1
|
Zhang P, Yang C, Wang J, Jiang P, Qi J, Hou W, Cheng H, Feng X, Yu D. Cytochrome GmGLY1 is Involved in the Biosynthesis of Glycitein in Soybean. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10944-10957. [PMID: 38710505 DOI: 10.1021/acs.jafc.4c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Isoflavones, the major secondary metabolites of interest due to their benefits to both human and plant health, are exclusively produced by legumes. In this study, we profiled the isoflavone content in dry seeds from 211 soybean [Glycine max (L.) Merr.] accessions grown across five environments. Broad and discernible phenotypic variations were observed among accessions, regions, and years of growth. Twenty-six single-nucleotide polymorphisms (SNPs) associated with the sum of glycitein (GLE), glycitin (GL), 6″-O-acetylglycitin (AGL), and 6″-O-malonylglycitin (MGL) contents were detected in multiple environments via a genome-wide association study (GWAS). These SNPs were located on chromosome 11 (8,148,438 bp to 8,296,956 bp, renamed qGly11-01). Glyma.11g108300 (GmGLY1), a gene that encodes a P450 family protein, was identified via sequence variation analysis, functional annotation, weighted gene coexpression network analysis (WGCNA), and expression profile analysis of candidate gene, and hairy roots transformation in soybean. Overexpression of GmGLY1 increased the glycitein content (GLC) in soybean hairy roots and transgenic seeds, while CRISPR/Cas9-generated mutants exhibited decreased GLC and increased daidzein content (DAC). Haplotype analysis revealed that GmGLY1 allelic variations significantly affect the GLC accumulation. These findings enhance our understanding of genes influencing GLC in soybean and may guide breeding for lines with high and stable GLC.
Collapse
Affiliation(s)
- Peipei Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhejiang Lab, Hangzhou 311121, China
| | - Changyun Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Pingbo Jiang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Qi
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyan Hou
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Yang Q, Wang G. Isoflavonoid metabolism in leguminous plants: an update and perspectives. FRONTIERS IN PLANT SCIENCE 2024; 15:1368870. [PMID: 38405585 PMCID: PMC10884283 DOI: 10.3389/fpls.2024.1368870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Isoflavonoids constitute a well-investigated category of phenylpropanoid-derived specialized metabolites primarily found in leguminous plants. They play a crucial role in legume development and interactions with the environment. Isoflavonoids usually function as phytoalexins, acting against pathogenic microbes in nature. Additionally, they serve as signaling molecules in rhizobial symbiosis. Notably, owing to their molecular structure resembling human estrogen, they are recognized as phytoestrogens, imparting positive effects on human health. This review comprehensively outlines recent advancements in research pertaining to isoflavonoid biosynthesis, transcriptional regulation, transport, and physiological functions, with a particular emphasis on soybean plants. Additionally, we pose several questions to encourage exploration into novel contributors to isoflavonoid metabolism and their potential roles in plant-microbe interactions.
Collapse
Affiliation(s)
- Qilin Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Horitani M, Yamada R, Taroura K, Maeda A, Anai T, Watanabe S. Identification of Genes Responsible for the Synthesis of Glycitein Isoflavones in Soybean Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:156. [PMID: 38256710 PMCID: PMC10818676 DOI: 10.3390/plants13020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Soybean (Glycine max (L.) Merrill) isoflavones are among the most important secondary metabolites, with functional benefits for human health. Soybeans accumulate three aglycone forms of isoflavones: genistein, daidzein, and glycitein. Soybean landrace Kumachi-1 does not accumulate malonylglycitin at all. Gene structure analysis indicated that Glyma.11G108300 (F6H4) of Kumachi-1 has a 3.8-kbp insertion, resulting in a truncated flavonoid 6-hydroxylase (F6H) sequence compared to the wild-type sequence in Fukuyutaka. Mapping experiments using a mutant line (MUT1246) with a phenotype similar to that of Kumachi-1, with a single-nucleotide polymorphism (SNP) in F6H4, revealed co-segregation of this mutation and the absence of glycitein isoflavones. We also identified a mutant line (K01) that exhibited a change in the HPLC retention time of glycitein isoflavones, accumulating glycoside and malonylglycoside forms of 6-hydroxydaidzein. K01 contains an SNP that produces a premature stop codon in Glyma.01G004200 (IOMT3), a novel soybean isoflavone O-methyltransferase (IOMT) gene. We further analyzed transgenic hairy roots of soybeans expressing Glyma.11G108300 (F6H4) and Glyma.01G004200 (IOMT3). Those overexpressing F6H4 accumulated malonylglycoside forms of 6-hydroxydaidzein (M_6HD), and co-expression of F6H4 and IOMT3 increased the level of malonylglycitin but not of M_6HD. These results indicate that F6H4 and IOMT3 are responsible for glycitein biosynthesis in soybean seed hypocotyl.
