1
|
Martinez B, Peplow PV. Autism spectrum disorder: difficulties in diagnosis and microRNA biomarkers. Neural Regen Res 2025; 20:2776-2786. [PMID: 39314171 PMCID: PMC11826456 DOI: 10.4103/nrr.nrr-d-24-00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
We performed a PubMed search for microRNAs in autism spectrum disorder that could serve as diagnostic biomarkers in patients and selected 17 articles published from January 2008 to December 2023, of which 4 studies were performed with whole blood, 4 with blood plasma, 5 with blood serum, 1 with serum neural cell adhesion molecule L1-captured extracellular vesicles, 1 with blood cells, and 2 with peripheral blood mononuclear cells. Most of the studies involved children and the study cohorts were largely males. Many of the studies had performed microRNA sequencing or quantitative polymerase chain reaction assays to measure microRNA expression. Only five studies had used real-time polymerase chain reaction assay to validate microRNA expression in autism spectrum disorder subjects compared to controls. The microRNAs that were validated in these studies may be considered as potential candidate biomarkers for autism spectrum disorder and include miR-500a-5p, -197-5p, -424-5p, -664a-3p, -365a-3p, -619-5p, -664a-3p, -3135a, -328-3p, and -500a-5p in blood plasma and miR-151a-3p, -181b-5p, -320a, -328, -433, -489, -572, -663a, -101-3p, -106b-5p, -19b-3p, -195-5p, and -130a-3p in blood serum of children, and miR-15b-5p and -6126 in whole blood of adults. Several important limitations were identified in the studies reviewed, and need to be taken into account in future studies. Further studies are warranted with children and adults having different levels of autism spectrum disorder severity and consideration should be given to using animal models of autism spectrum disorder to investigate the effects of suppressing or overexpressing specific microRNAs as a novel therapy.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Chen Z, Wang X, Zhang S, Han F. Neuroplasticity of children in autism spectrum disorder. Front Psychiatry 2024; 15:1362288. [PMID: 38726381 PMCID: PMC11079289 DOI: 10.3389/fpsyt.2024.1362288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that encompasses a range of symptoms including difficulties in verbal communication, social interaction, limited interests, and repetitive behaviors. Neuroplasticity refers to the structural and functional changes that occur in the nervous system to adapt and respond to changes in the external environment. In simpler terms, it is the brain's ability to learn and adapt to new environments. However, individuals with ASD exhibit abnormal neuroplasticity, which impacts information processing, sensory processing, and social cognition, leading to the manifestation of corresponding symptoms. This paper aims to review the current research progress on ASD neuroplasticity, focusing on genetics, environment, neural pathways, neuroinflammation, and immunity. The findings will provide a theoretical foundation and insights for intervention and treatment in pediatric fields related to ASD.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Xu Wang
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Si Zhang
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Fei Han
- Department of Pediatrics, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Dutta N, Chatterjee M, Saha S, Sinha S, Mukhopadhyay K. Metabotropic glutamate receptor genetic variants and peripheral receptor expression affects trait scores of autistic probands. Sci Rep 2024; 14:8558. [PMID: 38609494 PMCID: PMC11014995 DOI: 10.1038/s41598-024-59290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Glutamate (Glu) is important for memory and learning. Hence, Glu imbalance is speculated to affect autism spectrum disorder (ASD) pathophysiology. The action of Glu is mediated through receptors and we analyzed four metabotropic Glu receptors (mGluR/GRM) in Indo-Caucasoid families with ASD probands and controls. The trait scores of the ASD probands were assessed using the Childhood Autism Rating Scale2-ST. Peripheral blood was collected, genomic DNA isolated, and GRM5 rs905646, GRM6 rs762724 & rs2067011, and GRM7 rs3792452 were analyzed by PCR/RFLP or Taqman assay. Expression of mGluRs was measured in the peripheral blood by qPCR. Significantly higher frequencies of rs2067011 'A' allele/ AA' genotype were detected in the probands. rs905646 'A 'exhibited significantly higher parental transmission. Genetic variants showed independent as well as interactive effects in the probands. Receptor expression was down-regulated in the probands, especially in the presence of rs905646 'AA', rs762724 'TT', rs2067011 'GG', and rs3792452 'CC'. Trait scores were higher in the presence of rs762724 'T' and rs2067011 'G'. Therefore, in the presence of risk genetic variants, down-regulated mGluR expression may increase autistic trait scores. Since our investigation was confined to the peripheral system, in-depth exploration involving peripheral as well as central nervous systems may validate our observation.
Collapse
Affiliation(s)
- Nilanjana Dutta
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
4
|
Song Y, Hupfeld KE, Davies-Jenkins CW, Zöllner HJ, Murali-Manohar S, Mumuni AN, Crocetti D, Yedavalli V, Oeltzschner G, Alessi N, Batschelett MA, Puts NA, Mostofsky SH, Edden RA. Brain glutathione and GABA+ levels in autistic children. Autism Res 2024; 17:512-528. [PMID: 38279628 PMCID: PMC10963146 DOI: 10.1002/aur.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.
Collapse
Affiliation(s)
- Yulu Song
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E. Hupfeld
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W. Davies-Jenkins
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J. Zöllner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg Oeltzschner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Natalie Alessi
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mitchell A. Batschelett
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Nicolaas A.J. Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- MRC Center for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Stewart H. Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A.E. Edden
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
5
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
6
|
Pedrosa de Menezes AL, Bloem BR, Beckers M, Piat C, Benarroch EE, Savica R. Molecular Variability in Levodopa Absorption and Clinical Implications for the Management of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1353-1368. [PMID: 39240647 PMCID: PMC11492115 DOI: 10.3233/jpd-240036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 09/07/2024]
Abstract
Levodopa is the most widely used medication for the symptomatic treatment of Parkinson's disease and, despite being an "old" drug, is still considered the gold standard for offering symptomatic relief. The pharmacokinetic and pharmacodynamics of levodopa have been studied extensively. Our review explores the molecular mechanisms that affect the absorption of this drug, focusing on the large intra- and interindividual variability of absorption that is commonly encountered in daily clinical practice, and on the interaction with other medications. In addition, we will explore the clinical implications of levodopa absorption variability and address current and future strategies for researchers and clinicians.
Collapse
Affiliation(s)
| | - Bastiaan R. Bloem
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Radboud University Medical Center, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Milan Beckers
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Radboud University Medical Center, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Capucine Piat
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Wu J, Hu Q, Rao X, Zhao H, Tang H, Wang Y. Gut microbiome and metabolic profiles of mouse model for MeCP2 duplication syndrome. Brain Res Bull 2024; 206:110862. [PMID: 38145758 DOI: 10.1016/j.brainresbull.2023.110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The extra copy of the methyl-CpG-binding protein 2 (MeCp2) gene causes MeCP2 duplication syndrome (MDS), a neurodevelopmental disorder characterized by intellectual disability and autistic phenotypes. However, the disturbed microbiome and metabolic profiling underlying the autistic-like behavioral deficits of MDS are rarely investigated. Here we aimed to understand the contributions of microbiome disruption and associated metabolic alterations, especially the disturbed neurotransmitters in MDS employing a transgenic mouse model with MeCP2 overexpression. We analyzed metabolic profiles of plasma, urine, and cecum content and microbiome profiles by both 16 s RNA and shotgun metagenomics sequence technology. We found the decreased levels of Firmicutes and increased levels of Bacteroides in the single MeCP2 gene mutation autism-like mouse model, demonstrating the importance of the host genome in a selection of microbiome, leading to the heterogeneity characteristics of microbiome in MDS. Furthermore, the changed levels of several neurotransmitters (such as dopamine, taurine, and glutamate) implied the excitatory-inhibitory imbalance caused by the single gene mutation. Concurrently, a range of microbial metabolisms of aromatic amino acids (such as tryptophan and phenylalanine) were identified in different biological matrices obtained from MeCP2 transgenic mice. Our investigation revealed the importance of genetic variation in accounting for the differences in microbiomes and confirmed the bidirectional regulatory axis of microbiota-gut-brain in studying the role of microbiome on MDS, which could be useful in deeply understanding the microbiome-based treatment in this autistic-like disease.
