public Health College, Harbin Medical University, Nangang District, Harbin, China
| | - Qi Wang
- Public Health College, Harbin Medical University, Nangang District, Harbin, China
| | - Shujun Zhang
- Department of Pathology, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| | - Jiaren Liu
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China
| |
Collapse
|
2
|
Ferreira Almeida N, Dos Santos Niculau E, Cordeiro Toledo Lima P, Ferreira da Silva W. Determination of the volatile chemical profile of Momordica charantia (bitter melon) leaf and fruit by GC-MS. Nat Prod Res 2024:1-8. [PMID: 38440938 DOI: 10.1080/14786419.2024.2325595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/24/2024] [Indexed: 03/06/2024]
Abstract
The plant Momordica charantia (Cucurbitaceae), popularly known as bitter melon, snake fruit, Saint Vincent's herb, or little melon, is an African species that has developed in tropical and subtropical biomes in various parts of Brazil. The fruit is used in various traditional medicinal applications. The study aimed to identify the compounds of the essential oil of the leaves obtained by hydrodistillation and in the fruit through Solid-Phase Microextraction by headspace mode (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). The analysis of mature fruits led to the identification of 18 compounds, compared to the hydrodistillation, in which 21 compounds were identified. Benzaldehyde, linalool, and β-cyclocitral were identified in both methods. Linalool was the major compound in both processes. These findings highlight the importance of knowing the chemical composition of organic volatile compounds (VOCs), given the potential for medicinal applications and popular use of plants.
Collapse
Affiliation(s)
- Natália Ferreira Almeida
- Center for Integrated Sciences, University Campus of Araguaína, Federal University of Northern Tocantins, Araguaína, Brazil
| | - Edenilson Dos Santos Niculau
- Center for Integrated Sciences, University Campus of Araguaína, Federal University of Northern Tocantins, Araguaína, Brazil
| | - Pedro Cordeiro Toledo Lima
- Center for Integrated Sciences, University Campus of Araguaína, Federal University of Northern Tocantins, Araguaína, Brazil
| | - Wanderson Ferreira da Silva
- Center for Integrated Sciences, University Campus of Araguaína, Federal University of Northern Tocantins, Araguaína, Brazil
| |
Collapse
|
3
|
Usman MA, Ibrahim FB, Mohammed HO, Awogbamila SO, Idris UA, Suleiman MA. Antiplasmodial Activity of β-Ionone and the Effect of the Compound on Amelioration of Anaemia and Oxidative Organ Damage in Mice Infected with Plasmodium berghei. Acta Parasitol 2024; 69:242-250. [PMID: 37982977 DOI: 10.1007/s11686-023-00741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Owing to evolution of parasite strains that are resistant to existing antimalarial drugs, research for novel antimalarial medicines is progressing on numerous fronts. PURPOSE Herein, we evaluated the in vivo anti-Plasmodium berghei activity of β-ionone including its ameliorative potential towards P. berghei-associated anaemia and oxidative organ damage. METHODS Mice were infected with chloroquine-sensitive strain of P. berghei and then treated with β-ionone at doses of 10 and 20 mg/kg body weight (BW) for seven days. The parasitemia, packed cell volume and redox sensitive biomarkers in the liver, brain and spleen were estimated. RESULTS Our result showed that β-ionone, in a dose-dependent fashion, significantly (p < 0.05) repressed the multiplication of P. berghei. More so, the compound, at doses of 10 and 20 mg/kg BW, significantly (p < 0.05) mitigated anaemia and organ damage induced by P. berghei. CONCLUSION Overall, the findings demonstrated that β-ionone has antiplasmodial actions and plays a mitigative role against P. berghei-induced anaemia and oxidative organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Umar Adam Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
4
|
Chen PJ, Lin ES, Su HH, Huang CY. Cytotoxic, Antibacterial, and Antioxidant Activities of the Leaf Extract of Sinningia bullata. PLANTS (BASEL, SWITZERLAND) 2023; 12:859. [PMID: 36840206 PMCID: PMC9967939 DOI: 10.3390/plants12040859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
Sinningia bullata is a tuberous member of the flowering plant family Gesneriaceae. Prior to this work, the antibacterial, antioxidant, and cytotoxic properties of S. bullata were undetermined. Here, we prepared different extracts from the leaf, stem, and tuber of S. bullata and investigated their pharmacological activities. The leaf extract of S. bullata, obtained by 100% acetone (Sb-L-A), had the highest total flavonoid content, antioxidation capacity, and cytotoxic and antibacterial activities. Sb-L-A displayed a broad range of antibacterial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The inhibition zones of Sb-L-A ranged from 8 to 30 mm and were in the following order: S. aureus > E. coli > P. aeruginosa. Incubation of B16F10 melanoma cells with Sb-L-A at a concentration of 80 μg/mL caused deaths at the rate of 96%, reduced migration by 100%, suppressed proliferation and colony formation by 99%, and induced apoptosis, which was observed in 96% of the B16F10 cells. In addition, the cytotoxic activities of Sb-L-A were synergistically enhanced when coacting with the antitumor drug epothilone B. Sb-L-A was also used to determine the cytotoxic effects against 4T1 mammary carcinoma cells. Sb-L-A of 60 μg/mL boosted the distribution of the G2 phase from 1.4% to 24.4% in the B16F10 cells. Accordingly, Sb-L-A might suppress melanoma cell proliferation by inducing G2 cell-cycle arrest. The most abundant compounds in Sb-L-A were identified using gas chromatography-mass spectrometry. Overall, the collective data in this study may indicate the pharmacological potentials of Sb-L-A for possible medical applications.
Collapse
Affiliation(s)
- Pin-Jui Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan;
| | - Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
5
|
Yin M, Li C, Zhang L, Zhang L, Lin J, Jiang N, Wang Q, Xu Q, Zheng H, Gu L, Jia Y, Yu B, Zhao G. Mechanism of antifungal activity and therapeutic action of β-ionone on Aspergillus fumigatus keratitis via suppressing LOX1 and JNK/p38 MAPK activation. Int Immunopharmacol 2022; 110:108992. [PMID: 35810488 DOI: 10.1016/j.intimp.2022.108992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the anti-inflammatory and antifungal role of β-ionone (BI) in fungal keratitis (FK). METHODS In vitro antifungal activity of BI against Aspergillus fumigatus (A. fumigatus) was evaluated by using minimum inhibitory concentration (MIC), crystal violet staining, biofilm biomass measurement, propidium iodide uptake test, and adherence assay. And RT-PCR was carried out to measure the levels of RodA, RodB, Rho, FKs, CshA-D, RlmA, Cyp51A-B and Cdr1B. Network pharmacology analysis was applied to predict the relationship between BI and FK. Cell Count Kit-8 (CCK8) assay was utilized to detect the cytotoxicity of BI to RAW264.7 and immortalized human corneal epithelial cells (HCECs). The underlying mechanism of BI at regulating the level of inflammatory factors in FK was assessed by RT-PCR, ELISA and Western blot in vitro and in vivo. The therapeutic effect of BI has investigated in A. fumigatus keratitis by employing the clinical score, pathological examination, plate count, immunofluorescence and myeloperoxidase (MPO) assay. We also used the slit-lamp microscopy, clinical scores, and HE staining to assess the effect of natamycin compared with BI treatment in vivo. RESULTS BI suppressed the growth of A. fumigatus and had a significant effect on A. fumigatus biofilms and membrane permeability. RT-PCR demonstrated that exposure of A. fumigatus to BI inhibited the expression of genes that function in hydrophobin (RodA, RodB), cell wall integrity (Rho, FKs, CshA-D, RlmA), azole susceptibility (Cyp51A-B, Cdr1B). Network pharmacology showed that the effects of BI in FK implicate with C-type lectin receptor signaling pathway. In vivo, after A. fumigatus infection, BI treatment markedly reduced the severity of FK by decreasing clinical score, neutrophil recruitment, and fungal load. And BI treatment also obviously reduced the expression of inflammatory cytokines, Lectin-like oxidized LDL receptor (LOX-1), phosphorylation of p38MAPK and p-JNK versus the DMSO-treated group. BI and natamycin both significantly increased corneal transparency and decreased inflammatory cell recruitment in the FK in the mice model. CONCLUSION These results indicated that BI had fungicidal activities against A. fumigatus. It also ameliorated FK in mice by reducing inflammation, which was regulated by LOX-1, p-p38MAPK and p-JNK.
