1
|
Zhao ZQ, Zheng KY, Zhu YT, Lv JL, Su ZH, Zhang XY, Lai WQ, Li MW, Wu YC, Wang XY. Transcriptomic analysis of the fat body of resistant and susceptible silkworm strains, Bombyx mori (Lepidoptera), after oral treatment with fenpropathrin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105485. [PMID: 37532315 DOI: 10.1016/j.pestbp.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
The widespread use of pyrethroid pesticides has brought serious economic losses in sericulture, but there is still no viable solution. The key to solving the problem is to improve silkworm resistance to pesticides, which depends on understanding the resistance mechanism of silkworms to pesticides. This study aimed to use transcriptomes to understand the underlying mechanism of silkworm resistance to fenpropathrin, which will provide a theoretical molecular reference for breeding pesticide-resistant silkworm varieties. In this study, the fat bodies of two strains with differential resistance after 12 h of fenpropathrin feeding were analyzed using RNA-Seq. After feeding fenpropathrin, 760 differentially expressed genes (DEGs) were obtained in the p50(r) strain and 671 DEGs in the 8y strain. The DEGs involved in resistance to fenpropathrin were further identified by comparing the two strains, including 207 upregulated DEGs in p50(r) and 175 downregulated DEGs in 8y. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these fenpropathrin-related DEGs are mainly enriched in the metabolism and transporter pathways. Moreover, 28 DEGs involved in the metabolic pathway and 18 in the transporter pathway were identified. Furthermore, organic cation transporter protein 6 (BmOCT6), a transporter pathway member, was crucial in enhancing the tolerance of BmN cells to fenpropathrin. Finally, the knockdown of the expression of the homologs of BmOCT6 in Glyphodes pyloalis (G. pyloalis) significantly decreased the resistant level of larvae to fenpropathrin. The findings showed that the metabolism and transporter pathways are associated with resistance to fenpropathrin in silkworm, and OCT6 is an effective and potential target not only for silkworm breeding but also for pest biocontrol.
Collapse
Affiliation(s)
- Zi-Qin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Kai-Yi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Yu-Tong Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Jun-Li Lv
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Zhi-Hao Su
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Xiao-Ying Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Wen-Qing Lai
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, Jiangsu, China.
| | - Yang-Chun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, Jiangsu, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, Jiangsu, China.
| |
Collapse
|
2
|
Belal R, Gad A. Zinc oxide nanoparticles induce oxidative stress, genotoxicity, and apoptosis in the hemocytes of Bombyx mori larvae. Sci Rep 2023; 13:3520. [PMID: 36864109 PMCID: PMC9981692 DOI: 10.1038/s41598-023-30444-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The expanded uses of zinc oxide nanoparticles (ZnO-NPs) have grown rapidly in the field of nanotechnology. Thus, the increased production of nanoparticles (NPs) increases the potential risks to the environment and occupationally exposed humans. Hence, safety and toxicity assessment including genotoxicity of these NPs is indispensable. In the present study, we have evaluated the genotoxic effect of ZnO-NPs on 5th larval instar of Bombyx mori after feeding on mulberry leaves treated with ZnO-NPs at concentrations 50 and 100 μg/ml. Moreover, we evaluated its effects on total and different hemocyte count, antioxidant potential and catalase activity on the hemolymph of treated larvae. Results showed that ZnO-NPs at concentrations of 50 and 100 µg/ml have significantly decreased the total hemocyte count (THC) and different hemocyte count (DHC) except the number of oenocytes as they were significantly increased. Gene expression profile also showed up-regulation of GST, CNDP2 and CE genes suggesting increase in antioxidant activity and alteration in cell viability as well as cell signaling.
Collapse
Affiliation(s)
- Rania Belal
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt
| | - Abir Gad
- Department of Applied Entomology and Zoology, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt.
