1
|
Lin F, Shen J, Liu Y, Huang A, Zhang H, Chen F, Zhou D, Zhou Y, Hao G. Rapid and effective detection of Macrobrachium rosenbergii nodavirus using a combination of nucleic acid sequence-based amplification test and immunochromatographic strip. J Invertebr Pathol 2023; 198:107921. [PMID: 37023892 DOI: 10.1016/j.jip.2023.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its combination with an immunoassay-based lateral flow dipstick (LFD) could produce a higher detection efficiency for M. rosenbergii nodavirus isolated from China (MrNV-chin). In this study, two specific primers and a labelled probe of the capsid protein gene of MrNV-chin were constructed. The process of this assay mainly included a single-step amplification at a temperature of 41 ℃ for 90 min, and hybridization with an FITC-labeled probe for 5 min, with the hybridization been required for visual identification during LFD assay. The test results indicated that, the NASBA-LFD assay showed sensitivity for 1.0 fg M. rosenbergii total RNA with MrNV-chin infection, which was 104 times that of the present RT-PCR approach for the detection of MrNV. In addition, no products were created for shrimps with infection of other kinds of either DNA or RNA virus, which indicated that the NASBA-LFD was specific for MrNV. Therefore, the combination of NASBA and LFD is a new alternative detection method for MrNV which is rapid, accurate, sensitive and specific without expensive equipment and specialised personnel. Early detection of this infectious disease among aquatic organisms will help implement efficient therapeutic strategy to prevent its spread, enhance animal health and limit loss of aquatic breeds in the event of an outbreak.
Collapse
Affiliation(s)
- Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jinyu Shen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yuelin Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Aixia Huang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Haiqi Zhang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Fan Chen
- Hangzhou Centre for Agricultural Technology Extension, Hangzhou 310017, China.
| | - Dongren Zhou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
2
|
Costa VA, Geoghegan JL, Holmes EC, Harvey E. Genetic Reassortment between Endemic and Introduced Macrobrachium rosenbergii Nodaviruses in the Murray-Darling Basin, Australia. Viruses 2022; 14:2186. [PMID: 36298741 PMCID: PMC9612130 DOI: 10.3390/v14102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Macrobrachium rosenbergii nodavirus (MrNV)-the aetiological agent of white tail disease-is a major limiting factor of crustacean aquaculture as it causes up to 100% mortality in M. rosenbergii larvae and juveniles. Despite the importance of MrNV, there have been few studies on the phylogenetic diversity and geographic range of this virus in Australian waterways. Here, we detected MrNV genomes in common carp (Cyprinus carpio) metatranscriptomes sampled at five freshwater sites across the Murray-Darling Basin (MDB), Australia. We identified genetic divergence of the RNA-dependent RNA polymerase gene between MrNV sequences identified in the northern and southern rivers of the MDB. Northern viruses exhibited strong phylogenetic clustering with MrNV from China, whereas the southern viruses were more closely related to MrNV from Australia. However, all five viruses were closely related in the capsid protein, indicative of genetic reassortment of the RNA1 and RNA2 segments between Australian and introduced MrNV. In addition, we identified Macrobrachium australiense in two of the five MrNV-positive libraries, suggesting that these species may be important reservoir hosts in the MDB. Overall, this study reports the first occurrence of MrNV outside of the Queensland region in Australia and provides evidence for genetic reassortment between endemic and introduced MrNV.
Collapse
Affiliation(s)
- Vincenzo A. Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jemma L. Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, Wellington 5022, New Zealand
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Lee D, Yu YB, Choi JH, Jo AH, Hong SM, Kang JC, Kim JH. Viral Shrimp Diseases Listed by the OIE: A Review. Viruses 2022; 14:v14030585. [PMID: 35336992 PMCID: PMC8953307 DOI: 10.3390/v14030585] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Shrimp is one of the most valuable aquaculture species globally, and the most internationally traded seafood product. Consequently, shrimp aquaculture practices have received increasing attention due to their high value and levels of demand, and this has contributed to economic growth in many developing countries. The global production of shrimp reached approximately 6.5 million t in 2019 and the shrimp aquaculture industry has consequently become a large-scale operation. However, the expansion of shrimp aquaculture has also been accompanied by various disease outbreaks, leading to large losses in shrimp production. Among the diseases, there are various viral diseases which can cause serious damage when compared to bacterial and fungi-based illness. In addition, new viral diseases occur rapidly, and existing diseases can evolve into new types. To address this, the review presented here will provide information on the DNA and RNA of shrimp viral diseases that have been designated by the World Organization for Animal Health and identify the latest shrimp disease trends.
