1
|
Wang W, Ruan X, Liu G, Milkie DE, Li W, Betzig E, Upadhyayula S, Gao R. Nanoscale volumetric fluorescence imaging via photochemical sectioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605857. [PMID: 39149407 PMCID: PMC11326139 DOI: 10.1101/2024.08.01.605857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Optical nanoscopy of intact biological specimens has been transformed by recent advancements in hydrogel-based tissue clearing and expansion, enabling the imaging of cellular and subcellular structures with molecular contrast. However, existing high-resolution fluorescence microscopes have limited imaging depth, which prevents the study of whole-mount specimens without physical sectioning. To address this challenge, we developed "photochemical sectioning," a spatially precise, light-based sample sectioning process. By combining photochemical sectioning with volumetric lattice light-sheet imaging and petabyte-scale computation, we imaged and reconstructed axons and myelination sheaths across entire mouse olfactory bulbs at nanoscale resolution. An olfactory-bulb-wide analysis of myelinated and unmyelinated axons revealed distinctive patterns of axon degeneration and de-/dysmyelination in the neurodegenerative mouse, highlighting the potential for peta- to exabyte-scale super-resolution studies using this approach.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | - Xiongtao Ruan
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Daniel E. Milkie
- Howard Hughes Medical Institute, Janelia Research Campus; Ashburn, VA 20417, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | - Eric Betzig
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Janelia Research Campus; Ashburn, VA 20417, USA
- Department of Physics, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
- Department of Biological Sciences, University of Illinois Chicago; Chicago, IL 60607, USA
| |
Collapse
|
2
|
Antipova V, Heimes D, Seidel K, Schulz J, Schmitt O, Holzmann C, Rolfs A, Bidmon HJ, González de San Román Martín E, Huesgen PF, Amunts K, Keiler J, Hammer N, Witt M, Wree A. Differently increased volumes of multiple brain areas in Npc1 mutant mice following various drug treatments. Front Neuroanat 2024; 18:1430790. [PMID: 39081805 PMCID: PMC11286580 DOI: 10.3389/fnana.2024.1430790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Niemann-Pick disease type C1 (NPC1, MIM 257220) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of Npc1-/- displays a rapidly progressing form of Npc1 disease, which is characterized by weight loss, ataxia, and increased cholesterol storage. Npc1-/- mice receiving a combined therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) showed prevention of Purkinje cell loss, improved motor function and reduced intracellular lipid storage. Although therapy of Npc1-/- mice with COMBI, MIGLU or HPßCD resulted in the prevention of body weight loss, reduced total brain weight was not positively influenced. Methods In order to evaluate alterations of different brain areas caused by pharmacotherapy, fresh volumes (volumes calculated from the volumes determined from paraffin embedded brain slices) of various brain structures in sham- and drug-treated wild type and mutant mice were measured using stereological methods. Results In the wild type mice, the volumes of investigated brain areas were not significantly altered by either therapy. Compared with the respective wild types, fresh volumes of specific brain areas, which were significantly reduced in sham-treated Npc1-/- mice, partly increased after the pharmacotherapies in all treatment strategies; most pronounced differences were found in the CA1 area of the hippocampus and in olfactory structures. Discussion Volumes of brain areas of Npc1-/- mice were not specifically changed in terms of functionality after administering COMBI, MIGLU, or HPßCD. Measurements of fresh volumes of brain areas in Npc1-/- mice could monitor region-specific changes and response to drug treatment that correlated, in part, with behavioral improvements in this mouse model.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Katharina Seidel
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Klinik für Frauenheilkunde und Geburtshilfe, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Jennifer Schulz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Hans-Jürgen Bidmon
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | | | - Pitter F. Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Institut für Biologie II, AG Funktional Proteomics, Freiburg, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, University Düsseldorf, Düsseldorf, Germany
| | - Jonas Keiler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Technische Universität Dresden, Dresden, Germany
- Department of Anatomy, Institute of Biostructural Basics of Medical Sciences, Poznan Medical University, Poznan, Poland
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| |
Collapse
|
3
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
4
|
