1
|
Zimmerman BK, Maas SA, Weiss JA, Ateshian GA. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. J Biomech Eng 2024; 146:121001. [PMID: 39152721 PMCID: PMC11500809 DOI: 10.1115/1.4066219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fatigue failure in biological soft tissues plays a critical role in the etiology of chronic soft tissue injuries and diseases such as osteoarthritis (OA). Understanding failure mechanisms is hindered by the decades-long timescales over which damage takes place. Analyzing the factors contributing to fatigue failure requires the help of validated computational models developed for soft tissues. This study presents a framework for fatigue failure of fibrous biological tissues based on reaction kinetics, where the composition of intact and fatigued material regions can evolve via degradation and breakage over time, in response to energy-based fatigue and damage criteria. Using reactive constrained mixture theory, material region mass fractions are governed by the axiom of mass balance. Progression of fatigue is controlled by an energy-based reaction rate, with user-selected probability functions defining the damage propensity of intact and fatigued material regions. Verification of this reactive theory, which is implemented in the open-source FEBio finite element software, is provided in this study. Validation is also demonstrated against experimental data, showing that predicted damage can be linked to results from biochemical assays. The framework is also applied to study fatigue failure during frictional contact of cartilage. Simulating previous experiments suggests that frictional effects slightly increase fatigue progression, but the main driver is cyclic compressive contact loading. This study demonstrated the ability of theoretical models to complement and extend experimental findings, advancing our understanding of the time progression of fatigue in biological tissues.
Collapse
Affiliation(s)
- Brandon K Zimmerman
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
2
|
Ridge ST, McLean DI, Garner KR, Olsen MT, Bruening DA, Johnson AW. Sticking the landing: A comparison of shod vs barefoot landing kinetics and foot muscle characteristics in gymnasts, cheerleaders, and non-athletes. PLoS One 2024; 19:e0309157. [PMID: 39365768 PMCID: PMC11451975 DOI: 10.1371/journal.pone.0309157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 10/06/2024] Open
Abstract
OBJECTIVES The ability to control landings and stabilize quickly is essential in sports like gymnastics and cheerleading, where landing quality impacts scores. The similarities and contrasts between these sports, where one trains primarily barefoot and the other shod, may increase understanding of the kinetic role of the foot during landings. DESIGN Sixteen gymnasts (GYM), sixteen cheerleaders (CHR), and sixteen non-athletes (NAT) performed single-foot shod and barefoot drop landings onto a force plate. METHOD Foot muscle strength was assessed using a custom test and ultrasound imaging was used to measure six foot muscles. Group differences in muscle sizes and strength measurements were compared using one-way ANOVAs (α = 0.05). Landing mechanics metrics were evaluated using 3 x 2 between-within ANOVAs (α = 0.05). Pairwise comparisons were made using Tukey post-hoc tests. RESULTS Barefoot landings resulted in greater peak vertical ground reaction force (pVGRF) and lower time to pVGRF (TTpVGRF). Significant group main effect differences were found between GYM and NAT for all kinetic measures (GYM: shorter time to stability (TTS) and TTpVGRF, and greater pVGRF), while no significant differences in landing kinetics were found between CHR and either GYM or NAT. No interactions were found between group and condition. GYM and CHR had significantly greater summed foot muscle size than NAT, however, only CHR displayed significantly greater toe flexion force than NAT. CONCLUSIONS Our data suggests that while wearing shoes does not affect groups differently, footwear reduces initial peak VGRFs but does not influence later stabilization times.
Collapse
Affiliation(s)
- Sarah T. Ridge
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Dallin I. McLean
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Kelsey R. Garner
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Mark T. Olsen
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Dustin A. Bruening
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States of America
| | - A. Wayne Johnson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
3
|
Zuo D, Zhu M, Chen D, Xue Q. A computationally efficient gradient-enhanced healing model for soft biological tissues. Biomech Model Mechanobiol 2024; 23:1491-1509. [PMID: 38733532 DOI: 10.1007/s10237-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Soft biological tissues, such as arterial tissue, have the ability to grow and remodel in response to damage. Computational method plays a critical role in understanding the underlying mechanisms of tissue damage and healing. However, the existing healing model often requires huge computation time and it is inconvenient to implement finite element simulation. In this paper, we propose a computationally efficient gradient-enhanced healing model that combines the advantages of the gradient-enhanced damage model, the homeostatic-driven turnover remodeling model, and the damage-induced growth model. In the proposed model, the evolution of healing-related parameters can be solved explicitly. Additionally, an adaptive time increment method is used to further reduce computation time. The proposed model can be easily implemented in Abaqus, requiring only a user subroutine UMAT. The effectiveness of proposed model is verified through a semi-analytical example, and the influence of the variables in the proposed model is investigated using uniaxial tension and open-hole plate tests. Finally, the long-term development of aneurysms is simulated to demonstrate the potential applications of the proposed model in real biomechanical problems.
Collapse
Affiliation(s)
- Di Zuo
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China.
| | - Mingji Zhu
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Daye Chen
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Qiwen Xue
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| |
Collapse
|
4
|
Ateshian GA, LaBelle SA, Weiss JA. Continuum Growth Mechanics: Reconciling Two Common Frameworks. J Biomech Eng 2024; 146:101003. [PMID: 38607565 PMCID: PMC11110826 DOI: 10.1115/1.4065309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
The objective of this study was to investigate whether the two most common growth mechanics modeling frameworks, the constrained-mixture growth model and the kinematic growth model, could be reconciled mathematically. The purpose of this effort was to provide practical guidelines for potential users of these modeling frameworks. Results showed that the kinematic growth model is mathematically consistent with a special form of the constrained-mixture growth model, where only one generation of a growing solid exists at any given time, overturning its entire solid mass at each instant of growth in order to adopt the reference configuration dictated by the growth deformation. The thermodynamics of the kinematic growth model, along with the specialized constrained-mixture growth model, requires a cellular supply of chemical energy to allow deposition of solid mass under a stressed state. A back-of-the-envelope calculation shows that the amount of chemical energy required to sustain biological growth under these models is negligibly small, when compared to the amount of energy normally consumed daily by the human body. In conclusion, this study successfully reconciled the two most popular growth theories for biological growth and explained the special circumstances under which the constrained-mixture growth model reduces to the kinematic growth model.
Collapse
Affiliation(s)
- Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steven A LaBelle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112;Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112;Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
5
|
Sempértegui F, Avril S. Integration of cross-links, discrete fiber distributions and of a non-local theory in the Homogenized Constrained Mixture Model to Simulate Patient-Specific Thoracic Aortic Aneurysm Progression. J Biomech 2024:112297. [PMID: 39244434 DOI: 10.1016/j.jbiomech.2024.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Thoracic aortic aneurysms (TAA) represent a critical health issue for which computational models can significantly contribute to better understand the physiopathology. Among different computational frameworks, the Homogenized Constrained Mixture Theory has shown to be a computationally efficient option, allowing the inclusion of several mechanically significant constituents into a layer-specific mixture. Different patient-specific Growth and Remodeling (G&R) models correctly predicted TAA progression, although simplifications such as the inclusion of a limited number of collagen fibers and imposed boundary conditions might limit extensive analyses. The current study aims to enhance existing models by incorporating several discrete collagen fibers and to remove restrictive boundary conditions of the previous models. The implementation of discretized fiber dispersion presents a more realistic description of the vessel, while the removal of boundary conditions was addressed by including cross-links in the model to provide a supplemental stiffness against through-thickness shearing, a feature that was previously absent, and by the development of a non-local framework that ensures the stable deposition and degradation of collagen fibers. With these improvements, the current model represents a step forward towards more robust and comprehensive simulations of TAA growth.
Collapse
Affiliation(s)
- Felipe Sempértegui
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023, Saint-Étienne, France.
| | - Stéphane Avril
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023, Saint-Étienne, France.
| |
Collapse
|
6
|
Hu J, Anderson W, Hayes E, Strauss EA, Lang J, Bacos J, Simacek N, Vu HH, McCarty OJ, Kim H, Kang Y(A. The development, use, and challenges of electromechanical tissue stimulation systems. Artif Organs 2024; 48:943-960. [PMID: 38887912 PMCID: PMC11321926 DOI: 10.1111/aor.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.
Collapse
Affiliation(s)
- Jie Hu
- Department of Mechanical Engineering; University of Massachusetts; Lowell, MA 01854 USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Emily Hayes
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Ellie Annah Strauss
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Jordan Lang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Josh Bacos
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Noah Simacek
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Helen H. Vu
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology; Oregon Health & Science University; Portland, OR 97201 USA
| | - Hoyeon Kim
- Department of Engineering; Loyola University Maryland; Baltimore, MD 21210 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| |
Collapse
|
7
|
Fantaci B, Calvo B, Rodríguez JF. Modeling biological growth of human keratoconus: On the effect of tissue degradation, location and size. Comput Biol Med 2024; 180:108976. [PMID: 39116714 DOI: 10.1016/j.compbiomed.2024.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Keratoconus is a non-inflammatory bilateral disease, that usually occurs in the inferior-temporal region, where the cornea bulges out and becomes thinner, due to the gradual loss of structural organization in corneal tissue. Degenerated extracellular matrix and fibers breakage have been observed in keratoconic corneas, that may promote the progression of the pathology. While keratoconus histopathology has been widely described in literature, its etiology is still not clear. Being able to fully understand keratoconus growing process could be crucial to detect its development and improve prevention strategies. This work proposes a novel continuum-based keratoconus growth model. The proposed framework accounts for the structural changes occurring in the underlying tissue during the progression of the disease, as indicated in experiments. The developed formulation is able to replicate the typical bulging and thinning of keratoconic corneas, as well as different forms in terms of shape, as they are commonly classified in clinics (nipple, oval and globus cones). The cone that is obtained constitutes a permanent deformed state, not pressure dependent. The resulting model may help to better understand the etiology of the behavior of this disease with the aim of improving the diagnosis and the treatment of the pathology.