| |
Collapse
|
3
|
Xu K, Lan H, He C, Wei Y, Lu Q, Cai K, Yu D, Yin X, Li Y, Lv J. Toxicological effects of trace amounts of pyriproxyfen on the midgut of non-target insect silkworm. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105266. [PMID: 36464371 DOI: 10.1016/j.pestbp.2022.105266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Pyriproxyfen is an insect growth regulator that is widely used in public health and pest control in agriculture. Our previous studies have shown that trace amounts of pyriproxyfen in the environment can cause serious toxic effects in the non-target insect silkworm, including failing to pupate, metamorphose and spin cocoons. However, it is unknown why pyriproxyfen not only has no lethal effects on fifth instar larvae but also tend to increase their body weight. The midgut is the main digestive organs of the silkworm, our results showed that the residual of pyriproxyfen in the silkworm at 24 h after 1 × 10-4 mg/L pyriproxyfen treatment caused severe damage to the midgut microvilli, goblet cells, and nuclei of the silkworm, but body weight and digestibility of the larval were both increased. In addition, pyriproxyfen significantly (p < 0.05) increased the activities of digestive enzymes (α-amylase, trehalase, trypsin and lipase) in the midgut of silkworm. However, it caused down-regulation of ecdysone synthesis-related genes at the end of the fifth instar silkworm, decreased ecdysone titer, and prolonged larval instar. At the same time, pyriproxyfen also activated transcription of detoxification enzymes-related genes such as the cytochrome P450 enzyme genes Cyp9a22 and Cyp15C1, the carboxylesterase genes CarE-8 and CarE-11, and the glutathione S-transferase gene GSTo2. This study elucidated a novel toxicological effect of pyriproxyfen to insects, which not only expands the understanding of the effects of juvenile hormone pesticides on lepidopteran insects but also provides a reference for exploring the ecological security of non-target organisms.
Collapse
Affiliation(s)
- Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China; Sericulture Institute of Guangxi University, Guangxi University, Nanning, Guangxi 530004, PR China.
| | - Huangli Lan
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Qingyu Lu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Kunpei Cai
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Dongliang Yu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xingcan Yin
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Jiachen Lv
- Guangxi Aquatic and Animal Husbandry School, Nanning, Guangxi 530021, PR China
| |
Collapse
|
4
|
Comparative Transcriptome Analysis of Bombyx mori (Lepidoptera) Larval Hemolymph in Response to Autographa californica Nucleopolyhedrovirus in Differentially Resistant Strains. Processes (Basel) 2021. [DOI: 10.3390/pr9081401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a kind of pathogen that causes huge economic losses to silkworm production. Although Autographa californica nucleopolyhedrovirus (AcMNPV) and BmNPV are both baculoviruses, the host domains of these two viruses have almost no intersection in nature. Recently, it has been found that some silkworms could be infected by recombinant AcMNPV through a puncture, which provided valuable material for studying the infection mechanism of baculovirus to silkworm. In this study, comparative transcriptomics was used to analyse the hemolymph of two differentially resistant strains following AcMNPV inoculation. There were 678 DEGs in p50 and 515 DEGs in C108 following viral infection. Among them, the upregulation and downregulation of DEGs were similar in p50; however, the upregulated DEGs were nearly twice as numerous as the downregulated DEGs in C108. The DEGs in different resistant strains differed by GO enrichment. Based on KEGG enrichment, DEGs were mainly enriched in metabolic pathways in p50 and the apoptosis pathway in C108. Moreover, 13 genes involved in metabolic pathways and 11 genes involved in the apoptosis pathway were analysed. Among the DEGs involved in apoptosis, the function of BmTex261 in viral infection was analysed. The BmTex261 showed the highest expression in hemolymph and a significant response to viral infection in the hemolymph of C108, indicating that it is involved in anti-AcMNPV infection. This was further validated by the significantly decreased expression of viral gene lef3 after overexpression of BmTex261 in BmN cells. The results provide a theoretical reference for the molecular mechanism of resistance to BmNPV in silkworms.
Collapse
|
5
|
Girón-Calva PS, Lopez C, Albacete A, Albajes R, Christou P, Eizaguirre M. β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis). PLoS One 2021; 16:e0246696. [PMID: 33591990 PMCID: PMC7886157 DOI: 10.1371/journal.pone.0246696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/23/2021] [Indexed: 11/18/2022] Open
Abstract
Maize with enhanced β-carotene production was engineered to counteract pervasive vitamin A deficiency in developing countries. Second-generation biofortified crops are being developed with additional traits that confer pest resistance. These include crops that can produce Bacillus thuringiensis Berliner (Bt) insecticidal proteins. Currently, it is unknown whether β-carotene can confer fitness benefits through to insect pests, specifically through altering Ostrinia nubilalis foraging behaviour or development in the presence of Bt insecticidal toxin. Therefore the effects of dietary β-carotene plus Bt insecticidal protein on feeding behaviour, mortality, and physiology in early and late instars of O. nubilalis larvae were investigated. The results of two-choice experiments showed that irrespective of β-carotene presence, at day five 68%-90% of neonates and 69%-77% of fifth-instar larvae avoided diets with Cry1A protein. Over 65% of neonate larvae preferred to feed on diets with β-carotene alone compared to 39% of fifth-instar larvae. Higher mortality (65%-97%) in neonates fed diets supplemented with β-carotene alone and in combination with Bt protein was found, whereas <36% mortality was observed when fed diets without supplemented β-carotene or Bt protein. Diets with both β-carotene and Bt protein extended 25 days the larval developmental duration from neonate to fifth instar (compared to Bt diets) but did not impair larval or pupal weight. Juvenile hormone and 20-hydroxyecdysone regulate insect development and their levels were at least 3-fold higher in larvae fed diets with β-carotene for 3 days. Overall, these results suggest that the effects of β-carotene and Bt protein on O. nubilalis is dependent on larval developmental stage. This study is one of the first that provides insight on how the interaction of novel traits may modulate crop susceptibility to insect pests. This understanding will in turn inform the development of crop protection strategies with greater efficacy.