Collapse
Affiliation(s)
- Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea;
| | - Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Su-Min Hong
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| |
Collapse
|
4
|
Immunological Analysis of Nodavirus Capsid Displaying the Domain III of Japanese Encephalitis Virus Envelope Protein. Pharmaceutics 2021; 13:pharmaceutics13111826. [PMID: 34834244 PMCID: PMC8618745 DOI: 10.3390/pharmaceutics13111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the pathogen that causes Japanese encephalitis (JE) in humans and horses. Lethality of the virus was reported to be between 20–30%, of which, 30–50% of the JE survivors develop neurological and psychiatric sequelae. Attributed to the low effectiveness of current therapeutic approaches against JEV, vaccination remains the only effective approach to prevent the viral infection. Currently, live-attenuated and chimeric-live vaccines are widely used worldwide but these vaccines pose a risk of virulence restoration. Therefore, continuing development of JE vaccines with higher safety profiles and better protective efficacies is urgently needed. In this study, the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (CP) fused with the domain III of JEV envelope protein (JEV-DIII) was produced in Escherichia coli. The fusion protein (MrNV-CPJEV-DIII) assembled into virus-like particles (VLPs) with a diameter of approximately 18 nm. The BALB/c mice injected with the VLPs alone or in the presence of alum successfully elicited the production of anti-JEV-DIII antibody, with titers significantly higher than that in mice immunized with IMOJEV, a commercially available vaccine. Immunophenotyping showed that the MrNV-CPJEV-DIII supplemented with alum triggered proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer (NK) cells. Additionally, cytokine profiles of the immunized mice revealed activities of cytotoxic T-lymphocytes, macrophages, and NK cells, indicating the activation of adaptive cellular and innate immune responses mediated by MrNV-CPJEV-DIII VLPs. Induction of innate, humoral, and cellular immune responses by the MrNV-CPJEV-DIII VLPs suggest that the chimeric protein is a promising JEV vaccine candidate.
Collapse
|
5
|
Regulation of Proteolytic Activity to Improve the Recovery of Macrobrachium rosenbergii Nodavirus Capsid Protein. Int J Mol Sci 2021; 22:ijms22168725. [PMID: 34445426 PMCID: PMC8395934 DOI: 10.3390/ijms22168725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The causative agent of white tail disease (WTD) in the giant freshwater prawn is Macrobrachium rosenbergii nodavirus (MrNV). The recombinant capsid protein (CP) of MrNV was previously expressed in Escherichia coli, and it self-assembled into icosahedral virus-like particles (VLPs) with a diameter of approximately 30 nm. Extensive studies on the MrNV CP VLPs have attracted widespread attention in their potential applications as biological nano-containers for targeted drug delivery and antigen display scaffolds for vaccine developments. Despite their advantageous features, the recombinant MrNV CP VLPs produced in E. coli are seriously affected by protease degradations, which significantly affect the yield and stability of the VLPs. Therefore, the aim of this study is to enhance the stability of MrNV CP by modulating the protease degradation activity. Edman degradation amino acid sequencing revealed that the proteolytic cleavage occurred at arginine 26 of the MrNV CP. The potential proteases responsible for the degradation were predicted in silico using the Peptidecutter, Expasy. To circumvent proteolysis, specific protease inhibitors (PMSF, AEBSF and E-64) were tested to reduce the degradation rates. Modulation of proteolytic activity demonstrated that a cysteine protease was responsible for the MrNV CP degradation. The addition of E-64, a cysteine protease inhibitor, remarkably improved the yield of MrNV CP by 2.3-fold compared to the control. This innovative approach generates an economical method to improve the scalability of MrNV CP VLPs using individual protease inhibitors, enabling the protein to retain their structural integrity and stability for prominent downstream applications including drug delivery and vaccine development.
