1
|
Sun L, Wang L, Niu J, Yang W, Li Z, Liu L, Gao S. The maize gene ZmSBP17 encoding an SBP transcription factor confers osmotic resistance in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1483486. [PMID: 39574449 PMCID: PMC11578699 DOI: 10.3389/fpls.2024.1483486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
Among the major abiotic stresses, salt and drought have considerably affected agricultural development globally by interfering with gene expression profiles and cell metabolism. Transcription factors play crucial roles in activating or inhibiting the expression of stress-related genes in response to abiotic stress in plants. In this study, the Zea mays L. SQUAMOSA promoter-binding protein gene (ZmSBP17) was identified, and the molecular regulatory mechanism of osmotic stress tolerance was analyzed. Phylogenetic analysis confirmed that ZmSBP17 is part of the SBP gene family and is closely related to OsSBP17. The ZmSBP17-GFP fusion protein exhibited green fluorescence in the nucleus, as determined via tobacco epidermal transient transformation system. Acting as a transcriptional activator, the overexpression of ZmSBP17 in Arabidopsis significantly enhanced the expression of genes encoding superoxide dismutases (CSD1/2, MSD1), catalases (CAT1/2), ascorbate peroxidase 1 (APX1), and myeloblastosis transcription factors (AtMYB53/65), which increased the activity of reactive oxygen species (ROS)-scavenging enzymes and reduced ROS levels. Additionally, the expression of abiotic stress-related genes, such as AtDREB2A and AtNHX1, was significantly upregulated by ZmSBP17. Furthermore, ZmSBP17 specifically bound to cis-acting elements containing GTAC core sequences in the promoters of stress-related genes, suggesting that ZmSBP17 regulates the transcription of certain genes by recognizing these sequences. These results indicate that the overexpression of ZmSBP17 in Arabidopsis thaliana significantly increased tolerance to osmotic stress during the germination and seedling stages, which may enhance our understanding of the biological functions of SBPs in maize under abiotic stresses.
Collapse
Affiliation(s)
- Lifang Sun
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Lijiao Wang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jinping Niu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wei Yang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Zhifang Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Libin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Shuren Gao
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
2
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Xu L, Lan Y, Lin M, Zhou H, Ying S, Chen M. Genome-Wide Identification and Transcriptional Analysis of AP2/ERF Gene Family in Pearl Millet ( Pennisetum glaucum). Int J Mol Sci 2024; 25:2470. [PMID: 38473718 DOI: 10.3390/ijms25052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The apetala2/ethylene response factor (AP2/ERF) gene family plays a crucial role in regulating plant growth and development and responding to different abiotic stresses (e.g., drought, heat, cold, and salinity). However, the knowledge of the ERF family in pearl millet remains limited. Here, a total of 167 high-confidence PgERF genes are identified and divided into five subgroups based on gene-conserved structure and phylogenetic analysis. Forty-one pairs of segmental duplication are found using collinear analysis. Nucleotide substitution analysis reveals these duplicated pairs are under positive purification, indicating they are actively responding to natural selection. Comprehensive transcriptomic analysis reveals that PgERF genesare preferentially expressed in the imbibed seeds and stem (tilling stage) and respond to heat, drought, and salt stress. Prediction of the cis-regulatory element by the PlantCARE program indicates that PgERF genes are involved in responses to environmental stimuli. Using reverse transcription quantitative real-time PCR (RT-qPCR), expression profiles of eleven selected PgERF genes are monitored in various tissues and during different abiotic stresses. Transcript levels of each PgERF gene exhibit significant changes during stress treatments. Notably, the PgERF7 gene is the only candidate that can be induced by all adverse conditions. Furthermore, four PgERF genes (i.e., PgERF22, PgERF37, PgERF88, and PgERF155) are shown to be involved in the ABA-dependent signaling pathway. These results provide useful bioinformatic and transcriptional information for understanding the roles of the pearl millet ERF gene family in adaptation to climate change.
Collapse
Affiliation(s)
- Liang Xu
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Ying Lan
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Miaohong Lin
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Hongkai Zhou
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Sheng Ying
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Miao Chen
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
4
|
Baoxiang W, Zhiguang S, Yan L, Bo X, Jingfang L, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress. PLANTA 2023; 258:73. [PMID: 37668677 DOI: 10.1007/s00425-023-04232-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION Transcriptional regulation of stress-responsive genes is a crucial step in establishing the mechanisms behind plant abiotic stress tolerance. A sensitive method of regulating transcription factors activity, stability, protein interaction, and subcellular localization is through phosphorylation. This review highlights a widespread regulation mechanism that involves phosphorylation of plant TFs in response to abiotic stress. Abiotic stress is one of the main components limiting crop yield and sustainability on a global scale. It greatly reduces the land area that is planted and lowers crop production globally. In all living organisms, transcription factors (TFs) play a crucial role in regulating gene expression. They participate in cell signaling, cell cycle, development, and plant stress response. Plant resilience to diverse abiotic stressors is largely influenced by TFs. Transcription factors modulate gene expression by binding to their target gene's cis-elements, which are impacted by genomic characteristics, DNA structure, and TF interconnections. In this review, we focus on the six major TFs implicated in abiotic stress tolerance, namely, DREB, bZIP, WRKY, ABF, MYB, and NAC, and the cruciality of phosphorylation of these transcription factors in abiotic stress signaling, as protein phosphorylation has emerged as one of the key post-translational modifications, playing a critical role in cell signaling, DNA amplification, gene expression and differentiation, and modification of other biological configurations. These TFs have been discovered after extensive study as stress-responsive transcription factors which may be major targets for crop development and important contributors to stress tolerance and crop production.
Collapse
Grants
- CARS-01-61 the earmarked funds for China Agricultural Research System
- 2015BAD01B01 National Science and Technology Support Program of China
- BE2016370-3 Science and Technology Support Program of Jiangsu Province, China
- BE2017323 Science and Technology Support Program of Jiangsu Province, China
- BK20201214 Natural Science Foundation of Jiangsu Province of China
- BK20161299 the Natural Science Foundation of Jiangsu Province, China
- QNJJ1704 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2102 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2107 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2211 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
Collapse
Affiliation(s)
- Wang Baoxiang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Sun Zhiguang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Yan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jingfang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chi Ming
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xing Yungao
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Yang Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jian
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Jinbo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chen Tingmu
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Fang Zhaowei
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Lu Baiguan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Dayong
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| | - Babatunde Kazeem Bello
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| |
Collapse
|
5
|
Su Y, Dai S, Li N, Gentile A, He C, Xu J, Duan K, Wang X, Wang B, Li D. Unleashing the Potential of EIL Transcription Factors in Enhancing Sweet Orange Resistance to Bacterial Pathologies: Genome-Wide Identification and Expression Profiling. Int J Mol Sci 2023; 24:12644. [PMID: 37628825 PMCID: PMC10454048 DOI: 10.3390/ijms241612644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The ETHYLENE INSENSITIVE3-LIKE (EIL) family is one of the most important transcription factor (TF) families in plants and is involved in diverse plant physiological and biochemical processes. In this study, ten EIL transcription factors (CsEILs) in sweet orange were systematically characterized via whole-genome analysis. The CsEIL genes were unevenly distributed across the four sweet orange chromosomes. Putative cis-acting regulatory elements (CREs) associated with CsEIL were found to be involved in plant development, as well as responses to biotic and abiotic stress. Notably, quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that CsEIL genes were widely expressed in different organs of sweet orange and responded to both high and low temperature, NaCl treatment, and to ethylene-dependent induction of transcription, while eight additionally responded to Xanthomonas citri pv. Citri (Xcc) infection, which causes citrus canker. Among these, CsEIL2, CsEIL5 and CsEIL10 showed pronounced upregulation. Moreover, nine genes exhibited differential expression in response to Candidatus Liberibacter asiaticus (CLas) infection, which causes Citrus Huanglongbing (HLB). The genome-wide characterization and expression profile analysis of CsEIL genes provide insights into the potential functions of the CsEIL family in disease resistance.
Collapse
Affiliation(s)
- Yajun Su
- National Citrus Improvement Center, Hunan Agricultural University (Changsha Branch), Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
| | - Suming Dai
- National Citrus Improvement Center, Hunan Agricultural University (Changsha Branch), Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Na Li
- National Citrus Improvement Center, Hunan Agricultural University (Changsha Branch), Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Alessandra Gentile
- Department of Agriculture and Food Science, University of Catania, 95123 Catania, Italy;
| | - Cong He
- National Citrus Improvement Center, Hunan Agricultural University (Changsha Branch), Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jing Xu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
| | - Kangle Duan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
| | - Xue Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
| | - Dazhi Li
- National Citrus Improvement Center, Hunan Agricultural University (Changsha Branch), Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Li S, Jing X, Tan Q, Wen B, Fu X, Li D, Chen X, Xiao W, Li L. The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple. FRONTIERS IN PLANT SCIENCE 2023; 14:1173107. [PMID: 37484477 PMCID: PMC10359905 DOI: 10.3389/fpls.2023.1173107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 07/25/2023]
Abstract
Drought stress is an adverse stimulus that affects agricultural production worldwide. NAC transcription factors are involved in plant development and growth but also play different roles in the abiotic stress response. Here, we isolated the apple MdNAC29 gene and investigated its role in regulating drought tolerance. Subcellular localization experiments showed that MdNAC29 was localized to the nucleus and transcription was induced by the PEG treatment. Over-expression of MdNAC29 reduced drought tolerance in apple plants, calli, and tobacco, and exhibited higher relative conductivity, malondialdehyde (MDA) content, and lower chlorophyll content under drought stress. The transcriptomic analyses revealed that MdNAC29 reduced drought resistance by modulating the expression of photosynthesis and leaf senescence-related genes. The qRT-PCR results showed that overexpression of MdNAC29 repressed the expression of drought-resistance genes. Yeast one-hybrid and dual-luciferase assays demonstrated that MdNAC29 directly repressed MdDREB2A expression. Moreover, the yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that MdNAC29 interacted with the MdPP2-B10 (F-box protein), which responded to drought stress, and MdPP2-B10 enhanced the repressive effect of MdNAC29 on the transcriptional activity of the MdDREB2A. Taken together, our results indicate that MdNAC29 is a negative regulator of drought resistance, and provide a theoretical basis for further molecular mechanism research.