Collapse
Affiliation(s)
- Patricia Sarai Girón-Calva
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Carmen Lopez
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Alfonso Albacete
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - Ramon Albajes
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Matilde Eizaguirre
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
- * E-mail:
| |
Collapse
|
6
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21737. [PMID: 32926465 DOI: 10.1002/arch.21737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein-protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction.
Collapse
Affiliation(s)
- Shanghong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Hu XL, Tang YY, Kwok ML, Chan KM, Chu KH. Impact of juvenile hormone analogue insecticides on the water flea Moina macrocopa: Growth, reproduction and transgenerational effect. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105402. [PMID: 31927065 DOI: 10.1016/j.aquatox.2020.105402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The increasing quantities of insecticides that leach into water bodies severely affect the health of the aquatic environment. Juvenile hormone analogue (JHA) insecticides are endocrine disrupters that interfere with hormonal activity in insects by mimicking juvenile hormones (JHs). Because the structure and functions of methyl farnesoate in crustaceans are similar to the insect JHs, exogenous JHA insecticides may cause adverse effects on the growth and reproduction in crustaceans similar to those observed in insects. This study examined the toxic effects of two JHA insecticides, methoprene and fenoxycarb, on the water flea Moina macrocopa. The 24-h and 48-h LC50 values for fenoxycarb and methoprene were 0.53 and 0.32 mg/L and 0.70 and 0.54 mg/L, respectively. Chronic exposure to the two JHAs caused a series of toxic effects in M. macrocopa, including shortening of life expectancy, repression of body growth, reduction in fecundity, and disturbed the expression of genes involved in the JH signaling pathway, in cuticle development, and in the carbohydrate, amino acid, and ATP metabolic processes. Moreover, JHA exposure impaired the growth and reproduction of the offspring of M. macrocopa exposed to JHAs, even when the neonates were not exposed to the chemicals. In addition, changes in the expression of genes related to histone methylation indicate that epigenetic changes may promote transgenerational impairment in M. macrocopa. These results demonstrate the toxic effects of fenoxycarb and methoprene on non-target aquatic organisms. The damages done by these JHA insecticides to the aquatic environment is worthy of our attention and further studies.
Collapse
Affiliation(s)
- Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuan Yuan Tang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Li S, Jiang H, Qiao K, Gui W, Zhu G. Insights into the effect on silkworm (Bombyx mori) cocooning and its potential mechanisms following non-lethal dose tebuconazole exposure. CHEMOSPHERE 2019; 234:338-345. [PMID: 31228835 DOI: 10.1016/j.chemosphere.2019.06.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Silkworm (Bombyx mori) is one of the most important economic insects in the world, while pesticides impact its economic benefits. Tebuconazole is a fungicide that has been frequently detected in agriculture systems at concentrations that affect endocrine function in organisms. In the present study, silkworm larvae at different instar stages were exposed to tebuconazole, respectively. Cocoon weight, cocoon shell weight and cocoon shell rate were significantly decreased by 6.8%, 11.8% and 4.4% respectively, after exposure to 0.40 mg/L tebuconazole at 2nd -3rd instar stage. Vacuolization was found in the exposure silkworm under histopathological study at all stages exposures, indicating potential damage to silk gland. Downregulation of genes transcription (Fibh, Fibl, P25, Ser2, Ser3) involved with protein synthesis in the silk gland were further observed, and the results showed significant decreasing in mRNA