Collapse
Affiliation(s)
- Benedetta Fantaci
- Aragon Institute of Research Engineering (I3A), Universidad de Zaragoza, Zaragoza, Spain.
| | - Begoña Calvo
- Aragon Institute of Research Engineering (I3A), Universidad de Zaragoza, Zaragoza, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Universidad de Zaragoza, Zaragoza, Spain
| | - José Félix Rodríguez
- LaBS, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
8
|
Marino M, Sauty B, Vairo G. Unraveling the complexity of vascular tone regulation: a multiscale computational approach to integrating chemo-mechano-biological pathways with cardiovascular biomechanics. Biomech Model Mechanobiol 2024; 23:1091-1120. [PMID: 38507180 DOI: 10.1007/s10237-024-01826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Vascular tone regulation is a crucial aspect of cardiovascular physiology, with significant implications for overall cardiovascular health. However, the precise physiological mechanisms governing smooth muscle cell contraction and relaxation remain uncertain. The complexity of vascular tone regulation stems from its multiscale and multifactorial nature, involving global hemodynamics, local flow conditions, tissue mechanics, and biochemical pathways. Bridging this knowledge gap and translating it into clinical practice presents a challenge. In this paper, a computational model is presented to integrate chemo-mechano-biological pathways with cardiovascular biomechanics, aiming to unravel the intricacies of vascular tone regulation. The computational framework combines an algebraic description of global hemodynamics with detailed finite element analyses at the scale of vascular segments for describing their passive and active mechanical response, as well as the molecular transport problem linked with chemo-biological pathways triggered by wall shear stresses. Their coupling is accounted for by considering a two-way interaction. Specifically, the focus is on the role of nitric oxide-related molecular pathways, which play a critical role in modulating smooth muscle contraction and relaxation to maintain vascular tone. The computational framework is employed to examine the interplay between localized alterations in the biomechanical response of a specific vessel segment-such as those induced by calcifications or endothelial dysfunction-and the broader global hemodynamic conditions-both under basal and altered states. The proposed approach aims to advance our understanding of vascular tone regulation and its impact on cardiovascular health. By incorporating chemo-mechano-biological mechanisms into in silico models, this study allows us to investigate cardiovascular responses to multifactorial stimuli and incorporate the role of adaptive homeostasis in computational biomechanics frameworks.
Collapse
Affiliation(s)
- Michele Marino
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy.
| | - Bastien Sauty
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, F-42023, Saint-Etienne, France
| | - Giuseppe Vairo
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| |
Collapse
|
9
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Maes L, Vervenne T, Hendrickx A, Estrada AC, Van Hoof L, Verbrugghe P, Rega F, Jones EAV, Humphrey JD, Famaey N. Cell signaling and tissue remodeling in the pulmonary autograft after the Ross procedure: A computational study. J Biomech 2024; 171:112180. [PMID: 38906711 DOI: 10.1016/j.jbiomech.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
In the Ross procedure, a patient's pulmonary valve is transplanted in the aortic position. Despite advantages of this surgery, reoperation is still needed in many cases due to excessive dilatation of the pulmonary autograft. To further understand the failure mechanisms, we propose a multiscale model predicting adaptive processes in the autograft at the cell and tissue scale. The cell-scale model consists of a network model, that includes important signaling pathways and relations between relevant transcription factors and their target genes. The resulting gene activity leads to changes in the mechanical properties of the tissue, modeled as a constrained mixture of collagen, elastin and smooth muscle. The multiscale model is calibrated with findings from experiments in which seven sheep underwent the Ross procedure. The model is then validated against a different set of sheep experiments, for which a qualitative agreement between model and experiment is found. Model outcomes at the cell scale, including the activity of genes and transcription factors, also match experimentally obtained transcriptomics data.
Collapse
Affiliation(s)
- Lauranne Maes
- BioMechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Thibault Vervenne
- BioMechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Amber Hendrickx
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ana C Estrada
- Department of Biomedical Engineering, Yale University, New Haven CT, USA
| | - Lucas Van Hoof
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Peter Verbrugghe
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; CARIM School for Cardiovascular Diseases, Department of Cardiology, Maastricht University, Maastricht, Netherlands
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven CT, USA
| | - Nele Famaey
- BioMechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Mastrofini A, Marino M, Karlöf E, Hedin U, Gasser TC. On the Impact of Residual Strains in the Stress Analysis of Patient-Specific Atherosclerotic Carotid Vessels: Predictions Based on the Homogenous Stress Hypothesis. Ann Biomed Eng 2024; 52:1347-1358. [PMID: 38349443 PMCID: PMC10995094 DOI: 10.1007/s10439-024-03458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/23/2024] [Indexed: 04/06/2024]
Abstract
The identification of carotid atherosclerotic lesion at risk for plaque rupture, eventually resulting in cerebral embolism and stroke, is of paramount clinical importance. High stress in the fibrous plaque cap has been proposed as risk factor. However, among others, residual strains influence said stress predictions, but quantitative and qualitative implications of residual strains in this context are not well explored. We therefore propose a multiplicative kinematics-based Growth and Remodeling (G&R) framework to predict residual strains from homogenizing tissue stress and then investigate its implication on plaque stress. Carotid vessel morphology of four patients was reconstructed from clinical Computed Tomography-Angiography (CT-A) images and equipped with heterogeneous tissue constitutive properties assigned through a histology-based artificial intelligence image segmentation tool. As compared to a purely elastic analysis and depending on patient-specific morphology and tissue distributions, the incorporation of residual strains reduced the maximum wall stress by up to 30 % and resulted in a fundamentally different distribution of stress across the atherosclerotic wall. Regardless residual strains homogenized tissue stresses, the fibrous plaque cap may persistently be exposed to spots of high stress. In conclusion, the incorporation of residual strains in biomechanical studies of atherosclerotic carotids may be important for a reliable assessment of fibrous plaque cap stress.
Collapse
Affiliation(s)
- Alessandro Mastrofini
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Michele Marino
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Eva Karlöf
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - T Christian Gasser
- KTH Solid Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden.
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
12
|
Gierig M, Gaziano P, Wriggers P, Marino M. Post-angioplasty remodeling of coronary arteries investigated via a chemo-mechano-biological in silico model. J Biomech 2024; 166:112058. [PMID: 38537368 DOI: 10.1016/j.jbiomech.2024.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
This work presents the application of a chemo-mechano-biological constitutive model of soft tissues for describing tissue inflammatory response to damage in collagen constituents. The material model is implemented into a nonlinear finite element formulation to follow up a coronary standard balloon angioplasty for one year. Numerical results, compared with available in vivo clinical data, show that the model reproduces the temporal dynamics of vessel remodeling associated with subintimal damage. Such dynamics are bimodular, being characterized by an early tissue resorption and lumen enlargement, followed by late tissue growth and vessel constriction. Applicability of the modeling framework in retrospective studies is demonstrated, and future extension towards prospective applications is discussed.
Collapse
Affiliation(s)
- Meike Gierig
- Institute of Continuum Mechanics, Leibniz University of Hannover, An der Universität 1, 30823 Garbsen, Germany
| | - Pierfrancesco Gaziano
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz University of Hannover, An der Universität 1, 30823 Garbsen, Germany
| | - Michele Marino
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.
| |
Collapse
|
13
|
Irastorza-Valera L, Benítez JM, Montáns FJ, Saucedo-Mora L. An Agent-Based Model to Reproduce the Boolean Logic Behaviour of Neuronal Self-Organised Communities through Pulse Delay Modulation and Generation of Logic Gates. Biomimetics (Basel) 2024; 9:101. [PMID: 38392147 PMCID: PMC10886514 DOI: 10.3390/biomimetics9020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The human brain is arguably the most complex "machine" to ever exist. Its detailed functioning is yet to be fully understood, let alone modelled. Neurological processes have logical signal-processing and biophysical aspects, and both affect the brain's structure, functioning and adaptation. Mathematical approaches based on both information and graph theory have been extensively used in an attempt to approximate its biological functioning, along with Artificial Intelligence frameworks inspired by its logical functioning. In this article, an approach to model some aspects of the brain learning and signal processing is presented, mimicking the metastability and backpropagation found in the real brain while also accounting for neuroplasticity. Several simulations are carried out with this model to demonstrate how dynamic neuroplasticity, neural inhibition and neuron migration can reshape the brain's logical connectivity to synchronise signal processing and obtain certain target latencies. This work showcases the importance of dynamic logical and biophysical remodelling in brain plasticity. Combining mathematical (agents, graph theory, topology and backpropagation) and biomedical ingredients (metastability, neuroplasticity and migration), these preliminary results prove complex brain phenomena can be reproduced-under pertinent simplifications-via affordable computations, which can be construed as a starting point for more ambitiously accurate simulations.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, 75013 Paris, France
| | - José María Benítez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Kim H, Rigo B, Wong G, Lee YJ, Yeo WH. Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. NANO-MICRO LETTERS 2023; 16:52. [PMID: 38099970 PMCID: PMC10724104 DOI: 10.1007/s40820-023-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
This review summarizes recent progress in developing wireless, batteryless, fully implantable biomedical devices for real-time continuous physiological signal monitoring, focusing on advancing human health care. Design considerations, such as biological constraints, energy sourcing, and wireless communication, are discussed in achieving the desired performance of the devices and enhanced interface with human tissues. In addition, we review the recent achievements in materials used for developing implantable systems, emphasizing their importance in achieving multi-functionalities, biocompatibility, and hemocompatibility. The wireless, batteryless devices offer minimally invasive device insertion to the body, enabling portable health monitoring and advanced disease diagnosis. Lastly, we summarize the most recent practical applications of advanced implantable devices for human health care, highlighting their potential for immediate commercialization and clinical uses.