Collapse
Affiliation(s)
- Sen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiuli Jing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
7
|
Akbari A, Ismaili A, Amirbakhtiar N, Pouresmael M, Shobbar ZS. Genome-wide transcriptional profiling provides clues to molecular mechanisms underlying cold tolerance in chickpea. Sci Rep 2023; 13:6279. [PMID: 37072529 PMCID: PMC10113226 DOI: 10.1038/s41598-023-33398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Chickpea is an important food legume cultivated in several countries. A sudden drop in autumn temperature, freezing winter temperature, and late spring cold events result in significant losses in chickpea production. The current study used RNA sequencing of two cold tolerant (Saral) and sensitive (ILC533) Kabuli chickpea genotypes to identify cold tolerance-associated genes/pathways. A total of 200.85 million raw reads were acquired from the leaf samples by Illumina sequencing, and around 86% of the clean reads (199 million) were mapped to the chickpea reference genome. The results indicated that 3710 (1980 up- and 1730 down-regulated) and 3473 (1972 up- and 1501 down-regulated) genes were expressed differentially under cold stress in the tolerant and sensitive genotypes, respectively. According to the GO enrichment analysis of uniquely down-regulated genes under cold stress in ILC533, photosynthetic membrane, photosystem II, chloroplast part, and photosystem processes were enriched, revealing that the photosynthesis is severely sensitive to cold stress in this sensitive genotype. Many remarkable transcription factors (CaDREB1E, CaMYB4, CaNAC47, CaTCP4, and CaWRKY33), signaling/regulatory genes (CaCDPK4, CaPP2C6, CaMKK2, and CaHSFA3), and protective genes (CaCOR47, CaLEA3, and CaGST) were identified among the cold-responsive genes of the tolerant genotype. These findings would help improve cold tolerance across chickpea genotypes by molecular breeding or genetic engineering.
Collapse
Affiliation(s)
- Alireza Akbari
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Nazanin Amirbakhtiar
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Masoumeh Pouresmael
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization, Karaj, Iran.
| |
Collapse
|
8
|
Guo Z, He L, Sun X, Li C, Su J, Zhou H, Liu X. Genome-Wide Analysis of the Rhododendron AP2/ERF Gene Family: Identification and Expression Profiles in Response to Cold, Salt and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:994. [PMID: 36903855 PMCID: PMC10005251 DOI: 10.3390/plants12050994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The AP2/ERF gene family is one of the most conserved and important transcription factor families mainly occurring in plants with various functions in regulating plant biological and physiological processes. However, little comprehensive research has been conducted on the AP2/ERF gene family in Rhododendron (specifically, Rhododendron simsii), an important ornamental plant. The existing whole-genome sequence of Rhododendron provided data to investigate the AP2/ERF genes in Rhododendron on a genome-wide scale. A total of 120 Rhododendron AP2/ERF genes were identified. The phylogenetic analysis showed that RsAP2 genes were classified into five main subfamilies, AP2, ERF, DREB, RAV and soloist. Cis-acting elements involving plant growth regulators, response to abiotic stress and MYB binding sites were detected in the upstream sequences of RsAP2 genes. A heatmap of RsAP2 gene expression levels showed that these genes had different expression patterns in the five developmental stages of Rhododendron flowers. Twenty RsAP2 genes were selected for quantitative RT-PCR experiments to clarify the expression level changes under cold, salt and drought stress treatments, and the results showed that most of the RsAP2 genes responded to these abiotic stresses. This study generated comprehensive information on the RsAP2 gene family and provides a theoretical basis for future genetic improvement.
Collapse
Affiliation(s)
- Zhenhao Guo
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Lisi He
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaobo Sun
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chang Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jiale Su
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Huimin Zhou
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaoqing Liu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
9
|
Sheng S, Guo X, Wu C, Xiang Y, Duan S, Yang W, Le W, Cao F, Liu L. Genome-wide identification and expression analysis of DREB genes in alfalfa ( Medicago sativa) in response to cold stress. PLANT SIGNALING & BEHAVIOR 2022; 17:2081420. [PMID: 35642507 PMCID: PMC9176237 DOI: 10.1080/15592324.2022.2081420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Dehydration-responsive element-binding proteins (DREBs) belong to members of the AP2/ERF transcription factor superfamily, which has been reported to involve various abiotic-stress responses and tolerance in plants. However, research on the DREB-family is still limited in alfalfa (Medicago sativa L.), a forage legume cultivated worldwide. The recent genome-sequence release of the alfalfa cultivar "XinJiangDaYe" allowed us to identify 172 DREBs by a multi-step homolog search. The phylogenetic analysis indicated that such MsDREBs could be classified into 5 groups, namely A-1 (56 members), A-2 (39), A-3 (3), A-4 (61) and 13 (A-5 (13), thus adding substantial new members to the DREB-family in alfalfa. Furthermore, a comprehensive survey in silico of conserved motif, gene structure, molecular weight, and isoelectric point (pI) as well as gene expression was conducted. The resulting data showed that, for cold-stress response, 33 differentially expressed MsDREBs were identified with a threshold of Log2-fold > 1, and most of which were transcriptionally upregulated within 48 h during a cold treatment(s). Moreover, the expression profiling of MsDREBs from two ecotypes of alfalfa subspecies i.e. M. sativa ssp. falcata (F56, from a colder region of Central Asia) and M. sativa ssp. sativa (B47, from Near East) revealed that most of the cold-stress responsive MsDREBs exhibited a significantly lower expression in F56, leading to a proposal of the existence of a distinct mechanism(s) for cold tolerance regulated by DREB-related action, which would have been evolved in alfalfa with a genotypic specificity. Additionally, by examining the transcriptome of a freezing-tolerance species (M. sativa cv. Zhaodong), eight DREBs were found to be implicated in a long-term freezing-stress adaptation with a great potential. Taken together, the current genome-wide identification in alfalfa points to the importance of some MsDREBs in the cold-stress response, providing some promising molecular targets to be functionally characterized for the improvement of cold tolerance in crops including alfalfa.
Collapse
Affiliation(s)
- Song Sheng
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Xinyu Guo
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Changzheng Wu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Yucheng Xiang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Shuhui Duan
- Hunan Tobacco Science Institute, Changsha, China
| | - Weiqin Yang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Wenrui Le
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Fengchun Cao
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Laihua Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
DsDBF1, a Type A-5 DREB Gene, Identified and Characterized in the Moss Dicranum scoparium. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010090. [PMID: 36676039 PMCID: PMC9862540 DOI: 10.3390/life13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Plant dehydration-responsive element binding (DREB) transcription factors (TFs) play important roles during stress tolerance by regulating the expression of numerous genes involved in stresses. DREB TFs have been extensively studied in a variety of angiosperms and bryophytes. To date, no information on the identification and characterization of DREB TFs in Dicranum scoparium has been reported. In this study, a new DBF1 gene from D. scoparium was identified by cloning and sequencing. Analysis of the conserved domain and physicochemical properties revealed that DsDBF1 protein has a classic AP2 domain encoding a 238 amino acid polypeptide with a molecular mass of 26 kDa and a pI of 5.98. Subcellular prediction suggested that DsDBF1 is a nuclear and cytoplasmic protein. Phylogenetic analysis showed that DsDBF1 belongs to group A-5 DREBs. Expression analysis by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) revealed that DsDBF1 was significantly upregulated in response to abiotic stresses such as desiccation/rehydration, exposure to paraquat, CdCl2, high and freezing temperatures. Taken together, our data suggest that DsDBF1 could be a promising gene candidate to improve stress tolerance in crop plants, and the characterization of TFs of a stress tolerant moss such as D. scoparium provides a better understanding of plant adaptation mechanisms.
Collapse
|
11
|
A YSK-Type Dehydrin from Nicotiana tabacum Enhanced Copper Tolerance in Escherichia coli. Int J Mol Sci 2022; 23:ijms232315162. [PMID: 36499485 PMCID: PMC9737620 DOI: 10.3390/ijms232315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Copper is an essential micronutrient for the maintenance of normal cell function but is toxic in excess. Dehydrins are group two late embryogenesis abundant proteins, which facilitate plant survival in harsh environmental conditions. Here, a YSK-type dehydrin, NtDhn17, was cloned from Nicotiana tabacum under copper toxicity and characterized using a heterologous expression system and in vitro or in vivo experiments and exhibited characteristics of intrinsic disorder during in vitro analyses. Heterologous expression of NtDHN17 enhanced the tolerance of E. coli to various metals, osmotic, and oxidative stress. NtDHN17 showed no Cu2+-binding properties in vivo or in vitro, indicating that metal ion binding is not universal among dehydrins. In vitro and in vivo experiments suggested that NtDHN17 behaved as a potent anti-aggregation agent providing strong protection to aggregated proteins induced by excess copper ions, an effect dependent on the K-segment but not on the Y- or S-segments. In summary, the protective role of NtDHN17 towards E. coli under conditions of copper toxicity may be related to anti-aggregation ability rather than its acting as an ion scavenger, which might be a valuable target for the genetic improvement of resistance to heavy metal stresses in plants.