expression among the tebuconazole treatments. Ecdysteroid levels in silkworm were changed with pronounced decreases after exposed to tebuconazole. In contrast, exposure to tebuconazole significantly increased juvenile hormone 1 concentrations and the maximum increasing fold of juvenile hormone 1 was up to 3.73 which was observed at stage I exposure. In addition, co-exposure to 2 and 10 mg/L forskolin able to mitigate tebuconazole-induced downregulate of mRNA expression of Sgf1 in the present study, indicating the potential mechanism of tebuconazole-induced chronic toxicity in silkworm may relative to PI3K/AKT/TORC1/Sgf1 pathway.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Hongbing Jiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
9
|
Hu XL, Niu JJ, Meng Q, Chai YH, Chu KH, Chan KM. Effects of two juvenile hormone analogue insecticides, fenoxycarb and methoprene, on Neocaridina davidi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:89-99. [PMID: 31302406 DOI: 10.1016/j.envpol.2019.06.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Juvenile hormone analogue (JHA) insecticides are endocrine disrupters that interfere with hormonal action in insects by mimicking their juvenile hormones (JH). As the structure and functions of methyl farnesoate in crustaceans are similar to those of JH in insects, exogenous JHA insecticides could have adverse effects on the development and reproduction of crustaceans. This study examined the toxic effects of two JHA insecticides, fenoxycarb and methoprene, on a freshwater shrimp model of cherry shrimp, Neocaridina davidi. Both insecticides had detrimental effects on cherry shrimp, but fenoxycarb was more toxic than methoprene. Chronic exposure to these insecticides reduced the shrimp's body length and molting frequency. Based on transcriptome annotations for N. davidi, we identified important gene homologues that were active in both insect JH biosynthetic and degradative pathways as well as JH and ecdysteroid signaling pathways. Chronic treatments with JHAs had significant effects on these genes in N. davidi. Our transcriptomic analysis showed that genes involved in the pathways related to cuticle development, serine protease activity, and carbohydrate, peptide and lipid metabolic processes were differentially expressed in shrimp exposed to JHAs. These results demonstrate the toxicity of fenoxycarb and methoprene to freshwater crustaceans and indicate the need to monitor the use of JHA insecticides.
Collapse
Affiliation(s)
- Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiao Jiao Niu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qi Meng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuet Hung Chai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
10
|
Wang W, Hu C, Li XR, Wang XQ, Yang XQ. CpGSTd3 is a lambda-Cyhalothrin Metabolizing Glutathione S-Transferase from Cydia pomonella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1165-1172. [PMID: 30638381 DOI: 10.1021/acs.jafc.8b05432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Little is known about the role of specific delta GST genes in the detoxification of lambda-cyhalothrin in the global quarantine fruit pest codling moth, Cydia pomonella (L.). Real-time quantitative PCR shows that CpGSTd3 was ubiquitously expressed at all developmental stages and is most abundant in the larval stage and lowest in the egg stage; the mRNA level of CpGSTd3 is higher in the midgut and Malpighian tubules of fourth-instar larvae and abdomens of adults than in other tissues. Exposure of fourth-instar larvae to an LD10 dosage of lambda-cyhalothrin significantly induced the transcript of CpGSTd3 at 3 h, but the mRNA level was down-regulated after 12 h of treatment. Recombinant CpGSTd3 expressed in Escherichia coli was able to catalyze the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) and with an IC50 value of 0.65 mM for lambda-cyhalothrin. Metabolism assays indicate that recombinant CpGSTd3 could metabolize lambda-cyhalothrin. These results suggest that CpGSTd3 is probably a lambda-cyhalothrin metabolizing GST in C. pomonella.