Collapse
Affiliation(s)
- Hyeonseok Kim
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bruno Rigo
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gabriella Wong
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yoon Jae Lee
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woon-Hong Yeo
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
15
|
Gebauer AM, Pfaller MR, Braeu FA, Cyron CJ, Wall WA. A homogenized constrained mixture model of cardiac growth and remodeling: analyzing mechanobiological stability and reversal. Biomech Model Mechanobiol 2023; 22:1983-2002. [PMID: 37482576 PMCID: PMC10613155 DOI: 10.1007/s10237-023-01747-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Cardiac growth and remodeling (G&R) patterns change ventricular size, shape, and function both globally and locally. Biomechanical, neurohormonal, and genetic stimuli drive these patterns through changes in myocyte dimension and fibrosis. We propose a novel microstructure-motivated model that predicts organ-scale G&R in the heart based on the homogenized constrained mixture theory. Previous models, based on the kinematic growth theory, reproduced consequences of G&R in bulk myocardial tissue by prescribing the direction and extent of growth but neglected underlying cellular mechanisms. In our model, the direction and extent of G&R emerge naturally from intra- and extracellular turnover processes in myocardial tissue constituents and their preferred homeostatic stretch state. We additionally propose a method to obtain a mechanobiologically equilibrated reference configuration. We test our model on an idealized 3D left ventricular geometry and demonstrate that our model aims to maintain tensional homeostasis in hypertension conditions. In a stability map, we identify regions of stable and unstable G&R from an identical parameter set with varying systolic pressures and growth factors. Furthermore, we show the extent of G&R reversal after returning the systolic pressure to baseline following stage 1 and 2 hypertension. A realistic model of organ-scale cardiac G&R has the potential to identify patients at risk of heart failure, enable personalized cardiac therapies, and facilitate the optimal design of medical devices.
Collapse
Affiliation(s)
- Amadeus M Gebauer
- Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany.
| | - Martin R Pfaller
- Pediatric Cardiology, Stanford Maternal & Child Health Research Institute, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA
| | - Fabian A Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christian J Cyron
- Institute of Continuum and Material Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
16
|
Navarrete Á, Utrera A, Rivera E, Latorre M, Celentano DJ, García-Herrera CM. An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta. Front Bioeng Biotechnol 2023; 11:1301988. [PMID: 38053847 PMCID: PMC10694237 DOI: 10.3389/fbioe.2023.1301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Claudio M. García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| |
Collapse
|
17
|
van Asten JGM, Latorre M, Karakaya C, Baaijens FPT, Sahlgren CM, Ristori T, Humphrey JD, Loerakker S. A multiscale computational model of arterial growth and remodeling including Notch signaling. Biomech Model Mechanobiol 2023; 22:1569-1588. [PMID: 37024602 PMCID: PMC10511605 DOI: 10.1007/s10237-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 04/08/2023]
Abstract
Blood vessels grow and remodel in response to mechanical stimuli. Many computational models capture this process phenomenologically, by assuming stress homeostasis, but this approach cannot unravel the underlying cellular mechanisms. Mechano-sensitive Notch signaling is well-known to be key in vascular development and homeostasis. Here, we present a multiscale framework coupling a constrained mixture model, capturing the mechanics and turnover of arterial constituents, to a cell-cell signaling model, describing Notch signaling dynamics among vascular smooth muscle cells (SMCs) as influenced by mechanical stimuli. Tissue turnover was regulated by both Notch activity, informed by in vitro data, and a phenomenological contribution, accounting for mechanisms other than Notch. This novel framework predicted changes in wall thickness and arterial composition in response to hypertension similar to previous in vivo data. The simulations suggested that Notch contributes to arterial growth in hypertension mainly by promoting SMC proliferation, while other mechanisms are needed to fully capture remodeling. The results also indicated that interventions to Notch, such as external Jagged ligands, can alter both the geometry and composition of hypertensive vessels, especially in the short term. Overall, our model enables a deeper analysis of the role of Notch and Notch interventions in arterial growth and remodeling and could be adopted to investigate therapeutic strategies and optimize vascular regeneration protocols.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
18
|
Gierig M, Wriggers P, Marino M. Arterial tissues and their inflammatory response to collagen damage: A continuum in silico model coupling nonlinear mechanics, molecular pathways, and cell behavior. Comput Biol Med 2023; 158:106811. [PMID: 37011434 DOI: 10.1016/j.compbiomed.2023.106811] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Damage in soft biological tissues causes an inflammatory reaction that initiates a chain of events to repair the tissue. This work presents a continuum model and its in silico implementation that describe the cascade of mechanisms leading to tissue healing, coupling mechanical as well as chemo-biological processes. The mechanics is described by means of a Lagrangian nonlinear continuum mechanics framework and follows the homogenized constrained mixtures theory. Plastic-like damage, growth and remodeling as well as homeostasis are taken into account. The chemo-biological pathways account for two molecular and four cellular species, and are activated by damage of collagen molecules in fibers. To consider proliferation, differentiation, diffusion and chemotaxis of species, diffusion-advection-reaction equations are employed. To the best of authors' knowledge, the proposed model combines for the first time such high number of chemo-mechano-biological mechanisms in a consistent continuum biomechanical framework. The resulting set of coupled differential equations describe balance of linear momentum, evolution of kinematic variables as well as mass balance equations. They are discretized in time according to a backward Euler finite difference scheme, and in space through a finite element Galerkin discretization. The features of the model are firstly demonstrated presenting the species dynamics and highlighting the influence of damage intensities on the growth outcome. In terms of a biaxial test, the chemo-mechano-biological coupling and the model's applicability to reproduce normal as well as pathological healing are shown. A last numerical example underlines the model's applicability to complex loading scenarios and inhomogeneous damage distributions. Concluding, the present work contributes towards comprehensive in silico models in biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Meike Gierig
- Institute of Continuum Mechanics, Leibniz University of Hannover, An der Universität 1, 30823 Garbsen, Germany.
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz University of Hannover, An der Universität 1, 30823 Garbsen, Germany
| | - Michele Marino
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
19
|
Uhlmann K, Balzani D. Chemo-mechanical modeling of smooth muscle cell activation for the simulation of arterial walls under changing blood pressure. Biomech Model Mechanobiol 2023; 22:1049-1065. [PMID: 36892587 PMCID: PMC10167144 DOI: 10.1007/s10237-023-01700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/05/2023] [Indexed: 03/10/2023]
Abstract
In this paper, a novel chemo-mechanical model is proposed for the description of the stretch-dependent chemical processes known as Bayliss effect and their impact on the active contraction in vascular smooth muscle. These processes are responsible for the adaptive reaction of arterial walls to changing blood pressure by which the blood vessels actively support the heart in providing sufficient blood supply for varying demands in the supplied tissues. The model is designed to describe two different stretch-dependent mechanisms observed in smooth muscle cells (SMCs): a calcium-dependent and a calcium-independent contraction. For the first one, stretch of the SMCs leads to an inlet of calcium ions which activates the myosin light chain kinase (MLCK). The increased activity of MLCK triggers the contractile units of the cells resulting in the contraction on a comparatively short time scale. For the calcium-independent contraction mechanism, stretch-dependent receptors of the cell membrane stimulate an intracellular reaction leading to an inhibition of the antagonist of MLCK, the myosin light chain phosphatase resulting in a contraction on a comparatively long time scale. An algorithmic framework for the implementation of the model in finite element programs is derived. Based thereon, it is shown that the proposed approach agrees well with experimental data. Furthermore, the individual aspects of the model are analyzed in numerical simulations of idealized arteries subject to internal pressure waves with changing intensities. The simulations show that the proposed model is able to describe the experimentally observed contraction of the artery as a reaction to increased internal pressure, which can be considered a crucial aspect of the regulatory mechanism of muscular arteries.
Collapse
Affiliation(s)
- Klemens Uhlmann
- Chair of Continuum Mechanics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Daniel Balzani
- Chair of Continuum Mechanics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
20
|
Abiakam N, Jayabal H, Mitchell K, Bader D, Worsley P. Biophysical and biochemical changes in skin health of healthcare professionals using respirators during COVID-19 pandemic. Skin Res Technol 2023; 29:e13239. [PMID: 36382670 PMCID: PMC9838774 DOI: 10.1111/srt.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/29/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Personal protective equipment, including respirator devices, has been used to protect healthcare workers (HCWs) during the COVID-19 pandemic. These are fitted to skin sites on the face to prevent airborne transmission but have resulted in reports of discomfort and adverse skin reactions from their continued usage. The present study addresses the objective changes in both the structural integrity and biological response of the skin following prolonged and consecutive use of respirators. MATERIALS AND METHODS A longitudinal cohort study, involving 17 HCWs who wear respirators daily, was designed. Changes in the barrier properties and biological response of the skin were assessed at three facial anatomical sites, namely, the nasal bridge, left cheek and at a location outside the perimeter of respirator. Assessments were made on three different sessions corresponding to the first, second and third consecutive days of mask usage. Skin parameters included transepidermal water loss (TEWL), stratum corneum (SC) hydration and erythema, as well as cytokine biomarkers sampled from sebum using a commercial tape. RESULTS The cheek and the site outside the perimeter covered by the respirator presented minimal changes in skin parameters. By contrast, significant increases in both the TEWL (up to 4.8 fold) and SC hydration (up to 2.7 fold) were detected at the nasal bridge on the second consecutive day of respirator-wearing. There was a high degree of variation in the individual expression of pro-and anti-inflammatory cytokines. Increasing trends in nasal bridge TEWL values were associated with the body mass index (p < 0.05). CONCLUSIONS The most sensitive objective parameter in detecting changes in the skin barrier proved to be the increase in TEWL at the nasal bridge, particularly on the second day of consecutive respirator usage. By contrast, other measures of skin were less able to detect remarkable variations in the barrier integrity. Consideration for protecting skin health is required for frontline workers, who continue to wear respirators for prolonged periods over consecutive days during the pandemic.