Collapse
|
12
|
Sugarcane ScDREB2B-1 Confers Drought Stress Tolerance in Transgenic Nicotiana benthamiana by Regulating the ABA Signal, ROS Level and Stress-Related Gene Expression. Int J Mol Sci 2022; 23:ijms23179557. [PMID: 36076957 PMCID: PMC9455921 DOI: 10.3390/ijms23179557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The dehydration-responsive element-binding protein (DREB) is a subgroup member of the AP2/ERF family and actively participates in the response of plants to abiotic stress. Although DREB genes have been studied in a variety of plant species, there are few reports of DREB genes in sugarcane (Saccharum spp.). In this study, a novel full-length cDNA sequence of the ScDREB2B-1 gene was cloned from the Saccharum hybrid ROC22, whose encoding protein contained only one AP2-conserved domain and was clustered into the DREB (A-2) subgroup. The diverse promoter elements in the ScDREB2B-1 gene and the accumulated transcripts of its homologous gene (SsAP2/ERF-107) in S. spontaneum under drought stress suggest that the ScDREB2B-1 gene may play a role in drought response. In addition, reverse transcription quantitative PCR analysis showed that the expression level of the ScDREB2B-1 gene was upregulated in the root and leaf of ROC22 under polyethylene glycol, sodium chloride and abscisic acid (ABA) treatments. The yeast two-hybrid experiment demonstrated that ScDREB2B-1 had transcriptional self-activation activity. Compared with wild-type plants, the overexpression of the ScDREB2B-1 gene improved the drought tolerance of the transgenic Nicotiana benthamiana by activating the ABA pathway to enhance the expression of the ABA-responsive gene (NbNCED) and ABA content, regulate the intracellular reactive oxygen species (ROS) level (enhance the transcripts of ROS synthase-related gene NbRbohB and the activities of catalase, peroxidase and superoxide dismutase) and increase the relative water content, proline content and expression level of osmotic stress-related genes (NbERD and NbLEA). Collectively, our data indicate that ScDREB2B-1 is a stress-inducible and ABA-responsive transcription factor gene that responds to drought stress by regulating ABA signaling, ROS levels and stress-related gene expression. This study contributes to a better understanding of the biological function of ScDREB2B-1, which could serve as a foundation for future resistance breeding in sugarcane.
Collapse
|
13
|
De Kort H, Toivainen T, Van Nieuwerburgh F, Andrés J, Hytönen TP, Honnay O. Signatures of polygenic adaptation align with genome-wide methylation patterns in wild strawberry plants. THE NEW PHYTOLOGIST 2022; 235:1501-1514. [PMID: 35575945 DOI: 10.1111/nph.18225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic inheritance can drive adaptive evolution independently of DNA sequence variation. However, to what extent epigenetic variation represents an autonomous evolutionary force remains largely elusive. Through gene ontology and comparative analyses of genomic and epigenomic variation of wild strawberry plants raised in distinct drought settings, we characterised genome-wide covariation between single nucleotide polymorphisms (SNPs) and differentially methylated cytosines (DMCs). Covariation between SNPs and DMCs was independent of genomic proximity, but instead associated with fitness-related processes such as stress responses, genome regulation and reproduction. We expected this functional SNP-DMC covariation to be driven by adaptive evolution canalising SNP and DMC variation, but instead observed significantly lower covariation with DMCs for adaptive rather than for neutral SNPs. Drought-induced DMCs frequently co-varied with tens of SNPs, suggesting high genomic redundancy as a broad potential basis for polygenic adaptation of gene expression. Our findings suggest that stress-responsive DMCs initially co-vary with many SNPs under increased environmental stress, and that natural selection acting upon several of these SNPs subsequently reduces standing covariation with stress-responsive DMCs. Our study supports DNA methylation profiles that represent complex quantitative traits rather than autonomous evolutionary forces. We provide a conceptual framework for polygenic regulation and adaptation shaping genome-wide methylation patterns in plants.
Collapse
Affiliation(s)
- Hanne De Kort
- Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | | | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Timo P Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Olivier Honnay
- Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| |
Collapse
|
14
|
Meena RP, Ghosh G, Vishwakarma H, Padaria JC. Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Mol Biol Rep 2022; 49:7347-7358. [PMID: 35666421 DOI: 10.1007/s11033-022-07527-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pearl millet (Pennisetum glaucum) is an essential cereal crop, whose growth and yield are not impacted by abiotic stresses, such as drought, heat, and cold. The DREB transcription factors (TF) are some of the largest groups of TFs in plants and play varied roles in plant stress response and signal transduction. METHODS AND RESULTS In the present study, PgDREB2A gene encoding a DREB transcription factor in pearl millet was functionally characterized in Arabidopsis. DREB2A proteins contain a conserved domain that binds toethylene responsive element binding factors. Three different T1 transgenic lines overexpressing PgDREB2A gene were identified by Southern blot. Quantitative real-time polymerase chain reaction exhibited that PgDREB2A could be induced under drought conditions. As compared with the control, PgDREB2A overexpressing transgenic Arabidopsis showed increased rate of seed germination and root growth in transgenic lines under higher concentrations of mannitol, NaCl, ABA, heat and cold stress. Additionally, PgDREB2A transgenic lines showed enhanced durability after rehydration and tolerance to drought and salt stress was augmented with increased proline and reduced MDA build-up and diminishing water loss. CONCLUSIONS Results from this study suggested that PgDREB2A as a transcription factor may improve endurance to various abiotic stresses and can be employed for developing crops tolerant to abiotic stresses.
Collapse
Affiliation(s)
- Rajendra Prasad Meena
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India.,PG School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Gourab Ghosh
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Jasdeep Chatrath Padaria
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India. .,PG School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
15
|
Singh M, Nara U. Genetic insights in pearl millet breeding in the genomic era: challenges and prospects. PLANT BIOTECHNOLOGY REPORTS 2022; 17:15-37. [PMID: 35692233 PMCID: PMC9169599 DOI: 10.1007/s11816-022-00767-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 05/28/2023]
Abstract
Pearl millet, a vital staple food and an important cereal, is emerging as crop having various end-uses as feed, food as well as fodder. Advancement in high-throughput sequencing technology has boosted up pearl millet genomic research in past few years. The available draft genome of pearl millet providing an insight into the advancement of several breeding lines. Comparative and functional genomics have untangled several loci and genes regulating adaptive and agronomic traits in pearl millet. Additionally, the knowledge achieved has far away from being applicable in real breeding practices. We believe that the best path ahead is to adopt genome-based approaches for tailored designing of pearl millet as multi-functional crop with outstanding agronomic traits for various end uses. Presently review highlight several novel concepts and techniques in crop breeding, and summarize the recent advances in pearl millet genomic research, peculiarly genome-wide association dissections of several novel alleles and genes for agronomically important traits.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
16
|
Wei C, Li M, Cao X, Jin Z, Zhang C, Xu M, Chen K, Zhang B. Linalool synthesis related PpTPS1 and PpTPS3 are activated by transcription factor PpERF61 whose expression is associated with DNA methylation during peach fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111200. [PMID: 35193748 DOI: 10.1016/j.plantsci.2022.111200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/24/2023]
Abstract
The monoterpene linalool is a major contributor to flavor of multiple fruit species. Although great progress has been made in identifying genes related to linalool formation, transcriptional regulation for the pathway remains largely unknown. As a super transcription factor family, roles of AP2/ERF in regulating linalool production have not been elucidated. Peach linalool is catalyzed by terpene synthases PpTPS1 and PpTPS3. Here, we observed that expression of PpERF61 correlated with these two PpTPSs during fruit ripening by transcriptome co-expression analysis. Dual-luciferase assay and EMSA results indicated that PpERF61 activated the PpTPS1 and PpTPS3 transcription by binding to the DRE/CRT motif in their promoters. Transient overexpressing PpERF61 in peach fruit significantly increased PpTPS1 and PpTPS3 expression and linalool content. Further study revealed significant correlation between PpERF61 transcripts and linalool contents across 30 peach cultivars. Besides transcriptional regulation, accumulated linalool was associated with DNA demethylation of PpERF61 during peach fruit ripening. In addition, interactions between PpERF61 and PpbHLH1 were evaluated, indicating these two transcription factors were associated with linalool production during peach fruit ripening. Overall, our results revealed a new insight into the regulation of linalool synthesis in fruit.