Collapse
Affiliation(s)
- Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430000, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
8
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Srivastava J, Trivedi R, Saxena P, Yadav S, Gupta R, Nityanand S, Kumar D, Chaturvedi CP. Bone marrow plasma metabonomics of idiopathic acquired aplastic anemia patients using 1H nuclear magnetic resonance spectroscopy. Metabolomics 2023; 19:94. [PMID: 37975930 DOI: 10.1007/s11306-023-02056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Idiopathic acquired aplastic anemia (AA) is a bone marrow failure disorder where aberrant T-cell functions lead to depletion of hematopoietic stem and progenitor cells in the bone marrow (BM) microenvironment. T-cells undergo metabolic rewiring, which regulates their proliferation and differentiation. Therefore, studying metabolic variation in AA patients may aid us with a better understanding of the T-cell regulatory pathways governed by metabolites and their pathological engagement in the disease. OBJECTIVE To identify the differential metabolites in BM plasma of AA patients, AA follow-up (AAF) in comparison to normal controls (NC) and to identify potential disease biomarker(s). METHODS The study used 1D 1H NMR Carr-Purcell-Meiboom-Gill (CPMG) spectra to identify the metabolites present in the BM plasma samples of AA (n = 40), AAF (n = 16), and NC (n = 20). Metabolic differences between the groups and predictive biomarkers were identified by using multivariate analysis and receiver operating characteristic (ROC) module of Metaboanalyst V5.0 tool, respectively. RESULTS The AA and AAF samples were well discriminated from NC group as per Principal Component analysis (PCA). Further, we found significant alteration in the levels of 17 metabolites in AA involved in amino-acid (Leucine, serine, threonine, phenylalanine, lysine, histidine, valine, tyrosine, and proline), carbohydrate (Glucose, lactate and mannose), fatty acid (Acetate, glycerol myo-inositol and citrate), and purine metabolism (hypoxanthine) in comparison to NC. Additionally, biomarker analysis predicted Hypoxanthine and Acetate can be used as a potential biomarker. CONCLUSION The study highlights the significant metabolic alterations in the BM plasma of AA patients which may have implication in the disease pathobiology.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Rimjhim Trivedi
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pragati Saxena
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Chandra P Chaturvedi
- Department of Hematology, Stem Cell Research Centre, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
10
|
Wasserthal S, Lehmann M, Neumann C, Delis A, Philipsen A, Hurlemann R, Ettinger U, Schultz J. Effects of NMDA-receptor blockade by ketamine on mentalizing and its neural correlates in humans: a randomized control trial. Sci Rep 2023; 13:17184. [PMID: 37821513 PMCID: PMC10567921 DOI: 10.1038/s41598-023-44443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Schizophrenia is associated with various deficits in social cognition that remain relatively unaltered by antipsychotic treatment. While faulty glutamate signaling has been associated with general cognitive deficits as well as negative symptoms of schizophrenia, no direct link between manipulation of glutamate signaling and deficits in mentalizing has been demonstrated thus far. Here, we experimentally investigated whether ketamine, an uncompetitive N-methyl-D-aspartate receptor antagonist known to induce psychotomimetic effects, influences mentalizing and its neural correlates. In a randomized, placebo-controlled between-subjects experiment, we intravenously administered ketamine or placebo to healthy participants performing a video-based social cognition task during functional magnetic resonance imaging. Psychotomimetic effects of ketamine were assessed using the Positive and Negative Syndrome Scale. Compared to placebo, ketamine led to significantly more psychotic symptoms and reduced mentalizing performance (more "no mentalizing" errors). Ketamine also influenced blood oxygen level dependent (BOLD) response during mentalizing compared to placebo. Specifically, ketamine increased BOLD in right posterior superior temporal sulcus (pSTS) and increased connectivity between pSTS and anterior precuneus. These increases may reflect a dysfunctional shift of attention induced by ketamine that leads to mentalizing deficits. Our findings show that a psychotomimetic dose of ketamine impairs mentalizing and influences its neural correlates, a result compatible with the notion that deficient glutamate signaling may contribute to deficits in mentalizing in schizophrenia. The results also support efforts to seek novel psychopharmacological treatments for psychosis and schizophrenia targeting glutamatergic transmission.
Collapse
Affiliation(s)
- Sven Wasserthal
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Mirko Lehmann
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Claudia Neumann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Achilles Delis
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | | | - Johannes Schultz
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Smith AM, Donley ELR, Ney DM, Amaral DG, Burrier RE, Natowicz MR. Metabolomic biomarkers in autism: identification of complex dysregulations of cellular bioenergetics. Front Psychiatry 2023; 14:1249578. [PMID: 37928922 PMCID: PMC10622772 DOI: 10.3389/fpsyt.2023.1249578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD or autism) is a phenotypically and etiologically heterogeneous condition. Identifying biomarkers of clinically significant metabolic subtypes of autism could improve understanding of its underlying pathophysiology and potentially lead to more targeted interventions. We hypothesized that the application of metabolite-based biomarker techniques using decision thresholds derived from quantitative measurements could identify autism-associated subpopulations. Metabolomic profiling was carried out in a case-control study of 499 autistic and 209 typically developing (TYP) children, ages 18-48 months, enrolled in the Children's Autism Metabolome Project (CAMP; ClinicalTrials.gov Identifier: NCT02548442). Fifty-four metabolites, associated with amino acid, organic acid, acylcarnitine and purine metabolism as well as microbiome-associated metabolites, were quantified using liquid chromatography-tandem mass spectrometry. Using quantitative thresholds, the concentrations of 4 metabolites and 149 ratios of metabolites were identified as biomarkers, each identifying subpopulations of 4.5-11% of the CAMP autistic population. A subset of 42 biomarkers could identify CAMP autistic individuals with 72% sensitivity and 90% specificity. Many participants were identified by several metabolic biomarkers. Using hierarchical clustering, 30 clusters of biomarkers were created based on participants' biomarker profiles. Metabolic changes associated with the clusters suggest that altered regulation of cellular metabolism, especially of mitochondrial bioenergetics, were common metabolic phenotypes in this cohort of autistic participants. Autism severity and cognitive and developmental impairment were associated with increased lactate, many lactate containing ratios, and the number of biomarker clusters a participant displayed. These studies provide evidence that metabolic phenotyping is feasible and that defined autistic subgroups can lead to enhanced understanding of the underlying pathophysiology and potentially suggest pathways for targeted metabolic treatments.
Collapse
Affiliation(s)
- Alan M. Smith
- Stemina Biomarker Discovery, Inc, Madison, WI, United States
| | | | - Denise M. Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Davis, CA, United States
| | | | - Marvin R. Natowicz
- Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
12
|
Tang X, Feng C, Zhao Y, Zhang H, Gao Y, Cao X, Hong Q, Lin J, Zhuang H, Feng Y, Wang H, Shen L. A study of genetic heterogeneity in autism spectrum disorders based on plasma proteomic and metabolomic analysis: multiomics study of autism heterogeneity. MedComm (Beijing) 2023; 4:e380. [PMID: 37752942 PMCID: PMC10518435 DOI: 10.1002/mco2.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic heterogeneity poses a challenge to research and clinical translation of autism spectrum disorder (ASD). In this study, we conducted a plasma proteomic and metabolomic study of children with ASD with and without risk genes (de novo mutation) and controls to explore the impact of genetic heterogeneity on the search for biomarkers for ASD. In terms of the proteomic and metabolomic profiles, the groups of children with ASD carrying and those not carrying de novo mutation tended to cluster and overlap, and integrating them yielded differentially expressed proteins and differential metabolites that effectively distinguished ASD from controls. The mechanisms associated with them focus on several common and previously reported mechanisms. Proteomics results highlight the role of complement, inflammation and immunity, and cell adhesion. The main pathways of metabolic perturbations include amino acid, vitamin, glycerophospholipid, tryptophan, and glutamates metabolic pathways and solute carriers-related pathways. Integrating the two omics analyses revealed that L-glutamic acid and malate dehydrogenase may play key roles in the pathogenesis of ASD. These results suggest that children with ASD may have important underlying common mechanisms. They are not only potential therapeutic targets for ASD but also important contributors to the study of biomarkers for the disease.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Yuxi Zhao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Huajie Zhang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yan Gao
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xueshan Cao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Qi Hong
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Jing Lin
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yuying Feng
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hanghang Wang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyShenzhenP. R. China
| |
Collapse
|
13
|
Song Y, Hupfeld KE, Davies-Jenkins CW, Zöllner HJ, Murali-Manohar S, Mumuni AN, Crocetti D, Yedavalli V, Oeltzschner G, Alessi N, Batschelett MA, Puts NAJ, Mostofsky SH, Edden RAE. Brain Glutathione and GABA+ levels in autistic children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559718. [PMID: 37808813 PMCID: PMC10557661 DOI: 10.1101/2023.09.28.559718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a large cohort of children aged 8-12 years with ASD (n=52) and typically developing children (TDC, n=49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.
Collapse
Affiliation(s)
- Yulu Song
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E Hupfeld
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W Davies-Jenkins
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J Zöllner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg Oeltzschner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Natalie Alessi
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mitchell A Batschelett
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A E Edden
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
14
|
Tataru C, Peras M, Rutherford E, Dunlap K, Yin X, Chrisman BS, DeSantis TZ, Wall DP, Iwai S, David MM. Topic modeling for multi-omic integration in the human gut microbiome and implications for Autism. Sci Rep 2023; 13:11353. [PMID: 37443184 PMCID: PMC10345091 DOI: 10.1038/s41598-023-38228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
While healthy gut microbiomes are critical to human health, pertinent microbial processes remain largely undefined, partially due to differential bias among profiling techniques. By simultaneously integrating multiple profiling methods, multi-omic analysis can define generalizable microbial processes, and is especially useful in understanding complex conditions such as Autism. Challenges with integrating heterogeneous data produced by multiple profiling methods can be overcome using Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial processes, that summarize complex phenomena occurring within gut microbial communities. We then subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter precursors and fatty acid derivatives, that differ significantly between children with and without Autism. We identify clusters of topics, deemed "cross-omic topics", which we hypothesize are representative of generalizable microbial processes observable regardless of profiling method. Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-omic topic as: healthy/general function, age-associated function, transcriptional regulation, and opportunistic pathogenesis.