Collapse
|
6
|
NaveenKumar S, Rai P, Karunasagar I, Karunasagar I. Recombinant viral proteins delivered orally through inactivated bacterial cells induce protection in Macrobrachium rosenbergii (de Man) against White Tail Disease. JOURNAL OF FISH DISEASES 2021; 44:601-612. [PMID: 33210311 DOI: 10.1111/jfd.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
White tail disease (WTD) is a disease of Macrobrachium rosenbergii caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) with the potential to devastate the aquaculture industry. The present study aimed to explore the possible protection of M. rosenbergii against the disease by oral administration of bacterially expressed recombinant capsid proteins of MrNV and XSV. Juvenile M. rosenbergii were fed with the feed coated with inactivated bacteria encapsulated expressed recombinant viral proteins either individually or in combination for 7 days. Challenge studies using WTD causing agents were carried out after 3 (group I), 10 (group II) and 20 (group III) days post-feeding of viral proteins. Recombinant capsid protein of MrNV showed better protection when compared to other treatments with relative per cent survival of 62.5% (group I), 57.9% (group II) and 39.5% (group III). Treatment controls of groups I, II and III showed 100%, 95% and 95% mortality, respectively. The study demonstrates that oral administration of recombinant capsid proteins of MrNV and XSV provides effective protection against WTD in freshwater prawn.
Collapse
Affiliation(s)
- Singaiah NaveenKumar
- Fisheries Research Centre, Ministry of Environment, Water and Agriculture, Saihat, Kingdom of Saudi Arabia
| | - Praveen Rai
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Indrani Karunasagar
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, India
| |
Collapse
|
7
|
Naveen Kumar S, Rai P, Karunasagar I, Karunasagar I. Genomic and antibody-based assays for the detection of Indian strains of Macrobrachium rosenbergii nodavirus and extra small virus associated with white tail disease of Macrobrachium rosenbergii. Virusdisease 2021; 31:459-469. [PMID: 33381620 DOI: 10.1007/s13337-020-00641-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/07/2020] [Indexed: 11/29/2022] Open
Abstract
White tail disease (WTD) of cultured Macrobrachium rosenbergii is caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV). Since both the viruses have small single strand RNA as genetic material with short generation time, they are more prone to mutations. Hence detection methods developed for one strain may be suboptimal for the detection of isolates from the different geographical locations. In the present study two new genomic based methods (RT-PCR and dot-blot hybridization) along with one immunological method (polyclonal antibodies based detection) were developed for the detection of Indian isolates of MrNV and XSV. Among genomic based methods, RT-PCR assay developed was most sensitive. Sensitivity of detection of RT-PCR was 1 fg (both MrNV and XSV) of total RNA extracted from purified viral inoculum preparation. In case of WTD positive whole tissue total RNA, the limit of detection was 10 fg for both MrNV and XSV. Dot-blot hybridization had a detection limit of 10 pg and 0.1 ng for MrNV and XSV respectively when RNA extracted from viral inoculum preparation was used; 0.1 ng and 1 ng when WTD positive whole tissue total RNA was used. Polyclonal antibodies against recombinant proteins (MrNV and XSV capsid) were synthesised. Western blotting and indirect ELISA revealed that the antibodies produced to be specific and highly sensitive. Recombinant protein (antigen) of MrNV and XSV capsid were detected at the dilution of 1:8000. However in case of infected prawn tissue sample, MrNV and XSV were detected at the dilution of 1:32,000 and 1:64,000 respectively. All methods developed are field applicable.