Collapse
Affiliation(s)
- Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Mengtao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Zhengnan Jin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Min Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13651. [PMID: 35174506 DOI: 10.1111/ppl.13651] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| |
Collapse
|
18
|
Chiteri KO, Jubery TZ, Dutta S, Ganapathysubramanian B, Cannon S, Singh A. Dissecting the Root Phenotypic and Genotypic Variability of the Iowa Mung Bean Diversity Panel. FRONTIERS IN PLANT SCIENCE 2022; 12:808001. [PMID: 35154202 PMCID: PMC8828542 DOI: 10.3389/fpls.2021.808001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Mung bean [Vigna radiata (L.) Wilczek] is a drought-tolerant, short-duration crop, and a rich source of protein and other valuable minerals, vitamins, and antioxidants. The main objectives of this research were (1) to study the root traits related with the phenotypic and genetic diversity of 375 mung bean genotypes of the Iowa (IA) diversity panel and (2) to conduct genome-wide association studies of root-related traits using the Automated Root Image Analysis (ARIA) software. We collected over 9,000 digital images at three-time points (days 12, 15, and 18 after germination). A broad sense heritability for days 15 (0.22-0.73) and 18 (0.23-0.87) was higher than that for day 12 (0.24-0.51). We also reported root ideotype classification, i.e., PI425425 (India), PI425045 (Philippines), PI425551 (Korea), PI264686 (Philippines), and PI425085 (Sri Lanka) that emerged as the top five in the topsoil foraging category, while PI425594 (unknown origin), PI425599 (Thailand), PI425610 (Afghanistan), PI425485 (India), and AVMU0201 (Taiwan) were top five in the drought-tolerant and nutrient uptake "steep, cheap, and deep" ideotype. We identified promising genotypes that can help diversify the gene pool of mung bean breeding stocks and will be useful for further field testing. Using association studies, we identified markers showing significant associations with the lateral root angle (LRA) on chromosomes 2, 6, 7, and 11, length distribution (LED) on chromosome 8, and total root length-growth rate (TRL_GR), volume (VOL), and total dry weight (TDW) on chromosomes 3 and 5. We discussed genes that are potential candidates from these regions. We reported beta-galactosidase 3 associated with the LRA, which has previously been implicated in the adventitious root development via transcriptomic studies in mung bean. Results from this work on the phenotypic characterization, root-based ideotype categories, and significant molecular markers associated with important traits will be useful for the marker-assisted selection and mung bean improvement through breeding.
Collapse
Affiliation(s)
- Kevin O. Chiteri
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Talukder Zaki Jubery
- Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, United States
| | | | - Steven Cannon
- Department of Agronomy, Iowa State University, Ames, IA, United States
- USDA—Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, United States
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
19
|
Satyavathi CT, Tomar RS, Ambawat S, Kheni J, Padhiyar SM, Desai H, Bhatt SB, Shitap MS, Meena RC, Singhal T, Sankar SM, Singh SP, Khandelwal V. Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.]. Sci Rep 2022; 12:276. [PMID: 34997160 PMCID: PMC8742121 DOI: 10.1038/s41598-021-04388-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pearl millet is an important staple food crop of poor people and excels all other cereals due to its unique features of resilience to adverse climatic conditions. It is rich in micronutrients like iron and zinc and amenable for focused breeding for these micronutrients along with high yield. Hence, this is a key to alleviate malnutrition and ensure nutritional security. This study was conducted to identify and validate candidate genes governing grain iron and zinc content enabling the desired modifications in the genotypes. Transcriptome sequencing using ION S5 Next Generation Sequencer generated 43.5 million sequence reads resulting in 83,721 transcripts with N50 of 597 bp and 84.35% of transcripts matched with the pearl millet genome assembly. The genotypes having high iron and zinc showed differential gene expression during different stages. Of which, 155 were up-regulated and 251 were down-regulated while during flowering stage and milking stage 349 and 378 transcripts were differentially expressed, respectively. Gene annotation and GO term showed the presence of transcripts involved in metabolic activities associated with uptake and transport of iron and zinc. Information generated will help in gaining insights into iron and zinc metabolism and develop genotypes with high yield, grain iron and zinc content.
Collapse
Affiliation(s)
- C Tara Satyavathi
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India.
| | - Rukam S Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Supriya Ambawat
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Jasminkumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shital M Padhiyar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hiralben Desai
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - S B Bhatt
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M S Shitap
- Department of Agricultural Statistics, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Ramesh Chand Meena
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Tripti Singhal
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S Mukesh Sankar
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S P Singh
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - Vikas Khandelwal
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| |
Collapse
|
20
|
Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. FRONTIERS IN PLANT SCIENCE 2021; 12:659938. [PMID: 34589092 PMCID: PMC8475763 DOI: 10.3389/fpls.2021.659938] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/03/2021] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is the sixth most important cereal crop after rice, wheat, maize, barley and sorghum. It is widely grown on 30 million ha in the arid and semi-arid tropical regions of Asia and Africa, accounting for almost half of the global millet production. Climate change affects crop production by directly influencing biophysical factors such as plant and animal growth along with the various areas associated with food processing and distribution. Assessment of the effects of global climate changes on agriculture can be helpful to anticipate and adapt farming to maximize the agricultural production more effectively. Pearl millet being a climate-resilient crop is important to minimize the adverse effects of climate change and has the potential to increase income and food security of farming communities in arid regions. Pearl millet has a deep root system and can survive in a wide range of ecological conditions under water scarcity. It has high photosynthetic efficiency with an excellent productivity and growth in low nutrient soil conditions and is less reliant on chemical fertilizers. These attributes have made it a crop of choice for cultivation in arid and semi-arid regions of the world; however, fewer efforts have been made to study the climate-resilient features of pearl millet in comparison to the other major cereals. Several hybrids and varieties of pearl millet were developed during the past 50 years in India by both the public and private sectors. Pearl millet is also nutritionally superior and rich in micronutrients such as iron and zinc and can mitigate malnutrition and hidden hunger. Inclusion of minimum standards for micronutrients-grain iron and zinc content in the cultivar release policy-is the first of its kind step taken in pearl millet anywhere in the world, which can lead toward enhanced food and nutritional security. The availability of high-quality whole-genome sequencing and re-sequencing information of several lines may aid genomic dissection of stress tolerance and provide a good opportunity to further exploit the nutritional and climate-resilient attributes of pearl millet. Hence, more efforts should be put into its genetic enhancement and improvement in inheritance to exploit it in a better way. Thus, pearl millet is the next-generation crop holding the potential of nutritional richness and the climate resilience and efforts must be targeted to develop nutritionally dense hybrids/varieties tolerant to drought using different omics approaches.
Collapse
Affiliation(s)
- C. Tara Satyavathi
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Supriya Ambawat
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Vikas Khandelwal
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Rakesh K. Srivastava
- Department of Molecular Breeding (Genomics Trait Discovery), International Crops Research Institute for Semi-arid Tropics, Patancheru, India
| |
Collapse
|
21
|
Li D, Peng S, Chen S, Li Z, He Y, Ren B, Yang G. Identification and characterization of 5 walnut MYB genes in response to drought stress involved in ABA signaling. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1323-1335. [PMID: 34177150 PMCID: PMC8212255 DOI: 10.1007/s12298-021-01008-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 05/17/2023]
Abstract
UNLABELLED Walnut is a popular nut tree species and usually suffers from drought stress. However, little information is available on the mechanism of walnut responding to drought stress, resulting in lack of basic understanding for its resistance. In order to excavate more functional genes that can respond to stressors, and enrich the theoretical basis for walnut resistance, in this study, 5 MYB genes with complete ORFs were identified from J. regia and the basic bio-information as well as expression patterns in different tissues and response to drought and ABA stresses were confirmed using qRT-PCR assay. The results showed that 2 JrMYB genes belong to R1-MYB subfamily and 3 JrMYBs belong to R2R3-MYB, encoding the proteins from 212 to 362 aa in length. The phylogenetic analysis categorized proteins of 5 JrMYBs and 40 Arabidopsis AtMYBs into 10 subgroups. JrMYBs in the same subgroup exhibited significant similarities in the composition of conserved domains and motifs in amino acid sequences and exon/intron organization in DNA sequences. The results of qRT-PCR analysis revealed that JrMYB genes diversely expressed in various tissues. Moreover, the expression values of JrMYBs were upregulated or downregulated significantly under drought and ABA stresses. Most attractively, in contrast with suffering from drought stress alone, the treatments with drought and additional ABA greatly enhanced the transcript levels of JrMYBs. All these results suggested that JrMYB genes play a vital role in plant biological processes and drought as well as ABA stress response, and possibly perform as ABA-dependent drought response transcription factors in plant. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01008-z.
Collapse
Affiliation(s)
- Dapei Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shaobing Peng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shuwen Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Ziyi Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yi He
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Bin Ren
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
22
|
Understanding the Integrated Pathways and Mechanisms of Transporters, Protein Kinases, and Transcription Factors in Plants under Salt Stress. Int J Genomics 2021; 2021:5578727. [PMID: 33954166 PMCID: PMC8057909 DOI: 10.1155/2021/5578727] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Abiotic stress is the major threat confronted by modern-day agriculture. Salinity is one of the major abiotic stresses that influence geographical distribution, survival, and productivity of various crops across the globe. Plants perceive salt stress cues and communicate specific signals, which lead to the initiation of defence response against it. Stress signalling involves the transporters, which are critical for water transport and ion homeostasis. Various cytoplasmic components like calcium and kinases are critical for any type of signalling within the cell which elicits molecular responses. Stress signalling instils regulatory proteins and transcription factors (TFs), which induce stress-responsive genes. In this review, we discuss the role of ion transporters, protein kinases, and TFs in plants to overcome the salt stress. Understanding stress responses by components collectively will enhance our ability in understanding the underlying mechanism, which could be utilized for crop improvement strategies for achieving food security.