Gray J, Fernández-Suárez ME, Falah M, Smith D, Smith C, Kaya E, Palmer AM, Fog CK, Kirkegaard T, Platt FM. Heat shock protein amplification improves cerebellar myelination in the Npc1 nih mouse model. EBioMedicine 2022; 86:104374. [PMID: 36455410 PMCID: PMC9713282 DOI: 10.1016/j.ebiom.2022.104374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a rare prematurely fatal lysosomal lipid storage disease with limited therapeutic options. The prominent neuropathological hallmarks include hypomyelination and cerebellar atrophy. We previously demonstrated the efficacy of recombinant human heat shock protein 70 (rhHSP70) in preclinical models of the disease. It reduced glycosphingolipid levels in the central nervous system (CNS), improving cerebellar myelination and improved behavioural phenotypes in Npc1nih (Npc1-/-) mice. Furthermore, treatment with arimoclomol, a well-characterised HSP amplifier, attenuated lysosomal storage in NPC patient fibroblasts and improved neurological symptoms in Npc1-/- mice. Taken together, these findings prompted the investigation of the effects of HSP amplification on CNS myelination. METHODS We administered bimoclomol daily or rhHSP70 6 times per week to Npc1-/- (BALB/cNctr-Npc1m1N/J, also named Npc1nih) mice by intraperitoneal injection from P7 through P34 to investigate the impact on CNS myelination. The Src-kinase inhibitor saracatinib was administered with/without bimoclomol twice daily to explore the contribution of Fyn kinase to bimoclomol's effects. FINDINGS Treatment with either bimoclomol or rhHSP70 improved myelination and increased the numbers of mature oligodendrocytes (OLs) as well as the ratio of active-to-inactive forms of phosphorylated Fyn kinase in the cerebellum of Npc1-/- mice. Additionally, treatment with bimoclomol preserved cerebellar weight, an effect that was abrogated when co-administered with saracatinib, an inhibitor of Fyn kinase. Bimoclomol-treated mice also exhibited increased numbers of immature OLs within the cortex. INTERPRETATION These data increase our understanding of the mechanisms by which HSP70 regulates myelination and provide further support for the clinical development of HSP-amplifying therapies in the treatment of NPC. FUNDING Funding for this study was provided by Orphazyme A/S (Copenhagen, Denmark) and a Pathfinder Award from The Wellcome Trust.
Collapse
Affiliation(s)
- James Gray
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Maysa Falah
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Claire Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Ecem Kaya
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Ashley M Palmer
- Orphazyme A/S, Ole Maaloes Vej 3, Copenhagen DK-2200, Denmark
| | - Cathrine K Fog
- Orphazyme A/S, Ole Maaloes Vej 3, Copenhagen DK-2200, Denmark
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| |
Collapse
|
5
|
Bernardo A, De Nuccio C, Visentin S, Martire A, Minghetti L, Popoli P, Ferrante A. Myelin Defects in Niemann-Pick Type C Disease: Mechanisms and Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22168858. [PMID: 34445564 PMCID: PMC8396228 DOI: 10.3390/ijms22168858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022] Open
Abstract
Niemann–Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models.
Collapse
Affiliation(s)
- Antonietta Bernardo
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Chiara De Nuccio
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.D.N.); (L.M.)
| | - Sergio Visentin
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Alberto Martire
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.D.N.); (L.M.)
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Antonella Ferrante
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
- Correspondence: ; Tel.: +39-06-49902050
| |
Collapse
|
6
|
Wiweger M, Majewski L, Adamek-Urbanska D, Wasilewska I, Kuznicki J. npc2-Deficient Zebrafish Reproduce Neurological and Inflammatory Symptoms of Niemann-Pick Type C Disease. Front Cell Neurosci 2021; 15:647860. [PMID: 33986646 PMCID: PMC8111220 DOI: 10.3389/fncel.2021.647860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disease that is caused by a mutation of the NPC1 or NPC2 gene, in which un-esterified cholesterol and sphingolipids accumulate mainly in the liver, spleen, and brain. Abnormal lysosomal storage leads to cell damage, neurological problems, and premature death. The time of onset and severity of symptoms of NPC disease are highly variable. The molecular mechanisms that are responsible for NPC disease pathology are far from being understood. The present study generated and characterized a zebrafish mutant that lacks Npc2 protein that may be useful for studies at the organismal, cellular, and molecular levels and both small-scale and high-throughput screens. Using CRISPR/Cas9 technology, we knocked out the zebrafish homolog of NPC2. Five-day-old npc2 mutants were morphologically indistinguishable from wildtype larvae. We found that live npc2-/- larvae exhibited stronger Nile blue staining. The npc2-/- larvae exhibited low mobility and a high anxiety-related response. These behavioral changes correlated with downregulation of the mcu (mitochondrial calcium uniporter) gene, ppp3ca (calcineurin) gene, and genes that are involved in myelination (mbp and mpz). Histological analysis of adult npc2-/- zebrafish revealed that pathological changes in the nervous system, kidney, liver, and pancreas correlated with inflammatory responses (i.e., the upregulation of il1, nfκβ, and mpeg; i.e., hallmarks of NPC disease). These findings suggest that the npc2 mutant zebrafish may be a model of NPC disease.