Collapse
Affiliation(s)
- Nkemjika Abiakam
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Hemalatha Jayabal
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Kay Mitchell
- Critical Care Team, University Hospital Southampton Foundation Trust, Southampton, UK
| | - Dan Bader
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Peter Worsley
- School of Health Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
21
|
Nyland J, Pyle B, Krupp R, Kittle G, Richards J, Brey J. ACL microtrauma: healing through nutrition, modified sports training, and increased recovery time. J Exp Orthop 2022; 9:121. [PMID: 36515744 PMCID: PMC9751252 DOI: 10.1186/s40634-022-00561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Sports injuries among youth and adolescent athletes are a growing concern, particularly at the knee. Based on our current understanding of microtrauma and anterior cruciate ligament (ACL) healing characteristics, this clinical commentary describes a comprehensive plan to better manage ACL microtrauma and mitigate the likelihood of progression to a non-contact macrotraumatic ACL rupture. METHODS Medical literature related to non-contact ACL injuries among youth and adolescent athletes, collagen and ACL extracellular matrix metabolism, ACL microtrauma and sudden failure, and concerns related to current sports training were reviewed and synthesized into a comprehensive intervention plan. RESULTS With consideration for biopsychosocial model health factors, proper nutrition and modified sports training with increased recovery time, a comprehensive primary ACL injury prevention plan is described for the purpose of better managing ACL microtrauma, thereby reducing the incidence of non-contact macrotraumatic ACL rupture among youth and adolescent athletes. CONCLUSION Preventing non-contact ACL injuries may require greater consideration for reducing accumulated ACL microtrauma. Proper nutrition including glycine-rich collagen peptides, or gelatin-vitamin C supplementation in combination with healthy sleep, and adjusted sports training periodization with increased recovery time may improve ACL extracellular matrix collagen deposition homeostasis, decreasing sudden non-contact ACL rupture incidence likelihood in youth and adolescent athletes. Successful implementation will require compliance from athletes, parents, coaches, the sports medicine healthcare team, and event organizers. Studies are needed to confirm the efficacy of these concepts. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- J Nyland
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA.
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA.
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA.
| | - B Pyle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - R Krupp
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - G Kittle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - J Richards
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - J Brey
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
22
|
Manjunatha K, Behr M, Vogt F, Reese S. A multiphysics modeling approach for in-stent restenosis: Theoretical aspects and finite element implementation. Comput Biol Med 2022; 150:106166. [PMID: 36252366 DOI: 10.1016/j.compbiomed.2022.106166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
Abstract
Development of in silico models that capture progression of diseases in soft biological tissues are intrinsic in the validation of the hypothesized cellular and molecular mechanisms involved in the respective pathologies. In addition, they also aid in patient-specific adaptation of interventional procedures. In this regard, a fully-coupled high-fidelity Lagrangian finite element framework is proposed within this work which replicates the pathology of in-stent restenosis observed post stent implantation in a coronary artery. Advection-reaction-diffusion equations are set up to track the concentrations of the platelet-derived growth factor, the transforming growth factor-β, the extracellular matrix, and the density of the smooth muscle cells. A continuum mechanical description of volumetric growth involved in the restenotic process, coupled to the evolution of the previously defined vessel wall constituents, is presented. Further, the finite element implementation of the model is discussed, and the behavior of the computational model is investigated via suitable numerical examples. Qualitative validation of the computational model is presented by emulating a stented artery. Patient-specific data are intended to be integrated into the model to predict the risk of in-stent restenosis, and thereby assist in the tuning of stent implantation parameters to mitigate the risk.
Collapse
Affiliation(s)
- Kiran Manjunatha
- Institute of Applied Mechanics, RWTH Aachen University, Germany.
| | - Marek Behr
- Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany
| | - Felix Vogt
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, RWTH Aachen University, Germany
| | - Stefanie Reese
- Institute of Applied Mechanics, RWTH Aachen University, Germany
| |
Collapse
|
23
|
Paul RW, Erickson BJ, Cohen SB, Ciccotti MG, Hefta M, Buchheit P, Rauch J, Fcasni S, Plum A, Hoback A, Thomas SJ. Identifying the underlying mechanisms responsible for glenohumeral internal rotation in professional baseball pitchers. JSES Int 2022; 7:138-142. [PMID: 36820430 PMCID: PMC9937818 DOI: 10.1016/j.jseint.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Background and Hypothesis Glenohumeral internal rotation deficit has been identified as a significant risk factor for upper-extremity injuries in pitchers across all ages. Humeral retroversion (HR), posterior capsule thickness (PCT), and posterior rotator cuff muscle pennation angle (PA) have been independently associated with internal rotation range of motion (IR ROM); however, these anatomic structures have not been collectively measured in baseball pitchers to determine the underlying mechanisms responsible for IR ROM. Therefore, the purpose of this study was to determine the contributions of HR, PCT, and posterior rotator cuff PA on IR ROM during a preseason evaluation in healthy professional baseball pitchers. The authors hypothesized that HR, PCT, and posterior rotator cuff PA would have a significant contribution to IR ROM. Methods This is a cross-sectional study. Healthy professional pitchers from a single organization were recruited at the beginning of the 2021 Major League Baseball Spring Training. Participants received bilateral IR ROM assessment while laying supine with the shoulder at 90 degrees of abduction and the scapula stabilized. Ultrasound imaging was also performed bilaterally to assess HR, PCT, infraspinatus (superficial + deep) PA, and teres minor (superficial + deep) PA. All ultrasound imaging processes were performed utilizing previously published, highly reliable techniques. A stepwise regression was performed, which included both arms to determine the mechanisms of IR ROM. Results Overall, 49 pitchers (88 shoulders) with an average age of 22.5 ± 2.2 years were included in the final data analysis. Stepwise linear regression found that only HR and PCT were associated with the preseason IR ROM. There was a moderate relationship between HR and PCT relative to IR ROM (R = 0.535, P < .001). Conclusion HR and PCT were found to be the primary mechanisms responsible for the preseason glenohumeral IR ROM. The posterior rotator cuff was not found to be significantly related to IR ROM. Future research evaluating these anatomic structures longitudinally-both acutely and chronically-will help clinicians optimize ROM management throughout the season. As glenohumeral internal rotation deficit can have harmful effects in baseball pitchers, understanding which anatomic structures are most responsible for IR ROM is important for injury prevention and treatment.
Collapse
Affiliation(s)
- Ryan W. Paul
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA,Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Brandon J. Erickson
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, New York, NY, USA
| | - Steven B. Cohen
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | - Michael G. Ciccotti
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | | | | | | | - Shawn Fcasni
- Major League Baseball Umpire Association, New York, NY, USA
| | - Alex Plum
- Philadelphia Phillies, Philadelphia, PA, USA
| | | | - Stephen J. Thomas
- Department of Exercise Science, Thomas Jefferson University, Philadelphia, PA, USA,Corresponding author: Stephen J. Thomas, PhD, ATC, Department of Exercise Science, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA. @shoulder_nerd
| |
Collapse
|
24
|
van Asten JGM, Ristori T, Nolan DR, Lally C, Baaijens FPT, Sahlgren CM, Loerakker S. Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension. J Mech Behav Biomed Mater 2022; 133:105325. [PMID: 35839633 PMCID: PMC7613661 DOI: 10.1016/j.jmbbm.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
Arteries grow and remodel in response to mechanical stimuli. Hypertension, for example, results in arterial wall thickening. Cell-cell Notch signaling between vascular smooth muscle cells (VSMCs) is known to be involved in this process, but the underlying mechanisms are still unclear. Here, we investigated whether Notch mechanosensitivity to strain may regulate arterial thickening in hypertension. We developed a multiscale computational framework by coupling a finite element model of arterial mechanics, including residual stress, to an agent-based model of mechanosensitive Notch signaling, to predict VSMC phenotypes as an indicator of growth and remodeling. Our simulations revealed that the sensitivity of Notch to strain at mean blood pressure may be a key mediator of arterial thickening in hypertensive arteries. Further simulations showed that loss of residual stress can have synergistic effects with hypertension, and that changes in the expression of Notch receptors, but not Jagged ligands, may be used to control arterial growth and remodeling and to intensify or counteract hypertensive thickening. Overall, we identify Notch mechanosensitivity as a potential mediator of vascular adaptation, and we present a computational framework that can facilitate the testing of new therapeutic and regenerative strategies.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David R Nolan
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
25
|
Benchtop characterization of the tricuspid valve leaflet pre-strains. Acta Biomater 2022; 152:321-334. [PMID: 36041649 DOI: 10.1016/j.actbio.2022.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
Abstract
The pre-strains of biological soft tissues are important when relating their in vitro and in vivo mechanical behaviors. In this study, we present the first-of-its-kind experimental characterization of the tricuspid valve leaflet pre-strains. We use 3D photogrammetry and the reproducing kernel method to calculate the pre-strains within the central 10×10 mm region of the tricuspid valve leaflets from n=8 porcine hearts. In agreement with previous pre-strain studies for heart valve leaflets, our results show that all the three tricuspid valve leaflets shrink after explant from the ex vivo heart. These calculated strains are leaflet-specific and the septal leaflet experiences the most compressive changes. Furthermore, the strains observed after dissection of the central 10×10 mm region of the leaflet are smaller than when the valve is explanted, suggesting that our computed pre-strains are mainly due to the release of in situ annulus and chordae connections. The leaflets are then mounted on a biaxial testing device and preconditioned using force-controlled equibiaxial loading. We show that the employed preconditioning protocol does not 100% restore the leaflet pre-strains as removed during tissue dissection, and future studies are warranted to explore alternative preconditioning methods. Finally, we compare the calculated biomechanically oriented metrics considering five stress-free reference configurations. Interestingly, the radial tissue stretches and material anisotropies are significantly smaller compared to the post-preconditioning configuration. Extensions of this work can further explore the role of this unique leaflet-specific leaflet pre-strains on in vivo valve behavior via high-fidelity in-silico models.