Collapse
Affiliation(s)
- Wei Wang
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , Liaoning , China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province , Shenyang 110866 , Liaoning , China
| | - Chao Hu
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , Liaoning , China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province , Shenyang 110866 , Liaoning , China
| | - Xin-Ru Li
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , Liaoning , China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province , Shenyang 110866 , Liaoning , China
| | - Xiao-Qi Wang
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , Liaoning , China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province , Shenyang 110866 , Liaoning , China
| | - Xue-Qing Yang
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , Liaoning , China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province , Shenyang 110866 , Liaoning , China
| |
Collapse
|
11
|
Li L, Lan M, Lu W, Li Z, Xia T, Zhu J, Ye M, Gao X, Wu G. De novo transcriptomic analysis of the alimentary tract of the tephritid gall fly, Procecidochares utilis. PLoS One 2018; 13:e0201679. [PMID: 30138350 PMCID: PMC6107134 DOI: 10.1371/journal.pone.0201679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
The tephritid gall fly, Procecidochares utilis, is an important obligate parasitic insect of the malignant weed Eupatorium adenophorum which biosynthesizes toxic secondary metabolites. Insect alimentary tracts secrete several enzymes that are used for detoxification, including cytochrome P450s, glutathione S-transferases, and carboxylesterases. To explore the adaptation of P. utilis to its toxic host plant, E. adenophorum at molecular level, we sequenced the transcriptome of the alimentary tract of P. utilis using Illumina sequencing. Sequencing and de novo assembly yielded 62,443 high-quality contigs with an average length of 604 bp that were further assembled into 45,985 unigenes with an average length of 674 bp and an N50 of 983 bp. Among the unigenes, 30,430 (66.17%) were annotated by alignment against the NCBI non-redundant protein (Nr) database, while 16,700 (36.32%), 16,267 (35.37%), and 11,530 (25.07%) were assigned functions using the Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases, respectively. Using the comprehensive transcriptome data set, we manually identified several important gene families likely to be involved in the detoxification of toxic compounds including 21 unigenes within the glutathione S-transferase (GST) family, 22 unigenes within the cytochrome P450 (P450) family, and 16 unigenes within the carboxylesterase (CarE) family. Quantitative PCR was used to verify eight, six, and two genes of GSTs, P450s, and CarEs, respectively, in different P. utilis tissues and at different developmental stages. The detoxification enzyme genes were mainly expressed in the foregut and midgut. Moreover, the unigenes were higher expressed in the larvae, pupae, and 3-day adults, while they were expressed at lower levels in eggs. These transcriptomic data provide a valuable molecular resource for better understanding the function of the P. utilis alimentary canal. These identified genes could be pinpoints to address the molecular mechanisms of P. utilis interacting with toxic plant host.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Wufeng Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zhaobo Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Tao Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- * E-mail: (XG); (GW)
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- * E-mail: (XG); (GW)
| |
Collapse
|
12
|
Chandramouli KH, Al-Aqeel S, Ryu T, Zhang H, Seridi L, Ghosheh Y, Qian PY, Ravasi T. Transcriptome and proteome dynamics in larvae of the barnacle Balanus Amphitrite from the Red Sea. BMC Genomics 2015; 16:1063. [PMID: 26666348 PMCID: PMC4678614 DOI: 10.1186/s12864-015-2262-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/30/2015] [Indexed: 11/11/2022] Open
Abstract
Background The barnacle Balanus amphitrite is widely distributed in marine shallow and tidal waters, and has significant economic and ecological importance. Nauplii, the first larval stage of most crustaceans, are extremely abundant in the marine zooplankton. However, a lack of genome information has hindered elucidation of the molecular mechanisms of development, settlement and survival strategies in extreme marine environments. We sequenced and constructed the genome dataset for nauplii to obtain comprehensive larval genetic information. We also investigated iTRAQ-based protein expression patterns to reveal the molecular basis of nauplii development, and to gain information on larval survival strategies in the Red Sea marine environment. Results A nauplii larval transcript dataset, containing 92,117 predicted open reading frames (ORFs), was constructed and used as a reference for the proteome analysis. Genes related to translation, oxidative phosphorylation and cytoskeletal development were highly abundant. We observed remarkable plasticity in the proteome of Red Sea larvae. The proteins associated with development, stress responses and osmoregulation showed the most significant differences between the two larval populations studied. The synergistic overexpression of heat shock and osmoregulatory proteins may facilitate larval survival in intertidal habitats or in extreme environments. Conclusions We presented, for the first time, comprehensive transcriptome and proteome datasets for Red Sea nauplii. The datasets provide a foundation for future investigations focused on the survival mechanisms of other crustaceans in extreme marine environments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2262-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Sarah Al-Aqeel
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Taewoo Ryu
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Loqmane Seridi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Yanal Ghosheh
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong.
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia. .,Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
13
|
Kodrík D, Bednářová A, Zemanová M, Krishnan N. Hormonal Regulation of Response to Oxidative Stress in Insects-An Update. Int J Mol Sci 2015; 16:25788-816. [PMID: 26516847 PMCID: PMC4632827 DOI: 10.3390/ijms161025788] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022] Open
Abstract
Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH’s role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers—disturbed by the stressors—after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3′,5′-monophosphate pathways in the presence of extra and intra-cellular Ca2+ stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.