Collapse
Affiliation(s)
- Christine Tataru
- Department of Microbiology, Oregon State University, SW Campus Way, Corvallis, USA.
| | - Marie Peras
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Erica Rutherford
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Kaiti Dunlap
- Department of Bioengineering, Serra Mall, Stanford, USA
| | - Xiaochen Yin
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | | | - Todd Z DeSantis
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Serra Mall, Stanford, USA
- Department of Pediatrics (Systems Medicine), Stanford, 1265 Welch Road, Stanford, USA
| | - Shoko Iwai
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Maude M David
- Department of Microbiology, Oregon State University, SW Campus Way, Corvallis, USA.
- School of Pharmacy, Oregon State University, SW Campus Way, Corvallis, USA.
| |
Collapse
|
15
|
Che X, Roy A, Bresnahan M, Mjaaland S, Reichborn-Kjennerud T, Magnus P, Stoltenberg C, Shang Y, Zhang K, Susser E, Fiehn O, Lipkin WI. Metabolomic analysis of maternal mid-gestation plasma and cord blood in autism spectrum disorders. Mol Psychiatry 2023; 28:2355-2369. [PMID: 37037873 DOI: 10.1038/s41380-023-02051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
The discovery of prenatal and neonatal molecular biomarkers has the potential to yield insights into autism spectrum disorder (ASD) and facilitate early diagnosis. We characterized metabolomic profiles in ASD using plasma samples collected in the Norwegian Autism Birth Cohort from mothers at weeks 17-21 gestation (maternal mid-gestation, MMG, n = 408) and from children on the day of birth (cord blood, CB, n = 418). We analyzed associations using sex-stratified adjusted logistic regression models with Bayesian analyses. Chemical enrichment analyses (ChemRICH) were performed to determine altered chemical clusters. We also employed machine learning algorithms to assess the utility of metabolomics as ASD biomarkers. We identified ASD associations with a variety of chemical compounds including arachidonic acid, glutamate, and glutamine, and metabolite clusters including hydroxy eicospentaenoic acids, phosphatidylcholines, and ceramides in MMG and CB plasma that are consistent with inflammation, disruption of membrane integrity, and impaired neurotransmission and neurotoxicity. Girls with ASD have disruption of ether/non-ether phospholipid balance in the MMG plasma that is similar to that found in other neurodevelopmental disorders. ASD boys in the CB analyses had the highest number of dysregulated chemical clusters. Machine learning classifiers distinguished ASD cases from controls with area under the receiver operating characteristic (AUROC) values ranging from 0.710 to 0.853. Predictive performance was better in CB analyses than in MMG. These findings may provide new insights into the sex-specific differences in ASD and have implications for discovery of biomarkers that may enable early detection and intervention.
Collapse
Affiliation(s)
- Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ayan Roy
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Michaeline Bresnahan
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Ted Reichborn-Kjennerud
- Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Camilla Stoltenberg
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health, University of Bergen, Bergen, Norway
| | - Yimeng Shang
- Department of Public Health Sciences, College of Medicine, Penn State University, State College, PA, 16801, USA
| | - Keming Zhang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ezra Susser
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Oliver Fiehn
- UC Davis Genome Center-Metabolomics, University of California, Davis, CA, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Chamtouri M, Merghni A, Salazar N, Redruello B, Gaddour N, Mastouri M, Arboleya S, de los Reyes-Gavilán CG. An Overview on Fecal Profiles of Amino Acids and Related Amino-Derived Compounds in Children with Autism Spectrum Disorder in Tunisia. Molecules 2023; 28:molecules28073269. [PMID: 37050030 PMCID: PMC10096484 DOI: 10.3390/molecules28073269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental pathology characterized by the impairment of social interaction, difficulties in communication, and repetitive behaviors. Alterations in the metabolism of amino acids have been reported. We performed a chromatographic analysis of fecal amino acids, ammonium, biogenic amines, and gamma aminobutyric acid (GABA) in Tunisian autistic children from 4 to 10 years, and results were compared with their siblings (SIB) and children from the general population (GP). ASD presented significantly higher levels of fecal amino acids than SIB and GP; differences being more pronounced in younger (4–7 years) than in older (8–10 years) individuals whereas no changes were found for the remaining compounds. Lower levels of histidine were the only difference related with severe symptoms of autism (CARS scale). A linear discriminant analysis (LDA) based on fecal amino acid profiles clearly separated ASD, SIB, and GP at 4 to 7 years but not at more advanced age (8–10 years), evidencing more pronounced alterations in younger children. The relationship of fecal amino acids with autism needs deeper research integrating blood analytical parameters, brain metabolism, and intestinal microbiota. Fecal amino acids could be targeted for designing personalized diets to prevent or minimize cognitive impairments associated with ASD.
Collapse
Affiliation(s)
- Mariem Chamtouri
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Begoña Redruello
- Scientific and Technical Services, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Naoufel Gaddour
- Unit of Child Psychiatry, Monastir University Hospital, Monastir 5000, Tunisia
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
17
|
Galineau L, Arlicot N, Dupont AC, Briend F, Houy-Durand E, Tauber C, Gomot M, Gissot V, Barantin L, Lefevre A, Vercouillie J, Roussel C, Roux S, Nadal L, Mavel S, Laumonnier F, Belzung C, Chalon S, Emond P, Santiago-Ribeiro MJ, Bonnet-Brilhault F. Glutamatergic synapse in autism: a complex story for a complex disorder. Mol Psychiatry 2023; 28:801-809. [PMID: 36434055 DOI: 10.1038/s41380-022-01860-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.
Collapse
Affiliation(s)
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France
| | - Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frederic Briend
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Emmanuelle Houy-Durand
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Gomot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | | | | | - Antoine Lefevre
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Lydie Nadal
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Mavel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France.
| |
Collapse
|
18
|
Siani-Rose M, Cox S, Goldstein B, Abrams D, Taylor M, Kurek I. Cannabis-Responsive Biomarkers: A Pharmacometabolomics-Based Application to Evaluate the Impact of Medical Cannabis Treatment on Children with Autism Spectrum Disorder. Cannabis Cannabinoid Res 2023; 8:126-137. [PMID: 34874191 PMCID: PMC9940806 DOI: 10.1089/can.2021.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions that impact behavior, communication, social interaction, and learning abilities. Treatment of ASD with medical cannabis (MC) shows promising results in reducing the severity of certain behavioral aspects. The goals of this observational study are to demonstrate the potential of metabolic biomarkers to (1) objectively determine the impact on metabolites of MC treatment and (2) suggest the metabolic pathways of children with ASD, who respond to MC treatment. Materials and Methods: The impact of effective physician-supervised MC treatment on children with ASD (n=15), compared with an age-matched group of typically developing (TD; n=9) children, was evaluated in an observational study design. Each child followed a unique MC regimen determined by their specific response over at least 1 year of treatment, which included the following: tetrahydrocannabinol-dominant MC (dosing range 0.05-50 mg per dose) in 40% of children and cannabidiol-dominant MC (dosing range 7.5-200 mg per dose) in 60% of children. Samples from the ASD group collected pre-MC treatment and at time of maximal impact, and from the TD group, were subjected to salivary metabolomics analysis. Ten minutes before saliva sampling, parents filled out behavioral rating surveys. Results: Sixty-five potential cannabis-responsive biomarkers exhibiting a shift toward the TD physiological levels were identified in children with ASD after MC treatment. For each biomarker, the physiological levels were determined based on the values detected in the TD group. A similar qualitative improvement trend in children with ASD treated with MC was also observed in the behavioral surveys. Twenty-three potential Cannabis-Responsive biomarkers exhibiting change toward TD mean were categorized as anti-inflammatory, bioenergy associated, neurotransmitters, amino acids, and endocannabinoids. The changes in the levels of the Cannabis-Responsive biomarkers N-acetylaspartic acid, spermine, and dehydroisoandrosterone 3-sulfate have been previously linked to behavioral symptoms commonly observed in individuals with ASD. Conclusions: Our results suggest Cannabis-Responsive biomarkers shift toward the TD mean after MC treatment and can potentially quantify benefit at the metabolic level. These changes appear to be similar to the trend described in behavior surveys. Larger trials are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
| | - Stephany Cox
- Cannformatics, Inc., San Francisco, California, USA
| | | | | | | | - Itzhak Kurek
- Cannformatics, Inc., San Francisco, California, USA
- Address correspondence to: Itzhak Kurek, PhD Cannformatics, Inc., 3869 Cesar Chavez Street, San Francisco, CA 94131, USA,
| |
Collapse
|
19
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
20
|
DelRosso LM, Reuter-Yuill LM, Cho Y, Ferri R, Mogavero MP, Picchietti DL. Clinical efficacy and safety of intravenous ferric carboxymaltose treatment for restless legs symptoms and low serum ferritin in children with autism spectrum disorder. Sleep Med 2022; 100:488-493. [PMID: 36265207 DOI: 10.1016/j.sleep.2022.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Restless legs syndrome (RLS) may be underdiagnosed in children with autism spectrum disorder (ASD) due to difficulty expressing the symptoms in their own words. In addition, administration of oral iron may be particularly difficult in children with ASD. METHODS This was a retrospective, open-label case series of children with ASD, restless legs (RL) symptoms, and serum ferritin <30 μg/L, who either had failed or did not tolerate oral iron, and were subsequently treated with intravenous (IV) ferric carboxymaltose (FCM). Patients received a single dose of IV FCM, 15 mg/kg up to a maximum dose of 750 mg. Data collected pre- and eight weeks post-infusion included presenting symptoms, serum ferritin, iron profile, and Clinical Global Impression Scale (CGI-Severity pre- and CGI-Improvement post-infusion). Adverse effects were assessed. RESULTS Nineteen children, 4-11 years old (12 male, median age 6, interquartile range (IQR 4-11) were included. A definite RLS diagnosis was identified in 6 verbal children (31.6%). RL symptoms (designated probable RLS) in the 13 other children met all RLS diagnostic criteria except "improvement of symptoms with movement," which was not definitively determined. Baseline median values were: ferritin 10 μg/L (IQR 10-16), iron 66.5 μg/dL (IQR 57-96), TIBC 382 μg/dL (IQR 360-411) and transferrin saturation 19% (IQR 14-28). Median CGI-S was 4 (moderate symptoms) (IQR 3-4). At eight weeks after IV FCM, all measures were improved. Median ferritin was 68 μg/L (IQR 62.5-109, p < 0.00045). Median CGI-I was 1 (very much improved) (IQR 1-2). All children meeting definite RLS criteria improved. Three children in the probable RLS group did not improve. Children meeting the full RLS criteria had lower baseline ferritin levels than those with a probable diagnosis (9 μg/L, IQR 9-10 vs. 13 μg/L, IQR 10-16, Mann-Whitney test p < 0.045). Adverse effects included lightheadedness, gastrointestinal discomfort, fever, and headache among others. CONCLUSIONS The majority of children (84.2%) with ASD, restless legs symptoms, and serum ferritin <30 μg/L had clinical improvement and significantly better serum iron parameters after a single IV FCM infusion. Although larger, randomized trials are needed, IV FCM appears to be a promising treatment for this subset of children with ASD.