Collapse
|
26
|
Microstructure and mechanics of the bovine trachea: Layer specific investigations through SHG imaging and biaxial testing. J Mech Behav Biomed Mater 2022; 134:105371. [PMID: 35868065 DOI: 10.1016/j.jmbbm.2022.105371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
The trachea is a complex tissue made up of hyaline cartilage, fibrous tissue, and muscle fibers. Currently, the knowledge of microscopic structural organization of these components and their role in determining the tissue's mechanical response is very limited. The purpose of this study is to provide data on the microstructure of the tracheal components and its influence on tissue's mechanical response. Five bovine tracheae were used in this study. Adventitia, cartilage, mucosa/submucosa, and trachealis muscle layers were methodically cut out from the whole tissue. Second-harmonic generation(SHG) via multi-photon microscopy (MPM) enabled imaging of collagen fibers and muscle fibers. Simultaneously, a planar biaxial test rig was used to record the mechanical behavior of each layer. In total 60 samples were tested and analyzed. Fiber architecture in the adventitia and mucosa/submucosa layer showed high degree of anisotropy with the mean fiber angle varying from sample to sample. The trachealis muscle displayed neat layers of fibers organized in the longitudinal direction. The cartilage also displayed a structure of thick mesh-work of collagen type II organized predominantly towards the circumferential direction. Further, mechanical testing demonstrated the anisotropic nature of the tissue components. The cartilage was identified as the stiffest component for strain level < 20% and hence the primary load bearing component. The other three layers displayed a non-linear mechanical response which could be explained by the structure and organization of their fibers. This study is useful in enhancing the utilization of structurally motivated material models for predicting tracheal overall mechanical response.
Collapse
|
27
|
Latorre M, Szafron JM, Ramachandra AB, Humphrey JD. In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model. Biomech Model Mechanobiol 2022; 21:827-848. [PMID: 35179675 PMCID: PMC9133046 DOI: 10.1007/s10237-022-01562-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Methods of tissue engineering continue to advance, and multiple clinical trials are underway evaluating tissue engineered vascular grafts (TEVGs). Whereas initial concerns focused on suture retention and burst pressure, there is now a pressing need to design grafts to have optimal performance, including an ability to grow and remodel in response to changing hemodynamic loads. Toward this end, there is similarly a need for computational methods that can describe and predict the evolution of TEVG geometry, composition, and material properties while accounting for changes in hemodynamics. Although the ultimate goal is a fluid-solid-growth (FSG) model incorporating fully 3D growth and remodeling and 3D hemodynamics, lower fidelity models having high computational efficiency promise to play important roles, especially in the design of candidate grafts. We introduce here an efficient FSG model of in vivo development of a TEVG based on two simplifying concepts: mechanobiologically equilibrated growth and remodeling of the graft and an embedded control volume analysis of the hemodynamics. Illustrative simulations for a model Fontan conduit reveal the utility of this approach, which promises to be particularly useful in initial design considerations involving formal methods of optimization which otherwise add considerably to the computational expense.
Collapse
Affiliation(s)
- Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, 46022, Spain.
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
28
|
Patel B, Gizzi A, Hashemi J, Awakeem Y, Gregersen H, Kassab G. Biomechanical constitutive modeling of the gastrointestinal tissues: a systematic review. MATERIALS & DESIGN 2022; 217:110576. [PMID: 35935127 PMCID: PMC9351365 DOI: 10.1016/j.matdes.2022.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The gastrointestinal (GI) tract is a continuous channel through the body that consists of the esophagus, the stomach, the small intestine, the large intestine, and the rectum. Its primary functions are to move the intake of food for digestion before storing and ultimately expulsion of feces. The mechanical behavior of GI tissues thus plays a crucial role for GI function in health and disease. The mechanical properties are characterized by a biomechanical constitutive model, which is a mathematical representation of the relation between load and deformation in a tissue. Hence, validated biomechanical constitutive models are essential to characterize and simulate the mechanical behavior of the GI tract. Here, a systematic review of these constitutive models is provided. This review is limited to studies where a model of the strain energy function is proposed to characterize the stress-strain relation of a GI tissue. Several needs are identified for more advanced modeling including: 1) Microstructural models that provide actual structure-function relations; 2) Validation of coupled electro-mechanical models accounting for active muscle contractions; 3) Human data to develop and validate models. The findings from this review provide guidelines for using existing constitutive models as well as perspective and directions for future studies.
Collapse
Affiliation(s)
- Bhavesh Patel
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, Via A. del Portillo 21, 00128 Rome, IT
| | - Javad Hashemi
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Yousif Awakeem
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Hans Gregersen
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Ghassan Kassab
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| |
Collapse
|
29
|
Zhang S, Laubrie JD, Mousavi SJ, Avril S. 3D finite-element modeling of vascular adaptation after endovascular aneurysm repair. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3547. [PMID: 34719114 DOI: 10.1002/cnm.3547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Aneurysm shrinkage is clinically observed after successful endovascular aortic aneurysm repair (EVAR). However, global understanding of post-operative aneurysm evolutions remains weak. In this work, we propose to study these effects using numerical simulation. We set up a 3D finite-element model of post-EVAR vascular adaptation within an open-source finite-element code, which was initially developed for growth and remodeling (G&R). We modeled the endograft with a set of uniaxial prestrained springs that apply radial forces on the inner surface of the artery. Constitutive equations, momentum balance equations, and equations related to the mechanobiology of the artery were formulated based on the homogenized constrained mixture theory. We performed a sensitivity analysis by varying different selected parameters, namely oversizing and compliance of the stent-graft, gain parameters related to collagen G&R, and the residual pressure in the aneurysm sac. This permitted us to evaluate how each factor influences post-EVAR vascular adaptation. It was found that oversizing, compliance or gain parameters have a limited influence compared to that of the residual pressure in the aneurysm sac, which was found to play a critical role in the stability of aneurysm after stent-graft implantation. An excessive residual pressure larger than 50 mmHg can induce a continuous expansion of the aneurysm while a moderate residual pressure below this critical threshold yields continuous shrinkage of the aneurysm. Moreover, it was found that elderly patients, with relatively lower amounts of remnant elastin in the arterial wall, are more sensitive to the effect of residual pressure. Therefore, these results show that elderly patients may present a higher potential risk of aortic sac expansion due to intra-aneurysm sac pressure after EVAR than younger patients.
Collapse
Affiliation(s)
- Shaojie Zhang
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Joan D Laubrie
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - S Jamaleddin Mousavi
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Stéphane Avril
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| |
Collapse
|
30
|
Lamm L, Holthusen H, Brepols T, Jockenhövel S, Reese S. A macroscopic approach for stress-driven anisotropic growth in bioengineered soft tissues. Biomech Model Mechanobiol 2022; 21:627-645. [PMID: 35044525 PMCID: PMC8940864 DOI: 10.1007/s10237-021-01554-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/26/2021] [Indexed: 12/22/2022]
Abstract
The simulation of growth processes within soft biological tissues is of utmost importance for many applications in the medical sector. Within this contribution, we propose a new macroscopic approach for modelling stress-driven volumetric growth occurring in soft tissues. Instead of using the standard approach of a-priori defining the structure of the growth tensor, we postulate the existence of a general growth potential. Such a potential describes all eligible homeostatic stress states that can ultimately be reached as a result of the growth process. Making use of well-established methods from visco-plasticity, the evolution of the growth-related right Cauchy–Green tensor is subsequently defined as a time-dependent associative evolution law with respect to the introduced potential. This approach naturally leads to a formulation that is able to cover both, isotropic and anisotropic growth-related changes in geometry. It furthermore allows the model to flexibly adapt to changing boundary and loading conditions. Besides the theoretical development, we also describe the algorithmic implementation and furthermore compare the newly derived model with a standard formulation of isotropic growth.
Collapse
|
31
|
Abstract
Dormancy is an evolutionarily conserved protective mechanism widely observed in nature. A pathological example is found during cancer metastasis, where cancer cells disseminate from the primary tumor, home to secondary organs, and enter a growth-arrested state, which could last for decades. Recent studies have pointed toward the microenvironment being heavily involved in inducing, preserving, or ceasing this dormant state, with a strong focus on identifying specific molecular mechanisms and signaling pathways. Increasing evidence now suggests the existence of an interplay between intracellular as well as extracellular biochemical and mechanical cues in guiding such processes. Despite the inherent complexities associated with dormancy, proliferation, and growth of cancer cells and tumor tissues, viewing these phenomena from a physical perspective allows for a more global description, independent from many details of the systems. Building on the analogies between tissues and fluids and thermodynamic phase separation concepts, we classify a number of proposed mechanisms in terms of a thermodynamic metastability of the tumor with respect to growth. This can be governed by interaction with the microenvironment in the form of adherence (wetting) to a substrate or by mechanical confinement of the surrounding extracellular matrix. By drawing parallels with clinical and experimental data, we advance the notion that the local energy minima, or metastable states, emerging in the tissue droplet growth kinetics can be associated with a dormant state. Despite its simplicity, the provided framework captures several aspects associated with cancer dormancy and tumor growth.
