1
|
Hou QL, Zhu JN, Fang M, Chen EH. Comparative transcriptome analysis provides comprehensive insight into the molecular mechanisms of heat adaption in Plutella xylostella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101300. [PMID: 39084150 DOI: 10.1016/j.cbd.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Plutella xylostella is one of the most destructive pests for cruciferous vegetables, and is adaptability to different environmental stressors. However, we still know little about the molecular mechanisms of how P. xylostella adapt to thermal stress. Here, the comparative transcriptome analysis was conducted from the samples of control (27 °C, CK) and heat treatment (40 °C, 40 T) P. xylostella. The results showed 1253 genes were differentially expressed, with 624 and 629 genes up- and down-regulated respectively. The annotation analysis demonstrated that "Energy production and conversion", "Protein processing in endoplasmic reticulum", "Peroxisome" and "Tyrosine metabolism" pathways were significantly enriched. Additionally, we found the expression levels of heat shock protein genes (Hsps), cuticle related genes and mitochondrial genes were significantly up-regulated in 40 T insects, suggesting their vital roles in improving adaption to heat stress. Importantly, the SOD activity and MDA content of P. xylostella were both identified to be increased under high temperature stress, indicating the elevated antioxidant reactions might be involved in response to heat stress. In conclusion, the present study offered us an overview of gene expression changes after 40 °C treatments, and found some critical pathways and genes of P. xylostella might play the critical roles in resisting heat stress.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mei Fang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Shahila Ismail KI, Kumar CVS, Aneesha U, Syama PS, Sajini KP. Comparative analysis of gut bacteria of silkworm Bombyx mori L. on exposure to temperature through 16S rRNA high throughput metagenomic sequencing. J Invertebr Pathol 2023; 201:107992. [PMID: 37741505 DOI: 10.1016/j.jip.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Global warming is one of the serious threats that adversely affects the development and reproduction of silkworms. The ideal temperature for silkworms to carryout normal life activities is 20-30 °C. Certain bivoltine silkworms that are raised in tropical regions are thermotolerant. But, prolonged exposure to high temperatures may be fatal. In the present study, fifth instar larvae of bivoltine silkworm were exposed to heat shock at 40 ± 2 °C for a short period of one hour per day to examine the changes in the gut microflora. The study used high throughput sequencing to evaluate the impact of intestinal microbes of silkworms in response to high temperature. The findings demonstrated that elevated temperature has a negative impact on the intestinal microbes of silkworm compared to the control which were reared under the optimum temperature (25 ± 3° C). Four hundred and fifty eight (458) species of microbes were reported in the control group whereas only 434 species were reported in the temperature exposed group. The digestive process of silkworms may also be impaired by heat shock due to their effect on digestive enzymes. So, the results indicated that heat shock has an impact on the intestinal microflora of silkworms that control the activity of associated digestive enzymes which affects the digestion and nutritional intake, eventually impacting the growth and development of silkworm larvae and cocoons produced. The morphometric parameters of silkworm larvae and cocoons also showed a considerable drop when exposed to heat shock.
Collapse
Affiliation(s)
- K I Shahila Ismail
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India.
| | - C V Sreeranjit Kumar
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India.
| | - U Aneesha
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India
| | - P S Syama
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India
| | - K P Sajini
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India
| |
Collapse
|
3
|
Liu J, Liu Y, Li Q, Lu Y. Heat shock protein 70 and Cathepsin B genes are involved in the thermal tolerance of Aphis gossypii. PEST MANAGEMENT SCIENCE 2023; 79:2075-2086. [PMID: 36700477 DOI: 10.1002/ps.7384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Elevated temperature can directly affect the insect pest population dynamics. Many experimental studies have indicated that high temperatures affect the biological and ecological characteristics of the widely distributed crop pest Aphis gossypii, but the molecular mechanisms underlying its response to heat stress remain unstudied. Here, we used transcriptomic analysis to explore the key genes and metabolic pathways involved in the regulation of thermotolerance in A. gossypii at 29 °C, 32 °C, and 35 °C. RESULTS The results of bioinformatics analysis show that few genes were consistently differentially expressed among the higher temperature treatments compared to 29 °C, and a moderate temperature increase of 3 °C can elicit gene expression changes that help A. gossypii adapt to warmer temperatures. Based on KEGG pathway enrichment analysis, we found that genes encoding four heat shock protein 70 s (Hsp70s) and nine cathepsin B (CathB) proteins were significantly upregulated at 35 °C compared with 32 °C. Genes related to glutathione production were also highly enriched between 32 °C and 29 °C. Silencing of two Hsp70s (ApHsp70A1-1 and ApHsp68) and two CathBs (ApCathB01 and ApCathB02) with RNA interference using a nanocarrier-based transdermal dsRNA delivery system significantly increased sensitivity of A. gossypii to high temperatures. CONCLUSION A. gossypii is able to fine-tune its response across a range of temperatures, and Hsp70 and CathB genes are essential for adaption of A. gossypii to warmer temperatures. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Hwang J, Choi EH, Park B, Kim G, Shin C, Lee JH, Hwang JS, Hwang UW. Transcriptome profiling for developmental stages Protaetia brevitarsis seulensis with focus on wing development and metamorphosis. PLoS One 2023; 18:e0277815. [PMID: 36857331 PMCID: PMC9977060 DOI: 10.1371/journal.pone.0277815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/04/2022] [Indexed: 03/02/2023] Open
Abstract
A white-spotted flower chafer Protaetia brevitarsis seulensis widely distributed in Asian countries is traditionally used in oriental medicine. This study explored gene expression abundance with respect to wing development and metamorphosis in P. b. seulensis based on the large-scale RNA-seq data. The transcriptome assembly consists of 23,551 high-quality transcripts which are approximately 96.7% covered. We found 265 wing development genes, 19 metamorphosis genes, and 1,314 candidates. Of the 1,598 genes, 1,594 are included exclusively in cluster 4 with similar gene co-expression patterns. The network centrality analyses showed that wing development- and metamorphosis-related genes have a high degree of betweenness centrality and are expressed most highly in eggs, moderately in pupa and adults, and lowest in larva. This study provides some meaningful clues for elucidating the genetic modulation mechanism of wing development and metamorphosis in P. b. seulensis.