Collapse
|
23
|
Li W, Geng Z, Zhang C, Wang K, Jiang X. Whole-genome characterization of Rosa chinensis AP2/ERF transcription factors and analysis of negative regulator RcDREB2B in Arabidopsis. BMC Genomics 2021; 22:90. [PMID: 33509074 PMCID: PMC7844920 DOI: 10.1186/s12864-021-07396-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics. However, drought stress restricts its growth and development, leading to an abnormal phenotype. One of the main transcription factor (TF) protein groups in the plant kingdom are the APETALA2/ethylene-responsive factor (AP2/ERF) proteins and are potentially involved in the growth and stress responses of various plants. RESULTS Our investigation mainly focused on exploring the genome of rose and thereby we discovered 135 apparent AP2/ERF TFs. Phylogenic analyses revealed that RcAP2/ERF genes are categorized into DREB, Soloist, AP2, and ERF subfamilies, and are further classified these into 17 groups, with the same as Malus domestica and Arabidopsis thaliana. The analysis of the gene structure revealed that the introns ranged from 0 to 9 in number. Pattern examination demonstrated that the RcAP2/ERF predominantly consists of typical AP2 domains, of which the 2nd motif is the most ubiquitous. Distributions of cis-acting elements indicated that members of the AP2/ERF family are frequently involved in growth and development, phytohormone and stress response in rose species. Also, the distribution mapping of the rose chromosomes indicated that AP2/ERF class genes are dispersed among all seven chromosomes. Additionally, we isolated a novel DREB A2 subgroup gene and named it RcDREB2B. Subsequently, the RcDREB2B transcript accumulation was repressed under the mild and severe drought stress in the root samples of rose. RcDREB2B was targeted to the nucleus and exhibited transactivation in yeast cells. The overexpression of RcDREB2B was found to promote sensitivity to a higher salt concentration, ABA, and PEG at the germination and post-germination stages. Twelve putative osmotic and ABA-related genes were impaired in RcDREB2B-overexpressing plants. CONCLUSIONS The results provide comprehensive information regarding the gene structure, phylogenic, and distribution of the rose AP2/ERF family and bring insight into the complex transcriptional gene regulation of RcAP2/ERF. Findings in this study would also contribute to further understanding of the RcDREB2B gene in rose.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Ziwen Geng
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Cuiping Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China.
| |
Collapse
|
24
|
Das A, Basu PS, Kumar M, Ansari J, Shukla A, Thakur S, Singh P, Datta S, Chaturvedi SK, Sheshshayee MS, Bansal KC, Singh NP. Transgenic chickpea (Cicer arietinum L.) harbouring AtDREB1a are physiologically better adapted to water deficit. BMC PLANT BIOLOGY 2021; 21:39. [PMID: 33430800 PMCID: PMC7802217 DOI: 10.1186/s12870-020-02815-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) is the second most widely grown pulse and drought (limiting water) is one of the major constraints leading to about 40-50% yield losses annually. Dehydration responsive element binding proteins (DREBs) are important plant transcription factors that regulate the expression of many stress-inducible genes and play a critical role in improving the abiotic stress tolerance. Transgenic chickpea lines harbouring transcription factor, Dehydration Responsive Element-Binding protein 1A from Arabidopsis thaliana (AtDREB1a gene) driven by stress inducible promoter rd29a were developed, with the intent of enhancing drought tolerance in chickpea. Performance of the progenies of one transgenic event and control were assessed based on key physiological traits imparting drought tolerance such as plant water relation characteristics, chlorophyll retention, photosynthesis, membrane stability and water use efficiency under water stressed conditions. RESULTS Four transgenic chickpea lines harbouring stress inducible AtDREB1a were generated with transformation efficiency of 0.1%. The integration, transmission and regulated expression were confirmed by Polymerase Chain Reaction (PCR), Southern Blot hybridization and Reverse Transcriptase polymerase chain reaction (RT-PCR), respectively. Transgenic chickpea lines exhibited higher relative water content, longer chlorophyll retention capacity and higher osmotic adjustment under severe drought stress (stress level 4), as compared to control. The enhanced drought tolerance in transgenic chickpea lines were also manifested by undeterred photosynthesis involving enhanced quantum yield of PSII, electron transport rate at saturated irradiance levels and maintaining higher relative water content in leaves under relatively severe soil water deficit. Further, lower values of carbon isotope discrimination in some transgenic chickpea lines indicated higher water use efficiency. Transgenic chickpea lines exhibiting better OA resulted in higher seed yield, with progressive increase in water stress, as compared to control. CONCLUSIONS Based on precise phenotyping, involving non-invasive chlorophyll fluorescence imaging, carbon isotope discrimination, osmotic adjustment, higher chlorophyll retention and membrane stability index, it can be concluded that AtDREB1a transgenic chickpea lines were better adapted to water deficit by modifying important physiological traits. The selected transgenic chickpea event would be a valuable resource that can be used in pre-breeding or directly in varietal development programs for enhanced drought tolerance under parched conditions.
Collapse
Affiliation(s)
- Alok Das
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India.
| | - Partha Sarathi Basu
- Division of Basic Sciences, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Manoj Kumar
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Jamal Ansari
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Alok Shukla
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Shallu Thakur
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Parul Singh
- Division of Basic Sciences, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Subhojit Datta
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Sushil Kumar Chaturvedi
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - M S Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, GKVK Campus, Bangalore, 560 065, India
| | | | - Narendra Pratap Singh
- Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| |
Collapse
|
25
|
Huang Y, Liu Y, Zhang M, Chai M, He Q, Jakada BH, Chen F, Chen H, Jin X, Cai H, Qin Y. Genome-wide identification and expression analysis of the ERF transcription factor family in pineapple ( Ananas comosus (L.) Merr.). PeerJ 2020; 8:e10014. [PMID: 33024641 PMCID: PMC7518161 DOI: 10.7717/peerj.10014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/01/2020] [Indexed: 01/27/2023] Open
Abstract
Pineapple (Ananas comosus (L.) Merr.) is an important tropical fruit with high economic value. The quality and yield of pineapple will be affected by various environmental conditions. Under adverse conditions, plants can produce a complex reaction mechanism to enhance their resistance. It has been reported that the member of ethylene responsive transcription factors (ERFs) plays a crucial role in plant developmental process and stress response. However, the function of these proteins in pineapple remains limited. In this study, a total of 74 ERF genes (AcoERFs) were identified in pineapple genome, named from AcoERF1 to AcoERF74, and divided into 13 groups based on phylogenetic analysis. We also analyzed gene structure, conserved motif and chromosomal location of AcoERFs, and the AcoERFs within the same group possess similar gene structures and motif compositions. Three genes (AcoERF71, AcoERF73 and AcoERF74) were present on unanchored scaffolds, so they could not be conclusively mapped on chromosome. Synteny and cis-elements analysis of ERF genes provided deep insight into the evolution and function of pineapple ERF genes. Furthermore, we analyzed the expression profiling of AcoERF in different tissues and developmental stages, and 22 AcoERF genes were expressed in all examined tissues, in which five genes (AcoERF13, AcoERF16, AcoERF31, AcoERF42, and AcoERF65) had high expression levels. Additionally, nine AcoERF genes were selected for functional verification by qRT-PCR. These results provide useful information for further investigating the evolution and functions of ERF family in pineapple.
Collapse
Affiliation(s)
- Youmei Huang
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Yanhui Liu
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Man Zhang
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Mengnan Chai
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Qing He
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Bello Hassan Jakada
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Fangqian Chen
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Huihuang Chen
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Xingyue Jin
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Hanyang Cai
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Yuan Qin
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi Province, China
| |
Collapse
|
26
|
Shivhare R, Asif MH, Lata C. Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. PLANT MOLECULAR BIOLOGY 2020; 103:639-652. [PMID: 32430635 DOI: 10.1007/s11103-020-01015-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/11/2020] [Indexed: 05/09/2023]
Affiliation(s)
- Radha Shivhare
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mehar H Asif
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Charu Lata
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- CSIR-National Institute of Science Communication and Information Resources, 14 Satsang Vihar Marg, New Delhi, 110067, India.
| |
Collapse
|
27
|
De novo assembly and comparative transcriptome analysis of contrasting pearl millet (Pennisetum glaucum L.) genotypes under terminal drought stress using illumina sequencing. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00324-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Katara JL, Verma RL, Parida M, Ngangkham U, Molla KA, Barbadikar KM, Mukherjee M, C P, Samantaray S, Ravi NR, Singh ON, Mohapatra T. Differential Expression of Genes at Panicle Initiation and Grain Filling Stages Implied in Heterosis of Rice Hybrids. Int J Mol Sci 2020; 21:ijms21031080. [PMID: 32041193 PMCID: PMC7038112 DOI: 10.3390/ijms21031080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
RNA-Seq technology was used to analyze the transcriptome of two rice hybrids, Ajay (based on wild-abortive (WA)-cytoplasm) and Rajalaxmi (based on Kalinga-cytoplasm), and their respective parents at the panicle initiation (PI) and grain filling (GF) stages. Around 293 and 302 million high quality paired-end reads of Ajay and Rajalaxmi, respectively, were generated and aligned against the Nipponbare reference genome. Transcriptome profiling of Ajay revealed 2814 and 4819 differentially expressed genes (DEGs) at the PI and GF stages, respectively, as compared to its parents. In the case of Rajalaxmi, 660 and 5264 DEGs were identified at PI and GF stages, respectively. Functionally relevant DEGs were selected for validation through qRT-PCR, which were found to be co-related with the expression patterns to RNA-seq. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated significant DEGs enriched for energy metabolism pathways, such as photosynthesis, oxidative phosphorylation, and carbon fixation, at the PI stage, while carbohydrate metabolism-related pathways, such as glycolysis and starch and sucrose metabolism, were significantly involved at the GF stage. Many genes involved in energy metabolism exhibited upregulation at the PI stage, whereas the genes involved in carbohydrate biosynthesis had higher expression at the GF stage. The majority of the DEGs were successfully mapped to know yield related rice quantitative trait loci (QTLs). A set of important transcription factors (TFs) was found to be encoded by the identified DEGs. Our results indicated that a complex interplay of several genes in different pathways contributes to higher yield and vigor in rice hybrids.