Collapse
Affiliation(s)
- Malgorzata Wiweger
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dobrochna Adamek-Urbanska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iga Wasilewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
8
|
Holzmann C, Witt M, Rolfs A, Antipova V, Wree A. Gender-Specific Effects of Two Treatment Strategies in a Mouse Model of Niemann-Pick Disease Type C1. Int J Mol Sci 2021; 22:ijms22052539. [PMID: 33802605 PMCID: PMC7962008 DOI: 10.3390/ijms22052539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1−/− mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1−/− and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1−/− mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1−/− mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1−/− mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1−/− mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1−/− mice was almost completely reduced only in the female groups.
Collapse
Affiliation(s)
- Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany;
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
| | - Martin Witt
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
| | - Arndt Rolfs
- Centogene AG, Rostock, Am Strande 7, 18055 Rostock, Germany;
- University of Rostock, 18055 Rostock, Germany
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Andreas Wree
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-494-8429
| |
Collapse
|
9
|
Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia. Nat Commun 2021; 12:1158. [PMID: 33627648 PMCID: PMC7904859 DOI: 10.1038/s41467-021-21428-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Niemann-Pick type C disease is a rare neurodegenerative disorder mainly caused by mutations in NPC1, resulting in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is a prominent pathological feature, direct consequences of NPC1 loss on microglial function remain not fully characterized. We discovered pathological proteomic signatures and phenotypes in NPC1-deficient murine models and demonstrate a cell autonomous function of NPC1 in microglia. Loss of NPC1 triggers enhanced phagocytic uptake and impaired myelin turnover in microglia that precede neuronal death. Npc1−/− microglia feature a striking accumulation of multivesicular bodies and impaired trafficking of lipids to lysosomes while lysosomal degradation function remains preserved. Molecular and functional defects were also detected in blood-derived macrophages of NPC patients that provide a potential tool for monitoring disease. Our study underscores an essential cell autonomous role for NPC1 in immune cells and implies microglial therapeutic potential. Niemann-Pick type C disease is a rare childhood neurodegenerative disorder predominantly caused by mutations in NPC1, resulting in abnormal late endosomal and lysosomal defects. Here the authors show that NPC1 disruption largely impairs microglial function.
Collapse
|
10
|
Montani L. Lipids in regulating oligodendrocyte structure and function. Semin Cell Dev Biol 2020; 112:114-122. [PMID: 32912639 DOI: 10.1016/j.semcdb.2020.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes enwrap central nervous system axons with myelin, a lipid enriched highly organized multi-layer membrane structure that allows for fast long-distance saltatory conduction of neuronal impulses. Myelin has an extremely high lipid content (∼80 % of its dry weight) and a peculiar lipid composition, with a 2:2:1 cholesterol:phospholipid:glycolipid ratio. Inherited neurodegenerative diseases of the lipids (caused by mutations in lipogenic enzymes) often present oligodendrocyte and/or myelin defects which contribute to the overall disease pathophysiology. These phenomena triggered an increasing number of studies over the functions lipid exert to shape and maintain myelin, and brought to the finding that lipids are more than only structural building blocks. They act as signaling molecules to drive proliferation and differentiation of oligodendrocyte progenitor cells, as well as proliferation of premyelinating oligodendrocytes, and their maturation into myelinating ones. Here, we summarize key findings in these areas, while presenting the main related human diseases. Despite many advances in the field, various questions remain open which we briefly discuss. This article is part of a special issue entitled "Role of Lipids in CNS Cell Physiology and Pathology".
Collapse
Affiliation(s)
- Laura Montani
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH-8093, Switzerland.