Collapse
Affiliation(s)
- Singaiah Naveen Kumar
- Fisheries Research Centre, Ministry of Environment, Water and Agriculture, P.O. Box 134, Saihat, 31972 Eastern Province Kingdom of Saudi Arabia
| | - Praveen Rai
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru, 575018 India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru, 575018 India.,Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018 India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018 India
| |
Collapse
|
8
|
Low CF, Shamsir MS, Mohamed-Hussein ZA, Baharum SN. Evaluation of potential molecular interaction between quorum sensing receptor, LuxP and grouper fatty acids: in-silico screening and simulation. PeerJ 2019; 7:e6568. [PMID: 30984478 PMCID: PMC6452917 DOI: 10.7717/peerj.6568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/05/2019] [Indexed: 11/20/2022] Open
Abstract
Pathologically relevant behaviors of Vibrio, such as the expression of virulence factors, biofilm production, and swarming motility, have been shown to be controlled by quorum sensing. The autoinducer-2 quorum sensing receptor protein LuxP is one of the target proteins for drug development to suppress the virulence of Vibrio. Here, we reported the potential molecular interaction of fatty acids identified in vibriosis-resistant grouper with LuxP. Fatty acid, 4-oxodocosahexaenoic acid (4R8) showed significant binding affinity toward LuxP (-6.0 kcal/mol) based on molecular docking analysis. The dynamic behavior of the protein-ligand complex was illustrated by molecular dynamic simulations. The fluctuation of the protein backbone, the stability of ligand binding, and hydrogen bond interactions were assessed, suggesting 4R8 possesses potential interaction with LuxP, which was supported by the low binding free energy (-29.144 kJ/mol) calculated using the molecular mechanics Poisson-Boltzmann surface area.
Collapse
Affiliation(s)
- Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Bioscience and Bioengineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
9
|
Low CF, Md Yusoff MR, Kuppusamy G, Ahmad Nadzri NF. Molecular biology of Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. JOURNAL OF FISH DISEASES 2018; 41:1771-1781. [PMID: 30270534 DOI: 10.1111/jfd.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) has been threatening the giant freshwater prawn aquaculture since 1997, causing white tail disease in the prawn species that leads to 100% lethality of the infected postlarvae. Comprehension of the viral infectivity and pathogenesis at molecular biology level has recently resolved the viral capsid protein and evidenced the significant difference in the viral structural protein compared to other nodaviruses that infect fish and insect. Cumulative researches have remarked the proposal to assert MrNV as a member of new genus, gammanodavirus to the Nodaviridae family. The significance of molecular biology in MrNV infection is being highlighted in this current review, revolving the viral life cycle from virus binding and entry into host, virus replication in host cell, to virus assembly and release. The current review also highlights the emerging aptamers technology that is also known as synthetic antibody, its application in disease diagnosis, and its prophylactic and therapeutic properties. The future perspective of synthetic virology technology in understanding viral pathogenesis, as well as its potential in viral vaccine development, is also discussed.