Collapse
|
29
|
Janiak A, Kwasniewski M, Sowa M, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Szarejko I. Insights into Barley Root Transcriptome under Mild Drought Stress with an Emphasis on Gene Expression Regulatory Mechanisms. Int J Mol Sci 2019; 20:ijms20246139. [PMID: 31817496 PMCID: PMC6940957 DOI: 10.3390/ijms20246139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Root systems play a pivotal role in coupling with drought stress, which is accompanied with a substantial transcriptome rebuilding in the root tissues. Here, we present the results of global gene expression profiling of roots of two barley genotypes with contrasting abilities to cope with drought that were subjected to a mild level of the stress. We concentrate our analysis on gene expression regulation processes, which allowed the identification of 88 genes from 39 families involved in transcriptional regulation in roots upon mild drought. They include 13 genes encoding transcription factors (TFs) from AP2 family represented by ERFs, DREB, or B3 domain-containing TFs, eight WRKYs, six NACs, five of the HD-domain, MYB or MYB-related, bHLH and bZIP TFs. Also, the representatives of C3H, CPP, GRAS, LOB-domain, TCP, Tiffy, Tubby, and NF-Ys TFs, among others were found to be regulated by the mild drought in barley roots. We found that drought tolerance is accompanied with a lower number of gene expression changes than the amount observed in a susceptible genotype. The better drought acclimation may be related to the activation of transcription factors involved in the maintenance of primary root growth and in the epigenetic control of chromatin and DNA methylation. In addition, our analysis pointed to fives TFs from ERF, LOB, NAC, WRKY and bHLH families that may be important in the mild but not the severe drought response of barley roots.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
- Correspondence: ; Tel.: +0048-32-2009-457
| | - Miroslaw Kwasniewski
- Center of Bioinformatics and Data Analysis, Medical University in Białystok, 15-269 Białystok, Poland
| | - Marta Sowa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | | | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
30
|
Sarkar T, Thankappan R, Mishra GP, Nawade BD. Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1323-1334. [PMID: 31736537 PMCID: PMC6825097 DOI: 10.1007/s12298-019-00711-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 05/09/2023]
Abstract
Abiotic stresses negatively influence the survival, biomass production, and yield of crops. Tolerance to diverse abiotic stresses in plants is regulated by multiple genes responding differently to various stress conditions. Genetic engineering approaches have helped develop transgenic crops with improved abiotic stress tolerance including yields. The dehydration-responsive element binding protein (DREB) is a stress-responsive transcription factor that modulates the expression of downstream stress-inducible genes, which confer simultaneous tolerance to multiple stresses. This review focuses on advances in the development of DREB transgenic crops and their characterization under various abiotic stress conditions. It further discusses the mechanistic aspects of abiotic stress tolerance, yield gain, the fate of transgenic plants under controlled and field conditions and future research directions toward commercialization of DREB transgenic crops.
Collapse
Affiliation(s)
- Tanmoy Sarkar
- ICAR-Directorate of Groundnut Research, Post Box 1, Junagadh, Gujarat 362001 India
- Central Sericultural Research & Training Institute (CSRTI), Mysuru, Karnataka 570 008 India
| | | | - Gyan P. Mishra
- ICAR-Directorate of Groundnut Research, Post Box 1, Junagadh, Gujarat 362001 India
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi 110012 India
| | - Bhagwat D. Nawade
- ICAR-Directorate of Groundnut Research, Post Box 1, Junagadh, Gujarat 362001 India
| |
Collapse
|
31
|
Tariq R, Ji Z, Wang C, Tang Y, Zou L, Sun H, Chen G, Zhao K. RNA-Seq analysis of gene expression changes triggered by Xanthomonas oryzae pv. oryzae in a susceptible rice genotype. RICE (NEW YORK, N.Y.) 2019; 12:44. [PMID: 31236783 PMCID: PMC6591352 DOI: 10.1186/s12284-019-0301-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) is a destructive disease in most of the rice growing regions worldwide. Xoo injects the transcriptional activator-like (TAL) effector protein into the host cell to induce the susceptibility (S) gene(s) for spreading the disease. In the current study, a susceptible rice genotype, JG30, was inoculated with wild Xoo strain PXO99A and its mutant PH without any TAL effector, to retrieve the differentially expressed genes (DEGs) having a role in susceptibility. RESULTS RNA-Seq data analysis showed that 1143 genes were significantly differentially expressed (p-value ≤0.05) at 12, 24, 36 and 48 h post inoculation (hpi). Expression patterns, evaluated by quantitative real-time PCR (qRT-PCR), of randomly selected eight genes were similar to the RNA-Seq data. KEGG pathway classified the DEGs into photosynthesis and biosynthesis of phenylpropanoid pathway. Gene ontology (GO) analysis categorized the DEGs into the biological pathway, cellular component, and molecular function. We identified 43 differentially expressed transcription factors (TFs) belonging to different families. Also, clusters of the DEGs representing kinase and peroxidase responsive genes were retrieved. MapMan pathway analysis representing the expression pattern of genes expressed highly in biotic stress and metabolic pathways after PXO99A infection relative to PH. CONCLUSIONS DEGs were identified in susceptible rice genotype inoculated with PXO99A relative to mutant strain PH. The identified 1143 DEGs were predicted to be included in the different biological processes, signaling mechanism and metabolic pathways. The Jasmonic acid (JA) responsive genes were identified to be downregulated in PXO99A infected leaves. This study would be useful for the researchers to reveal the potential functions of genes involved in the rice susceptibility to PXO99A infection.
Collapse
Affiliation(s)
- Rezwan Tariq
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hongda Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
32
|
Kareem F, Rihan H, Fuller MP. The Effect of Exogenous Applications of Salicylic Acid on Drought Tolerance and Up-Regulation of the Drought Response Regulon of Iraqi Wheat. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12892-017-0180-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Belchí-Navarro S, Almagro L, Bru-Martínez R, Pedreño MA. Changes in the secretome of Vitis vinifera cv. Monastrell cell cultures treated with cyclodextrins and methyl jasmonate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:520-527. [PMID: 30448023 DOI: 10.1016/j.plaphy.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Elicitors induce defense responses that resemble those triggered by pathogen attack, including the synthesis of phytoalexins and pathogen-related proteins, which are accumulated in the extracellular space. In this work we analyze the changes in the secretome of Vitis vinifera cv. Monastrell cell cultures. This refers to the secreted proteome obtained from cell suspension cultures, in response to treatment with cyclodextrins and methyl jasmonate, separately or in combination using label-free quantitative approaches. Of the proteins found, thirty-three did not show significant differences in response to the different treatments carried out, indicating that these proteins were expressed in a constitutive way in both control and elicited grapevine cell cultures. These proteins included pathogenesis-related proteins 4 and 5, class III peroxidases, NtPRp-27, chitinases and class IV endochitinases, among others. Moreover, eleven proteins were differentially expressed in the presence of cyclodextrins and/or methyl jasmonate: three different peroxidases, two pathogenesis related protein 1, LysM domain-containing GPI-anchored protein 1, glycerophosphoryl diester phosphodiesterase, reticulin oxidase, heparanase, β-1,3-glucanase and xyloglucan endotransglycosylase. Treatments with cyclodextrins reinforced the defensive arsenal and induced the accumulation of peroxidase V and xyloglucan endotransglycosylase. However, elicitation with methyl jasmonate decreased the levels of several proteins such as pathogenesis related protein 1, LysM domain-containing GPI-anchored protein 1, cationic peroxidase, and glycerophosphoryl diester phosphodiesterase, but increased the levels of new gene products such as heparanase, β-1,3 glucanase, reticulin oxidase, and peroxidase IV, all of which could be used as potential biomarkers in the grapevine defense responses.
Collapse
Affiliation(s)
- S Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - L Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain.
| | - R Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante and Instituto de Investigación Sanitaria y Biomédica de Alicante ISABIAL-FISABIO, Alicante, Spain
| | - M A Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| |
Collapse
|
34
|
Shinde H, Dudhate A, Tsugama D, Gupta SK, Liu S, Takano T. Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:546-553. [PMID: 30447941 DOI: 10.1016/j.plaphy.2018.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 05/07/2023]
Abstract
Pearl millet (Pennisetum glaucum) is the sixth-leading cereal crop and a staple food crop. It is known for its high tolerance to abiotic stress and good nutrient profile. NAC (NAM, ATAF1/2 and CUC) transcription factors (TFs) play an important role in abiotic stress tolerance. In our study, the pearl millet stress-responsive NAC TF gene PgNAC21 was characterized. Gene expression analysis revealed that PgNAC21 expression is induced by salinity stress and abscisic acid (ABA) treatment. In silico promoter analysis showed the presence of ABA response elements (ABREs) and MYB TF binding sites. A yeast one-hybrid assay indicated that a putative MYB TF in pearl millet, PgMYB1, binds to the promoter of PgNAC21. A transactivation assay in yeast cells revealed that PgNAC21 functions as a transcription activator and that its activation domain is located in its C-terminus. Relative to control plants, Arabidopsis plants overexpressing PgNAC21 exhibited better seed germination, heavier fresh weight and greater root length under salinity stress. Overexpression of PgNAC21 in Arabidopsis plants also enhanced the expression of stress-responsive genes such as GSTF6 (GLUTATHIONE S-TRANSFERASE 6), COR47 (COLD-REGULATED 47) and RD20 (RESPONSIVE TO DEHYDRATION 20). Our data demonstrate that PgNAC21 functions as a stress-responsive NAC TF and can be utilized in transgenic approaches for developing salinity stress tolerance in crop plants.