Collapse
Affiliation(s)
- Lourdes M DelRosso
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA.
| | - Lilith M Reuter-Yuill
- Western Michigan University, Kalamazoo, MI, Comprehensive Speech and Therapy Center, Jackson, MI, and Southern Illinois University, Carbondale, IL, USA
| | - Yeilim Cho
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology I.C., Oasi Research Institute - IRCCS, Troina, Italy
| | - Maria P Mogavero
- Institute of Molecular Bioimaging and Physiology, National Research Council, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Daniel L Picchietti
- University of Illinois School of Medicine, Carle Illinois College of Medicine, Carle Foundation Hospital, and University of Illinois School of Medicine, Urbana, IL, USA
| |
Collapse
|
21
|
Khantakova JN, Bondar NP, Sapronova AA, Reshetnikov VV. Delayed effects of neonatal immune activation on brain neurochemistry and hypothalamic-pituitary-adrenal axis functioning. Eur J Neurosci 2022; 56:5931-5951. [PMID: 36156830 DOI: 10.1111/ejn.15831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022]
Abstract
During the postnatal period, the brain is highly sensitive to stress and inflammation, which are hazardous to normal growth and development. There is increasing evidence that inflammatory processes in the early postnatal period increase the risk of psychopathologies and cognitive impairment later in life. On the other hand, there are few studies on the ability of infectious agents to cause long-term neuroinflammation, leading to changes in the hypothalamic-pituitary-adrenal axis functioning and an imbalance in the neurotransmitter system. In this review, we examine short- and long-term effects of neonatal-induced inflammation in rodents on glutamatergic, GABAergic and monoaminergic systems and on hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Julia N Khantakova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' (RIFCI), Novosibirsk, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anna A Sapronova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
22
|
Ilieva M, Aldana BI, Vinten KT, Hohmann S, Woofenden TW, Lukjanska R, Waagepetersen HS, Michel TM. Proteomic phenotype of cerebral organoids derived from autism spectrum disorder patients reveal disrupted energy metabolism, cellular components, and biological processes. Mol Psychiatry 2022; 27:3749-3759. [PMID: 35618886 DOI: 10.1038/s41380-022-01627-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
The way in which brain morphology and proteome are remodeled during embryonal development, and how they are linked to the cellular metabolism, could be a key for elucidating the pathological mechanisms of certain neurodevelopmental disorders. Cerebral organoids derived from autism spectrum disorder (ASD) patients were generated to capture critical time-points in the neuronal development, and metabolism and protein expression were investigated. The early stages of development, when neurogenesis commences (day in vitro 39), appeared to be a critical timepoint in pathogenesis. In the first month of development, increased size in ASD-derived organoids were detected in comparison to the controls. The size of the organoids correlates with the number of proliferating cells (Ki-67 positive cells). A significant difference in energy metabolism and proteome phenotype was also observed in ASD organoids at this time point, specifically, prevalence of glycolysis over oxidative phosphorylation, decreased ATP production and mitochondrial respiratory chain activity, differently expressed cell adhesion proteins, cell cycle (spindle formation), cytoskeleton, and several transcription factors. Finally, ASD patients and controls derived organoids were clustered based on a differential expression of ten proteins-heat shock protein 27 (hsp27) phospho Ser 15, Pyk (FAK2), Elk-1, Rac1/cdc42, S6 ribosomal protein phospho Ser 240/Ser 244, Ha-ras, mTOR (FRAP) phospho Ser 2448, PKCα, FoxO3a, Src family phospho Tyr 416-at day 39 which could be defined as potential biomarkers and further investigated for potential drug development.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark. .,Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark.
| | - Blanca Irene Aldana
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Tore Vinten
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Hohmann
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Thomas William Woofenden
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Renate Lukjanska
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Helle S Waagepetersen
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
23
|
Bin-Khattaf RM, Alonazi MA, Al-Dbass AM, Almnaizel AT, Aloudah HS, Soliman DA, El-Ansary AK. Probiotic Ameliorating Effects of Altered GABA/Glutamate Signaling in a Rodent Model of Autism. Metabolites 2022; 12:metabo12080720. [PMID: 36005593 PMCID: PMC9416367 DOI: 10.3390/metabo12080720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 12/10/2022] Open
Abstract
Autism spectrum disorders (ASDs) comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, such as marked impairment in verbal and nonverbal communication, social skills, and cognition. Excitatory/inhibitory (E/I) imbalances have been recorded as an etiological mechanism of ASD. Furthermore, GABA, the main inhibitory neurotransmitter in adult life, is known to be much lower in both patients and rodent models of ASD. We propose correcting GABA signaling as a therapeutic strategy for ASD. In this study, 40 young male western Albino rats, 3−4 weeks in age, weighing about 60−70 g, were used. The animals were randomly assigned into six experimental groups, each including eight rats. Group I served as the control group and was orally administered phosphate-buffered saline. Groups II and III served as rodent models of ASD and were orally administered a neurotoxic dose of propionic acid (PPA). The rats in the three therapeutic groups (IV, V, and IV) received the same doses of PPA, followed by 0.2 g/kg body weight of pure Bifidobacterium infantis, a probiotic mixture of ProtexinR, and pure Lactobacillus bulgaricus, respectively, for 3 weeks. Selected variables related to oxidative stress, glutamate excitotoxicity, and gut bacteria were measured in the six groups. Both pure and mixed Lactobacillus and Bifidobacterium were effective in ameliorating glutamate excitotoxicity as an autistic feature developed in the PPA-induced rodent model. Their therapeutic effects mostly involved the correction of oxidative stress, restoration of depleted GABA, and up-regulation of GABA receptor gene expression. Pure Bifidobacterium was the most effective, followed by the mixture of probiotics and finally lactobacillus. In conclusion, Bifidobacteria and lactobacilli can be used independently or in combination as psychobiotics to ameliorate oxidative stress and glutamate excitotoxicity as two confirmed etiological mechanisms through the gut−brain axis.
Collapse
Affiliation(s)
- Rawan M. Bin-Khattaf
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mona A. Alonazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abeer M. Al-Dbass
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ahmad T. Almnaizel
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Hisham S. Aloudah
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Dina A. Soliman
- Department of Botany and Microbiology, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Afaf K. El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: ; Tel.: +966-508462529; Fax: +966-4683579
| |
Collapse
|
24
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
25
|
GABA Receptor SNPs and Elevated Plasma GABA Levels Affect the Severity of the Indian ASD Probands. J Mol Neurosci 2022; 72:1300-1312. [PMID: 35562522 DOI: 10.1007/s12031-022-02023-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
Altered signaling of the chief inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), has been speculated in the etiology of autism spectrum disorder (ASD). We have investigated the association of six GABAA-receptor genetic variants and plasma GABA levels with ASD. Subjects were recruited based on the DSM, and CARS2-ST and ADI-R assessed disease severity. Peripheral blood was collected from the ASD probands (N = 251), their parents, and ethnically matched controls (N = 347). A positive correlation between the CARS2-ST and ADI-R scores was observed; domain scores of ADI-R were higher in the severe group categorized by the CARS2-ST. GABRB3 rs1432007 "A," GABRG3 rs897173 "A," and GABRA5 rs140682 "T" showed significant association with ASD. Trait scores were influenced by rs1432007 "AA" and rs140682 "TT." GABA level was significantly higher in the probands than the age-matched controls. Our findings indicate an influence of GABA in the etiology of ASD in the Indian probands.