Collapse
Affiliation(s)
- Jihye Hwang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Korea
- Phylomics Inc., Daegu, South Korea
| | - Eun Hwa Choi
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Korea
- Phylomics Inc., Daegu, South Korea
| | - Bia Park
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Korea
| | - Gyeongmin Kim
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Korea
- School of Life Sciences, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Chorong Shin
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Korea
- School of Industrial Technology Advances, Kyungpook National University, Daegu, South Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Ui Wook Hwang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Korea
- Phylomics Inc., Daegu, South Korea
- School of Life Sciences, Graduate School, Kyungpook National University, Daegu, South Korea
- School of Industrial Technology Advances, Kyungpook National University, Daegu, South Korea
- Institute for Korean Herb-Bio Convergence Promotion, Kyungpook National University, Daegu, South Korea
- * E-mail:
| |
Collapse
|
5
|
Sun X, Yuan Q, Du B, Jin X, Huang X, Li Q, Zhong Y, Pan Z, Xu S, Sima Y. Relationship between Changes in Intestinal Microorganisms and Effect of High Temperature on the Growth and Development of Bombyx mori Larvae. Int J Mol Sci 2022; 23:10289. [PMID: 36142203 PMCID: PMC9499401 DOI: 10.3390/ijms231810289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Temperature is an important environmental factor affecting the growth and development of silkworm (Bombyx mori). To analyze the effect of intestinal microbes on silkworm in response to a high-temperature environment, this study used a combination of high throughput sequencing and biochemical assays to detect silkworm intestinal microbes treated with high temperature for 72 h. The results show that high temperature affects the intestinal microbes of silkworm and that there are sex differences, specifically, females were more sensitive. The changes in the metabolism and transport ability of silkworm intestinal tissues under high temperature are related to the intestinal microbes. High temperatures may affect the intestinal microbes of silkworms, regulating the activity of related digestive enzymes and substance transport in the intestine, thereby affecting the silkworm's digestion and absorption of nutrients, and ultimately affecting growth and development.
Collapse
Affiliation(s)
- Xiaoning Sun
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Qian Yuan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Beibei Du
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xinye Jin
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiyun Huang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Qiuying Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yueqiao Zhong
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Xie M, Zhong Y, Lin L, Zhang G, Su W, Ni W, Qu M, Chen H. Transcriptome analysis of Holotrichia oblita reveals differentially expressed unigenes related to reproduction and development under different photoperiods. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100959. [PMID: 35033741 DOI: 10.1016/j.cbd.2022.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Holotrichia oblita (Faldermann) (Coleoptera: Scarabaeidae) is an insect whose feeding and mating behaviors occur at night. A scotophase is necessary for H. oblita reproduction. We used RNA sequencing (RNA-seq) to compare the expression patterns of H. oblita at five photoperiods (0:24, 8:16, 12:12, 16:8, and 24:0 h) (L:D). Compared to the control (24:0) (L:D), 161-684 differentially expressed unigenes (DEUs) were found in female samples, while 698-2322 DEUs were found in male samples. For all DEUs, a total of 92-1143 DEUs were allocated to 116-662 categories of gene ontology (GO), and 81-1116 DEUs were assigned into 77-286 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The iPath diagram showed that the DEUs generated by comparing female and male samples with photoperiods of 0:24 and 24:0, respectively, involved multiple metabolic pathways, such as carbohydrate metabolism, lipid metabolism, nucleotide metabolism, purine metabolism and glutathione metabolism. Most of these DEUs were upregulated. Finally, 13 DEUs related to reproduction and development were selected to confirm the consistency of relative expression between RNA-Seq and quantitative real-time polymerase chain reaction (qRT-PCR). Most of these comparison results agreed well, except for some qRT-PCR results that were not detected in male samples due to their low expression. These results provide useful information for understanding the dark-induced reproduction of H. oblita.