Collapse
Affiliation(s)
- Harshraj Shinde
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Ambika Dudhate
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| | - Daisuke Tsugama
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan.
| | - Shashi K Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana State, India.
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Lin'an, Hangzhou, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Nishitokyo-shi, Tokyo, 188-0002, Japan.
| |
Collapse
|
35
|
Sharma V, Goel P, Kumar S, Singh AK. An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes. PLANT CELL REPORTS 2019; 38:221-241. [PMID: 30511183 DOI: 10.1007/s00299-018-2364-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE An apple gene, MdDREB76 encodes a functional transcription factor and imparts salinity and drought stress endurance to transgenic tobacco by activating expression of stress-responsive genes. The dehydration-responsive element (DRE)-binding protein (DREB) transcription factors are well known to be involved in regulating abiotic stress-mediated gene expression in plants. In this study, MdDREB76 gene was isolated from apple (Malus x domestica), which encodes a functional transcription factor protein. Overexpression of MdDREB76 in tobacco conferred salt and drought stress tolerance to transgenic lines by inducing antioxidant enzymes, such as superoxide dismutase, ascorbate peroxidase and catalase. The higher membrane stability index, relative water content, proline, total soluble sugar content and lesser H2O2content, electrolyte leakage and lipid peroxidation in transgenics support the improved physiological status of transgenic plants as compared to WT plants under salinity and drought stresses. The MdDREB76 overexpression upregulated the expression of stress-responsive genes that provide salinity and drought stress endurance to the plants. Compared to WT plants, transgenic lines exhibited healthy growth and higher yield under stress conditions. The present study reports MdDREB76 as a key regulator that switches on the battery of downstream genes which impart salt and osmotic stress endurance to the transgenic plants and can be used for genetic engineering of crop plants to combat salinity and drought stresses.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Parul Goel
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sanjay Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, 834 010, India.
| |
Collapse
|
36
|
Akbudak MA, Filiz E, Kontbay K. DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum ( Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech 2018; 8:426. [PMID: 30305995 DOI: 10.1007/s13205-018-1454-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Biotic and abiotic stresses negatively affect fitness, biomass production, and crop yield in plants. The dehydration-responsive element-binding proteins (DREB) are important transcription factors (TFs), and are induced by abiotic and biotic stresses. In this study, genome-wide identification, in silico sequence, and phylogenetic analyses and expression analyses of DREB2 genes under cadmium (Cd) and salt (NaCl) stresses in sorghum (Sorghum bicolor, Sb) were performed. Six putative SbDREB2 genes were identified in sorghum genome and all contained AP2 domain (PF00847). Nucleotide diversities in SbDREB2 genes were calculated as π: 0.53 and θ: 0.39, respectively. While exon numbers of them were either one or two, length of SbDREB2 proteins ranged from 238 to 388 amino acid residues. Fifty-six cis-acting regulatory elements, which are tissue specific, light, hormone, and stress responsive, were identified in the promotor regions of SbDREB2 genes. Analyses on digital expression data indicated that SbDREB2A and SbDREB2B are more expressed genes than other SbDREB genes in sorghum. Under Cd and NaCl stresses, expressions of SbDREB2 genes were induced at different levels. All SbDREB2 genes in root were up-regulated under salt stress. In case of Cd stress, SbDREB2D gene was particularly up-regulated in leaves and roots. Co-expression analyses revealed four of TFs in co-expression network, indicating that they have roles in transcriptional cascade. Furthermore, five miRNA target regions were identified for four SbDREB2 genes, indicating their roles in post-transcriptional regulation. The predicted 3D structure of SbDREB2 proteins showed some structural divergences and structure overlap between rice and sorghum varied at between 26.58 and 50%. Finally, obtained data could be used in breeding of stress-tolerant plants, particularly genetically engineered DREB2 expressing plants. Findings in this study would also contribute to the understanding of DREB2 genes in plants, especially in sorghum.
Collapse
|
37
|
Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2018; 97:469-487. [PMID: 30109563 DOI: 10.1007/s11103-018-0761-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 192101, India.
| | - Prateek Tripathi
- Department of Cell & Molecular Biology, The Scripps Research Institute, Jolla, CA, 92037, USA
| | - Abbu Zaid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, Uttarakhand, 248007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule, Pune University, Pune, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, Kumaun University, Campus Bhimtal, Bhimtal, Uttarakhand, 293136, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Bhatt
- Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
38
|
Byun MY, Cui LH, Lee J, Park H, Lee A, Kim WT, Lee H. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica. FRONTIERS IN PLANT SCIENCE 2018; 9:601. [PMID: 29774046 PMCID: PMC5943562 DOI: 10.3389/fpls.2018.00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/16/2018] [Indexed: 05/25/2023]
Abstract
Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice.
Collapse
Affiliation(s)
- Mi Young Byun
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
| | - Li Hua Cui
- Department of Systems Biology, Yonsei University, Seoul, South Korea
| | - Jungeun Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science & Technology, Daejeon, South Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science & Technology, Daejeon, South Korea
| | - Andosung Lee
- Department of Systems Biology, Yonsei University, Seoul, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, Yonsei University, Seoul, South Korea
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science & Technology, Daejeon, South Korea
| |
Collapse
|
39
|
Dudhate A, Shinde H, Tsugama D, Liu S, Takano T. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS One 2018; 13:e0195908. [PMID: 29652907 PMCID: PMC5898751 DOI: 10.1371/journal.pone.0195908] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022] Open
Abstract
Pearl millet is a cereal crop known for its high tolerance to drought, heat and salinity stresses as well as for its nutritional quality. The molecular mechanism of drought tolerance in pearl millet is unknown. Here we attempted to unravel the molecular basis of drought tolerance in two pearl millet inbred lines, ICMB 843 and ICMB 863 using RNA sequencing. Under greenhouse condition, ICMB 843 was found to be more tolerant to drought than ICMB 863. We sequenced the root transcriptome from both lines under control and drought conditions using an Illumina Hi-Seq platform, generating 139.1 million reads. Mapping of sequenced reads against the foxtail millet genome, which has been relatively well-annotated, led to the identification of several differentially expressed genes under drought stress. Total of 6799 and 1253 differentially expressed genes were found in ICMB 843 and ICMB 863, respectively. Pathway and gene function analysis by KEGG online tool revealed that the drought response in pearl millet is mainly regulated by pathways related to photosynthesis, plant hormone signal transduction and mitogen-activated protein kinase signaling. The changes in expression of drought-responsive genes determined by RNA sequencing were confirmed by reverse-transcription PCR for 7 genes. These results are a first step to understanding the molecular mechanisms of drought tolerance in pearl millet and lay a foundation for its genetic improvement.
Collapse
Affiliation(s)
- Ambika Dudhate
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Harshraj Shinde
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | | | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Lin’an, Hangzhou, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), the University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
40
|
Gumi AM, Guha PK, Mazumder A, Jayaswal P, Mondal TK. Characterization of OglDREB2A gene from African rice ( Oryza glaberrima), comparative analysis and its transcriptional regulation under salinity stress. 3 Biotech 2018; 8:91. [PMID: 29430353 PMCID: PMC5796934 DOI: 10.1007/s13205-018-1098-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
In this study, AP2 DNA-binding domain-containing transcription factor, OglDREB2A, was cloned from the African rice (Oryza glaberrima) and compared with 3000 rice genotypes. Further, the phylogenetic and various structural analysis was performed using in silico approaches. Further, to understand its allelic variation in rice, SNPs and indels were detected among the 3000 rice genotypes which indicated that while coding region is highly conserved, yet noncoding regions such as UTR and intron contained most of the variation. Phylogenetic analysis of the OglDREB2A sequence in different Oryza as well as in diverse eudicot species revealed that DREB from various Oryza species were diversed much earlier than other genes. Further, structural features and in silico analyses provided insights into different properties of OglDREB2A protein. The neutrality test on the coding region of OglDREB2A from different genotypes of O. glaberrima showed the lack of selection in this gene. Among the different developmental stages, it was upregulated at tillering and flag leaf under salinity treatment indicating its positive role in seedling and reproductive stage tolerance. Real-time PCR analysis also indicated the conserve expression pattern of this gene under salinity stress across the three different Oryza species having different degree of salinity tolerance.