Collapse
Affiliation(s)
- Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, Malaysia
| | | | | | | |
Collapse
|
10
|
Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, Tan WS, Bhella D. Structure of the Macrobrachium rosenbergii nodavirus: A new genus within the Nodaviridae? PLoS Biol 2018; 16:e3000038. [PMID: 30346944 PMCID: PMC6211762 DOI: 10.1371/journal.pbio.3000038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022] Open
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
Collapse
Affiliation(s)
- Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mads Gabrielsen
- CRUK Beatson Institute, Garscube Campus, Glasgow, Scotland United Kingdom
| | - Poay Ling Beh
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Chare Li Kueh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Qiu Xian Thong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - James Streetley
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor Malaysia
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, Scotland, United Kingdom
| |
Collapse
|
11
|
The development and application of a duplex reverse transcription loop-mediated isothermal amplification assay combined with a lateral flow dipstick method for Macrobrachium rosenbergii nodavirus and extra small virus isolated in China. Mol Cell Probes 2018; 40:1-7. [PMID: 29800614 DOI: 10.1016/j.mcp.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 11/23/2022]
Abstract
White tail disease (WTD), a major disease prevailing in the larval stage of Macrobrachium rosenbergii, caused by Macrobrachium rosenbergii nodavirus (MrNV) associated with extra small virus (XSV), led to the economic loss of shrimp industry in China. In order to establish a convenient, sensitive and selective molecular diagnostic method to detect MrNV and XSV for the Chinese shrimp (MrNV/XSV-chin), a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay combined with a lateral flow dipstick (LFD) method were developed. A set of four specific primers and a labeled probe were designed according to the six conserved gene sequence regions encoding for the MrNV capsid protein CP43 and the XSV capsid protein CP17. The detection of MrNV and XSV simultaneously by RT-LAMP was performed at 61 °C in a single reaction for 60 min followed by hybridization with an FITC-labeled probe for 5 min and visualized by LFD. The RT-LAMP-LFD assay had a sensitivity of approximately 100-fold higher than conventional PCR. In addition, the assay could detect MrNV/XSV-chin from limited amount of RNA extracts as low as 1.0 pg extracted from Macrobrachium rosenbergii. This assay was simple to use, required little instrumentation, and exhibited excellent specificity for the MrNV/XSV-chin compared with other shrimp viruses. In conclusion, a convenient, sensitive and selective practical molecular diagnostic method was developed with the potential for diagnosis and prevention of WTD.
Collapse
|
12
|
Ho KL, Kueh CL, Beh PL, Tan WS, Bhella D. Cryo-Electron Microscopy Structure of the Macrobrachium rosenbergii Nodavirus Capsid at 7 Angstroms Resolution. Sci Rep 2017; 7:2083. [PMID: 28522842 PMCID: PMC5437026 DOI: 10.1038/s41598-017-02292-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/18/2017] [Indexed: 11/10/2022] Open
Abstract
White tail disease in the giant freshwater prawn Macrobrachium rosenbergii causes significant economic losses in shrimp farms and hatcheries and poses a threat to food-security in many developing countries. Outbreaks of Macrobrachium rosenbergii nodavirus (MrNV), the causative agent of white tail disease (WTD) are associated with up to 100% mortality rates. There are no interventions available to treat or prevent MrNV disease however. Here we show the structure of MrNV virus-like particles (VLPs) produced by recombinant expression of the capsid protein, using cryogenic electron microscopy. Our data show that MrNV VLPs package nucleic acids in a manner reminiscent of other known nodavirus structures. The structure of the capsid however shows striking differences from insect and fish infecting nodaviruses, which have been shown to assemble trimer-clustered T = 3 icosahedral virus particles. MrNV particles have pronounced dimeric blade-shaped spikes extending up to 6 nm from the outer surface of the capsid shell. Our structural analysis supports the assertion that MrNV may belong to a new genus of the Nodaviridae. Moreover, our study provides the first structural view of an important pathogen affecting aquaculture industries across the world.
Collapse
Affiliation(s)
- Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chare Li Kueh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, 43400 UPM, Serdang, Selangor, Malaysia
| | - Poay Ling Beh
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, 43400 UPM, Serdang, Selangor, Malaysia
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
13
|
Kueh CL, Yong CY, Masoomi Dezfooli S, Bhassu S, Tan SG, Tan WS. Virus-like particle of Macrobrachium rosenbergii nodavirus produced in Spodoptera frugiperda (Sf9) cells is distinctive from that produced in Escherichia coli. Biotechnol Prog 2016; 33:549-557. [PMID: 27860432 DOI: 10.1002/btpr.2409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017.
Collapse
Affiliation(s)
- Chare Li Kueh
- Dept. of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chean Yeah Yong
- Dept. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | - Subha Bhassu
- Genetics and Molecular Biology, Centre for Research in Biotechnology for Agriculture, Inst. of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soon Guan Tan
- Dept. of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Dept. of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.,Inst. of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Induction of humoral and cell-mediated immune responses by hepatitis B virus epitope displayed on the virus-like particles of prawn nodavirus. Appl Environ Microbiol 2014; 81:882-9. [PMID: 25416760 DOI: 10.1128/aem.03695-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
Collapse
|
15
|
Goh ZH, Mohd NAS, Tan SG, Bhassu S, Tan WS. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein. J Gen Virol 2014; 95:1919-1928. [PMID: 24878641 DOI: 10.1099/vir.0.064014-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.