Collapse
|
26
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
27
|
Shen L, Zhang H, Lin J, Gao Y, Chen M, Khan NU, Tang X, Hong Q, Feng C, Zhao Y, Cao X. A Combined Proteomics and Metabolomics Profiling to Investigate the Genetic Heterogeneity of Autistic Children. Mol Neurobiol 2022; 59:3529-3545. [PMID: 35348996 DOI: 10.1007/s12035-022-02801-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) has become one of the most common neurological developmental disorders in children. However, the study of ASD diagnostic markers faces significant challenges due to the existence of heterogeneity. In this study, genetic testing was performed on children who were clinically diagnosed with ASD. Children with ASD susceptibility genes and healthy controls were studied. The proteomics of plasma and peripheral blood mononuclear cells (PBMCs) as well as plasma metabolomics were carried out. The results showed that although there was genetic heterogeneity in children with ASD, the differentially expressed proteins (DEPs) in plasma, peripheral blood mononuclear cells, and differential metabolites in plasma could still effectively distinguish autistic children from controls. The mechanism associated with them focuses on several common and previously reported mechanisms of ASD. The biomarkers for ASD diagnosis could be found by taking differentially expressed proteins and differential metabolites into consideration. Integrating omics data, glycerophospholipid metabolism and N-glycan biosynthesis might play a critical role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
28
|
Physiological synaptic activity and recognition memory require astroglial glutamine. Nat Commun 2022; 13:753. [PMID: 35136061 PMCID: PMC8826940 DOI: 10.1038/s41467-022-28331-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes. The authors present a fluorescent probe that tracks glutamine in live cells. They demonstrate the capabilities of the probe by providing direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions.
Collapse
|
29
|
Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, Li B, Li G, Ge T, Cui R. GABAergic System Dysfunction in Autism Spectrum Disorders. Front Cell Dev Biol 2022; 9:781327. [PMID: 35198562 PMCID: PMC8858939 DOI: 10.3389/fcell.2021.781327] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a series of neurodevelopmental diseases characterized by two hallmark symptoms, social communication deficits and repetitive behaviors. Gamma-aminobutyric acid (GABA) is one of the most important inhibitory neurotransmitters in the central nervous system (CNS). GABAergic inhibitory neurotransmission is critical for the regulation of brain rhythm and spontaneous neuronal activities during neurodevelopment. Genetic evidence has identified some variations of genes associated with the GABA system, indicating an abnormal excitatory/inhibitory (E/I) neurotransmission ratio implicated in the pathogenesis of ASD. However, the specific molecular mechanism by which GABA and GABAergic synaptic transmission affect ASD remains unclear. Transgenic technology enables translating genetic variations into rodent models to further investigate the structural and functional synaptic dysregulation related to ASD. In this review, we summarized evidence from human neuroimaging, postmortem, and genetic and pharmacological studies, and put emphasis on the GABAergic synaptic dysregulation and consequent E/I imbalance. We attempt to illuminate the pathophysiological role of structural and functional synaptic dysregulation in ASD and provide insights for future investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ranji Cui
- *Correspondence: Tongtong Ge, ; Ranji Cui,
| |
Collapse
|
30
|
Canitano R, Palumbi R. Excitation/Inhibition Modulators in Autism Spectrum Disorder: Current Clinical Research. Front Neurosci 2021; 15:753274. [PMID: 34916897 PMCID: PMC8669810 DOI: 10.3389/fnins.2021.753274] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by social and communication abnormalities. Heterogeneity in the expression and severity of the core and associated symptoms poses difficulties in classification and the overall clinical approach. Synaptic abnormalities have been observed in preclinical ASD models. They are thought to play a major role in clinical functional abnormalities and might be modified by targeted interventions. An imbalance in excitatory to inhibitory neurotransmission (E/I imbalance), through altered glutamatergic and GABAergic neurotransmission, respectively, is thought to be implicated in the pathogenesis of ASD. Glutamatergic and GABAergic agents have been tested in clinical trials with encouraging results as to efficacy and tolerability. Further studies are needed to confirm the role of E/I modulators in the treatment of ASD and on the safety and efficacy of the current agents.
Collapse
Affiliation(s)
- Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, Siena, Italy
| | - Roberto Palumbi
- Division of Child and Adolescent Neuropsychiatry, Basic Medical Sciences, Neuroscience and Sense Organs Department, University Hospital of Bari, Bari, Italy
| |
Collapse
|
31
|
Anashkina AA, Erlykina EI. Molecular Mechanisms of Aberrant Neuroplasticity in Autism Spectrum Disorders (Review). Sovrem Tekhnologii Med 2021; 13:78-91. [PMID: 34513070 PMCID: PMC8353687 DOI: 10.17691/stm2021.13.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 01/03/2023] Open
Abstract
This review presents the analysis and systematization of modern data on the molecular mechanisms of autism spectrum disorders (ASD) development. Polyetiology and the multifactorial nature of ASD have been proved. The attempt has been made to jointly review and systematize current hypotheses of ASD pathogenesis at the molecular level from the standpoint of aberrant brain plasticity. The mechanism of glutamate excitotoxicity formation, the effect of imbalance of neuroactive amino acids and their derivatives, neurotransmitters, and hormones on the ASD formation have been considered in detail. The strengths and weaknesses of the proposed hypotheses have been analyzed from the standpoint of evidence-based medicine. The conclusion has been drawn on the leading role of glutamate excitotoxicity as a biochemical mechanism of aberrant neuroplasticity accompanied by oxidative stress and mitochondrial dysfunction. The mechanism of aberrant neuroplasticity has also been traced at the critical moments of the nervous system development taking into account the influence of various factors of the internal and external environment. New approaches to searching for ASD molecular markers have been considered.
Collapse
Affiliation(s)
- A A Anashkina
- Senior Teacher, Department of Biochemistry named after G.Y. Gorodisskaya; Senior Researcher, Central Scientific Research Laboratory, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E I Erlykina
- Professor, Head of the Department of Biochemistry named after G.Y. Gorodisskaya, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
32
|
Möhrle D, Wang W, Whitehead SN, Schmid S. GABA B Receptor Agonist R-Baclofen Reverses Altered Auditory Reactivity and Filtering in the Cntnap2 Knock-Out Rat. Front Integr Neurosci 2021; 15:710593. [PMID: 34489651 PMCID: PMC8417788 DOI: 10.3389/fnint.2021.710593] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Altered sensory information processing, and auditory processing, in particular, is a common impairment in individuals with autism spectrum disorder (ASD). One prominent hypothesis for the etiology of ASD is an imbalance between neuronal excitation and inhibition. The selective GABAB receptor agonist R-Baclofen has been shown previously to improve social deficits and repetitive behaviors in several mouse models for neurodevelopmental disorders including ASD, and its formulation Arbaclofen has been shown to ameliorate social avoidance symptoms in some individuals with ASD. The present study investigated whether R-Baclofen can remediate ASD-related altered sensory processing reliant on excitation/inhibition imbalance in the auditory brainstem. To assess a possible excitation/inhibition imbalance in the startle-mediating brainstem underlying ASD-like auditory-evoked behaviors, we detected and quantified brain amino acid levels in the nucleus reticularis pontis caudalis (PnC) of rats with a homozygous loss-of-function mutation in the ASD-linked gene Contactin-associated protein-like 2 (Cntnap2) and their wildtype (WT) littermates using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS). Abnormal behavioral read-outs of brainstem auditory signaling in Cntnap2 KO rats were accompanied by increased levels of GABA, glutamate, and glutamine in the PnC. We then compared the effect of R-Baclofen on behavioral read-outs of brainstem auditory signaling in Cntnap2 KO and WT rats. Auditory reactivity, sensory filtering, and sensorimotor gating were tested in form of acoustic startle response input-output functions, short-term habituation, and prepulse inhibition before and after acute administration of R-Baclofen (0.75, 1.5, and 3 mg/kg). Systemic R-Baclofen treatment improved disruptions in sensory filtering in Cntnap2 KO rats and suppressed exaggerated auditory startle responses, in particular to moderately loud sounds. Lower ASR thresholds in Cntnap2 KO rats were increased in a dose-dependent fashion, with the two higher doses bringing thresholds close to controls, whereas shorter ASR peak latencies at the threshold were further exacerbated. Impaired prepulse inhibition increased across various acoustic prepulse conditions after administration of R-Baclofen in Cntnap2 KO rats, whereas R-Baclofen did not affect prepulse inhibition in WT rats. Our findings suggest that GABAB receptor agonists may be useful for pharmacologically targeting multiple aspects of sensory processing disruptions involving neuronal excitation/inhibition imbalances in ASD.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
33
|
Wang X, Gao C, Zhang Y, Hu S, Qiao Y, Zhao Z, Gou L, Song J, Wang Q. Overexpression of mGluR7 in the Prefrontal Cortex Attenuates Autistic Behaviors in Mice. Front Cell Neurosci 2021; 15:689611. [PMID: 34335187 PMCID: PMC8319395 DOI: 10.3389/fncel.2021.689611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is associated with a range of abnormalities pertaining to socialization, communication, repetitive behaviors, and restricted interests. Owing to its complexity, the etiology of ASD remains incompletely understood. The presynaptic G protein-coupled glutamate receptor metabotropic glutamate receptor 7 (mGluR7) is known to be essential for synaptic transmission and is also tightly linked with ASD incidence. Herein, we report that prefrontal cortex (PFC) mGluR7 protein levels were decreased in C57BL/6J mice exposed to valproic acid (VPA) and BTBR T+ Itpr3tf/J mice. The overexpression of mGluR7 in the PFC of these mice using a lentiviral vector was sufficient to reduce the severity of ASD-like behavioral patterns such that animals exhibited decreases in abnormal social interactions and communication, anxiety-like, and stereotyped/repetitive behaviors. Intriguingly, patch-clamp recordings revealed that the overexpression of mGluR7 suppressed neuronal excitability by inhibiting action potential discharge frequencies, together with enhanced action potential threshold and increased rheobase. These data offer a scientific basis for the additional study of mGluR7 as a promising therapeutic target in ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaona Wang
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Shunan Hu
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yidan Qiao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhengqin Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Jijun Song
- Henan Infectious Disease Hospital, The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Qi Wang
- Department of Histology and Embryology, Guizhou Medical University, Guizhou, China
| |
Collapse
|
34
|
Alymov AA, Kapitsa IG, Voronina TA. Neurochemical Mechanisms of Pathogenesis and Pharmacological Correction of Autism Spectrum Disorders: Current Concepts and Prospects. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
New ratio as a useful marker for early diagnosis of proximal urea cycle disorders. Clin Chim Acta 2021; 520:154-159. [PMID: 34116006 DOI: 10.1016/j.cca.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Proximal urea cycle disorders (PUCDs) are not included in most newborn screening programs due to the lack of adequate markers to monitor. Failure to alter citrulline and glutamine levels, the prognostic markers commonly used, can results in high false negative. Therefore, new biomarkers, prognostic of PUCDs, are strongly desirable. MATERIALS AND METHODS We used tandem mass spectrometry to analyze blood spot from PUCDs patients during their follow up in our referral center focusing on glutamine to glutamate (Gln/Glu) ratio. We reanalyzed the same specimens of three patients after two months and the specimen of a new patient with suspicious of PUCD disorder. RESULTS Specimens of our patients shown a significant elevation of the ratio Gln/Glu compared to that of a healthy population (p < 0.05) as well as the specimens analyzed after two months, while the glutamine concentration dropped. New patient, showing high value of the ratio, was molecularly confirmed as PUCD patient. We further analyzed the blood spots from a neonatal population in order to fix a cut-off value and include it in a newborn screening panel. CONCLUSION Our preliminary results suggest that the Gln/Glu ratio could be a very useful diagnostic marker, more stable over time than glutamine, which could improve the performance in early PUCDs identification.