| |
Collapse
|
11
|
Ranard KM, Kuchan MJ, Bruno RS, Juraska JM, Erdman JW. Synthetic α-Tocopherol, Compared with Natural α-Tocopherol, Downregulates Myelin Genes in Cerebella of Adolescent Ttpa-null Mice. J Nutr 2020; 150:1031-1040. [PMID: 31883016 DOI: 10.1093/jn/nxz330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vitamin E (α-tocopherol; α-T) deficiency causes spinocerebellar ataxia. α-T supplementation improves neurological symptoms, but little is known about the differential bioactivities of natural versus synthetic α-T during early life. OBJECTIVE We assessed the effects of dietary α-T dose and source on tissue α-T accumulation and gene expression in adolescent α-tocopherol transfer protein-null (Ttpa-/-) mice. METHODS Three-week-old male Ttpa-/- mice (n = 7/group) were fed 1 of 4 AIN-93G-based diets for 4 wk: vitamin E deficient (VED; below α-T limit of detection); natural α-T, 600 mg/kg diet (NAT); synthetic α-T, 816 mg/kg diet (SYN); or high synthetic α-T, 1200 mg/kg diet (HSYN). Male Ttpa+/+ littermates fed AIN-93G [75 mg synthetic α-T (CON)] served as controls (n = 7). At 7 wk of age, tissue α-T concentrations and stereoisomer profiles were measured for all groups. RNA-sequencing was performed on cerebella of Ttpa-/- groups. RESULTS Ttpa-/- mice fed VED had undetectable brain α-T concentrations. Cerebral cortex α-T concentrations were greater in Ttpa-/- mice fed NAT (9.1 ± 0.7 nmol/g), SYN (10.8 ± 1.0 nmol/g), and HSYN (13.9 ± 1.6 nmol/g) compared with the VED group but were significantly lower than in Ttpa+/+ mice fed CON (24.6 ± 1.2 nmol/g) (P < 0.001). RRR-α-T was the predominant stereoisomer in brains of Ttpa+/+ mice (∼40%) and Ttpa-/- mice fed NAT (∼94%). α-T stereoisomer composition was similar in brains of Ttpa-/- mice fed SYN and HSYN (2R: ∼53%; 2S: ∼47%). Very few of the 16,774 genes measured were differentially expressed. However, compared with the NAT diet, HSYN significantly downregulated 20 myelin genes, including 2 transcription factors: SRY-box transcription factor 10 (Sox10) and myelin regulatory factor (Myrf), and several downstream target genes (false discovery rate <0.05). CONCLUSIONS High-dose synthetic α-T compared with natural α-T alters myelin gene expression in the adolescent mouse cerebellum, which could lead to morphological and functional abnormalities later in life.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Janice M Juraska
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Hetmańczyk-Sawicka K, Iwanicka-Nowicka R, Fogtman A, Cieśla J, Włodarski P, Żyżyńska-Granica B, Filocamo M, Dardis A, Peruzzo P, Bednarska-Makaruk M, Koblowska M, Ługowska A. Changes in global gene expression indicate disordered autophagy, apoptosis and inflammatory processes and downregulation of cytoskeletal signalling and neuronal development in patients with Niemann-Pick C disease. Neurogenetics 2020; 21:105-119. [PMID: 31927669 DOI: 10.1007/s10048-019-00600-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Changes in gene expression profiles were investigated in 23 patients with Niemann-Pick C1 disease (NPC). cDNA expression microarrays with subsequent validation by qRT-PCR were used. Comparison of NPC to control samples revealed upregulation of genes involved in inflammation (MMP3, THBS4), cytokine signalling (MMP3), extracellular matrix degradation (MMP3, CTSK), autophagy and apoptosis (CTSK, GPNMB, PTGIS), immune response (AKR1C3, RCAN2, PTGIS) and processes of neuronal development (RCAN2). Downregulated genes were associated with cytoskeletal signalling (ACTG2, CNN1); inflammation and oxidative stress (CNN1); inhibition of cell proliferation, migration and differentiation; ERK-MAPK pathway (COL4A1, COL4A2, CPA4); cell adhesion (IGFBP7); autophagy and apoptosis (CDH2, IGFBP7, COL4A2); neuronal function and development (CSRP1); and extracellular matrix stability (PLOD2). When comparing NPC and Gaucher patients together versus controls, upregulation of SERPINB2 and IL13RA2 and downregulation of CSRP1 and CNN1 were characteristic. Notably, in NPC patients, the expression of PTGIS is upregulated while the expression of PLOD2 is downregulated when compared to Gaucher patients or controls and potentially could serve to differentiate these patients. Interestingly, in NPC patients with (i) jaundice, splenomegaly and cognitive impairment/psychomotor delay-the expression of ACTG2 was especially downregulated; (ii) ataxia-the expression of ACTG2 and IGFBP5 was especially downregulated; and (iii) VSGP, dysarthria, dysphagia and epilepsy-the expression of AKR1C3 was especially upregulated while the expression of ACTG2 was downregulated. These results indicate disordered apoptosis, autophagy and cytoskeleton remodelling as well as upregulation of immune response and inflammation to play an important role in the pathogenesis of NPC in humans.