Collapse
Affiliation(s)
- Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Leyuan Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qain Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yiyi Jia
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
6
|
Hagos M, Yaya EE, Chandravanshi BS, Redi-Abshiro M. Analysis of volatile compounds in flesh, peel and seed parts of pumpkin ( Cucurbita maxima) cultivated in Ethiopia using gas chromatography-mass spectrometry (GC-MS). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2088787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mulu Hagos
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Estifanos Ele Yaya
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mesfin Redi-Abshiro
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Chandrashekar N, Subramanian R, Thiruvengadam D. Baicalein inhibits cell proliferation and enhances apoptosis in human A549 cells and benzo(a)pyrene-induced pulmonary carcinogenesis in mice. J Biochem Mol Toxicol 2022; 36:e23053. [PMID: 35332611 DOI: 10.1002/jbt.23053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/06/2022] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Our current study is done to explore the possible mechanisms to elaborate on the growth inhibitory effect of baicalein (BE) in human lung carcinoma. Initially, BE (25 and 50 µM) treatment for 24 h, suppressed the viability and inhibited population growth in A549 cells. BE upholds the production of reactive oxygen species (ROS) with concomitant replenishment of glutathione, catalase, and glutathione peroxidase activity. The expression level of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 markedly increased after BE treatment will intimidate A549 cells proliferation by the ROS-independent pathway via the antioxidant pathway. In vivo investigations were carried out on BE (12 mg/kg, oral) in benzo(a)pyrene (B(a)P; 50 mg/kg, oral) induced lung carcinogenesis in mice. BE induces caspase-dependent apoptosis by increasing the levels of cytosolic cytochrome c accompanied by upregulating the outflow of p53, Bax, and caspase-3 with a concomitant abatement in the outflow of Bcl-2 in both in vitro and in vivo. In the murine model, BE treatment hindered the countenance of proliferation-related proteins (argyrophilic nucleolar organizing regions and proliferating cell nuclear antigen). Additionally, appraisal of the cell nucleus by transmission electron microscopic assessment uncovered that BE treatment adequately counteracts B(a)P-induced lung cancer cell survival. During the transition of the G0 /G1 phase, BE is arrested in the cell cycle process. This might be the cause of a substantial increase in the appearance of p21Cip1 with concomitant downregulating the expressions of CDK4, cyclin D, and cyclin E both in vitro and in vivo. Our results conclude that BE treatment induced apoptosis and repressed proliferation both in vitro and in vivo of human lung carcinoma.
Collapse
Affiliation(s)
- Naveenkumar Chandrashekar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India.,Department of Biochemistry, Indian Academy Degree College - Autonomous, Meganahalli, Bengaluru, Karnataka, India
| | - Raghunandhakumar Subramanian
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Devaki Thiruvengadam
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Guan H, Feng J, Meng W, Liu Y, Li C, Zhang C, Wang P, Almoallim H, Manikandan V. Elucidating the immunomodulatory effect of daidzein in Benzo(a)pyrene -Induced lung cancer mice model through modulation of proliferating cell nuclear antigen, NF-κB, CYP1A1, and NRF. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_325_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Majumder D, Debnath R, Nath P, Libin Kumar KV, Debnath M, Tribedi P, Maiti D. Bromelain and Olea europaea (L.) leaf extract mediated alleviation of benzo(a)pyrene induced lung cancer through Nrf2 and NFκB pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47306-47326. [PMID: 33893581 DOI: 10.1007/s11356-021-13803-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Lung cancer is the most aggressive as well as deadly form of cancer and most of the lung cancer cases are involved in direct smoking or passive smoking. Oxidative stress and pulmonary inflammation regulated by some transcription factors like Nrf2, NF-κB etc. play important roles in lung cancer. Various combinations of therapies are currently attributed to lung cancer treatment. A plethora of evidence supports that the consumption of plant-derived foods can prevent chronic diseases like cancer. Leaves of olive (Olea europaea L.) are rich in phenolic compounds which are having antioxidant and anti-inflammatory property. Also, bromelain from pineapple juice and from pineapple stem is a potent anti-inflammatory agent. We took a pragmatic approach to prevent carcinogenesis by supplementing the combination of these two extracts. In this study, we have tried to evaluate the amelioration of various hallmarks associated with benzo(a)pyrene-induced lung carcinogenesis upon the combinatorial treatment of ethanolic olive leaf extract (EOLE) and bromelain. We have studied the role of EOLE in amelioration of BaP-induced oxidative stress in the lung. As several reports of anticancer activity of bromelain are available, we have combined EOLE with bromelain to study their protective role against BaP-mediated lung damage. Changes in DNA integrity, LPO level in lung after EOLE-treated animal were examined. Then, we have evaluated the synergistic role of EOLE and bromelain. We have found that EOLE in combination with bromelain was able to increase the translocation of Nrf2 from cytoplasm to nucleus and decrease the translocation of NF-κB from cytoplasm to nucleus. Combination of treatment also reduced the expression of TNFα, IL-6, and some matrix metalloproteinases in lung tissue. Our findings suggest that EOLE and bromelain can synergistically reduce the BaP-induced lung carcinogenesis associated with inflammation and oxidative stress via regulating the expression of various inflammatory markers and also modulating the activity of pulmonary antioxidant armories.
Collapse
Affiliation(s)
- Debabrata Majumder
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | - Rahul Debnath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | - Priyatosh Nath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | | | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Prosun Tribedi
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India.
| |
Collapse
|
10
|
Wang X, Priya Veeraraghavan V, Krishna Mohan S, Lv F. Anticancer and immunomodulatory effect of rhaponticin on Benzo(a)Pyrene-induced lung carcinogenesis and induction of apoptosis in A549 cells. Saudi J Biol Sci 2021; 28:4522-4531. [PMID: 34354438 PMCID: PMC8324936 DOI: 10.1016/j.sjbs.2021.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023] Open
Abstract
In worldwide, one of the most important cancer-related death is lung cancer. Also has the highest mortality rate between various cancer types. The count of lung cancer occurrence is increasing with an increased frequency by smoking. Proficient chemoprevention approaches are needed to prevent the occurrence of lung cancer. Therefore, the aim of this exploration is to determine the therapeutic impact on the immune modulatory effect of rhaponticin on lung tumorigenesis in vivo and in vitro cytotoxicity effect in A549 cells of human lung cancer. Lung cancer tumorigenesis in mice was challenged with benzo(a)pyrene (BaP) with 50 mg/kg bodyweight (b.wt) as oral administration for 6 weeks (two times/week). Rhaponticin were given orally 30 mg/kg b.wt (two times/week) in BaP induced mice from 12 weeks to 18 weeks. After treatment completes, the body weight was measured and then blood, lung tissue was collected for various parameters detection. The results evidenced that BaP induced mice decreased the bodyweight, increased lung weight, increased tumor markers (AHH, CEA and LDH), and increased the proinflammatory cytokines. The enzyme catalase, superoxide dismutase activity was decreased and increased lipid peroxidation in immune comprising cells compared with the control cells. Moreover, rhaponticin treatment improves in chemical assays and also the histopathological alteration of lung tissues. The present findings provide evidence about the therapeutic potentials of rhaponticin against BaP triggered lung tumorigenesis.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Department of Clinical Skills & Simulation and Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Feng Lv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
- Corresponding author.
| |
Collapse
|
11
|
β-Ionone: Its Occurrence and Biological Function and Metabolic Engineering. PLANTS 2021; 10:plants10040754. [PMID: 33921545 PMCID: PMC8069406 DOI: 10.3390/plants10040754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/03/2022]
Abstract
β-Ionone is a natural plant volatile compound, and it is the 9,10 and 9′,10′ cleavage product of β-carotene by the carotenoid cleavage dioxygenase. β-Ionone is widely distributed in flowers, fruits, and vegetables. β-Ionone and other apocarotenoids comprise flavors, aromas, pigments, growth regulators, and defense compounds; serve as ecological cues; have roles as insect attractants or repellants, and have antibacterial and fungicidal properties. In recent years, β-ionone has also received increased attention from the biomedical community for its potential as an anticancer treatment and for other human health benefits. However, β-ionone is typically produced at relatively low levels in plants. Thus, expressing plant biosynthetic pathway genes in microbial hosts and engineering the metabolic pathway/host to increase metabolite production is an appealing alternative. In the present review, we discuss β-ionone occurrence, the biological activities of β-ionone, emphasizing insect attractant/repellant activities, and the current strategies and achievements used to reconstruct enzyme pathways in microorganisms in an effort to to attain higher amounts of the desired β-ionone.