Collapse
|
36
|
Park HY, Go J, Ryu YK, Choi DH, Noh JR, An JP, Oh WK, Han PL, Lee CH, Kim KS. Humulus japonicus rescues autistic‑like behaviours in the BTBR T + Itpr3 tf/J mouse model of autism. Mol Med Rep 2021; 23:448. [PMID: 33880583 PMCID: PMC8060795 DOI: 10.3892/mmr.2021.12087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
Humulus japonicus (HJ) is a traditional herbal medicine that exhibits anti-inflammatory, antimicrobial and anti-tumor effects that is used for the treatment of hypertension, pulmonary disease and leprosy. Recently, it has also been reported that HJ demonstrates neuroprotective properties in animal models of neurodegenerative diseases. The current study hypothesised that the administration of HJ would exhibit therapeutic effects in autism spectrum disorder (ASD), a neurodevelopmental disorder with lifelong consequences. The BTBR T+ Itpr3tf/J mouse model of ASD was used to investigate the anti-autistic like behavioural effects of HJ. Chronic oral administration of the ethanolic extract of HJ significantly increased social interaction, attenuated repetitive grooming behaviour and improved novel-object recognition in BTBR mice. Anti-inflammatory effects of HJ in the brain were analysed using immunohistochemistry and reverse-transcription quantitative PCR analysis. Microglia activation was markedly decreased in the striatum and hippocampus, and pro-inflammatory cytokines, including C-C Motif Chemokine Ligand 2, interleukin (IL)-1β and IL-6, were significantly reduced in the hippocampus following HJ treatment. Moreover, HJ treatment normalised the phosphorylation levels of: N-methyl-D-aspartate receptor subtype 2B and calcium/calmodulin-dependent protein kinase type II subunit α in the hippocampus of BTBR mice. The results of the present study demonstrated that the administration of HJ may have beneficial potential for ameliorating behavioural deficits and neuroinflammation in ASD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Yu X, Qian-Qian L, Cong Y, Xiao-Bing Z, Hong-Zhu D. Reduction of essential amino acid levels and sex-specific alterations in serum amino acid concentration profiles in children with autism spectrum disorder. Psychiatry Res 2021; 297:113675. [PMID: 33444991 DOI: 10.1016/j.psychres.2020.113675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Existing evidence has shown that metabolic disturbances may be involved in the pathological process of autism spectrum disorder(ASD). This study aimed to investigate the alterations of serum amino acid concentration profiles in Chinese Han children with ASD. METHODS Serum amino acid levels were measured using tandem mass spectrometry in 60 children with ASD and 30 typically developing (TD) controls. The Chinese Wechsler Young Children Scale of Intelligence (C-WYCSI) was used to evaluate the ASD subjects' intelligence quotient (IQ). RESULTS The serum levels of essential amino acids and some non-essential amino acids (glutamine, glycine, alanine, citrulline, cysteine, serine, tyrosine, and proline) in the ASD group were significantly lower than those in controls. The serum glutamate/glutamine (Glu/Gln) ratio was elevated in the ASD PIQ≥70 group, while serum levels of alanine, cysteine, phenylalanine, methionine and proline were significantly higher in male children with ASD than that in the female group. CONCLUSION The study revealed that children with ASD exhibit alterations in the serum levels of certain amino acids, and the divergence can be sex-related or associated with different cognitive function, which might provide clues for further etiological research of ASD.
Collapse
Affiliation(s)
- Xing Yu
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China.
| | - Lv Qian-Qian
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China
| | - You Cong
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China.
| | - Zou Xiao-Bing
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China.
| | - Deng Hong-Zhu
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China.
| |
Collapse
|
38
|
DeMayo MM, Harris AD, Song YJC, Pokorski I, Thapa R, Patel S, Ambarchi Z, Thomas EE, Hickie IB, Guastella AJ. Age-related parietal GABA alterations in children with autism spectrum disorder. Autism Res 2021; 14:859-872. [PMID: 33634588 DOI: 10.1002/aur.2487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
GABA is the primary inhibitory neurotransmitter in the brain, and is essential to the balance of cortical excitation and inhibition. Reductions in GABA are proposed to result in an overly excitatory cortex that may cause, or contribute to, symptoms of autism spectrum disorder (ASD). This study employed a cross-sectional design to explore GABA+ differences in ASD and the impact of age, comparing 4-12 year olds with ASD (N = 24) to typically developing children (N = 35). GABA+ concentration was measured using edited magnetic resonance spectroscopy in the left parietal lobe. This study used a mixed model to investigate group differences between children with ASD and typically developing children. There was a significant difference in GABA+ levels between the groups, a significant effect of age and interaction between age and diagnostic group. The ASD group showed an association between GABA+ and age, with GABA+ levels gradually increasing with age (r = 0.59, p = 0.003). Typically developing children did not show age-related change in GABA+ concentration (r = 0.09, p = 0.60). By the age of 9, children with ASD showed GABA+ levels that were comparable to their typically developing peers. This study suggests that children with ASD have initially lower levels of GABA+ in the left parietal lobe compared to typically developing children, and that these initially lower levels of GABA+ increase with age in ASD within this region. It is suggested that this developmental shift of GABA+ levels within the left parietal lobe provides a possible explanation for the previously found reductions in childhood that does not persist in adults. LAY SUMMARY: This study measured levels of GABA in the left parietal lobe using magnetic resonance spectroscopy in children with ASD and typically developing children. GABA levels were initially lower in the ASD group, and increased with age, while GABA did not change with age in the typically developing group. This suggests that alterations in GABA signaling may be associated with ASD in childhood. Autism Res 2021, 14: 859-872. © 2021 International Society for Autism Research, Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Yun Ju C Song
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Izabella Pokorski
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rinku Thapa
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Shrujna Patel
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Zahava Ambarchi
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Emma E Thomas
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ian B Hickie
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Adam J Guastella
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Robinson JL, Yanes JA, Reid MA, Murphy JE, Busler JN, Mumford PW, Young KC, Pietrzkowski ZJ, Nemzer BV, Hunter JM, Beck DT. Neurophysiological Effects of Whole Coffee Cherry Extract in Older Adults with Subjective Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Pilot Study. Antioxidants (Basel) 2021; 10:144. [PMID: 33498314 PMCID: PMC7909261 DOI: 10.3390/antiox10020144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bioactive plant-based compounds have shown promise as protective agents across multiple domains including improvements in neurological and psychological measures. Methodological challenges have limited our understanding of the neurophysiological changes associated with polyphenol-rich supplements such as whole coffee cherry extract (WCCE). In the current study, we (1) compared 100 mg of WCCE to a placebo using an acute, randomized, double-blind, within-subject, cross-over design, and we (2) conducted a phytochemical analysis of WCCE. The primary objective of the study was to determine the neurophysiological and behavioral changes that resulted from the acute administration of WCCE. We hypothesized that WCCE would increase brain-derived neurotrophic factor (BDNF) and glutamate levels while also increasing neurofunctional measures in cognitive brain regions. Furthermore, we expected there to be increased behavioral performance associated with WCCE, as measured by reaction time and accuracy. Participants underwent four neuroimaging scans (pre- and post-WCCE and placebo) to assess neurofunctional/metabolic outcomes using functional magnetic resonance imaging and magnetic resonance spectroscopy. The results suggest that polyphenol-rich WCCE is associated with decreased reaction time and may protect against cognitive errors on tasks of working memory and response inhibition. Behavioral findings were concomitant with neurofunctional changes in structures involved in decision-making and attention. Specifically, we found increased functional connectivity between the anterior cingulate and regions involved in sensory and decision-making networks. Additionally, we observed increased BDNF and an increased glutamate/gamma-aminobutyric acid (GABA) ratio following WCCE administration. These results suggest that WCCE is associated with acute neurophysiological changes supportive of faster reaction times and increased, sustained attention.