Collapse
Affiliation(s)
| | - Roksana Iwanicka-Nowicka
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Włodarski
- Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Żyżyńska-Granica
- Department of Biochemistry, Second Faculty of Medicine with the English Division and the Physiotherapy Division, Medical University of Warsaw, Warsaw, Poland
| | - Mirella Filocamo
- Laboratorio di Genetica Molecolare e Biobanche, Istituto G. Gaslini, L.go G. Gaslini, 16147, Genoa, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Department of Laboratory Medicine, Academic Hospital "Santa Maria della Misericordia" Udine, Udine, Italy
| | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, Department of Laboratory Medicine, Academic Hospital "Santa Maria della Misericordia" Udine, Udine, Italy
| | | | - Marta Koblowska
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
13
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
14
|
Feng X, Bader BM, Yang F, Segura M, Schultz L, Schröder OHU, Rolfs A, Luo J. Improvement of impaired electrical activity in NPC1 mutant cortical neurons upon DHPG stimulation detected by micro-electrode array. Brain Res 2018; 1694:87-93. [PMID: 29753706 DOI: 10.1016/j.brainres.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/20/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Niemann-Pick Type C1 (NPC1) disease is an autosomal recessive neurodegenerative disease characterized by an excessive accumulation of unesterified cholesterol in late endosomes/lysosomes. Patients with NPC1 disease show a series of symptoms in neuropathology, including a gradually increased loss of motor control and seizures. However, mechanism of the neurological manifestations in NPC1 disease is not fully understood yet. In this study, we utilized the micro-electrode array (MEA) to analyze the spontaneous extracellular electrical activity in cultivated cortical neurons of the NPC1 mutant (NPC1-/-) mouse. Our results show a decrease of the spontaneous electrical activity in NPC1-/- neuronal network when compared to wild type neurons, as indicated by the decreased spike rate, burst rate, event rate, and the increased burst period and event period. Application of 3,5-dihydroxyphenylglycine (DHPG), a specific agonist of group I metabotropic glutamate receptors, improved the electrical activity of the NPC1-/- neuronal network, suggesting that DHPG can be used as a potential therapeutic strategy for recovery of the electrical activity in NPC1 disease.
Collapse
Affiliation(s)
- Xiao Feng
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Benjamin M Bader
- NeuroProof GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Monica Segura
- NeuroProof GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Luise Schultz
- NeuroProof GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Olaf H-U Schröder
- NeuroProof GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany; Centre for Transdisciplinary Neuroscience Rostock, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| |
Collapse
|
15
|
Yang F, Feng X, Rolfs A, Luo J. Lovastatin promotes myelin formation in NPC1 mutant oligodendrocytes. J Neurol Sci 2018; 386:56-63. [PMID: 29406968 DOI: 10.1016/j.jns.2018.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023]
Abstract
Niemann-Pick Type C (NPC) disease is a rare neurovisceral disorder caused by mutations of either NPC1 or NPC2 gene and characterized by defective intracellular transport of cholesterol and glycosphingolipids, leading to neuron loss and myelin aberration in the central nervous system. In this study, by comparing protein expression in the cortical white matter tracts from mice at different postnatal days, we identified that in the NPC1 mutant (NPC1-/-) mice, the onset of myelination is delayed and the amount of the major myelin protein MBP and PLP, and oligodendrocyte regulatory factor Olig1 and Olig2, but not NG2 and Sox10, decreased significantly, suggesting a disruption of oligodendrocyte differentiation. Furthermore, in in vitro oligodendrocyte cultivation, NPC1-/- oligodendrocytes showed less response to the stimulation of neuron-conditioned medium (CdM), indicating a defect of oligodendrocyte per se. Interestingly, lovastatin restores the number of mature myelin-forming oligodendrocytes by increasing Olig1 and Olig2 expressions. Our data suggest a potential strategy for improving myelination using lovastatin in NPC disease.
Collapse
Affiliation(s)
- Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Xiao Feng
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany; Centre for Transdisciplinary Neuroscience Rostock, School of Medicine University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany.
| |
Collapse
|
16
|
Kirkegaard T, Gray J, Priestman DA, Wallom KL, Atkins J, Olsen OD, Klein A, Drndarski S, Petersen NHT, Ingemann L, Smith DA, Morris L, Bornæs C, Jørgensen SH, Williams I, Hinsby A, Arenz C, Begley D, Jäättelä M, Platt FM. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med 2017; 8:355ra118. [PMID: 27605553 DOI: 10.1126/scitranslmed.aad9823] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs.