Collapse
|
12
|
Aloum L, Alefishat E, Adem A, Petroianu G. Ionone Is More than a Violet's Fragrance: A Review. Molecules 2020; 25:molecules25245822. [PMID: 33321809 PMCID: PMC7764282 DOI: 10.3390/molecules25245822] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The term ionone is derived from “iona” (Greek for violet) which refers to the violet scent and “ketone” due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of β-carotene by β-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and β-pinene into α-and β-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that β-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. β-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. β-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators. α-Ionone and β-ionone derivatives exhibit anti-inflammatory, antimicrobial and anticancer effects, however the corresponding structure activity relationships are still inconclusive. Overall, data demonstrates that ionone is a promising scaffold for cancer, inflammation and infectious disease research and thus is more than simply a violet’s fragrance.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE
| | - Abdu Adem
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Correspondence: ; Tel.: +971-50-413-4525
| |
Collapse
|
13
|
Khan A, Alhumaydhi FA, Alwashmi ASS, Allemailem KS, Alsahli MA, Alrumaihi FA, Almatroudi A, Mobark MA, Mousa A, Khan MA. Diallyl Sulfide-Mediated Modulation of the Fatty Acid Synthase (FASN) Leads to Cancer Cell Death in BaP-Induced Lung Carcinogenesis in Swiss Mice. J Inflamm Res 2020; 13:1075-1087. [PMID: 33324084 PMCID: PMC7733419 DOI: 10.2147/jir.s284279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Diallyl sulfide (DAS), one of the organo-sulfur secondary metabolites in garlic, has been shown to inhibit the proliferation of cancer cells. The present study aimed to evaluate the mechanism of DAS in the prevention of benzo[a]pyrene (BaP)-induced lung cancer in a murine model. Materials and Methods The mice were exposed to 50 mg/kg of BaP twice a week for 4 weeks in order to induce lung carcinoma. Pretreatment of mice with DAS (100 mg/kg) was started 2 weeks before BaP exposure and further continued for 21 weeks. The effect of DAS and BaP was evaluated by studying various parameters in the serum and tissues of the treated or untreated BaP-exposed mice. Results The histopathological findings demonstrated that DAS prevented the progression of malignant lung cancer and metastasis in the liver. A significant drop was observed in BaP-induced tumor marker enzymes (ADA, AHH, γ-GT, LDH) in the serum of the mice treated with DAS. Moreover, DAS treatment resulted in the recovery of antioxidant enzymes, SOD and CAT, in BaP-exposed mice. The induction of apoptosis and the destruction of cellular ROS were detected in cancer cells from the mice pre-treated with DAS. The immunohistochemical analysis revealed the up-regulation of fatty acid synthase (FASN) in the lungs and liver tissues of BaP-exposed mice and the treatment with DAS inhibited FASN expression. Conclusion The findings of the present study indicated that DAS-induced apoptosis is strongly associated with the downregulation of FASN in tumor tissues. To the best of our knowledge, this is the first study that describes the role of FASN in BaP-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Faris A Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Mugahid A Mobark
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Al-Qassim, Buraydah, Saudi Arabia.,Department of Pathology, Faculty of Medicine, University of Kordofan, El-Obeid, Sudan
| | - Ayman Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| |
Collapse
|
14
|
Nanocapsules containing Saussurea lappa essential oil: Formulation, characterization, antidiabetic, anti-cholinesterase and anti-inflammatory potentials. Int J Pharm 2020; 593:120138. [PMID: 33278497 DOI: 10.1016/j.ijpharm.2020.120138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
Plant-based remedies have been widely used for the management of variable diseases due to their safety and less side effects. In the present study, we investigated Saussurea lappa CB. Clarke. (SL) given its largely reported medicinal effects. Specifically, our objective was to provide an insight into a new polymethyl methacrylate based nanocapsules as carriers of SL essential oil and characterize their biologic functions. The nanoparticles were prepared by nanoprecipitation technique, characterized and analyzed for their cytotoxicity, anti-inflammatory, anti-Alzheimer and antidiabetic effects. The results revealed that the developed nanoparticles had a diameter around 145 nm, a polydispersity index of 0.18 and a zeta potential equal to +45 mV and they did not show any cytotoxicity at 25 μg·mL-1. The results also showed an anti-inflammatory activity (reduction in metalloprotease MMP-9 enzyme activity and RNA expression of inflammatory cytokines: TNF-α, GM-CSF and IL1β), a high anti-Alzheimer's effect (IC50 around 25.0 and 14.9 μg·mL-1 against acetylcholinesterase and butyrylcholinesterase, respectively), and a strong antidiabetic effect (IC50 were equal to 22.9 and 75.8 μg·mL-1 against α-amylase and α-glucosidase, respectively). Further studies are required including the in vivo studies (e.g., preclinical), the pharmacokinetic properties, the bioavailability and the underlying associated metabolic pathways.
Collapse
|
15
|
Krishnan P, Sundaram J, Salam S, Subramaniam N, Mari A, Balaraman G, Thiruvengadam D. Citral inhibits N-nitrosodiethylamine-induced hepatocellular carcinoma via modulation of antioxidants and xenobiotic-metabolizing enzymes. ENVIRONMENTAL TOXICOLOGY 2020; 35:971-981. [PMID: 32302048 DOI: 10.1002/tox.22933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks the sixth position among various cancers worldwide. Recent research shows that natural and dietary compounds possess many therapeutic effects. Citral is a monoterpene aldehyde that contains geranial and neral. The present study was considered to study the role of citral against N-nitrosodiethylamine (NDEA)-induced HCC via modulation of antioxidants and xenobiotic-metabolizing enzymes in vivo. NDEA-alone-administered group II animals profoundly showed increased tumor incidence, reactive oxygen species, liver marker enzyme levels, serum bilirubin levels, tumor markers of carcinoembryonic antigen, α-fetoprotein, proliferative markers of argyrophilic nucleolar organizing regions, proliferating cell nuclear antigen (PCNA) expressions, phase I xenobiotic-metabolic enzymes and simultaneously decreased antioxidants, and phase II enzymes levels. Citral (100 mg/kg b.w.) treatment significantly reverted the levels in group III cancer-bearing animals when compared to group II cancer-bearing animals. In group IV animals, citral-alone administration did not produce any adverse effect during the experimental condition. Based on the results, citral significantly inhibits the hepatocellular carcinogenesis through restoring the antioxidants and phase II xenobiotic-enzyme levels; thereby, it strongly proves as an antiproliferative agent against rat HCC.
Collapse
Affiliation(s)
- Palanisamy Krishnan
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Jagan Sundaram
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Sharmila Salam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Nirmala Subramaniam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Ashok Mari
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | | | - Devaki Thiruvengadam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| |
Collapse
|
16
|
Research Advances on Biosynthesis, Regulation, and Biological Activities of Apocarotenoid Aroma in Horticultural Plants. J CHEM-NY 2020. [DOI: 10.1155/2020/2526956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apocarotenoids, which play important roles in the growth and development of horticultural plants, are produced by the action of carotenoid cleavage oxygenase (CCO) family members or nonenzymatic cleavage actions. Apocarotenoids are commonly found in leaves, flowers, and fruits of many horticultural plants and participate in the formation of pigments, flavors, hormones, and signaling compounds. Some of them are recognized as important aroma components of fruit and flower with aromatic odor, such as βß-ionone, β-damascenone, and 6-methyl-5-hepten-2-one in tomato fruit, and have low odor thresholds with β-ionone having odor threshold of only 0.007 ppb. In this review, the main apocarotenoid aroma components in horticultural plants were listed, and factors influencing their production were discussed at first. Then, the biosynthetic pathway of apocarotenoid aromas was briefly introduced, and the CCDs gene family was highlighted, and the nonenzymatic production of apocarotenoid aromas was also mentioned. Next, chemical and molecular regulations of apocarotenoid aromas and their biological activities were summarized. Finally, further exploration aspects needed were suggested. We anticipate that this review can afford some crucial information for comprehensive application of apocarotenoid volatile compounds in horticultural plants.