Collapse
Affiliation(s)
- Masaki Horitani
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| | - Risa Yamada
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| | - Kanami Taroura
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| | - Akari Maeda
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| | - Toyoaki Anai
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Satoshi Watanabe
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (M.H.)
| |
Collapse
|
4
|
Xia Y, Su Q, Li X, Yan S, Liu J, He C, Huang H, Jiang W, Pang Y. Two CYP93A enzymes play a dual role in isoflavonoid biosynthesis in Glycine max L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108073. [PMID: 37839274 DOI: 10.1016/j.plaphy.2023.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Glycine max L. is rich in isoflavonoids with diverse biological activities. However, isoflavonoid biosynthetic pathway is not fully elucidated in soybean. In the present study, we investigated characteristics of all the thirteen CYP93 subfamily members, and found GmCYP93A1, GmCYP93A2, and GmCYP93A3 are closely clustered, preferentially expressed in roots, and highly inducible by elicitor. When expressed in yeast, GmCYP93A1 was active towards liquiritigenin, naringenin, and 3,9-dihydroxyptercarpan, GmCYP93A2 towards 3,9-dihydroxyptercarpan with strict substrate specificity, whereas GmCYP93A3 did not show any activity towards all the tested substrates. Both GmCYP93A1 and GmCYP93A2 could catalyze 3,9-dihydroxyptercarpan into daidzein and glycinol, with both hydroxylation and aryl migration activity. Site-directed mutagenesis assays revealed that mutation in Thr446 to Ser446 in heme-binding domain increased the enzyme activity of GmCYP93A1 towards 3,9-dihydroxyptercarpan, which highlights its key amino acid residues as shown with its molecular docking with 3,9-dihydroxyptercarpan and HEM. Overexpression of GmCYP93A1 and GmCYP93A2 in the soybean hairy roots reduced the content of daidzein, whereas knockdown of these two genes increased genistein content, indicating changes in expression level of GmCYP93A1 and GmCYP93A2 altered isoflavonoid flux in soybean. Our studies on the activity of GmCYP93A1 and GmCYP93A2 enriched diverse functions of CYP93 subfamily in soybean isoflavonoid pathway, which is valuable for further understanding and bioengineering of isoflavonoid pathway in soybean.
Collapse
Affiliation(s)
- Yaying Xia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qian Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xue Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Su Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jinyue Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Chunfeng He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
New dual functional CYP450 gene involves in isoflavone biosynthesis in Glycine max L. Synth Syst Biotechnol 2023; 8:157-167. [PMID: 36714060 PMCID: PMC9860299 DOI: 10.1016/j.synbio.2023.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Glycine max L. accumulates a large amount of isoflavonoid compounds, which is beneficial for plant defense, plant-microbe symbiotic interactions, and human health. Several CYP450 subfamily genes are involved in the flavonoid biosynthetic pathway in plants. In the present study, we found 24 CYP82 subfamily genes were differentially expressed in various tissues of soybean, in Phytophthora sojae-infected soybean varieties and in soybean hairy roots treated with cell wall glucan elicitor. Six of them (GmCYP82A2, GmCYP82A3, GmCYP82A4, GmCYP82A23, GmCYP82C20 and GmCYP82D26) were co-expressed with other known isoflavonoid pathway genes in soybean. Their enzymatic activity in yeast feeding assays showed that only GmCYP82D26 was able to convert naringenin to daidzein with both aryl migration and dehydration function. When GmCYP82D26 was over-expressed in soybean hairy roots, the contents of the two major isoflavonoid aglycones in soybean (daidzein and genistein) were reduced, but total flavonoids were not affected. When GmCYP82D26 was suppressed by RNAi in the hairy roots, daidzein content was decreased but genistein content was increased, with unchanged total flavonoid content. GmCYP82D26 was found to be localized in the endoplasmic reticulum at subcellular level when transiently expressed in tobacco leaf epidermis. GmCYP82D26 gene was preferentially expressed in roots, with low expression level in other tissues in soybean. Homology modeling and molecular docking showed that GmCYP82D26 could form hydrogen bond with both HEM and naringenin at C5-OH and C4 carbonyl. All these results indicated that GmCYP82D26 possesses new and dual enzymatic activity, which bridges the two branches (daidzein and genistein branch) of isoflavonoid pathway in soybean.