Collapse
Affiliation(s)
| | - James Gray
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Jennifer Atkins
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Ole Dines Olsen
- Orphazyme ApS, Copenhagen, Denmark. Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Alexander Klein
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Ian Williams
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | - Christoph Arenz
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Begley
- Institute of Pharmaceutical Science, King's College London, London, U.K
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, U.K
| |
Collapse
|
17
|
Meyer A, Wree A, Günther R, Holzmann C, Schmitt O, Rolfs A, Witt M. Increased Regenerative Capacity of the Olfactory Epithelium in Niemann-Pick Disease Type C1. Int J Mol Sci 2017; 18:ijms18040777. [PMID: 28383485 PMCID: PMC5412361 DOI: 10.3390/ijms18040777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022] Open
Abstract
Niemann–Pick disease type C1 (NPC1) is a fatal neurovisceral lysosomal lipid storage disorder. The mutation of the NPC1 protein affects the homeostasis and transport of cholesterol and glycosphingolipids from late endosomes/lysosomes to the endoplasmic reticulum resulting in progressive neurodegeneration. Since olfactory impairment is one of the earliest symptoms in many neurodegenerative disorders, we focused on alterations of the olfactory epithelium in an NPC1 mouse model. Previous findings revealed severe morphological and immunohistochemical alterations in the olfactory system of NPC1−/− mutant mice compared with healthy controls (NPC1+/+). Based on immunohistochemical evaluation of the olfactory epithelium, we analyzed the impact of neurodegeneration in the olfactory epithelium of NPC1−/− mice and observed considerable loss of mature olfactory receptor neurons as well as an increased number of proliferating and apoptotic cells. Additionally, after administration of two different therapy approaches using either a combination of miglustat, 2-hydroxypropyl-β-cyclodextrin (HPβCD) and allopregnanolone or a monotherapy with HPβCD, we recorded a remarkable reduction of morphological damages in NPC1−/− mice and an up to four-fold increase of proliferating cells within the olfactory epithelium. Numbers of mature olfactory receptor neurons doubled after both therapy approaches. Interestingly, we also observed therapy-induced alterations in treated NPC1+/+ controls. Thus, olfactory testing may provide useful information to monitor pharmacologic treatment approaches in human NPC1.
Collapse
Affiliation(s)
- Anja Meyer
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - René Günther
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Oliver Schmitt
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, 18147 Rostock, Germany.
| | - Martin Witt
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
18
|
Stroobants S, Van Acker NGG, Verheijen FW, Goris I, Daneels GFT, Schot R, Verbeek E, Knaapen MWM, De Bondt A, Göhlmann HW, Crauwels MLA, Mancini GMS, Andries LJ, Moechars DWE, D'Hooge R. Progressive leukoencephalopathy impairs neurobehavioral development in sialin-deficient mice. Exp Neurol 2017; 291:106-119. [PMID: 28189729 DOI: 10.1016/j.expneurol.2017.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 11/18/2022]
Abstract
Slc17a5-/- mice represent an animal model for the infantile form of sialic acid storage disease (SASD). We analyzed genetic and histological time-course expression of myelin and oligodendrocyte (OL) lineage markers in different parts of the CNS, and related this to postnatal neurobehavioral development in these mice. Sialin-deficient mice display a distinct spatiotemporal pattern of sialic acid storage, CNS hypomyelination and leukoencephalopathy. Whereas few genes are differentially expressed in the perinatal stage (p0), microarray analysis revealed increased differential gene expression in later postnatal stages (p10-p18). This included progressive upregulation of neuroinflammatory genes, as well as continuous down-regulation of genes that encode myelin constituents and typical OL lineage markers. Age-related histopathological analysis indicates that initial myelination occurs normally in hindbrain regions, but progression to more frontal areas is affected in Slc17a5-/- mice. This course of progressive leukoencephalopathy and CNS hypomyelination delays neurobehavioral development in sialin-deficient mice. Slc17a5-/- mice successfully achieve early neurobehavioral milestones, but exhibit progressive delay of later-stage sensory and motor milestones. The present findings may contribute to further understanding of the processes of CNS myelination as well as help to develop therapeutic strategies for SASD and other myelination disorders.
Collapse
Affiliation(s)
| | | | - Frans W Verheijen
- Dept. Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ilse Goris
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | - Guy F T Daneels
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | - Rachel Schot
- Dept. Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elly Verbeek
- Dept. Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - An De Bondt
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | - Hinrich W Göhlmann
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | | | - Grazia M S Mancini
- Dept. Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Dieder W E Moechars
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Belgium
| |
Collapse
|
19
|
Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, Erickson RP, Canterini S, Fiorenza MT. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun 2016; 4:94. [PMID: 27586038 PMCID: PMC5009663 DOI: 10.1186/s40478-016-0370-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1−/− mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1nmf164 for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1nmf164/ Npc1nmf164 pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1nmf164 homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-β-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs. These findings indicate that in Npc1nmf164 homozygous mice the derangement of synaptic connectivity and dysmyelination during cerebellar morphogenesis largely anticipate motor deficits that are typically observed during adulthood.