Collapse
|
17
|
Ribeiro D, Sousa A, Nicola P, Ferreira de Oliveira JMP, Rufino AT, Silva M, Freitas M, Carvalho F, Fernandes E. β-Carotene and its physiological metabolites: Effects on oxidative status regulation and genotoxicity in in vitro models. Food Chem Toxicol 2020; 141:111392. [PMID: 32360219 DOI: 10.1016/j.fct.2020.111392] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
Carotenoids are ubiquitously distributed in nature, β-carotene being the most frequently found carotenoid in the human diet. In the human body, β-carotene is absorbed, distributed and metabolized by enzymatic and/or non-enzymatic oxidant cleavage into several metabolites. Despite the broadly accepted biological value of β-carotene, it has also been considered a double-edged sword, mainly due to its potential antioxidant versus pro-oxidant behaviour. In this sense, the aim of this work was to scrutinize the antioxidant or pro-oxidant potential of β-carotene and its metabolites, namely trans-β-apo-8'-carotenal and β-ionone. Several parameters were evaluated in this study, viz. their effects on reactive species production, both in human whole blood and neutrophils; their effects on lipid peroxidation, in the absence and presence of peroxynitrite anion (ONOO-) or hydrogen peroxide (H2O2), using a synaptosomal model; and finally, their putative genotoxic effects in the human hepatic HepG2 cell line. In general, depending on the cellular model and conditions tested, β-carotene and its metabolites revealed antioxidant effects to varying degrees without significant pro-oxidant or genotoxic effects.
Collapse
Affiliation(s)
- Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Pedro Nicola
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marta Silva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
18
|
Abd-Elbaset M, Mansour AM, Ahmed OM, Abo-Youssef AM. The potential chemotherapeutic effect of β-ionone and/or sorafenib against hepatocellular carcinoma via its antioxidant effect, PPAR-γ, FOXO-1, Ki-67, Bax, and Bcl-2 signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1611-1624. [PMID: 32270258 DOI: 10.1007/s00210-020-01863-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Proliferation and apoptosis are two primary driving forces behind the pathogenesis of hepatocellular carcinoma (HCC). HCC is associated with Ki-67 and Bcl-2 overexpression, reduced Bax expression inducing disturbance of equilibrium between cellular proliferation and apoptosis, and exacerbated by reduced expression of PPAR-γ and FOXO-1. Our objective was to examine the mechanism by which the cyclic isoprenoid, β-ionone (βI), attenuated hepatocarcinogenesis and compare its possible anticancer activity with sorafenib (SF) as standard HCC treatment. HCC induction was achieved by supplying Wistar rats with 0.01% diethylnitrosamine (DENA) for 8 consecutive weeks by free access of drinking water. The effects of βI (160 mg/kg/day) administered orally were evaluated by biochemical, oxidative stress, macroscopical, and histopathological analysis. In addition, immunohistochemical assay for localization and expression of Bax and Bcl-2 and RT-PCR for expression levels of PPAR-γ, FOXO-1, and Ki-67 mRNA were performed. βI treatment significantly reduced the incidence, total number, and multiplicity of visible hepatocyte nodules, attenuated LPO, near-normal restoration of all cancer biomarkers, and antioxidant activities, indicating the chemotherapeutic impact of βI. Histopathological analysis of the liver confirmed that further. βI also induced pro-apoptotic protein Bax expression and reduced anti-apoptotic expression of Bcl-2 protein. Moreover, βI induced mRNA expression of tumor suppressor genes (PPAR-γ and FOXO-1) and decreased proliferative marker Ki-67 mRNA expression. For the first time, the present study provides evidence that βI exerts a major anticancer effect on DENA-induced HCC, at least in part, through inhibition of cell proliferation, oxidative stress, and apoptogenic signal induction mediated by downregulation of Bcl-2 and upregulation of Bax, PPAR-γ, and FOXO-1 expressions.
Collapse
Affiliation(s)
- Mohamed Abd-Elbaset
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt.
| | - Ahmed M Mansour
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt
| |
Collapse
|
19
|
Heidor R, Affonso JM, Ong TP, Moreno FS. Nutrition and Liver Cancer Prevention. NUTRITION AND CANCER PREVENTION 2019:339-367. [DOI: 10.1039/9781788016506-00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Liver cancer represents a major public health problem. Hepatocarcinogenesis is a complex process that comprises several stages and is caused by multiple factors. Both progressive genetic and epigenetic alterations are described in liver cancer development. The most effective strategy to reduce the impact of this disease is through prevention. In addition to vaccination against HBV and treatment of HCV infection, other preventive measures include avoiding ingesting aflatoxin-contaminated foods and drinking alcoholic beverages, as well as maintaining healthy body weight and practicing physical exercise. Bioactive compounds from fruits and vegetables present great potential for liver cancer chemoprevention. Among them, tea catechins, carotenoids, retinoids, β-ionone, geranylgeraniol and folic acid can be highlighted. In addition, butyric acid, tributyrin and structured lipids based on butyric acid and other fatty acids represent additional promising chemopreventive agents. These bioactive food compounds have been shown to modulate key cellular and molecular processes that are deregulated in hepatocarcinogenesis. Furthermore, combinations of different classes of bioactive food compounds or of bioactive food compounds with synthetic drugs could lead to synergistic liver cancer chemopreventive effects.
Collapse
Affiliation(s)
- R. Heidor
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - J. M. Affonso
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - T. P. Ong
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - F. S. Moreno
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| |
Collapse
|
20
|
Hassan SK, Mousa AM, El-Sammad NM, Abdel-Halim AH, Khalil WK, Elsayed EA, Anwar N, Linscheid MW, Moustafa ES, Hashim AN, Nawwar M. Antitumor activity of Cuphea ignea extract against benzo(a)pyrene-induced lung tumorigenesis in Swiss Albino mice. Toxicol Rep 2019; 6:1071-1085. [PMID: 31660294 PMCID: PMC6807375 DOI: 10.1016/j.toxrep.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has one of the highest mortality rates among various types of cancer and is the most frequent cancer in the world. The incidence of lung cancer is increasing rapidly, in parallel with an increased incidence of smoking. Effective chemoprevention may be an alternative strategy to control the incidence of lung cancer. Thus, the objective of current work was to ascertain the possible preventive and therapeutic efficacies of Cuphea ignea extract in a mouse model of lung tumorigenesis and its cytotoxicity toward the A549 human lung cancer cell line. Lung tumorigenesis was induced by the oral administration of benzo(a)pyrene (50 mg/kg b.w.) twice per week to Swiss albino mice for 4 weeks. Benzo(a)pyrene-treated mice were orally administered C. ignea (300 mg/kg body weight, 5 days/week) for 2 weeks before or 9 weeks after the first benzo(a)pyrene dose, for a total of 21 weeks. At the end of the administration period, various parameters were measured in the serum and lung tissues. The results revealed that the oral administration of benzo(a)pyrene resulted in increases in relative lung weight, serum levels of tumor markers (ADA, AHH, and LDH), and the inflammatory marker NF-κB, and a decreased total antioxidant capacity compared with the control. In addition, decreased levels of enzymatic and non-enzymatic antioxidants, with a concomitant increase in lipid peroxidation, metalloproteinases (MMP-2 and MMP-12), and the angiogenic marker VEGF were detected in lung tissues. Moreover, benzo(a)pyrene administration induced the upregulation of PKCα, COX-2, and Bcl-2 expression, with the downregulation of BAX and caspase-3 expression. C. ignea treatment alleviated all alterations in these parameters, which was further confirmed by the histopathological analysis of lung tissues. The findings of the current work provide the first verification of the preventive and therapeutic potentials of C. ignea extract against benzo(a)pyrene-induced lung tumorigenesis in mice.