Collapse
Affiliation(s)
- Zee Hong Goh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Azmina Syakirin Mohd
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Subha Bhassu
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Naveen Kumar S, Karunasagar I, Karunasagar I. Protection of Macrobrachium rosenbergii against white tail disease by oral administration of bacterial expressed and encapsulated double-stranded RNA. FISH & SHELLFISH IMMUNOLOGY 2013; 35:833-839. [PMID: 23811407 DOI: 10.1016/j.fsi.2013.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/19/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
White tail disease (WTD) of cultured Macrobrachium rosenbergii is caused by M. rosenbergii nodavirus (MrNV) and an extra small virus (XSV), both present together, and the mortality rate can be as high as 100% within 2 or 3 days of infection. Possible protection of M. rosenbergii against WTD by oral administration of bacterial expressed and encapsulated double-stranded RNA (dsRNA) was studied. Juvenile M. rosenbergii were fed with the feed coated with inactivated bacteria encapsulated dsRNA of MrNV and XSV genes individually and in combination for 7 days followed by challenge with WTD causing agents at 24 h and 72 h post-feeding. Test animals fed with a combination of dsRNA of MrNV and XSV capsid genes showed the highest relative percent survival (RPS) when compared to other treatments with RPS of 80% and 75% at 24 and 72 h respectively. One hundred percent mortality was observed in test animals fed with control dsRNA coated feed. Although in the literature, injection is the most common method used to deliver dsRNA, this study shows that oral administration is effective, feasible and economical.
Collapse
Affiliation(s)
- Singaiah Naveen Kumar
- UNESCO-MIRCEN for Marine Biotechnology, Department of Fisheries Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries, Mangalore 575 002, India
| | | | | |
Collapse
|
17
|
White Tail Disease of Freshwater Prawn, Macrobrachium rosenbergii. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:134-40. [PMID: 23997437 DOI: 10.1007/s13337-012-0087-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Macrobrachium rosenbergii is the most important cultured freshwater prawn in the world and it is now farmed on a large scale in many countries. Generally, freshwater prawn is considered to be tolerant to diseases but a disease of viral origin is responsible for severe mortalities in larval, post-larval and juvenile stages of prawn. This viral infection namely white tail disease (WTD) was reported in the island of Guadeloupe in 1995 and later in Martinique (FrenchWest Indies) in Taiwan, the People's Republic of China, India, Thailand, Australia and Malaysia. Two viruses, Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus-like particle (XSV) have been identified as causative agents of WTD. MrNV is a small icosahedral non-enveloped particle, 26-27 nm in diameter, identified in the cytoplasm of connective cells. XSV is also an icosahedral virus and 15 nm in diameter. Clinical signs observed in the infected animals include lethargy, opaqueness of the abdominal muscle, degeneration of the telson and uropods, and up to 100 % within 4 days. The available diagnostic methods to detect WTD include RT-PCR, dot-blot hybridization, in situ hybridization and ELISA. In experimental infection, these viruses caused 100 % mortality in post-larvae but failed to cause mortality in adult prawns. The reported hosts for these viruses include marine shrimp, Artemia and aquatic insects. Experiments were carried out to determine the possibility of vertical transmission of MrNV and XSV in M. rosenbergii. The results indicate that WTD may be transferred from infected brooders to their offspring during spawning. Replication of MrNV and XSV was investigated in apparently healthy C6/36 Aedes albopictus and SSN-1 cell lines. The results revealed that C6/36 and SSN-1cells were susceptible to these viruses. No work has been carried out on control and prevention of WTD and dsRNA against protein B2 produced RNAi that was able to functionally prevent and reduce mortality in WTD-infected redclaw crayfish.
Collapse
|