Collapse
Affiliation(s)
- Dalibor Kodrík
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Andrea Bednářová
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Milada Zemanová
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
14
|
Li Y, Dou K, Gao S, Sun J, Wang M, Fu K, Yu C, Wu Q, Li Y, Chen J. Impacts on silkworm larvae midgut proteomics by transgenic Trichoderma strain and analysis of glutathione S-transferase sigma 2 gene essential for anti-stress response of silkworm larvae. J Proteomics 2015; 126:218-27. [DOI: 10.1016/j.jprot.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
|
15
|
Harney E, Plaistow SJ, Paterson S. Transcriptional changes during Daphnia pulex development indicate that the maturation decision resembles a rate more than a threshold. J Evol Biol 2015; 28:944-58. [PMID: 25786891 DOI: 10.1111/jeb.12624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/05/2023]
Abstract
Maturation is a critical developmental process, and the age and size at which it occurs have important fitness consequences. Although maturation is remarkably variable, certain mechanisms, including a minimum size or state threshold, are proposed to underlie the process across a broad diversity of taxa. Recent evidence suggests that thresholds may themselves be developmentally plastic, and in the crustacean Daphnia pulex it is unclear whether maturation follows a threshold or is a gradual process more akin to a rate. Changes in gene expression across four instars before and during maturation were compared in a cDNA microarray experiment. Developmental stage was treated statistically both as a discontinuous and as a continuous variable, to determine whether genes showed gradual or discrete changes in expression. The continuous analysis identified a greater number of genes with significant differential expression (45) than the discontinuous analysis (11). The majority of genes, including those coding for histones, factors relating to transcription and cell cycle processes, and a putative developmental hormone showed continuous increases or decreases in expression from the first to the fourth instars that were studied, suggestive of a prolonged and gradual maturation process. Three genes coding for a fused vitellogenin/superoxide dismutase showed increases in expression following the second instar and coincided with the posited maturation threshold, but even their expression increased in a continuous fashion.
Collapse
Affiliation(s)
- E Harney
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
16
|
Shen GM, Shi L, Xu ZF, He L. Inducible Expression of Mu-Class Glutathione S-Transferases Is Associated with Fenpropathrin Resistance in Tetranychus cinnabarinus. Int J Mol Sci 2014; 15:22626-22641. [PMID: 25493473 PMCID: PMC4284727 DOI: 10.3390/ijms151222626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022] Open
Abstract
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a serious pest on a variety of economically important crops widely distributed in China, and its resistance to acaricides has quickly developed. In this study, we fully sequenced 13 GST genes of T. cinnabarinus (TcGSTs). The phylogenetic tree showed that five of them belonged to the delta class and the other eight belonged to the mu class. The alignment of gene sequences and comparison of gene expressions between a fenpropathrin-resistant strain (FR) and a susceptible strain (SS) showed that neither point mutation nor overexpression was detected in TcGSTs. However, when challenged by a sublethal dose of fenpropathrin, the mRNA levels of three GSTs from the mu class (TCGSTM2, TCGSTM3, and TCGSTM8) highly increased in FR, while in SS, the expression of these genes was still at the same level under the treatment. In conclusion, specific TcGSTs were identified that were inducible to stimulation by fenpropathrin, and proved that TcGSTs in FR were not constantly expressed at a high level, but could react much more quickly under the stress of fenpropathrin than SS.
Collapse
Affiliation(s)
- Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Li Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Zhi-Feng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Shabab M, Khan SA, Vogel H, Heckel DG, Boland W. OPDA isomerase GST16 is involved in phytohormone detoxification and insect development. FEBS J 2014; 281:2769-83. [PMID: 24730650 DOI: 10.1111/febs.12819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/16/2014] [Accepted: 04/11/2014] [Indexed: 01/21/2023]
Abstract
12-Oxophytodienoic acid (OPDA), a well-known phytohormone of the jasmonate family, has a reactive α,β-unsaturated carbonyl structure which easily adds cellular nucleophiles (Michael addition), making OPDA potentially toxic for herbivores. The glutathione S-transferase GST16 inactivates 12-OPDA in the insect gut by isomerization to inactive iso-OPDA. Quantitative tissue expression analysis showed that HarmGST16 transcripts were present in most larval tissues, including those of the midgut, fatbody and Malpighian tubules. Activity assays confirmed the presence of an active enzyme. Interestingly, feeding different diets to Helicoverpa armigera influenced gst16 expression levels in various tissues, and larvae fed wild-type tobacco leaves had reduced gst16 mRNA levels. The temporal expression of HarmGST16 during larval development was high in the second instar and reduced during the third, fourth and fifth instars. Plant-mediated RNA interference silencing of HarmGST16 retarded larval growth of H. armigera. Injecting cis-OPDA into the hemolymph of larvae caused premature pupation. This result, as well as the finding that GST16 influenced the growth of insects, suggests that GST16 may play an important role in larval development.