Collapse
|
32
|
Nessel R, Löffler T, Rinn J, Lösel P, Voss S, Heuveline V, Vollmer M, Görich J, Ludwig YM, Al-Hileh L, Kallinowski F. Primary and Recurrent Repair of Incisional Hernia Based on Biomechanical Considerations to Avoid Mesh-Related Complications. Front Surg 2022; 8:764470. [PMID: 34977141 PMCID: PMC8714753 DOI: 10.3389/fsurg.2021.764470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Mechanical principles successfully guide the construction of polymer material composites in engineering. Since the abdominal wall is a polymer composite augmented with a textile during incisional hernia repair we ask: can incisional hernia be repaired safely and durably based on biomechanical principles? Material and Methods: Repair materials were assessed on a self-built bench test using pulse loads to elude influences on the reconstruction of the abdominal wall. Tissue elasticity was analyzed preoperatively as needed with computed tomography at rest and during Valsalva's maneuver. Preoperatively, the critical retention force of the reconstruction to pulse loads was calculated and a biomechanically durable repair was designed based on the needs of the individual patient. Intraoperatively, the design was adjusted as needed. Hernia meshes with high grip factors (Progrip®, Dahlhausen® Cicat) were used for the repairs. Mesh sizes, fixation elements and reconstructive details were oriented on the biomechanical design. All patients recieved single-shot antibiosis. Patients were discharged after full ambulation was achieved. Results: A total of 163 patients (82 males and 81 females) were treated for incisional hernia in four hospitals by ten surgeons. Primary hernia was repaired in 119 patients. Recurrent hernia was operated on in 44 cases. Recurrent hernia was significantly larger (median 161 cm2 vs. 78 cm2; u-test: p = 0.00714). Re-do surgery took significantly longer (median 229 min vs. 150 min; p < 0.00001) since recurrent disease required more often transversus abdominis release (70% vs. 47%). GRIP tended to be higher in recurrent repair (p = 0.01828). Complication rates (15%) and hospital stay were the same (6 vs. 6 days; p = 0.28462). After 1 year, no recurrence was detected in either group. Pain levels were equally low in both primary and recurrent hernia repairs (median NAS = 0 in both groups at rest and under load, p = 0.88866). Conclusion: Incisional hernia can safely and durably be repaired based on biomechanical principles both in primary and recurrent disease. The GRIP concept provides a base for the application of biomechanical principles in incisional hernia repair.
Collapse
Affiliation(s)
- Regine Nessel
- General, Visceral and Pediatric Surgery, Klinikum Am Gesundbrunnen, Heilbronn, Germany
| | - Thorsten Löffler
- General and Visceral Surgery, Gesundheitszentrum Rhein-Neckar Hospital Eberbach, Eberbach, Germany
| | - Johannes Rinn
- General and Visceral Surgery, Kreiskrankenhaus Bergstrasse Hospital Bergstrasse, Heppenheim, Germany
| | - Philipp Lösel
- Engineering Mathematics and Computing Lab, Interdisciplinary Center for Scientific Computing, Heidelberg, Germany
| | - Samuel Voss
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab, Interdisciplinary Center for Scientific Computing, Heidelberg, Germany
| | - Matthias Vollmer
- Biomechanics, Hamburg University of Technology, Hamburg, Germany
| | | | | | - Luai Al-Hileh
- General, Visceral and Pediatric Surgery, Klinikum Am Gesundbrunnen, Heilbronn, Germany
| | - Friedrich Kallinowski
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Vastmans J, Maes L, Peirlinck M, Vanderveken E, Rega F, Kuhl E, Famaey N. Growth and remodeling in the pulmonary autograft: Computational evaluation using kinematic growth models and constrained mixture theory. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3545. [PMID: 34724357 DOI: 10.1002/cnm.3545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Computational investigations of how soft tissues grow and remodel are gaining more and more interest and several growth and remodeling theories have been developed. Roughly, two main groups of theories for soft tissues can be distinguished: kinematic-based growth theory and theories based on constrained mixture theory. Our goal was to apply these two theories on the same experimental data. Within the experiment, a pulmonary artery was exposed to systemic conditions. The change in diameter was followed-up over time. A mechanical and microstructural analysis of native pulmonary artery and pulmonary autograft was conducted. Whereas the kinematic-based growth theory is able to accurately capture the growth of the tissue, it does not account for the mechanobiological processes causing this growth. The constrained mixture theory takes into account the mechanobiological processes including removal, deposition and adaptation of all structural constituents, allowing us to simulate a changing microstructure and mechanical behavior.
Collapse
Affiliation(s)
- Julie Vastmans
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Mathias Peirlinck
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Emma Vanderveken
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Avril S, Gee MW, Hemmler A, Rugonyi S. Patient-specific computational modeling of endovascular aneurysm repair: State of the art and future directions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3529. [PMID: 34490740 DOI: 10.1002/cnm.3529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Endovascular aortic repair (EVAR) has become the preferred intervention option for aortic aneurysms and dissections. This is because EVAR is much less invasive than the alternative open surgery repair. While in-hospital mortality rates are smaller for EVAR than open repair (1%-2% vs. 3%-5%), the early benefits of EVAR are lost after 3 years due to larger rates of complications in the EVAR group. Clinicians follow instructions for use (IFU) when possible, but are left with personal experience on how to best proceed and what choices to make with respect to stent-graft (SG) model choice, sizing, procedural options, and their implications on long-term outcomes. Computational modeling of SG deployment in EVAR and tissue remodeling after intervention offers an alternative way of testing SG designs in silico, in a personalized way before intervention, to ultimately select the strategies leading to better outcomes. Further, computational modeling can be used in the optimal design of SGs in cases of complex geometries. In this review, we address some of the difficulties and successes associated with computational modeling of EVAR procedures. There is still work to be done in all areas of EVAR in silico modeling, including model validation, before models can be applied in the clinic, but much progress has already been made. Critical to clinical implementation are current efforts focusing on developing fast algorithms that can achieve (near) real-time solutions, as well as ways of dealing with inherent uncertainties related to patient aortic wall degradation on an individualized basis. We are optimistic that EVAR modeling in the clinic will soon become a reality to help clinicians optimize EVAR interventions and ultimately reduce EVAR-associated complications.
Collapse
Affiliation(s)
- Stéphane Avril
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, Saint-Étienne, France
| | - Michael W Gee
- Mechanics & High Performance Computing Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - André Hemmler
- Mechanics & High Performance Computing Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
35
|
Zhu Z, Waxman S, Wang B, Wallace J, Schmitt SE, Tyler-Kabara E, Ishikawa H, Schuman JS, Smith MA, Wollstein G, Sigal IA. Interplay between intraocular and intracranial pressure effects on the optic nerve head in vivo. Exp Eye Res 2021; 213:108809. [PMID: 34736887 DOI: 10.1016/j.exer.2021.108809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
Intracranial pressure (ICP) has been proposed to play an important role in the sensitivity to intraocular pressure (IOP) and susceptibility to glaucoma. However, the in vivo effects of simultaneous, controlled, acute variations in ICP and IOP have not been directly measured. We quantified the deformations of the anterior lamina cribrosa (ALC) and scleral canal at Bruch's membrane opening (BMO) under acute elevation of IOP and/or ICP. Four eyes of three adult monkeys were imaged in vivo with OCT under four pressure conditions: IOP and ICP either at baseline or elevated. The BMO and ALC were reconstructed from manual delineations. From these, we determined canal area at the BMO (BMO area), BMO aspect ratio and planarity, and ALC median depth relative to the BMO plane. To better account for the pressure effects on the imaging, we also measured ALC visibility as a percent of the BMO area. Further, ALC depths were analyzed only in regions where the ALC was visible in all pressure conditions. Bootstrap sampling was used to obtain mean estimates and confidence intervals, which were then used to test for significant effects of IOP and ICP, independently and in interaction. Response to pressure manipulation was highly individualized between eyes, with significant changes detected in a majority of the parameters. Significant interactions between ICP and IOP occurred in all measures, except ALC visibility. On average, ICP elevation expanded BMO area by 0.17 mm2 at baseline IOP, and contracted BMO area by 0.02 mm2 at high IOP. ICP elevation decreased ALC depth by 10 μm at baseline IOP, but increased depth by 7 μm at high IOP. ALC visibility decreased as ICP increased, both at baseline (-10%) and high IOP (-17%). IOP elevation expanded BMO area by 0.04 mm2 at baseline ICP, and contracted BMO area by 0.09 mm2 at high ICP. On average, IOP elevation caused the ALC to displace 3.3 μm anteriorly at baseline ICP, and 22 μm posteriorly at high ICP. ALC visibility improved as IOP increased, both at baseline (5%) and high ICP (8%). In summary, changing IOP or ICP significantly deformed both the scleral canal and the lamina of the monkey ONH, regardless of the other pressure level. There were significant interactions between the effects of IOP and those of ICP on LC depth, BMO area, aspect ratio and planarity. On most eyes, elevating both pressures by the same amount did not cancel out the effects. Altogether our results show that ICP affects sensitivity to IOP, and thus that it can potentially also affect susceptibility to glaucoma.
Collapse
Affiliation(s)
- Ziyi Zhu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob Wallace
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha E Schmitt
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elizabeth Tyler-Kabara
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurosurgery, University of Texas-Austin, Austin, TX, USA
| | - Hiroshi Ishikawa
- Department of Ophthalmology, NYU School of Medicine, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU School of Medicine, New York, NY, USA
| | - Matthew A Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gadi Wollstein
- Department of Ophthalmology, NYU School of Medicine, New York, NY, USA
| | - Ian A Sigal
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
37
|
Clark-Patterson GL, Roy S, Desrosiers L, Knoepp LR, Sen A, Miller KS. Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function. Sci Rep 2021; 11:20956. [PMID: 34697337 PMCID: PMC8546087 DOI: 10.1038/s41598-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal-Wallis test evaluated statistical significance. Pearson's or Spearman's test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = - 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = - 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies.
Collapse
Affiliation(s)
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Leise R Knoepp
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA.
| |
Collapse
|
38
|
Marino M, Vairo G, Wriggers P. Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices. Curr Pharm Des 2021; 27:1904-1917. [PMID: 32723253 DOI: 10.2174/1381612826666200728145752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
This review aims to highlight urgent priorities for the computational biomechanics community in the framework of mechano-chemo-biological models. Recent approaches, promising directions and open challenges on the computational modelling of arterial tissues in health and disease are introduced and investigated, together with in silico approaches for the analysis of drug-eluting stents that promote pharmacological-induced healing. The paper addresses a number of chemo-biological phenomena that are generally neglected in biomechanical engineering models but are most likely instrumental for the onset and the progression of arterial diseases. An interdisciplinary effort is thus encouraged for providing the tools for an effective in silico insight into medical problems. An integrated mechano-chemo-biological perspective is believed to be a fundamental missing piece for crossing the bridge between computational engineering and life sciences, and for bringing computational biomechanics into medical research and clinical practice.