Collapse
Affiliation(s)
- Sherien K. Hassan
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | - Amria M. Mousa
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | | | - Wagdy K.B. Khalil
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Elsayed A. Elsayed
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
- Corresponding author at: Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - Nayera Anwar
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Michael W. Linscheid
- Laboratory of Applied Analytical and Environmental Chemistry, Humboldt-University, Berlin, Germany
| | - Eman S. Moustafa
- October University of Modern Sciences and Arts, 6th October City, Egypt
| | - Amani N. Hashim
- Department of Phytochemistry and Plant Systematics, National Research Centre, Cairo, Egypt
| | - Mahmoud Nawwar
- Department of Phytochemistry and Plant Systematics, National Research Centre, Cairo, Egypt
| |
Collapse
|
21
|
Dong HW, Wang K, Chang XX, Jin FF, Wang Q, Jiang XF, Liu JR, Wu YH, Yang C. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Arch Toxicol 2019; 93:2993-3003. [PMID: 31506784 DOI: 10.1007/s00204-019-02550-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/14/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Hong-Wei Dong
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Kai Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of GuangZhou Medical University, 151 YanJiang West Road, YueXiu District, Guangzhou, 510120, People's Republic of China
| | - Xiao-Xia Chang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Fei-Fei Jin
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Qi Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Xiao-Feng Jiang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China
| | - Jia-Ren Liu
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China.
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Chun Yang
- Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, People's Republic of China.
| |
Collapse
|
22
|
Gan H, Zhang Y, Zhou Q, Zheng L, Xie X, Veeraraghavan VP, Mohan SK. Zingerone induced caspase-dependent apoptosis in MCF-7 cells and prevents 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in experimental rats. J Biochem Mol Toxicol 2019; 33:e22387. [PMID: 31476248 DOI: 10.1002/jbt.22387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Breast cancer is a prevalent of tumoregenesis in women and reports for the maximum mortality and morbidity in the global. Ginger (Zingiber officinale) is the mainly widespread spice and herbal remedies used in the world. Since antique periods, ginger has been used in Greece, India and China for the curing of upset stomach, nausea, diarrhea, colds, and headaches. The current work was planned to explore the anticancer properties of zingerone (ZO) toward 7,12-dimethylbenz(a)anthracene (DMBA)-treated mammary carcinogenesis in Sprague-Dawley (SD) rats and MCF-7 mammary cancer cells. The mammary carcinogenesis was produced through a single dosage of DMBA (20 mg/kg bwt) mixed in soya oil (1 mL) administrated intragastrically with a gavage. We found improved concentrations of lipid peroxidation (LOOH and TBARS), carcinoembryonic antigen, lowered levels of enzymatic (CAT, GPx, and SOD), and nonenzymatic (vitamin E, GSH, and vitamin C) antioxidant in mammary tissues and plasma of DMBA-induced cancer bearing animals. Moreover, augmented concentrations of phase I (Cyt-b5 and CYP450 ) and reduced levels of phase II (GR and GST) detoxification microsomal proteins in mammary tissues were noticed. ZO administrations significantly reverted back to all these parameters in this way, showing efficient of anticancer effect. Furthermore, our in vitro study also supported the anticancer effect of the treatment of ZO were noticed loss of cell viability, improved reactive oxygen species formation, and reduced MMP. Furthermore, the status of apoptosis proteins such as Bcl-2, Bax, and Bid expressions was determined by using Western blot analysis techniques. Overall, these results proposed the anticancer effect of ZO toward DMBA-induced mammary cancer in SD animals and Michigan cancer foundation-7 mammary cancer cells.
Collapse
Affiliation(s)
- Hongyun Gan
- Medical College, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yaqing Zhang
- Medical College, Northwest Minzu University, Lanzhou, Gansu, China
| | - Qingyun Zhou
- Department of Pathology, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, Gansu, China
| | - Lierui Zheng
- Medical College, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xiaofeng Xie
- Medical College, Northwest Minzu University, Lanzhou, Gansu, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Department of Medical Biochemistry, College of Applied Medical Sciences - Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University, Al Jubail, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Velli SK, Sundaram J, Murugan M, Balaraman G, Thiruvengadam D. Protective effect of vanillic acid against benzo(a)pyrene induced lung cancer in Swiss albino mice. J Biochem Mol Toxicol 2019; 33:e22382. [PMID: 31468657 DOI: 10.1002/jbt.22382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/06/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
Vanillic acid (VA) is found in high concentrations in various plants and used as traditional medicine for various diseases. The aim of the existing study is to illustrate the protective effects of VA against benzo(a)pyrene (B(a)P)-induced lung cancer in Swiss albino mice. B(a)P (50 mg/kg b.wt.) was given orally to induce lung cancer in mice. The body weight, tumor incidence, carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and enzymatic/nonenzymatic antioxidants (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione) were estimated. Further histochemical investigation through hematoxylin and eosin staining was also carried out. B(a)P administered groups showed increased levels of serum pathological markers CEA, NSE along with reduced final body weight as well as decreased tissue enzymatic and nonenzymatic antioxidants activities, whereas VA treatment (200mg/kg/b.wt) along with B(a)P showed significantly reverted the above changes, which proves as prominent anticancer effects in experimentally induced lung cancer. Overall, these results suggest that VA has an efficient preventive action against B(a)P-induced lung cancer, and this is attributed to its free-radical scavenging antioxidant activities.
Collapse
Affiliation(s)
- Sathesh Kanna Velli
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India
| | - Jagan Sundaram
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India
| | - Manikandan Murugan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India
| | | | | |
Collapse
|
24
|
β-ionone inhibits nonalcoholic fatty liver disease and its association with hepatocarcinogenesis in male Wistar rats. Chem Biol Interact 2019; 308:377-384. [PMID: 31150631 DOI: 10.1016/j.cbi.2019.05.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Among the primary neoplasias that affect the liver, hepatocellular carcinoma (HCC) is the most frequent and the third leading cause of death related to cancer. Several risk factors predispose individuals to HCC such as nonalcoholic fatty liver disease (NAFLD), whose incidence has significantly increased worldwide. β-ionone (βI) isoprenoid is a known chemopreventive of hepatocarcinogenesis. However, the effects of this compound on NAFLD isolated or in association with hepatocarcinogenesis have not yet been evaluated. A high-fat emulsion administered for 6 weeks resulted in NAFLD in male rats, and oral treatment with βI during this period significantly attenuated its development. Moreover, the presence of NAFLD potentiated hepatocarcinogenesis induced by the resistant hepatocyte (RH) model in these animals by increasing the number and percentage of the liver section area occupied by placental glutathione S-transferase (GST-P)-positive persistent preneoplastic lesions (pPNLs), that are thought to evolve into HCC. This indicates that this NAFLD/RH protocol is suitable for studies of the influence of NAFLD on the HCC development. Therefore, here we also investigated the chemopreventive effect of βI under these two associated conditions. In this context, βI reduced the number and percentage of the liver section area occupied by pPNLs, as well as cell proliferation and the number of oval cells, which are considered potential targets for the development of HCC. Thus, βI presents not only a promising inhibitory effect on NAFLD isolated but also chemopreventive activity when it is associated with hepatocarcinogenesis.
Collapse
|
25
|
Activation of PSGR with β-ionone suppresses prostate cancer progression by blocking androgen receptor nuclear translocation. Cancer Lett 2019; 453:193-205. [DOI: 10.1016/j.canlet.2019.03.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
|
26
|
The effect of Ferula elaeochytris root extract on erectile dysfunction in streptozotocin-induced diabetic rat. Int J Impot Res 2019; 32:186-194. [DOI: 10.1038/s41443-019-0137-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/23/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
|
27
|
Sakthivel R, Sheeja Malar D, Archunan G, Pandima Devi K. Phytol ameliorated benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice via inhibition of oxidative stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2019; 34:355-363. [PMID: 30520250 DOI: 10.1002/tox.22690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
In the present study, the modulatory effect of phytol against benzo(a)pyrene [B(a)P] induced lung carcinogenesis was investigated in Swiss albino mice. During the experimental period, phytol treatment showed no adverse toxic effect and mortality to the experimental animals. Lung tumor was observed in B(a)P treated group and also in animals post-treated with low concentration (50 mg/kg) of phytol. No neoplastic changes were observed in the lung tissue of the animals treated with the maximum dose of phytol (100 mg/kg). An elevated level of antioxidant enzymes combined with macromolecular damage (lipid peroxidation, protein carbonyl content) was observed upon B(a)P treatment whereas, phytol restored the level of antioxidant enzymes which were comparable to the vehicle control group. Moreover, administration of B(a)P induced apoptosis, as observed by the highest expression of Bax, caspase-3, and caspase-9 proteins in lung tissue of B(a)P alone treated animals. However, phytol treatment reduced the expression of Bax, caspase-3, and caspase-9 protein and maintained the constant expression of anti-apoptotic protein Bcl-2. These observations positively reveal that phytol regulates the antioxidant enzymes and thereby protects the cells against B(a)P induced carcinogenesis without showing any adverse toxic effect to the animals.