Collapse
|
18
|
Toyota K, Kato Y, Miyakawa H, Yatsu R, Mizutani T, Ogino Y, Miyagawa S, Watanabe H, Nishide H, Uchiyama I, Tatarazako N, Iguchi T. Molecular impact of juvenile hormone agonists on neonatalDaphnia magna. J Appl Toxicol 2013; 34:537-44. [DOI: 10.1002/jat.2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/27/2013] [Accepted: 07/28/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kenji Toyota
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Department of Basic Biology, Faculty of Life Science; Graduate University for Advanced Studies (SOKENDAI); 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Yasuhiko Kato
- Department of Biotechnology; Graduate School of Engineering, Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Hitoshi Miyakawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Ryohei Yatsu
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Department of Basic Biology, Faculty of Life Science; Graduate University for Advanced Studies (SOKENDAI); 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Takeshi Mizutani
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Department of Basic Biology, Faculty of Life Science; Graduate University for Advanced Studies (SOKENDAI); 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Department of Basic Biology, Faculty of Life Science; Graduate University for Advanced Studies (SOKENDAI); 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Hajime Watanabe
- Department of Biotechnology; Graduate School of Engineering, Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility; National Institute for Basic Biology; 38 Nishigonaka, Myodaiji Okazaki Aichi 444-8585 Japan
| | - Ikuo Uchiyama
- Data Integration and Analysis Facility; National Institute for Basic Biology; 38 Nishigonaka, Myodaiji Okazaki Aichi 444-8585 Japan
| | - Norihisa Tatarazako
- Environmental Quality Measurement Section, Research Center for Environmental Risk; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Department of Basic Biology, Faculty of Life Science; Graduate University for Advanced Studies (SOKENDAI); 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
19
|
Han Z, Sun J, Zhang Y, He F, Xu Y, Matsumura K, He LS, Qiu JW, Qi SH, Qian PY. iTRAQ-Based Proteomic Profiling of the Barnacle Balanus amphitrite in Response to the Antifouling Compound Meleagrin. J Proteome Res 2013; 12:2090-100. [PMID: 23540395 DOI: 10.1021/pr301083e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhuang Han
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Zhang
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
- Shenzhen Key
Laboratory of Marine Bioresource and Eco-environmental Science, College
of Life Science, Shenzhen University, Shenzhen,
China
| | - Fei He
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ying Xu
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Kiyotaka Matsumura
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Li-Sheng He
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Shu-Hua Qi
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| |
Collapse
|
20
|
Qin G, Jia M, Liu T, Zhang X, Guo Y, Zhu KY, Ma E, Zhang J. Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria. PLoS One 2013; 8:e58410. [PMID: 23505503 PMCID: PMC3591310 DOI: 10.1371/journal.pone.0058410] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
Glutathione S-transferases (GSTs) play an important role in detoxification of xenobiotics in both prokaryotic and eukaryotic cells. In this study, four GSTs (LmGSTd1, LmGSTs5, LmGSTt1, and LmGSTu1) representing different classes were identified from the migratory locust, Locusta migratoria. These four proteins were heterologously expressed in Escherichia coli as soluble fusion proteins, purified by Ni(2+)-nitrilotriacetic acid agarose column and biochemically characterized. LmGSTd1, LmGSTs5, and LmGSTu1 showed high activities with 1-chloro-2, 4-dinitrobenzene (CDNB), detectable activity with p-nitro-benzyl chloride (p-NBC) and 1, 2-dichloro-4-nitrobenzene (DCNB), whereas LmGSTt1 showed high activity with p-NBC and detectable activity with CDNB. The optimal pH of the locust GSTs ranged between 7.0 to 9.0. Ethacrynic acid and reactive blue effectively inhibited all four GSTs. LmGSTs5 was most sensitive to heavy metals (Cu(2+) and Cd(2+)). The maximum expression of the four GSTs was observed in Malpighian tubules and fat bodies as evaluated by western blot. The nymph mortalities after carbaryl treatment increased by 28 and 12% after LmGSTs5 and LmGSTu1 were silenced, respectively. The nymph mortalities after malathion and chlorpyrifos treatments increased by 26 and 18% after LmGSTs5 and LmGSTu1 were silenced, respectively. These results suggest that sigma GSTs in L. migratoria play a significant role in carbaryl detoxification, whereas some of other GSTs may also involve in the detoxification of carbaryl and chlorpyrifos.