Collapse
Affiliation(s)
- Jennifer L. Robinson
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Julio A. Yanes
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
| | - Meredith A. Reid
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Jerry E. Murphy
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
| | - Jessica N. Busler
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
| | - Petey W. Mumford
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (P.W.M.); (K.C.Y.)
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (P.W.M.); (K.C.Y.)
- Edward Via College of Osteopathic Medicine, Auburn, AL 36830, USA
| | | | - Boris V. Nemzer
- VDF FutureCeuticals, Inc., 2692 N. State Route 1-17, Momence, IL 60954, USA; (B.V.N.); (J.M.H.)
| | - John M. Hunter
- VDF FutureCeuticals, Inc., 2692 N. State Route 1-17, Momence, IL 60954, USA; (B.V.N.); (J.M.H.)
| | - Darren T. Beck
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Edward Via College of Osteopathic Medicine, Auburn, AL 36830, USA
| |
Collapse
|
40
|
Mesleh AG, Abdulla SA, El-Agnaf O. Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spectrum Disorder for Biomarkers Discovery and Patient Stratification. J Pers Med 2021; 11:jpm11010041. [PMID: 33450950 PMCID: PMC7828397 DOI: 10.3390/jpm11010041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder characterized by impairments in two main areas: social/communication skills and repetitive behavioral patterns. The prevalence of ASD has increased in the past two decades, however, it is not known whether the evident rise in ASD prevalence is due to changes in diagnostic criteria or an actual increase in ASD cases. Due to the complexity and heterogeneity of ASD, symptoms vary in severity and may be accompanied by comorbidities such as epilepsy, attention deficit hyperactivity disorder (ADHD), and gastrointestinal (GI) disorders. Identifying biomarkers of ASD is not only crucial to understanding the biological characteristics of the disorder, but also as a detection tool for its early screening. Hence, this review gives an insight into the main areas of ASD biomarker research that show promising findings. Finally, it covers success stories that highlight the importance of precision medicine and the current challenges in ASD biomarker discovery studies.
Collapse
Affiliation(s)
- Areej G. Mesleh
- Division of Genomics and Precision Medicine (GPM), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
| | - Sara A. Abdulla
- Neurological Disorder Center, Qatar Biomedical Research Institute (QBRI), HBKU, Doha 34110, Qatar
- Correspondence: (S.A.A.); (O.E.-A.)
| | - Omar El-Agnaf
- Division of Genomics and Precision Medicine (GPM), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
- Neurological Disorder Center, Qatar Biomedical Research Institute (QBRI), HBKU, Doha 34110, Qatar
- Correspondence: (S.A.A.); (O.E.-A.)
| |
Collapse
|
41
|
All roads lead to the motor cortex: psychomotor mechanisms and their biochemical modulation in psychiatric disorders. Mol Psychiatry 2021; 26:92-102. [PMID: 32555423 DOI: 10.1038/s41380-020-0814-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Psychomotor abnormalities have been abundantly observed in psychiatric disorders like major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCH). Although early psychopathological descriptions highlighted the truly psychomotor nature of these abnormalities, more recent investigations conceive them rather in purely motor terms. This has led to an emphasis of dopamine-based abnormalities in subcortical-cortical circuits including substantia nigra, basal ganglia, thalamus, and motor cortex. Following recent findings in MDD, BD, and SCH, we suggest a concept of psychomotor symptoms in the literal sense of the term by highlighting three specifically psychomotor (rather than motor) mechanisms including their biochemical modulation. These include: (i) modulation of dopamine- and substantia nigra-based subcortical-cortical motor circuit by primarily non-motor subcortical raphe nucleus and serotonin via basal ganglia and thalamus (as well as by other neurotransmitters like glutamate and GABA); (ii) modulation of motor cortex and motor network by non-motor cortical networks like default-mode network and sensory networks; (iii) global activity in cortex may also shape regional distribution of neural activity in motor cortex. We demonstrate that these three psychomotor mechanisms and their underlying biochemical modulation are operative in both healthy subjects as well as in MDD, BD, and SCH subjects; the only difference consists in the fact that these mechanisms are abnormally balanced and thus manifest in extreme values in psychiatric disorders. We conclude that psychomotor mechanisms operate in a dimensional and cross-nosological way as their degrees of expression are related to levels of psychomotor activity (across different disorders) rather than to the diagnostic categories themselves. Psychomotor mechanisms and their biochemical modulation can be considered paradigmatic examples of a dimensional approach as suggested in RDoC and the recently introduced spatiotemporal psychopathology.
Collapse
|
42
|
Zhang J, Xu Y, Li D, Fu L, Zhang X, Bao Y, Zheng L. Review of the Correlation of LAT1 With Diseases: Mechanism and Treatment. Front Chem 2020; 8:564809. [PMID: 33195053 PMCID: PMC7606929 DOI: 10.3389/fchem.2020.564809] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
LAT1 is a member of the system L transporter family. The main role of the LAT1 is to transport specific amino acids through cell membranes to provide nutrients to cells and participate in several metabolic pathways. It also contributes to the transport of hormones and some drugs, which are essential for the development and treatment of some diseases. In recent years, many studies have shown that LAT1 is related to cancer, obesity, diabetes, and other diseases. However, the specific mechanism underlying the influence of LAT1 on such conditions remains unclear. Through the increasing number of studies on LAT1, we have obtained a preliminary understanding on the function of LAT1 in diseases. These studies also provide a theoretical basis for finding treatments for LAT1-related diseases, such as cancer. This review summarizes the function and mechanism of LAT1 in different diseases and the treatment of LAT1-related diseases. It also provides support for the development of novel and reliable disease treatments.
Collapse
Affiliation(s)
- Jingshun Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dandan Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lulu Fu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Xueying Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Yigang Bao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
44
|
Dan Z, Mao X, Liu Q, Guo M, Zhuang Y, Liu Z, Chen K, Chen J, Xu R, Tang J, Qin L, Gu B, Liu K, Su C, Zhang F, Xia Y, Hu Z, Liu X. Altered gut microbial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder. Gut Microbes 2020; 11:1246-1267. [PMID: 32312186 PMCID: PMC7524265 DOI: 10.1080/19490976.2020.1747329] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a severe neurodevelopmental disorder. To enhance the understanding of the gut microbiota structure in ASD children at different ages as well as the relationship between gut microbiota and fecal metabolites, we first used the 16S rRNA sequencing to evaluate the gut microbial population in a cohort of 143 children aged 2-13 years old. We found that the α-diversity of ASD group showed no significant change with age, while the TD group showed increased α-diversity with age, which indicates that the compositional development of the gut microbiota in ASD varies at different ages in ways that are not consistent with TD group. Recent studies have shown that chronic constipation is one of the most commonly obvious gastrointestinal (GI) symptoms along with ASD core symptoms. To further investigate the potential interaction effects between ASD and GI symptoms, the 30 C-ASD and their aged-matched TD were picked out to perform metagenomics analysis. We observed that C-ASD group displayed decreased diversity, depletion of species of Sutterella, Prevotella, and Bacteroides as well as dysregulation of associated metabolism activities, which may involve in the pathogenesis of C-ASD. Consistent with metagenomic analysis, liquid chromatography-mass spectrometry (LC/MS) revealed some of the differential metabolites between C-ASD and TD group were involved in the metabolic network of neurotransmitters including serotonin, dopamine, histidine, and GABA. Furthermore, we found these differences in metabolites were associated with altered abundance of specific bacteria. The study suggested possible future modalities for ASD intervention through targeting the specific bacteria associated with neurotransmitter metabolism.