Collapse
Affiliation(s)
- Ravi Sakthivel
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, Tamil Nadu, India
| | - Dicson Sheeja Malar
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, Tamil Nadu, India
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, Tamil Nadu, India
| |
Collapse
|
28
|
Izuegbuna O, Otunola G, Bradley G. Chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS One 2019; 14:e0209682. [PMID: 30695064 PMCID: PMC6350967 DOI: 10.1371/journal.pone.0209682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023] Open
Abstract
Background The Opuntia spp. have been used in traditional medicine for many centuries. It is used in the management of diseases that involves oxidative stress, especially diabetes, obesity and cancer. Opuntia stricta (Haw) is one of the relatively unknown species in South Africa where it is regarded more as a weed. Because of this, not much is known about its chemical composition. Aim To determine the chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. Methods The phytochemical composition of acetone, aqueous and ethanol extract of cladodes of Opuntia stricta (Haw), as well as the vitamins A, C and E of its dried weight cladodes and the antioxidant activities, were evaluated using standard in vitro methods. The anti-inflammatory and cytotoxic activities were evaluated using cell-based assays. The phytochemical composition and vitamins were determined spectrophotometrically, while the antioxidant activities were determined by DPPH, nitric oxide, hydrogen peroxide scavenging activity and phosphomolybdenum (total) antioxidant activity. Anti-inflammatory activity was determined using RAW 264.7 cells, while cytotoxicity was determined using U937 cells. Results The phytochemical composition showed a significant difference in the various extracts. The total phenolics were higher than other phytochemicals in all the extracts used. All the extracts displayed antioxidant activity, while most of the extracts showed anti-inflammatory activity. Only one extract showed cytotoxicity, and it was mild. Conclusion The results show that the Opuntia stricta is rich in polyphenolic compounds and has good antioxidant activity as well as anti-inflammatory activities.
Collapse
Affiliation(s)
- Ogochukwu Izuegbuna
- Department of Biochemistry, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Gloria Otunola
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Graeme Bradley
- Department of Biochemistry, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
- * E-mail:
| |
Collapse
|
29
|
Sanchala D, Bhatt LK, Pethe P, Shelat R, Kulkarni YA. Anticancer activity of methylene blue via inhibition of heat shock protein 70. Biomed Pharmacother 2018; 107:1037-1045. [PMID: 30257315 DOI: 10.1016/j.biopha.2018.08.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) chaperones are indispensable to lung cancer cells for their survival and proliferation. In this study we evaluated and compared anticancer potential of methylene blue (MB) as an Hsp70 inhibitor, novobiocin (NB) a well-known Hsp90 inhibitor and their combination. METHODS In vitro evaluation was done by cell viability assays, fluorescent staining, and flow cytometry analysis using A549 non-small cell lung cancer cells. In vivo anticancer activity was investigated by evaluating oxidative stress, tumor biomarkers, weight, lung microarchitecture, and Hsp70 and Hsp90 inhibitions via immunoblotting in benzo[a]pyrene induced lung carcinogenesis mice model. RESULTS Using A549 NSCLC cells, we found MB demonstrated lower cell viability versus NB. Together, MB + NB resulted in further decrease in cell viability. SRB assay revealed significantly superior and similar potency for MB versus NB and MB + NB (1:1) versus MB, respectively. Fluorescent staining and flow cytometry analysis displayed early apoptosis by MB (11.4%); early and late apoptosis by MB + NB (13.8%). In vivo, MB significantly inhibited Hsp70. Furthermore, MB significantly alleviated tumor biomarkers (ADA and LDH) and improved lung histopathological features more than NB. Additionally, MB significantly improved SOD, not more than MB + NB or NB and improved LPO. CONCLUSION MB demonstrated potent anticancer activity in vitro and in vivo via inhibition of Hsp70 in benzo[a]pyrene induced lung carcinogenesis in mice.
Collapse
Affiliation(s)
- Dhaval Sanchala
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, Maharashtra, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, Maharashtra, India.
| | - Prasad Pethe
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS, Mumbai 400 056, India
| | - Ruchita Shelat
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS, Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta road, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
30
|
Patra JK, Lee SW, Kwon YS, Park JG, Baek KH. Chemical characterization and antioxidant potential of volatile oil from an edible seaweed Porphyra tenera (Kjellman, 1897). Chem Cent J 2017; 11:34. [PMID: 29086819 PMCID: PMC5392187 DOI: 10.1186/s13065-017-0259-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background Porphyra tenera (Kjellman, 1897) is the most common eatable red seaweed in Asia. In the present study, P. tenera volatile oil (PTVO) was extracted from dried P. tenera sheets that were used as food by the microwave hydrodistillation procedure, after which the characterization of its chemical constituents was done by gas chromatography and mass spectroscopy and its antioxidant potential was evaluated by a number of in vitro biochemical assays such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, nitric oxide (NO) scavenging, superoxide radical scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, hydroxyl radical scavenging and reducing power assay and inhibition of lipid peroxidation. Results A total of 30 volatile compounds comprising about 99.4% of the total volume were identified, of which trans-beta-ionone (20.9%), hexadecanoic acid (9.2%) and 2,6-nonadienal (8.7%) were present in higher quantities. PTVO exhibited strong free radical scavenging activity by DPPH scavenging (44.62%), NO scavenging (28.45%) and superoxide scavenging (54.27%) at 500 µg/mL. Similarly, it displayed strong ABTS radical scavenging (IC50 value of 177.83 µg/mL), hydroxyl radical scavenging (IC50 value of 109.70 µg/mL), and moderate lipid peroxidation inhibition activity (IC50 value of 231.80 µg/mL) and reducing power (IC0.5 value of 126.58 µg/mL). PTVO exhibited strong antioxidant potential in a concentration dependent manner and the results were comparable with the BHT and α-tocopherol, taken as the reference standard compounds (positive controls). Conclusions Taken together, PTVO with potential bioactive chemical compounds and strong antioxidant activity could be utilized in the cosmetic industries for making antioxidant rich anti-aging and sun-screen lotion and in the food sector industries as food additives and preservatives.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - Se-Weon Lee
- International Technology Cooperation Center, RDA, Jeonju, 54875, Republic of Korea
| | - Yong-Suk Kwon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae Gyu Park
- Pohang Center for Evaluation of Biomaterials, Pohang Technopark Foundation, Pohang, 37668, Republic of Korea.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
31
|
Zhang X, Pei J, Zhao L, Tang F, Fang X, Xie J. Overexpression and characterization of CCD4 from Osmanthus fragrans and β-ionone biosynthesis from β-carotene in vitro. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Ansari M, Emami S. β-Ionone and its analogs as promising anticancer agents. Eur J Med Chem 2016; 123:141-154. [PMID: 27474930 DOI: 10.1016/j.ejmech.2016.07.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
β-Ionone is an end-ring analog of β-carotenoids which widely distributed in fruit and vegetables. Recent studies have demonstrated anti-proliferative, anti-metastatic and apoptosis induction properties of β-ionone in vitro and in vivo. Also, the studies have focused on investigating the β-ionone action on different types of malignant cells and the possible mechanisms of action. Moreover, the quest of new synthetic β-ionone-based compounds possessing anti-proliferative, anti-metastatic and apoptosis induction activities may enable the discovery of compounds which can be used in combination regimes thus overcoming tumor resistance to conventional anticancer agents. These new agents will also be useful for targeting distinct signaling pathways, to activate selectively mechanisms for apoptosis in cancer cells but devoid of undesirable side effects. In this paper, we reviewed the potentialities of β-ionone and related compounds in cancer prevention and chemotherapy.