Collapse
|
6
|
Liu S, Grierson D, Xi W. Biosynthesis, distribution, nutritional and organoleptic properties of bitter compounds in fruit and vegetables. Crit Rev Food Sci Nutr 2022; 64:1934-1953. [PMID: 36099178 DOI: 10.1080/10408398.2022.2119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Compounds that confer a bitter taste on fruits and vegetables (FAVs) play crucial roles in both plant defense and health promotion. This review details the current knowledge of the distribution, properties (toxicity, pharmacological effects and receptors) and environmental plant responses relating to the biosynthesis, catabolism and transcriptional regulation of 53 bitter plant metabolites in diverse species of FAVs. Some bitter compounds, such as flavonoids, are common in all plant species and make a minor contribution to bitter flavor, but many are synthesized only in specific taxa. They make major contributions to the bitter taste of the corresponding species and some also have significant pharmacological effects. Levels of bitter metabolites are genetically determined, but various environmental cues can affect their final concentration during preharvest development and postharvest storage processes. Molecular approaches are helping to unravel the mechanisms of biosynthesis and regulation of bitter compounds in diverse crop species. This review not only discusses the theoretical basis for utilizing breeding programs and other agricultural technologies to produce FAVs with improved safety, favorable taste and healthier profiles, but also suggests new directions for the utilization of bitter compounds in FAVs for the development of natural pesticides and health-promoting medicines.
Collapse
Affiliation(s)
- Shengyu Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Donald Grierson
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, China
| |
Collapse
|
7
|
Pu X, Li J, Guo Z, Wang M, Lei M, Yang S, Yang J, Wang H, Zhang L, Huang Q. Structure-based identification and pathway elucidation of flavonoids in Camptotheca acuminate. Synth Syst Biotechnol 2022; 7:824-836. [PMID: 35510090 PMCID: PMC9043410 DOI: 10.1016/j.synbio.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Flavonoid metabolism in Camptotheca acuminate remained an untapped area for years. A tandem MS approach was used and focused on the mining and characterizing of flavonoids in mature C. acuminate. Fifteen new flavonoids and forty-three known flavonoids, including fifteen flavone analogs, sixteen flavonol analogs, seven flavanone analogs, six chalcone analogs, four xanthone analogs, ten flavane analogs were mined and identified based on their MS/MS fragments. Fifty-three of them were firstly characterized in C. acuminate. Eight biosynthetic precursors for these flavonoids were also identified. We constructed a specific metabolic map for flavonoids according to their relative contents in the flowers, fruits, stems, and leaves of C. acuminate. Furthermore, the most probable genes involved in chalcone biosynthesis, flavonoid hydroxylation, methylation, and glycosylation were further mined and fished in the gene reservoir of C. acuminate according to their conserved domains and co-expression analysis. These findings enable us to acquire a better understanding of versatile flavonoid metabolism in C. acuminate.
Collapse
Affiliation(s)
- Xiang Pu
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Jia Li
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Ziang Guo
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Minji Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Ming Lei
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Shengnan Yang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Jun Yang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Hanguang Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Qianming Huang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| |
Collapse
|
8
|
Uchida K, Sawada Y, Ochiai K, Sato M, Inaba J, Hirai MY. Identification of a Unique Type of Isoflavone O-Methyltransferase, GmIOMT1, Based on Multi-Omics Analysis of Soybean under Biotic Stress. PLANT & CELL PHYSIOLOGY 2020; 61:1974-1985. [PMID: 32894761 PMCID: PMC7758036 DOI: 10.1093/pcp/pcaa112] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 05/15/2023]
Abstract
Isoflavonoids are commonly found in leguminous plants. Glycitein is one of the isoflavones produced by soybean. The genes encoding the enzymes in the isoflavone biosynthetic pathway have mostly been identified and characterized. However, the gene(s) for isoflavone O-methyltransferase (IOMT), which catalyzes the last step of glycitein biosynthesis, has not yet been identified. In this study, we conducted multi-omics analyses of fungal-inoculated soybean and indicated that glycitein biosynthesis was induced in response to biotic stress. Moreover, we identified a unique type of IOMT, which participates in glycitein biosynthesis. Soybean seedlings were inoculated with Aspergillus oryzae or Rhizopus oligosporus and sampled daily for 8 d. Multi-omics analyses were conducted using liquid chromatography-tandem mass spectrometry and RNA sequencing. Metabolome analysis revealed that glycitein derivatives increased following fungal inoculation. Transcriptome co-expression analysis identified two candidate IOMTs that were co-expressed with the gene encoding flavonoid 6-hydroxylase (F6H), the key enzyme in glycitein biosynthesis. The enzymatic assay of the two IOMTs using respective recombinant proteins showed that one IOMT, named as GmIOMT1, produced glycitein. Unlike other IOMTs, GmIOMT1 belongs to the cation-dependent OMT family and exhibited the highest activity with Zn2+ among cations tested. Moreover, we demonstrated that GmIOMT1 overexpression increased the levels of glycitein derivatives in soybean hairy roots when F6H was co-expressed. These results strongly suggest that GmIOMT1 participates in inducing glycitein biosynthesis in response to biotic stress.