Collapse
|
20
|
Saher G, Stumpf SK. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1083-94. [PMID: 25724171 DOI: 10.1016/j.bbalip.2015.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Gesine Saher
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Sina Kristin Stumpf
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
21
|
Yan X, Ma L, Hovakimyan M, Lukas J, Wree A, Frank M, Guthoff R, Rolfs A, Witt M, Luo J. Defects in the retina of Niemann-pick type C 1 mutant mice. BMC Neurosci 2014; 15:126. [PMID: 25472750 PMCID: PMC4267119 DOI: 10.1186/s12868-014-0126-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022] Open
Abstract
Background Niemann-Pick type C1 (NPC1) disease is an inherited lysosomal storage disease caused by mutation of the Npc1 gene, resulting in a progressive accumulation of unesterified cholesterol and glycolipids in lysosomes of multiple tissues and leading to neurodegeneration and other disease. In Npc1 mutant mice, retinal degeneration including impaired visual function, lipofuscin accumulation in the pigment epithelium and ganglion cells as well as photoreceptor defects has been found. However, the pathologies of other individual cell types of the retina in Npc1 mutant mice are still not fully clear. We hypothesized that horizontal cells, amacrine cells, bipolar cells and glial cells are also affected in the retina of Npc1 mutant mice. Results Immunohistochemistry and electron microscopy were used to investigate pathologies of ganglion cells, horizontal cells, amacrine cells, bipolar cells, and optic nerves as well as altered activity of glial cells in Npc1 mutant mice. Electron microscopy reveals that electron-dense inclusions are generally accumulated in ganglion cells, bipolar cells, Müller cells, and in the optic nerve. Furthermore, abnormal arborisation and ectopic processes of horizontal and amacrine cells as well as defective bipolar cells are observed by immunohistochemistry for specific cellular markers. Furthermore, hyperactivity of glial cells, including astrocytes, microglial cells, and Müller cells, is also revealed. Conclusions Our data extend previous findings to show multiple defects in the retina of Npc1 mutant mice, suggesting an important role of Npc1 protein in the normal function of the retina. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0126-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Lucy Ma
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Marina Hovakimyan
- Institute for Biomedical Engineering, Rostock University Medical Center, F.-Barnewitz Strasse 4, D-18119, Rostock, Germany.
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, D-18055, Rostock, Germany.
| | - Marcus Frank
- Electron Microscopy Center, Rostock University Medical Center, Strempelstr. 14, D-18057, Rostock, Germany.
| | - Rudolf Guthoff
- Department of Ophthalmology, Rostock University Medical Center, Doberaner Strasse 140, D-18057, Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, D-18055, Rostock, Germany.
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| |
Collapse
|
22
|
Yan X, Yang F, Lukas J, Witt M, Wree A, Rolfs A, Luo J. Hyperactive glial cells contribute to axonal pathologies in the spinal cord of Npc1 mutant mice. Glia 2014; 62:1024-40. [PMID: 24644136 DOI: 10.1002/glia.22659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/12/2014] [Accepted: 03/04/2014] [Indexed: 12/27/2022]
Abstract
Niemann-Pick disease type C1 (NPC1) is a neurodegenerative disease with various progressive pathological features, for example, neuronal loss, dysmyelination, abnormal axon swelling, and gliosis, in the brain. Pathological activation of p38-mitogen-activated protein kinase (MAPK) results in hyperphosphorylation of tau protein, which contributes to the development of neurodegenerative diseases. In this study, axonal varicosities or spheroids and presynaptic aggregates in the spinal cord of the Npc1 mutant mice were found from postnatal day (P) 35 onwards, as indicated by the increased hyperphosphorylated neurofilament and synaptophysin immunoreactivity as well as the findings from electron microscopy. However, activities of astrocytes and microglia in the Npc1 mutant spinal cord were progressively increased earlier from P10 onwards, accompanied by increased expression of interleukin-1β and apolipoprotein E, as well as up-regulated p38-MAPK activity and enhanced phosphorylated tau protein, but not cyclin-dependent kinase 5/p35 complex and glycogen synthase kinase-3β. Taken together, our data suggest that the axonal pathologies in the Npc1 mutant spinal cord are strongly correlated with the increase of activated glial cells, which produce IL-1β and ApoE, resulting in the activation of p38-MAPK signaling pathway and enhanced phosphorylated tau protein.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Hovakimyan M, Meyer A, Lukas J, Luo J, Gudziol V, Hummel T, Rolfs A, Wree A, Witt M. Olfactory deficits in Niemann-Pick type C1 (NPC1) disease. PLoS One 2013; 8:e82216. [PMID: 24391715 PMCID: PMC3877006 DOI: 10.1371/journal.pone.0082216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/24/2013] [Indexed: 01/22/2023] Open
Abstract
Background Niemann-Pick type C disease (NPC) is a rare autosomal recessive lipid storage disease characterized by progressive neurodegeneration. As only a few studies have been conducted on the impact of NPC on sensory systems, we used a mutant mouse model (NPC1−/−) to examine the effects of this disorder to morphologically distinct regions of the olfactory system, namely the olfactory epithelium (OE) and olfactory bulb (OB). Methodology/Principal findings For structural and functional analysis immunohistochemistry, electron microscopy, western blotting, and electrophysiology have been applied. For histochemistry and western blotting, we used antibodies against a series of neuronal and glia marker proteins, as well as macrophage markers. NPC1−/− animals present myelin-like lysosomal deposits in virtually all types of cells of the peripheral and central olfactory system. Especially supporting cells of the OE and central glia cells are affected, resulting in pronounced astrocytosis and microgliosis in the OB and other olfactory cortices. Up-regulation of Galectin-3, Cathepsin D and GFAP in the cortical layers of the OB underlines the critical role and location of the OB as a possible entrance gate for noxious substances. Unmyelinated olfactory afferents of the lamina propria seem less affected than ensheathing cells. Supporting the structural findings, electro-olfactometry of the olfactory mucosa suggests that NPC1−/− animals exhibit olfactory and trigeminal deficits. Conclusions/Significance Our data demonstrate a pronounced neurodegeneration and glia activation in the olfactory system of NPC1−/−, which is accompanied by sensory deficits.