Collapse
Affiliation(s)
- Mahsa Ansari
- Student Research Committee, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
33
|
Faezizadeh Z, Gharib A, Godarzee M. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/zjrms-7364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Gaskill SJ, Bruce ED. Binary Mixtures of Polycyclic Aromatic Hydrocarbons Display Nonadditive Mixture Interactions in an In Vitro Liver Cell Model. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2016; 36:968-991. [PMID: 26356323 DOI: 10.1111/risa.12475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been labeled contaminants of concern due to their carcinogenic potential, insufficient toxicological data, environmental ubiquity, and inconsistencies in the composition of environmental mixtures. The Environmental Protection Agency is reevaluating current methods for assessing the toxicity of PAHs, including the assumption of toxic additivity in mixtures. This study was aimed at testing mixture interactions through in vitro cell culture experimentation, and modeling the toxicity using quantitative structure-activity relationships (QSAR). Clone-9 rat liver cells were used to analyze cellular proliferation, viability, and genotoxicity of 15 PAHs in single doses and binary mixtures. Tests revealed that many mixtures have nonadditive toxicity, but display varying mixture effects depending on the mixture composition. Many mixtures displayed antagonism, similar to other published studies. QSARs were then developed using the genetic function approximation algorithm to predict toxic activity both in single PAH congeners and in binary mixtures. Effective concentrations inhibiting 50% of the cell populations were modeled, with R(2) = 0.90, 0.99, and 0.84, respectively. The QSAR mixture algorithms were then adjusted to account for the observed mixture interactions as well as the mixture composition (ratios) to assess the feasibility of QSARs for mixtures. Based on these results, toxic addition is improbable and therefore environmental PAH mixtures are likely to see nonadditive responses when complex interactions occur between components. Furthermore, QSAR may be a useful tool to help bridge these data gaps surrounding the assessment of human health risks that are associated with PAH exposures.
Collapse
Affiliation(s)
- Stacey J Gaskill
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, USA
| | - Erica D Bruce
- Department of Environmental Science, Institute of Biomedical Studies, The Institute of Ecological, Earth, and Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, USA
| |
Collapse
|
35
|
Vanitha MK, Priya KD, Baskaran K, Periyasamy K, Saravanan D, Venkateswari R, Mani BR, Ilakkia A, Selvaraj S, Menaka R, Geetha M, Rashanthy N, Anandakumar P, Sakthisekaran D. Taurine Regulates Mitochondrial Function During 7,12-Dimethyl Benz[a]anthracene Induced Experimental Mammary Carcinogenesis. J Pharmacopuncture 2015; 18:68-74. [PMID: 26389003 PMCID: PMC4573810 DOI: 10.3831/kpi.2015.18.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/29/2015] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO), antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in Sprague-Dawley rats. METHODS Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight) showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), non-enzymic antioxidants (reduced glutathione (GSH), vitamin C, and vitamin E), in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH), alpha ketoglutarate dehydrogenase (alpha KDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)), and in electron transport chain (ETC) complexes. RESULTS Taurine (100 mg/kg body weight) treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. CONCLUSION The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.
Collapse
Affiliation(s)
| | - Kalpana Deepa Priya
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| | - Kuppusamy Baskaran
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| | - Kuppusamy Periyasamy
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| | - Dhravidamani Saravanan
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| | | | | | - Aruldass Ilakkia
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| | | | - Rajendran Menaka
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| | - Mahendran Geetha
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| | - Nadarajah Rashanthy
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| | - Pandi Anandakumar
- Department of Biomedical Sciences, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Dhanapal Sakthisekaran
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, India
| |
Collapse
|
36
|
Kasala ER, Bodduluru LN, Barua CC, Sriram CS, Gogoi R. Benzo(a)pyrene induced lung cancer: Role of dietary phytochemicals in chemoprevention. Pharmacol Rep 2015; 67:996-1009. [PMID: 26398396 DOI: 10.1016/j.pharep.2015.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022]
Abstract
Lung cancer is the major cause of overall cancer deaths, and chemoprevention is a promising strategy to control this disease. Benzo(a)pyrene [B(a)P], a polycyclic aromatic hydrocarbon, is one among the principal constituents of tobacco smoke that plays a key role in lung carcinogenesis. The B(a)P induced lung cancer in mice offers a relevant model to study the effect of natural products and has been widely used by many researchers and found considerable success in ameliorating the pathophysiological changes of lung cancer. Currently available synthetic drugs that constitute the pharmacological armamentarium are themselves effective in managing the condition but not without setbacks. These hunches have accelerated the requisite for natural products, which may be used as dietary supplement to prevent the progress of lung cancer. Besides, these agents also supplement the conventional treatment and offer better management of the condition with less side effects. In the context of soaring interest toward dietary phytochemicals as newer pharmacological interventions for lung cancer, in the present review, we are attempting to give a silhouette of mechanisms of B(a)P induced lung carcinogenesis and the role of dietary phytochemicals in chemoprevention.
Collapse
Affiliation(s)
- Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Chandana C Barua
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Chandra Shekhar Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
37
|
Itoh T, Muramatsu Y, Masu M, Tsuge A, Taniguchi M, Ninomiya M, Ando M, Tsukamasa Y, Koketsu M. A synthesized nostocionone derivative potentiates programmed cell death in human T-cell leukemia Jurkat cells through mitochondria via the release of endonuclease G. Nutr Cancer 2014; 66:1414-23. [PMID: 25333640 DOI: 10.1080/01635581.2014.956255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nostocionone (Nost), a compound isolated from Nostoc commune, and its synthesized derivatives (NostDs) were evaluated for in vitro cytotoxicity against human T-cell leukemia Jurkat cells. NostD3 [(1E,4E)-1-(3,4-dihydroxyphenyl)-5-(2,6,6-trimethylcyclohex-1-enyl)penta-1,4-dien-3-one] inhibited cell growth more potently than Nost. To elucidate the mechanisms of NostD3-induced cell death, we examined changes in cell morphology, the loss of mitochondrial membrane potential (MMT), and DNA fragmentation. From these results, the cytotoxic effects of NostD3 were found to be mainly due to Type I programmed cell death (PCDI; i.e., apoptosis). Using caspase inhibitors, we further found that NostD-3-induced PCDI occurred through a caspase-independent pathway. Moreover, NostD3 decreased MMT and modulated multiple signaling molecules (MAPKs, Akt, Bcl-2, Bax, and c-Myc) in Jurkat cells, thereby inducing the release of endonuclease G (Endo-G) from mitochondria. The level of intracellular reactive oxygen species (ROS) in cells treated with NostD3 was elevated up to 1 h after the treatment. However, suppression of ROS by N-acetyl-l-cysteine restored Jurkat cell growth. Taken together, our data suggested that ROS production acted as a trigger in NostD3-induced PCDI in Jurkat cells through release of Endo-G from the mitochondria.
Collapse
Affiliation(s)
- Tomohiro Itoh
- a Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture , Kinki University , Nara , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Scolastici C, de Conti A, Cardozo MT, Ong TP, Purgatto E, Horst MA, Heidor R, Furtado KS, Bassoli BK, Moreno FS. β-ionone inhibits persistent preneoplastic lesions during the early promotion phase of rat hepatocarcinogenesis: TGF-α, NF-κB, and p53 as cellular targets. Nutr Cancer 2013; 66:234-41. [PMID: 24364727 DOI: 10.1080/01635581.2014.863364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dietary isoprenic derivatives such as β-ionone (βI) are a promising class of chemopreventive agents. In this study, cellular aspects of βI protective activities during early hepatocarcinogenesis were evaluated. Male Wistar rats were submitted to "resistant hepatocyte" model and then received daily 16 mg/100 g body weight (b.w.) of βI (βI group) or only 0.25 mL/100 g b.w. of corn oil (vehicle, control group [CO]) during 4 wk, specifically during early promotion phase. Compared to controls, βI inhibited (P < 0.05) the development of persistent preneoplastic lesions (pPNL), considered to be potential hepatocellular carcinoma (HCC) progression sites, and increased remodeling PNL (rPNL) (P < 0.05) that tend to regress to a normal phenotype. Increased βI hepatic levels (P < 0.05), in the βI group, were associated with its chemopreventive actions. Compared to control rats, βI reduced the frequency of both pPNL and rPNL positive for tumor growth factor (TGF)-α (P < 0.05), reduced the frequency of pPNL stained for p65 (nuclear factor-kappaB; NF-κB) (P < 0.05), and reduced the frequency of pPNL positive for cytoplasmic p53 (P < 0.05). Our data demonstrated that βI targets TGF-α, NF-κB, and p53 in initial phases of hepatocarcinogenesis and specifically inhibits PNL with increased probability to progress to HCC. This isoprenoid may represent a chemopreventive agent of choice for HCC control.