Collapse
Affiliation(s)
- Kai Uchida
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | | | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Jun Inaba
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | | |
Collapse
|
9
|
Salces FR, Rostagno MA, Amaya-Farfan J. Novel process of hydration, followed by incubation and thermal processing, for high isoflavone bioconversion in soybeans. Food Res Int 2019; 121:691-696. [PMID: 31108797 DOI: 10.1016/j.foodres.2018.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/16/2018] [Accepted: 12/22/2018] [Indexed: 01/12/2023]
Abstract
The potentially bioavailable aglyconic isoflavone content of soybeans was increased by a process based on the controlled hydration of whole beans, followed by an incubation step and cooking. For developing the process, the effects of three operation variables: temperature, intermittent soaking and incubation time on the isoflavone profile of the processed soybeans were assessed. By hydrating the whole beans under controlled conditions (54 °C; 15 rpm for a rotating soaking basket) and holding the beans for an appropriate incubation time, it was possible to substantially increase the total aglycone content from (μmol·10-2·g-1) ~5 in the raw, to ~95 in the processed soybean. A conventional thermal treatment (1 kg⋅cm-2, 5 min), necessary to attain the nutritional and sensory characteristics, produced additional hydrolysis of glucosides, accounting for extra 14% of total aglycone yield. The entire process avoided the need to grind the bean and permitted an overall 21.8-fold increase (per-mole basis) conversion of all forms of isoflavone glucosides to aglycones, particularly to the (S)-equol precursor, daidzein, and with minimal back-diffusion or leaching to the outside medium.
Collapse
Affiliation(s)
- Franz R Salces
- Food and Nutrition Department (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Mauricio A Rostagno
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), R. Pedro Zaccaria, 1300, P.O. Box 1068, ZIP code:13484-350 Limeira, São Paulo, Brazil
| | - Jaime Amaya-Farfan
- Food and Nutrition Department (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
10
|
Dastmalchi M, Chapman P, Yu J, Austin RS, Dhaubhadel S. Transcriptomic evidence for the control of soybean root isoflavonoid content by regulation of overlapping phenylpropanoid pathways. BMC Genomics 2017; 18:70. [PMID: 28077078 PMCID: PMC5225596 DOI: 10.1186/s12864-016-3463-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Isoflavonoids are a class of specialized metabolites found predominantly in legumes. They play a role in signaling for symbiosis with nitrogen-fixing bacteria and inhibiting pathogen infection. RESULTS A transcriptomic approach using soybean cultivars with high (Conrad and AC Colombe) and low (AC Glengarry and Pagoda) root isoflavonoid content was used to find elements that underlie this variation. Two genes, encoding the flavonoid-metabolizing enzymes, flavonoid 3'-hydroxylase (GmF3'H) and dihydroflavonol 4-reductase (GmDFR), had lower expression levels in high isoflavonoid cultivars. These enzymes compete with isoflavonoid biosynthetic enzymes for the important branch-point substrate naringenin and its derivatives. Differentially expressed genes, between the two sets of cultivars, encode transcription factors, transporters and enzymatic families of interest, such as oxidoreductases, hydrolases and transferases. In addition, genes annotated with stress and disease response were upregulated in high isoflavonoid cultivars. CONCLUSIONS Coordinated regulation of genes involved in flavonoid metabolism could redirect flux into the isoflavonoid branch of the phenylpropanoid pathway, by reducing competition for the flavanone substrate. These candidate genes could help identify mechanisms to overcome the endogenous bottleneck to isoflavonoid production, facilitate biosynthesis in heterologous systems, and enhance crop resistance against pathogenic infections.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Patrick Chapman
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Jaeju Yu
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Ryan S Austin
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Sangeeta Dhaubhadel
- Department of Biology, University of Western Ontario, London, ON, Canada.
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada.
| |
Collapse
|