Collapse
Affiliation(s)
- Michele Marino
- Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
| | - Giuseppe Vairo
- Department of Civil Engineering and Computer Science, University of Rome "Tor Vergata" via del Politecnico 1, 00133 Rome, Italy
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
| |
Collapse
|
39
|
Humphrey JD. Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After. JOURNAL OF ELASTICITY 2021; 145:49-75. [PMID: 34483462 PMCID: PMC8415366 DOI: 10.1007/s10659-020-09809-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
Abstract
Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.
Collapse
Affiliation(s)
- J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
40
|
Eichinger JF, Grill MJ, Kermani ID, Aydin RC, Wall WA, Humphrey JD, Cyron CJ. A computational framework for modeling cell-matrix interactions in soft biological tissues. Biomech Model Mechanobiol 2021; 20:1851-1870. [PMID: 34173132 PMCID: PMC8450219 DOI: 10.1007/s10237-021-01480-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/08/2021] [Indexed: 01/10/2023]
Abstract
Living soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.
Collapse
Affiliation(s)
- Jonas F Eichinger
- Institute for Computational Mechanics, Technical University of Munich, Garching, 85748, Germany.,Institute for Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, 21073, Germany
| | - Maximilian J Grill
- Institute for Computational Mechanics, Technical University of Munich, Garching, 85748, Germany
| | - Iman Davoodi Kermani
- Institute for Computational Mechanics, Technical University of Munich, Garching, 85748, Germany
| | - Roland C Aydin
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, Garching, 85748, Germany
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Christian J Cyron
- Institute for Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, 21073, Germany. .,Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany.
| |
Collapse
|
41
|
Greenwald SH, Macias BR, Lee SMC, Marshall-Goebel K, Ebert DJ, Liu JHK, Ploutz-Snyder RJ, Alferova IV, Dulchavsky SA, Hargens AR, Stenger MB, Laurie SS. Intraocular pressure and choroidal thickness respond differently to lower body negative pressure during spaceflight. J Appl Physiol (1985) 2021; 131:613-620. [PMID: 34166098 DOI: 10.1152/japplphysiol.01040.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spaceflight-associated neuro-ocular syndrome (SANS) develops during long-duration (>1 mo) spaceflight presumably because of chronic exposure to a headward fluid shift that occurs in weightlessness. We aimed to determine whether reversing this headward fluid shift with acute application of lower body negative pressure (LBNP) can influence outcome measures at the eye. Intraocular pressure (IOP) and subfoveal choroidal thickness were therefore evaluated by tonometry and optical coherence tomography (OCT), respectively, in 14 International Space Station crewmembers before flight in the seated, supine, and 15° head-down tilt (HDT) postures and during spaceflight, without and with application of 25 mmHg LBNP. IOP in the preflight seated posture was 14.4 mmHg (95% CI, 13.5-15.2 mmHg), and spaceflight elevated this value by 1.3 mmHg (95% CI, 0.7-1.8 mmHg, P < 0.001). Acute exposure to LBNP during spaceflight reduced IOP to 14.2 mmHg (95% CI, 13.4-15.0 mmHg), which was equivalent to that of the seated posture (P > 0.99), indicating that venous fluid redistribution by LBNP can influence ocular outcome variables during spaceflight. Choroidal thickness during spaceflight (374 µm, 95% CI, 325-423 µm) increased by 35 µm (95% CI, 25-45 µm, P < 0.001), compared with the preflight seated posture (339 µm, 95% CI, 289-388 µm). Acute use of LBNP during spaceflight did not affect choroidal thickness (381 µm, 95% CI, 331-430 µm, P = 0.99). The finding that transmission of reduced venous pressure by LBNP did not decrease choroidal thickness suggests that engorgement of this tissue during spaceflight may reflect changes that are secondary to the chronic cerebral venous congestion associated with spaceflight.NEW & NOTEWORTHY Spaceflight induces a chronic headward fluid shift that is believed to underlie ocular changes observed in astronauts. The present study demonstrates, for the first time, that reversing this headward fluid shift via application of lower body negative pressure (LBNP) during spaceflight may alter the ocular venous system, as evidenced by a decrease in intraocular pressure. This finding indicates that LBNP has the potential to be an effective countermeasure against the headward fluid shift during spaceflight, which may then be beneficial in preventing or reversing associated ocular changes.
Collapse
Affiliation(s)
| | - Brandon R Macias
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | | | | | | | - John H K Liu
- Shiley Eye Institute, University of California, San Diego, California
| | - Robert J Ploutz-Snyder
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, Michigan
| | - Irina V Alferova
- Russian Federation State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Alan R Hargens
- Altman Clinical and Translational Research Institute, University of California, San Diego, California
| | - Michael B Stenger
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | | |
Collapse
|
42
|
Eichinger JF, Haeusel LJ, Paukner D, Aydin RC, Humphrey JD, Cyron CJ. Mechanical homeostasis in tissue equivalents: a review. Biomech Model Mechanobiol 2021; 20:833-850. [PMID: 33683513 PMCID: PMC8154823 DOI: 10.1007/s10237-021-01433-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
There is substantial evidence that growth and remodeling of load bearing soft biological tissues is to a large extent controlled by mechanical factors. Mechanical homeostasis, which describes the natural tendency of such tissues to establish, maintain, or restore a preferred mechanical state, is thought to be one mechanism by which such control is achieved across multiple scales. Yet, many questions remain regarding what promotes or prevents homeostasis. Tissue equivalents, such as collagen gels seeded with living cells, have become an important tool to address these open questions under well-defined, though limited, conditions. This article briefly reviews the current state of research in this area. It summarizes, categorizes, and compares experimental observations from the literature that focus on the development of tension in tissue equivalents. It focuses primarily on uniaxial and biaxial experimental studies, which are well-suited for quantifying interactions between mechanics and biology. The article concludes with a brief discussion of key questions for future research in this field.
Collapse
Affiliation(s)
- Jonas F Eichinger
- Institute for Computational Mechanics, Technical University of Munich, 85748, Munich, Germany
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Lea J Haeusel
- Institute for Computational Mechanics, Technical University of Munich, 85748, Munich, Germany
| | - Daniel Paukner
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Roland C Aydin
- Institute of Material Systems Modeling, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Christian J Cyron
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany.
- Institute of Material Systems Modeling, Helmholtz-Zentrum Geesthacht, 21502, Geesthacht, Germany.
| |
Collapse
|
43
|
Precision medicine in human heart modeling : Perspectives, challenges, and opportunities. Biomech Model Mechanobiol 2021; 20:803-831. [PMID: 33580313 PMCID: PMC8154814 DOI: 10.1007/s10237-021-01421-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023]
Abstract
Precision medicine is a new frontier in healthcare that uses scientific methods to customize medical treatment to the individual genes, anatomy, physiology, and lifestyle of each person. In cardiovascular health, precision medicine has emerged as a promising paradigm to enable cost-effective solutions that improve quality of life and reduce mortality rates. However, the exact role in precision medicine for human heart modeling has not yet been fully explored. Here, we discuss the challenges and opportunities for personalized human heart simulations, from diagnosis to device design, treatment planning, and prognosis. With a view toward personalization, we map out the history of anatomic, physical, and constitutive human heart models throughout the past three decades. We illustrate recent human heart modeling in electrophysiology, cardiac mechanics, and fluid dynamics and highlight clinically relevant applications of these models for drug development, pacing lead failure, heart failure, ventricular assist devices, edge-to-edge repair, and annuloplasty. With a view toward translational medicine, we provide a clinical perspective on virtual imaging trials and a regulatory perspective on medical device innovation. We show that precision medicine in human heart modeling does not necessarily require a fully personalized, high-resolution whole heart model with an entire personalized medical history. Instead, we advocate for creating personalized models out of population-based libraries with geometric, biological, physical, and clinical information by morphing between clinical data and medical histories from cohorts of patients using machine learning. We anticipate that this perspective will shape the path toward introducing human heart simulations into precision medicine with the ultimate goals to facilitate clinical decision making, guide treatment planning, and accelerate device design.
Collapse
|
44
|
Laurence DW, Homburg H, Yan F, Tang Q, Fung KM, Bohnstedt BN, Holzapfel GA, Lee CH. A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue. Sci Rep 2021; 11:3525. [PMID: 33568740 PMCID: PMC7876029 DOI: 10.1038/s41598-021-82991-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Intracranial aneurysms (ICAs) are focal dilatations that imply a weakening of the brain artery. Incidental rupture of an ICA is increasingly responsible for significant mortality and morbidity in the American’s aging population. Previous studies have quantified the pressure-volume characteristics, uniaxial mechanical properties, and morphological features of human aneurysms. In this pilot study, for the first time, we comprehensively quantified the mechanical, collagen fiber microstructural, and morphological properties of one resected human posterior inferior cerebellar artery aneurysm. The tissue from the dome of a right posterior inferior cerebral aneurysm was first mechanically characterized using biaxial tension and stress relaxation tests. Then, the load-dependent collagen fiber architecture of the aneurysm tissue was quantified using an in-house polarized spatial frequency domain imaging system. Finally, optical coherence tomography and histological procedures were used to quantify the tissue’s microstructural morphology. Mechanically, the tissue was shown to exhibit hysteresis, a nonlinear stress-strain response, and material anisotropy. Moreover, the unloaded collagen fiber architecture of the tissue was predominantly aligned with the testing Y-direction and rotated towards the X-direction under increasing equibiaxial loading. Furthermore, our histological analysis showed a considerable damage to the morphological integrity of the tissue, including lack of elastin, intimal thickening, and calcium deposition. This new unified characterization framework can be extended to better understand the mechanics-microstructure interrelationship of aneurysm tissues at different time points of the formation or growth. Such specimen-specific information is anticipated to provide valuable insight that may improve our current understanding of aneurysm growth and rupture potential.