Collapse
Affiliation(s)
- Clarissa Scolastici
- a Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Raghunandhakumar S, Paramasivam A, Senthilraja S, Naveenkumar C, Asokkumar S, Binuclara J, Jagan S, Anandakumar P, Devaki T. Thymoquinone inhibits cell proliferation through regulation of G1/S phase cell cycle transition in N-nitrosodiethylamine-induced experimental rat hepatocellular carcinoma. Toxicol Lett 2013; 223:60-72. [PMID: 24012840 DOI: 10.1016/j.toxlet.2013.08.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/16/2013] [Accepted: 08/22/2013] [Indexed: 01/12/2023]
Abstract
Dysregulated cell proliferation and tumorigenesis is frequently encountered in several cancers including hepatocellular carcinogenesis (HCC). Thus, agents that inhibit cell proliferation and restrain hepatic tumorigenesis through cell cycle regulation have a beneficial effect in the treatment of hepatocellular carcinogenesis. The present study was aimed to investigate the efficacy of thymoquinone (TQ), an active compound derived from the medicinal plant Nigella sativa, on N-nitrosodiethylamine (NDEA) [0.01% in drinking water for 16 weeks]-induced hepatocarcinogenesis in experimental rats. After experimental period, the hepatic nodules, liver injury markers and tumor markers levels were substantially increased in NDEA induced liver tumors in rats. However, TQ (20mg/kg body weight) treatment greatly reduced liver injury markers and decreased tumor markers and prevented hepatic nodule formation and reduced tumor multiplicity in NDEA induced hepatic cancer bearing rats and this was evident from argyrophilic nucleolar organizer region (AgNORs) staining. Moreover, the uncontrolled cell proliferation was assessed by specific cell proliferative markers [proliferating cell nuclear antigen (PCNA) and Ki67] by immunofluorescence, immunoblot and analysis of mRNA expression. Simultaneously, we assessed the activity of TQ on G1/S phase cell cycle regulation with specific cell cycle proteins (p21(WAF1/CIP1), CDK4, Cyclin D1 and Cyclin E) by immunoprecipitation in experimental rats. Treatment with TQ significantly reduced the detrimental alterations by abrogating cell proliferation, which strongly induced G1/S arrest in cell cycle transition. In conclusion, our results suggest that TQ has a potent anti proliferative activity by regulating the G1/S phase cell cycle transition and exhibit a beneficial role in the treatment of HCC.
Collapse
|
40
|
Liu Q, Dong HW, Sun WG, Liu M, Ibla JC, Liu LX, Parry JW, Han XH, Li MS, Liu JR. Apoptosis initiation of β-ionone in SGC-7901 gastric carcinoma cancer cells via a PI3K-AKT pathway. Arch Toxicol 2012; 87:481-90. [PMID: 23100158 DOI: 10.1007/s00204-012-0962-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
Abstract
β-ionone has been shown to hold potent anti-proliferative and apoptosis induction properties in vitro and in vivo. To investigate the effects of β-ionone on apoptosis initiation and its possible mechanisms of action, we qualified cell apoptosis, proteins related to apoptosis and a phosphatidylinositol 3-kinase (PI3K)-AKT pathway in human gastric adenocarcinoma cancer SGC-7901 cells. The results demonstrated that β-ionone-induced apoptosis in a dose-dependent manner in SGC-7901 cells treated with β-ionone (25, 50, 100 and 200 μmol/L) for 24 h. β-ionone was also shown to induce the expression of cleaved-caspase-3 and inhibit bcl-2 expression in SGC-7901 cells in a dose-dependent manner. The significantly decreased levels of p-PI3K and p-AKT expression were observed in SGC-7901 cells after β-ionone treatments in a time- and dose-dependent manner (P < 0.01). Thus, the apoptosis induction in SGC-7901 cells by β-ionone may be regulated through a PI3K-AKT pathway. These results demonstrate a potential mechanism by which β-ionone to induce apoptosis initiation in SGC-7901 cells.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pediatric Surgery, GanNan Medical University, 1 YiXueYuan Road, GanZhou, 341000, Jiangxi, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nam S, Jang HW, Shibamoto T. Antioxidant activities of extracts from teas prepared from medicinal plants, Morus alba L., Camellia sinensis L., and Cudrania tricuspidata , and their volatile components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9097-9105. [PMID: 22871255 DOI: 10.1021/jf301800x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The antioxidant activity of essences of teas prepared from mulberry ( Morus alba L.), Camellia sinensis L., and Cudrania tricuspidata (Carr.) Burea plant was examined using two antioxidant assays. Selected volatile chemicals identified in these plants were also tested for antioxidant activity. All extracts exhibited antioxidant activity with a clear dose response in the aldehyde/carboxylic acid and the malonaldehyde/gas chromatography (MA/GC) assays. Antioxidant activity of extracts at the level of 500 μg/mL ranged from 77.02 ± 0.51% (stems of Burea plant) to 52.57 ± 0.92% (fermented tea of Camellia and stems of Mulberry tea) in the aldehydes/carboxylic acid assay. Their antioxidant activity at the level of 160 μg/mL ranged from 76.17 ± 0.27% (roots of Burea plant) to 59.32 ± 0.27% (stems of Mulberry tea) in the MA/GC assay. Among the positively identified compounds (11 terpenes and terpenoids, 15 alkyl compounds, 26 nitrogen containing heterocyclic compounds, 9 oxygen containing heterocyclic compounds, 18 aromatic compounds, 7 lactones, 6 acids, and 4 miscellaneous compounds), eugenol, 2,5-dihydroxyl acetophenone, and isoeugenol exhibited antioxidant activity comparable to that of BHT in both assays. Vanillin and 2-acetylpyrrole showed potent antioxidant activity in the aldehydes/carboxylic acid assay but only moderate activity in the MA/GC assay. These results suggest that consumption of antioxidant-rich beverages prepared from these plants may be beneficial to human health.
Collapse
Affiliation(s)
- Sanghae Nam
- Department of Food Science, Gyeongnam National University of Science & Technology , 33 Dongjinro, Jinju, Gyeongsangnamdo, 660-758, Republic of Korea
| | | | | |
Collapse
|
42
|
Zou P, Jin YJ, Xiang LF, Sun DP, Yang SL. (1E,4E)-1-(2-Nitro-phen-yl)-5-(2,6,6-trimethyl-cyclo-hex-1-en-1-yl)penta-1,4-dien-3-one. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o1858. [PMID: 22719623 PMCID: PMC3379425 DOI: 10.1107/s1600536812022453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/17/2012] [Indexed: 11/10/2022]
Abstract
In the title curcumin-ionone derivative, C(20)H(23)NO(3), the dihedral angle between the cyclo-hexene and benzene rings is 21.03 (8)°, with both double bonds in the inter-linking olefinic chain adopting E conformations. Two of the methyl-ene groups of the β-ionone ring are disordered over two sets of sites with occupancy ratios of 0.50:0.50 and 0.60:0.40. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds into zigzag chains extending along the b axis.
Collapse
Affiliation(s)
- Peng Zou
- Institute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People’s Republic of China
| | - Yi-Jun Jin
- Institute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People’s Republic of China
| | - Liu-Fang Xiang
- Institute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People’s Republic of China
| | - Dong-Ping Sun
- Institute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People’s Republic of China
| | - Shu-Lin Yang
- Institute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People’s Republic of China
| |
Collapse
|