Collapse
Affiliation(s)
- Guohua Qin
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi Province, China
- The College of Environmental Science and Resources, Shanxi University, Taiyuan, Shanxi Province, China
| | - Miao Jia
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi Province, China
| | - Ting Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi Province, China
| | - Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi Province, China
| | - Yaping Guo
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi Province, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi Province, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi Province, China
| |
Collapse
|
21
|
Zhou WW, Liang QM, Xu Y, Gurr GM, Bao YY, Zhou XP, Zhang CX, Cheng J, Zhu ZR. Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). PLoS One 2013; 8:e56604. [PMID: 23457591 PMCID: PMC3572974 DOI: 10.1371/journal.pone.0056604] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glutathione S-transferase (GST) genes control crucial traits for the metabolism of various toxins encountered by insects in host plants and the wider environment, including insecticides. The planthoppers Nilaparvata lugens and Sogatella furcifera are serious specialist pests of rice throughout eastern Asia. Their capacity to rapidly adapt to resistant rice varieties and to develop resistance to various insecticides has led to severe outbreaks over the last decade. METHODOLOGY/PRINCIPAL FINDINGS Using the genome sequence of N. lugens, we identified for the first time the complete GST gene family of a delphacid insect whilst nine GST gene orthologs were identified from the closely related species S. furcifera. Nilaparvata lugens has 11 GST genes belonging to six cytosolic subclasses and a microsomal class, many fewer than seen in other insects with known genomes. Sigma is the largest GST subclass, and the intron-exon pattern deviates significantly from that of other species. Higher GST gene expression in the N. lugens adult migratory form reflects the higher risk of this life stage in encountering the toxins of non-host plants. After exposure to a sub-lethal dose of four insecticides, chlorpyrifos, imidacloprid, buprofezin or beta-cypermethrin, more GST genes were upregulated in S. furcifera than in N. lugens. RNA interference targeting two N. lugens GST genes, NlGSTe1 and NlGSTm2, significantly increased the sensitivity of fourth instar nymphs to chlorpyrifos but not to beta-cypermethrin. CONCLUSIONS/SIGNIFICANCE This study provides the first elucidation of the nature of the GST gene family in a delphacid species, offering new insights into the evolution of metabolic enzyme genes in insects. Further, the use of RNA interference to identify the GST genes induced by insecticides illustrates likely mechanisms for the tolerance of these insects.
Collapse
Affiliation(s)
- Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture; and Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing-Mei Liang
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture; and Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Xu
- Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Geoff M. Gurr
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture; and Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
- EH Graham Centre for Agricultural Innovation, Charles Sturt University, Orange, New South Wales, Australia
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture; and Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xue-Ping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture; and Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiaan Cheng
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture; and Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture; and Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Yu J, Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ. Identification of ecdysone response elements (EcREs) in the Bombyx mori cathepsin D promoter. Biochem Biophys Res Commun 2012; 425:113-8. [DOI: 10.1016/j.bbrc.2012.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 11/16/2022]
|
23
|
Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ. The Influence of Challenge on Cathepsin B and D Expression Patterns in the Silkworm Bombyx mori L. ACTA ACUST UNITED AC 2011. [DOI: 10.7852/ijie.2011.23.1.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Zhao GD, Zhang YL, Gao RN, Wang RX, Zhang T, Li B, Zhang Y, Lu CD, Shen WD, Wei ZG. Quantitative analysis of expression of six BmGST genes in silkworm, Bombyx mori. Mol Biol Rep 2010; 38:4855-61. [PMID: 21161405 DOI: 10.1007/s11033-010-0626-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
Glutathione S-transferases (GSTs) are a multifunctional super gene family, some of which play an important role in insecticide resistance. In this research, we used a real-time quantitative RT-PCR method, and a novel strategy, to measure the transcriptional level per gene copy using an exogenous RNA reference and DNA reference. The transcription levels of six BmGST genes in different tissues of fifth instar Bombyx mori larvae and their responses to insecticide and fluoride were investigated. The results show different levels and patterns of expression of the different BmGSTs in the various tissues observed. The BmGSTs can be induced by insecticide and fluoride, but their responses to each are different. The results of this research are helpful in studying the tissue-specific expression of BmGSTs in Bombyx mori, and in developing new pesticide resistant silkworm varieties.
Collapse
Affiliation(s)
- Guo-Dong Zhao
- Pre-Clinical Medical and Biological Science College, Soochow University, No. 199 Renai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou 215123, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|