Collapse
Affiliation(s)
- Abubakar Mohammad Gumi
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- Present Address: Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Pritam Kanti Guha
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Abhishek Mazumder
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Pawan Jayaswal
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
- Present Address: Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
41
|
Liang Y, Li X, Zhang D, Gao B, Yang H, Wang Y, Guan K, Wood AJ. ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:242-251. [PMID: 29073539 DOI: 10.1016/j.plaphy.2017.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Salinity is a major limitation factor for crop productivity worldwide. DREB transcription factors broadly participate in plant stress response and have been extensively identified in a wide variety of plants. In this study, we characterized and analyzed the function of a novel A-5 type DREB gene ScDREB8 from the desiccation tolerant moss Syntrichia caninervis. Yeast one-hybrid experiment showed that ScDREB8 had no transactivation activity. Transient expression assay in onion epidermal cells revealed that ScDREB8 is distributed throughout the cell with no apparent specificity. Overexpression of ScDREB8 significantly increased the germination rate of Arabidopsis under salt stress and improved the salt tolerance of Arabidopsis at the seedling stage by up-regulating the expression of downstream stress-related genes and improving ROS scavenging ability. ScDREB8 is a promising candidate gene for improving crop salt stress and will provide greater insight to the molecular mechanism of stress tolerance of A-5 type DREB proteins.
Collapse
Affiliation(s)
- Yuqing Liang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China.
| | - Bei Gao
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Honglan Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China
| | - Kaiyun Guan
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China
| | - Andrew J Wood
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901-6899, USA
| |
Collapse
|
42
|
Pruthvi V, Rama N, Parvathi MS, Nataraja KN. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:377-385. [PMID: 27981726 DOI: 10.1111/plb.12533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation.
Collapse
Affiliation(s)
- V Pruthvi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - N Rama
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - M S Parvathi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - K N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Baruah IK, Panda D, M.V J, Das DJ, Acharjee S, Sen P, Sarmah BK. Bruchid egg induced transcript dynamics in developing seeds of black gram (Vigna mungo). PLoS One 2017; 12:e0176337. [PMID: 28448540 PMCID: PMC5407641 DOI: 10.1371/journal.pone.0176337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
Black gram (Vigna mungo) seeds are a rich source of digestible proteins, however, during storage these seeds are severely damaged by bruchids (Callosobruchus spp.), reducing seed quality and yield losses. Most of the cultivated genotypes of black gram are susceptible to bruchids, however, few tolerant genotypes have also been identified but the mechanism of tolerance is poorly understood. We employed Suppression Subtractive Hybridization (SSH) to identify specifically, but rarely expressed bruchid egg induced genes in black gram. In this study, Suppression Subtractive Hybridization (SSH) library was constructed to study the genes involved in defense response in black gram against bruchid infestation. An EST library of 277 clones was obtained for further analyses. Based on CAP3 assembly, 134 unigenes were computationally annotated using Blast2GOPRO software. In all, 20 defense related genes were subject to quantitative PCR analysis (qPCR) out of which 12 genes showed up-regulation in developing seeds of the pods oviposited by bruchids. Few major defense genes like defensin, pathogenesis related protein (PR), lipoxygenase (LOX) showed high expression levels in the oviposited population when compared with the non-oviposited plants. This is the first report on defense related gene transcript dynamics during the bruchid-black gram interaction using SSH library. This library would be useful to clone defense related gene(s) such as defensin as represented in our library for crop improvement.
Collapse
Affiliation(s)
| | - Debashis Panda
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Jagadale M.V
- DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, India
| | - Deba Jit Das
- DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, India
| | - Sumita Acharjee
- DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- * E-mail: (BKS); (SA)
| | - Priyabrata Sen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, India
- * E-mail: (BKS); (SA)
| |
Collapse
|
44
|
Shivhare R, Lata C. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2017; 7:2069. [PMID: 28167949 PMCID: PMC5253385 DOI: 10.3389/fpls.2016.02069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/27/2016] [Indexed: 05/05/2023]
Abstract
Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional genes and assist in crop improvement programs through molecular breeding approaches. This review thus summarizes the exploration of pearl millet genetic and genomic resources for improving abiotic and biotic stress resistance and development of cultivars superior in stress tolerance.
Collapse
Affiliation(s)
- Radha Shivhare
- National Botanical Research Institute (CSIR)Lucknow, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Charu Lata
- National Botanical Research Institute (CSIR)Lucknow, India
- Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
45
|
Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:478-487. [PMID: 27592172 DOI: 10.1016/j.plaphy.2016.08.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 05/17/2023]
Abstract
Plant WRKY transcription factors are trans-regulatory proteins that are involved in plant immune responses, development and senescence; however, their roles in abiotic stress are still not well understood, especially in the horticultural crop cucumber. In this study, a novel cucumber WRKY gene, CsWRKY46 was cloned and identified, which was up-regulated in response to cold stress and exogenous abscisic acid (ABA) treatment. CsWRKY46 is belonging to group II of the WRKY family, CsWRKY46 was found exclusively in the nucleus, as indicated by a transient expression assay. Yeast one-hybrid assay shown that CsWRKY46 interact with the W-box in the promoter of ABI5. Transgenic Arabidopsis lines over-expressing CsWRKY46, WRK46-OE1 and WRK46-OE5 had higher seedling survival rates upon freezing treatment compared with that of the wild-type. The above over-expression lines also showed much a higher proline accumulation, less electrolyte leakage and lower malondialdehyde (MDA) levels. Furthermore, the CsWRKY46 overexpression lines were hypersensitive to ABA during seed germination, but the seedlings were not. Quantitative RT-PCR analyses revealed that the expression levels of the ABA-responsive transcription factor ABI5 were higher in the WRKY46-OE lines than in wild-type and that the overexpression of CsWRKY46 increased the expression of stress-inducible genes, including RD29A and COR47. Taken together, our results demonstrated that CsWRKY46 from cucumber conferred cold tolerance to transgenic plants and positively regulated the cold signaling pathway in an ABA-dependent manner.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China; College of Life Science, Shenyang Normal University, 253 Huanghe North Street, Huanggu District, Shenyang, Liaoning 110034, China
| | - Hongjun Yu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xueyong Yang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Qiang Li
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Jian Ling
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Hong Wang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xingfang Gu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Sanwen Huang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Haidian District, Beijing 100081, China; Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.
| |
Collapse
|
46
|
Kumar A, Kumar S, Kumar U, Suravajhala P, Gajula MP. Functional and structural insights into novel DREB1A transcription factors in common wheat (Triticum aestivum L.): A molecular modeling approach. Comput Biol Chem 2016; 64:217-226. [DOI: 10.1016/j.compbiolchem.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/23/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
|
47
|
Wei T, Deng K, Liu D, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y. Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza. PLANT & CELL PHYSIOLOGY 2016; 57:1593-609. [PMID: 27485523 DOI: 10.1093/pcp/pcw084] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 04/17/2016] [Indexed: 05/20/2023]
Abstract
Drought decreases crop productivity more than any other type of environmental stress. Transcription factors (TFs) play crucial roles in regulating plant abiotic stress responses. The Arabidopsis thaliana gene DREB1A/CBF3, encoding a stress-inducible TF, was introduced into Salvia miltiorrhiza Ectopic expression of AtDREB1A resulted in increased drought tolerance, and transgenic lines had higher relative water content and Chl content, and exhibited an increased photosynthetic rate when subjected to drought stress. AtDREB1A transgenic plants generally displayed lower malondialdehyde (MDA), but higher superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress. In particular, plants with ectopic AtDREB1A expression under the control of the stress-induced RD29A promoter exhibited more tolerance to drought compared with p35S::AtDREB1A transgenic plants, without growth inhibition or phenotypic aberrations. Differential gene expression profiling of wild-type and pRD29A::AtDREB1A transgenic plants following drought stress revealed that the expression levels of various genes associated with the stress response, photosynthesis, signaling, carbohydrate metabolism and protein protection were substantially higher in transgenic plants. In addition, the amount of salvianolic acids and tanshinones was significantly elevated in AtDREB1A transgenic S. miltiorrhiza roots, and most of the genes in the related biosynthetic pathways were up-regulated. Together, these results demonstrated that inducing the expression of a TF can effectively regulate multiple genes in the stress response pathways and significantly improve the resistance of plants to abiotic stresses. Our results also suggest that genetic manipulation of a TF can improve production of valuable secondary metabolites by regulating genes in associated pathways.
Collapse
Affiliation(s)
- Tao Wei
- College of Life Sciences, Nankai University, Tianjin 300071, PR China School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Dongqing Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yonghong Gao
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yu Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Meiling Yang
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Lipeng Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xuelian Zheng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wenqin Song
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| |
Collapse
|
48
|
Khan MS, Khan MA, Ahmad D. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:792. [PMID: 27446095 PMCID: PMC4919908 DOI: 10.3389/fpls.2016.00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/22/2016] [Indexed: 05/22/2023]
Abstract
Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na(+)/H(+) antiporters. The use of codA, DREBs, and Na(+)/H(+) antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment.
Collapse
Affiliation(s)
- Mohammad S. Khan
- Faculty of Crop Production Sciences, Institute of Biotechnology and Genetic Engineering, The University of Agriculture, PeshawarPakistan
| | - Muhammad A. Khan
- Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACTAustralia
| | - Dawood Ahmad
- Faculty of Crop Production Sciences, Institute of Biotechnology and Genetic Engineering, The University of Agriculture, PeshawarPakistan
| |
Collapse
|
49
|
Arroyo-Herrera A, Figueroa-Yáñez L, Castaño E, Santamaría J, Pereira-Santana A, Espadas-Alcocer J, Sánchez-Teyer F, Espadas-Gil F, Alcaraz LD, López-Gómez R, Sánchez-Calderón L, Rodríguez-Zapata LC. A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress. PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC) 2016; 125:119-133. [DOI: https:/doi.org/10.1007/s11240-015-0934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
|
50
|
Chen N, Su M, Chi X, Zhang Z, Pan L, Chen M, Wang T, Wang M, Yang Z, Yu S. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0395-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|