Collapse
Affiliation(s)
- Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall 219C, Norman, 73019, USA
| | - Hannah Homburg
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Feng Yan
- Biophotonic Imaging Laboratory, Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, 73019, USA
| | - Qinggong Tang
- Biophotonic Imaging Laboratory, Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, 73019, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Bradley N Bohnstedt
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, 8010, Graz, Austria.,Department of Structural Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall 219C, Norman, 73019, USA. .,Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
45
|
Irons L, Latorre M, Humphrey JD. From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling. Ann Biomed Eng 2021; 49:1701-1715. [PMID: 33415527 DOI: 10.1007/s10439-020-02713-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Tissue-level biomechanical properties and function derive from underlying cell signaling, which regulates mass deposition, organization, and removal. Here, we couple two existing modeling frameworks to capture associated multiscale interactions-one for vessel-level growth and remodeling and one for cell-level signaling-and illustrate utility by simulating aortic remodeling. At the vessel level, we employ a constrained mixture model describing turnover of individual wall constituents (elastin, intramural cells, and collagen), which has proven useful in predicting diverse adaptations as well as disease progression using phenomenological constitutive relations. Nevertheless, we now seek an improved mechanistic understanding of these processes; we replace phenomenological relations in the mixture model with a logic-based signaling model, which yields a system of ordinary differential equations predicting changes in collagen synthesis, matrix metalloproteinases, and cell proliferation in response to altered intramural stress, wall shear stress, and exogenous angiotensin II. This coupled approach promises improved understanding of the role of cell signaling in achieving tissue homeostasis and allows us to model feedback between vessel mechanics and cell signaling. We verify our model predictions against data from the hypertensive murine infrarenal abdominal aorta as well as results from validated phenomenological models, and consider effects of noisy signaling and heterogeneous cell populations.
Collapse
Affiliation(s)
- Linda Irons
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
46
|
Yoshida K, Holmes JW. Computational models of cardiac hypertrophy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 159:75-85. [PMID: 32702352 PMCID: PMC7855157 DOI: 10.1016/j.pbiomolbio.2020.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Cardiac hypertrophy, defined as an increase in mass of the heart, is a complex process driven by simultaneous changes in hemodynamics, mechanical stimuli, and hormonal inputs. It occurs not only during pre- and post-natal development but also in adults in response to exercise, pregnancy, and a range of cardiovascular diseases. One of the most exciting recent developments in the field of cardiac biomechanics is the advent of computational models that are able to accurately predict patterns of heart growth in many of these settings, particularly in cases where changes in mechanical loading of the heart play an import role. These emerging models may soon be capable of making patient-specific growth predictions that can be used to guide clinical interventions. Here, we review the history and current state of cardiac growth models and highlight three main limitations of current approaches with regard to future clinical application: their inability to predict the regression of heart growth after removal of a mechanical overload, inability to account for evolving hemodynamics, and inability to incorporate known growth effects of drugs and hormones on heart growth. Next, we outline growth mechanics approaches used in other fields of biomechanics and highlight some potential lessons for cardiac growth modeling. Finally, we propose a multiscale modeling approach for future studies that blends tissue-level growth models with cell-level signaling models to incorporate the effects of hormones in the context of pregnancy-induced heart growth.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22908, USA.
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
47
|
Sudres P, Evin M, Wagnac E, Bailly N, Diotalevi L, Melot A, Arnoux PJ, Petit Y. Tensile mechanical properties of the cervical, thoracic and lumbar porcine spinal meninges. J Mech Behav Biomed Mater 2021; 115:104280. [PMID: 33395616 DOI: 10.1016/j.jmbbm.2020.104280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The spinal meninges play a mechanical protective role for the spinal cord. Better knowledge of the mechanical behavior of these tissues wrapping the cord is required to accurately model the stress and strain fields of the spinal cord during physiological or traumatic motions. Then, the mechanical properties of meninges along the spinal canal are not well documented. The aim of this study was to quantify the elastic meningeal mechanical properties along the porcine spinal cord in both the longitudinal direction and in the circumferential directions for the dura-arachnoid maters complex (DAC) and solely in the longitudinal direction for the pia mater. This analysis was completed in providing a range of isotropic hyperelastic coefficients to take into account the toe region. METHODS Six complete spines (C0 - L5) were harvested from pigs (2-3 months) weighing 43±13 kg. The mechanical tests were performed within 12 h post mortem. A preload of 0.5 N was applied to the pia mater and of 2 N to the DAC samples, followed by 30 preconditioning cycles. Specimens were then loaded to failure at the same strain rate 0.2 mm/s (approximately 0.02/s, traction velocity/length of the sample) up to 12 mm of displacement. RESULTS The following mean values were proposed for the elastic moduli of the spinal meninges. Longitudinal DAC elastic moduli: 22.4 MPa in cervical, 38.1 MPa in thoracic and 36.6 MPa in lumbar spinal levels; circumferential DAC elastic moduli: 20.6 MPa in cervical, 21.2 MPa in thoracic and 12.2 MPa in lumbar spinal levels; and longitudinal pia mater elastic moduli: 18.4 MPa in cervical, 17.2 MPa in thoracic and 19.6 MPa in lumbar spinal levels. DISCUSSION The variety of mechanical properties of the spinal meninges suggests that it cannot be regarded as a homogenous structure along the whole length of the spinal cord.
Collapse
Affiliation(s)
- Patrice Sudres
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Morgane Evin
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada.
| | - Eric Wagnac
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Nicolas Bailly
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Lucien Diotalevi
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Anthony Melot
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada; Hôpital privé Clairval, Marseille, France
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Yvan Petit
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| |
Collapse
|
48
|
张 晗, 张 愉, 陈 诗, 崔 新, 彭 坤, 乔 爱. [Review of studies on the biomechanical modelling of the coupling effect between stent degradation and blood vessel remodeling]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:956-966. [PMID: 33369334 PMCID: PMC9929987 DOI: 10.7507/1001-5515.202008007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 11/03/2022]
Abstract
The dynamic coupling of stent degradation and vessel remodeling can influence not only the structural morphology and material property of stent and vessel, but also the development of in-stent restenosis. The research achievements of biomechanical modelling and analysis of stent degradation and vessel remodeling were reviewed; several noteworthy research perspectives were addressed, a stent-vessel coupling model was developed based on stent damage function and vessel growth function, and then concepts of matching ratio and risk factor were established so as to evaluate the treatment effect of stent intervention, which may lay the scientific foundation for the structure design, mechanical analysis and clinical application of biodegradable stent.
Collapse
Affiliation(s)
- 晗冰 张
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 愉 张
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 诗亮 陈
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 新阳 崔
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 坤 彭
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 爱科 乔
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| |
Collapse
|
49
|
Ghavamian A, Mousavi SJ, Avril S. Computational Study of Growth and Remodeling in Ascending Thoracic Aortic Aneurysms Considering Variations of Smooth Muscle Cell Basal Tone. Front Bioeng Biotechnol 2020; 8:587376. [PMID: 33224937 PMCID: PMC7670047 DOI: 10.3389/fbioe.2020.587376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, we investigate the progression of Ascending Thoracic Aortic Aneurysms (ATAA) using a computational model of Growth and Remodeling (G&R) taking into account the composite (elastin, four collagen fiber families and Smooth Muscle Cells—SMCs) and multi-layered (media and adventitia) nature of the aorta. The G&R model, which is based on the homogenized Constrained Mixture theory, is implemented as a UMAT in the Abaqus finite-element package. Each component of the mixture is assigned a strain energy density function: nearly-incompressible neo-Hookean for elastin and Fung-type for collagen and SMCs. Active SMCs tension is additionally considered, through a length-tension relationship having a classic inverted parabola shape, in order to investigate its effects on the progression of ATAA in a patient-specific model. A sensitivity analysis is performed to evaluate the potential impact of variations in the parameters of the length-tension relationships. These variations reflect in variations of SMCs normal tone during ATAA progression, with active stress contributions ranging between 30% (best case scenario) and 0% (worst case scenario) of the total wall circumferential stress. Low SMCs active stress in the worst case scenarios, in fact, affect the rates of collagen deposition by which the elastin loss is gradually compensated by collagen deposition in the simulated ATAA progression, resulting eventually in larger aneurysm diameters. The types of length-tension relationships leading to a drop of SMCs active stress in our simulations reveal a critical condition which could also result in SMCs apoptosis.
Collapse
Affiliation(s)
- Ataollah Ghavamian
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Étienne, France
| | - S Jamaleddin Mousavi
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Étienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Étienne, France
| |
Collapse
|
50
|
Wu J, Augustin CM, Shadden SC. Reconstructing vascular homeostasis by growth-based prestretch and optimal fiber deposition. J Mech Behav Biomed Mater 2020; 114:104161. [PMID: 33229142 DOI: 10.1016/j.jmbbm.2020.104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Computational modeling of cardiovascular biomechanics should generally start from a homeostatic state. This is particularly relevant for image-based modeling, where the reference configuration is the loaded in vivo state obtained from imaging. This state includes residual stress of the vascular constituents, as well as anisotropy from the spatially varying orientation of collagen and smooth muscle fibers. Estimation of the residual stress and fiber orientation fields is a formidable challenge in realistic applications. To help address this challenge, we herein develop a growth based Algorithm to recover a residual stress distribution in vascular domains such that the stress state in the loaded configuration is equal to a prescribed homeostatic stress distribution at physiologic pressure. A stress-driven fiber deposition process is included in the framework, which defines the distribution of the fiber alignments in the vascular homeostatic state based on a minimization procedure. Numerical simulations are conducted to test this two-stage homeostasis generation algorithm in both idealized and non-idealized geometries, yielding results that agree favorably with prior numerical and experimental data.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Mechanical Engineering, University of California, Berkeley, USA
| | - Christoph M Augustin
- Department of Mechanical Engineering, University of California, Berkeley, USA; Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California, Berkeley, USA.
| |
Collapse
|