Collapse
Affiliation(s)
- Marina Hovakimyan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Anja Meyer
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Volker Gudziol
- Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, University of Dresden Medical School, Dresden, Germany
| | - Arndt Rolfs
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- * E-mail:
| |
Collapse
|
24
|
Electrodiagnostic testing and histopathologic changes confirm peripheral nervous system myelin abnormalities in the feline model of niemann-pick disease type C. J Neuropathol Exp Neurol 2013; 72:256-62. [PMID: 23399903 DOI: 10.1097/nen.0b013e318286587f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Niemann-Pick disease type C (NPC disease) is an incurable, neurodegenerative, autosomal recessive disease caused by mutations in either the NPC1 or the NPC2 gene. These mutations affect the intracellular trafficking of lipids and cholesterol, resulting in the intralysosomal accumulation of unesterified cholesterol and glycosphingolipids. These abnormalities are associated with clinical ataxia and impaired motor and intellectual development, and death frequently occurs in adolescence. The incidence of peripheral neuropathy in NPC patients is not known. We investigated peripheral nerves in the naturally occurring feline model of NPC disease, which has proven to be critical for understanding both disease pathogenesis and for evaluating experimental therapies. Electrodiagnostic studies revealed significantly slowed motor and sensory nerve conduction velocities in affected cats in the absence of altered M-wave amplitude. Histologic and ultrastructural analyses showed thin myelin sheaths, membranous debris, myelin figures, lipid vacuolization of Schwann cell cytoplasm, and expanded paranodal areas. Axonal degeneration was not identified. There was a shift to small myelinated fibers in affected cats, and there were significant decreases in fiber diameter, axon diameter, and myelin thickness. These changes were similar to those described in the murine NPC disease model and in rare patients in whom nerve biopsy has been performed. Characterization of the demyelinating neuropathy is necessary for evaluating clinical trials that target only the CNS aspects of NPC.
Collapse
|
25
|
Myelin gene regulatory factor is required for maintenance of myelin and mature oligodendrocyte identity in the adult CNS. J Neurosci 2012; 32:12528-42. [PMID: 22956843 DOI: 10.1523/jneurosci.1069-12.2012] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the transcription factors required for the generation of oligodendrocytes and CNS myelination during development have been relatively well established, it is not known whether continued expression of the same factors is required for the maintenance of myelin in the adult. Here, we use an inducible conditional knock-out strategy to investigate whether continued oligodendrocyte expression of the recently identified transcription factor myelin gene regulatory factor (MRF) is required to maintain the integrity of myelin in the adult CNS. Genetic ablation of MRF in mature oligodendrocytes within the adult CNS resulted in a delayed but severe CNS demyelination, with clinical symptoms beginning at 5 weeks and peaking at 8 weeks after ablation of MRF. This demyelination was accompanied by microglial/macrophage infiltration and axonal damage. Transcripts for myelin genes, such as proteolipid protein, MAG, MBP, and myelin oligodendrocyte glycoprotein, were rapidly downregulated after ablation of MRF, indicating an ongoing requirement for MRF in the expression of these genes. Subsequently, a proportion of the recombined oligodendrocytes undergo apoptosis over a period of weeks. Surviving oligodendrocytes gradually lose the expression of mature markers such as CC1 antigen and their association with myelin, without reexpressing oligodendrocyte progenitor markers or reentering the cell cycle. These results demonstrate that ongoing expression of MRF within the adult CNS is critical to maintain mature oligodendrocyte identity and the integrity of CNS myelin.
Collapse
|