Collapse
Affiliation(s)
- Zhou Dan
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Qisha Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mengchen Guo
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yaoyao Zhuang
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Kun Chen
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junyu Chen
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junming Tang
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Lianhong Qin
- Children Growth Center of Bo’ai Homestead in Yixing, Yixing, China
| | - Bing Gu
- Medical Technological College of Xuzhou Medical University, Xuzhou, China
| | - Kangjian Liu
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan Su
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,CONTACT Xingyin Liu Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| |
Collapse
|
45
|
Meyyazhagan A, Balasubramanian B, Easwaran M, Alagamuthu KK, Shanmugam S, Kuchi Bhotla H, Pappusamy M, Arumugam VA, Thangaraj A, Kaul T, Keshavarao S, Cacabelos R. Biomarker study of the biological parameter and neurotransmitter levels in autistics. Mol Cell Biochem 2020; 474:277-284. [PMID: 32740790 DOI: 10.1007/s11010-020-03851-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023]
Abstract
Autism is a prevalent developmental disorder that combines repetitive behaviours, social deficits and language abnormalities. The present study aims to assess the autistic subjects using DSM IV-TR criteria followed with the analysis of neurotransmitters, biochemical parameters, oxidative stress and its ions in two groups of autistic subjects (group I < 12 years; group II ≥ 12 years). Antioxidants show a variation of 10% increase in controls compared to autistic age < 12 years. The concentration of pyruvate kinase and hexokinase is elevated in controls approximately 60% and 45%, respectively, with the significance of 95 and 99%. Autistic subjects showed marked variation in levels of neurotransmitters, oxidative stress and its related ions. Cumulative assessment of parameters related to biochemical markers and neurotransmitters paves the way for autism-based research, although these observations draw interest in an integrated approach for autism.
Collapse
Affiliation(s)
- Arun Meyyazhagan
- EuroEspes Biomedical Research Centre, International Center of Neurosciences and Genomic Medicine, Bergondo, 15165, Corunna, Spain. .,Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India. .,Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India.
| | - Balamuralikrishnan Balasubramanian
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.,Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Murugesh Easwaran
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Karthick Kumar Alagamuthu
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.,Jiagsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sureshkumar Shanmugam
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.,Department of Animal Resource and Science, Dankook University, Cheonan, 31116, South Korea
| | - Haripriya Kuchi Bhotla
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Arulprakash Thangaraj
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sasikala Keshavarao
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ramon Cacabelos
- EuroEspes Biomedical Research Centre, International Center of Neurosciences and Genomic Medicine, Bergondo, 15165, Corunna, Spain
| |
Collapse
|
46
|
Chen J, Tan L, Liao Y, Long J, Zhou Y, Wei J, Zhou Y. Chemokine CCL2 impairs spatial memory and cognition in rats via influencing inflammation, glutamate metabolism and apoptosis-associated genes expression- a potential mechanism for HIV-associated neurocognitive disorder. Life Sci 2020; 255:117828. [PMID: 32454160 DOI: 10.1016/j.lfs.2020.117828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/16/2023]
Abstract
AIMS To explore the role of chemokine CC motif ligand 2 (CCL2) in spatial memory and cognition impairment, and the underlying mechanisms focused on inflammatory, glutamate metabolistic and apoptotic- associated mRNA expression. MATERIALS AND METHODS Stereotaxic surgery was performed here to establish a rat model by bilateral intra-hippocampal injection of CCL2. Morris water maze (MWM) and Novel object recognition test (NORT) were used to assess the learning, memory and cognitive ability respectively. RT-PCR was used to detect the relative mRNA expression of inflammatory, glutamate metabolistic and apoptotic- associated indexes. Nissl and TUNEL staining were performed to observe the morphological changes of hippocampal CA1 zone and quantified the apoptosis of hippocampal neurons of CA1 zones respectively. KEY FINDINGS We found CCL2 injured cognitive function in rats. Six days after CCL2 injection, we revealed the following obvious mRNA expression changes: (1) increasing of the neuroinflammatory cytokines IL-1β, CXCL-10, IL-6; (2) decreasing of the glutamate transporters GLT-1 and GLAST and increasing of PAG; (3) increasing of the apoptotic genes caspase-8, caspase-3 and Bax, while decreasing the anti-apoptotic gene Bcl-2. Further, Nissl staining and TUNEL confirmed the injury of the structure of hippocampal CA1 zones and the apoptosis of hippocampal neurons. SIGNIFICANCE Our results indicated that CCL2 impaired spatial memory and cognition, the involving mechanisms may link to the up-regulation of mRNA expression of the three major pathological events: inflammation, excitotoxicity and neuronal apoptosis, which were involved in HIV-associated neurocognitive disorder (HAND). Taken together, these findings suggest a potential therapeutic strategy against CCL2.
Collapse
Affiliation(s)
- Jianmin Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Liqiu Tan
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yuanjun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jiangyi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yinjun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jinbin Wei
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.
| |
Collapse
|
47
|
Bjørklund G, Meguid NA, El-Bana MA, Tinkov AA, Saad K, Dadar M, Hemimi M, Skalny AV, Hosnedlová B, Kizek R, Osredkar J, Urbina MA, Fabjan T, El-Houfey AA, Kałużna-Czaplińska J, Gątarek P, Chirumbolo S. Oxidative Stress in Autism Spectrum Disorder. Mol Neurobiol 2020; 57:2314-2332. [PMID: 32026227 DOI: 10.1007/s12035-019-01742-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
According to the United States Centers for Disease Control and Prevention (CDC), as of July 11, 2016, the reported average incidence of children diagnosed with an autism spectrum disorder (ASD) was 1 in 68 (1.46%) among 8-year-old children born in 2004 and living within the 11 monitoring sites' surveillance areas in the United States of America (USA) in 2012. ASD is a multifaceted neurodevelopmental disorder that is also considered a hidden disability, as, for the most part; there are no apparent morphological differences between children with ASD and typically developing children. ASD is diagnosed based upon a triad of features including impairment in socialization, impairment in language, and repetitive and stereotypic behaviors. The increasing incidence of ASD in the pediatric population and the lack of successful curative therapies make ASD one of the most challenging disorders for medicine. ASD neurobiology is thought to be associated with oxidative stress, as shown by increased levels of reactive oxygen species and increased lipid peroxidation, as well as an increase in other indicators of oxidative stress. Children with ASD diagnosis are considered more vulnerable to oxidative stress because of their imbalance in intracellular and extracellular glutathione levels and decreased glutathione reserve capacity. Several studies have suggested that the redox imbalance and oxidative stress are integral parts of ASD pathophysiology. As such, early assessment and treatment of antioxidant status may result in a better prognosis as it could decrease the oxidative stress in the brain before it can induce more irreversible brain damage. In this review, many aspects of the role of oxidative stress in ASD are discussed, taking into account that the process of oxidative stress may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Mona A El-Bana
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
- Medical Biochemistry Department, National Research Centre, Giza, Egypt
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maha Hemimi
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
- Taipei Medical University, Taipei, Taiwan
| | - Božena Hosnedlová
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
- Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
- Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry (KIKKB), Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Teja Fabjan
- Institute of Clinical Chemistry and Biochemistry (KIKKB), Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Amira A El-Houfey
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Sabia University College, Jazan University, Jizan, Saudi Arabia
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Paulina Gątarek
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
48
|
Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, Roccella M. The Neurochemistry of Autism. Brain Sci 2020; 10:E163. [PMID: 32182969 PMCID: PMC7139720 DOI: 10.3390/brainsci10030163] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to complex neurobehavioral and neurodevelopmental conditions characterized by impaired social interaction and communication, restricted and repetitive patterns of behavior or interests, and altered sensory processing. Environmental, immunological, genetic, and epigenetic factors are implicated in the pathophysiology of autism and provoke the occurrence of neuroanatomical and neurochemical events relatively early in the development of the central nervous system. Many neurochemical pathways are involved in determining ASD; however, how these complex networks interact and cause the onset of the core symptoms of autism remains unclear. Further studies on neurochemical alterations in autism are necessary to clarify the early neurodevelopmental variations behind the enormous heterogeneity of autism spectrum disorder, and therefore lead to new approaches for the treatment and prevention of autism. In this review, we aim to delineate the state-of-the-art main research findings about the neurochemical alterations in autism etiology, and focuses on gamma aminobutyric acid (GABA) and glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opioids, and acetylcholine. We also aim to suggest a possible related therapeutic approach that could improve the quality of ASD interventions. Over one hundred references were collected through electronic database searching in Medline and EMBASE (Ovid), Scopus (Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI).
Collapse
Affiliation(s)
- Rosa Marotta
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
| | - Maria C. Risoleo
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy;
| | - Lucia Parisi
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Luigi Vetri
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo 90127, Italy
| | - Michele Roccella
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| |
Collapse
|
49
|
Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta 2020; 502:41-54. [DOI: 10.1016/j.cca.2019.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
50
|
Schreck KA, Richdale AL. Sleep problems, behavior, and psychopathology in autism: inter-relationships across the lifespan. Curr Opin Psychol 2019; 34:105-111. [PMID: 31918238 DOI: 10.1016/j.copsyc.2019.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Across the lifespan, autistic individuals experience symptomatology concomitant with their diagnosis including increased rates of daytime behavior (e.g. stereotypy, self-injurious behavior, and aggression) and psychopathology (e.g. attention deficit hyperactivity disorder, anxiety, and depression). In addition to this inter-related behavior and psychopathology, autistic children, adolescents, and adults consistently exhibit a wide variety of sleep problems (e.g. insomnia, reduced total sleep time, increased sleep onset latency, night waking, etc.). Early research and current research continue to describe the inter-relatedness among these daytime behaviors, psychopathology, and sleep problems for autistic individuals. Although descriptions of these issues appear in research, only preliminary suggestions exist for the causes and contributors toward the sleep problems or the interactions of sleep problems with psychopathology, although current research suggests a possible biopsychosocial interaction.
Collapse
Affiliation(s)
- Kimberly A Schreck
- Penn State Harrisburg, 777 W. Harrisburg Pike, W311 Olmsted Building, Middletown, PA 17057, United States.
| | - Amanda L Richdale
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|