Collapse
Affiliation(s)
- Minghui Xie
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Yongzhi Zhong
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Lulu Lin
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Guangling Zhang
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Weihua Su
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - WanLi Ni
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Mingjing Qu
- Shandong Peanut Research Institute, Qingdao 266100, China.
| | - Haoliang Chen
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
7
|
Gao Z, Yao L, Pan L. Gene expression and functional analysis of different heat shock protein (HSPs) in Ruditapes philippinarum under BaP stress. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109194. [PMID: 34619354 DOI: 10.1016/j.cbpc.2021.109194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) are a class of highly conserved proteins which can protect cells against various types of stress. However, little information on the mechanism involved in the organic contaminants stress response of HSPs is available, especially in marine invertebrates. The present study was conducted to evaluate the responses of HSPs in clams (Ruditapes philippinarum) under Benzo[a] pyrene (BaP) exposure. The clams were exposed to BaP (concentrations: 0, 0.1, 1, 10 μg/L) for 15 days. 6 HSPs mRNA were classified, and the results of tissue distribution indicated that 4 HSPs gene expressed most in the digestive glands. The transcription level of 6 HSPs (HSP22-1, HSP22-2, HSP40A, HSP60, HSP70, HSP90) genes and the aryl hydrocarbon receptor signaling pathway-related genes, and detoxification system-related enzymes activities were analyzed at 0, 1, 3, 6, 10 and 15 days. The activities of phase II detoxification metabolic enzymes and signaling pathway related genes in clams were severely affected by BaP stress and presented significant difference. Our result suggested that HSPs were produced in the presence of BaP and participated in the process of detoxification metabolism to a certain extent. Additionally, the transcription of HSP40A gene may be used as a potential biomarker of BaP exposure due to its evident concentration- and time-dependent expression pattern. Overall, the study investigated the classification of HSPs in R. philippinarum, provided information about the expression profiles of various HSPs after BaP exposure and broadened the understanding mechanism of HSPs in detoxification defense system under PAHs stress in mollusks.
Collapse
Affiliation(s)
- Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Linlin Yao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
8
|
Zhang L, Zhang ZR, Zheng YQ, Zhang LJ, Wang MY, Wang XT, Yuan ML. Genome-wide gene expression profiles of the pea aphid (Acyrthosiphon pisum) under cold temperatures provide insights into body color variation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21797. [PMID: 34272770 DOI: 10.1002/arch.21797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Cold temperatures are one of the factors influencing color polymorphisms in Acyrthosiphon pisum, resulting in a change from a red to greenish color. Here we characterized gene expression profiles of A. pisum under different low temperatures (1°C, 4°C, 8°C, and 14°C) and durations (3, 6, 12, and 24 h). The number of differentially expressed genes (DEGs) increased as temperatures decreased and time increased, but only a small number of significant DEGs were identified. Genes involved in pigment metabolism were downregulated. An interaction network analysis for 506 common DEGs in comparisons among aphids exposed to 1°C for four durations indicated that a cytochrome P450 gene (CYP, LOC112935894) significantly downregulated may interact with a carotenoid metabolism gene (LOC100574964), similar to other genes encoding CYP, lycopene dehydrogenase and fatty acid synthase. We proposed that the body color shift in A. pisum responding to low temperatures may be regulated by CYPs.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Department of Biology, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhou-Rui Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Department of Biology, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Yong-Qiang Zheng
- Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li-Jun Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Meng-Yao Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Tong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
9
|
Yi J, Liu J, Li D, Sun D, Li J, An Y, Wu H. Transcriptome responses to heat and cold stress in prepupae of Trichogramma chilonis. Ecol Evol 2021; 11:4816-4825. [PMID: 33976850 PMCID: PMC8093697 DOI: 10.1002/ece3.7383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Trichogramma is a useful species that is widely applied in biocontrol. Temperature profoundly affects the commercial application of T. chilonis. Different developmental transcriptomes of prepupae and pupae of T. chilonis under 10, 25, and 40°C were obtained from our previous study. In this study, transcriptomic analysis was further conducted to gain a clear understanding of the molecular changes in the prepupae of T. chilonis under different thermal conditions. A total of 37,295 unigenes were identified from 3 libraries of prepupae of T. chilonis, 17,293 of which were annotated. Differential expression analysis showed that 408 and 108 differentially expressed genes (DEGs) were identified after heat and cold treatment, respectively. Under heat stress, the pathway of protein processing in endoplasmic reticulum was found to be active. Most of the genes involved in this pathway were annotated as lethal (2) essential for life [l(2)efl] and heat shock protein genes (hsps), which were both highly upregulated. Nevertheless, most of the genes involved in another significantly enriched pathway of starch and sucrose metabolism were downregulated, including 1 alpha-glucosidase gene and 2 beta-glucuronidase genes. Under cold stress, no significantly enriched pathway was found, and the significantly enriched GO terms were related to the interaction with host and immune defenses. Together, these results provide us with a comprehensive view of the molecular mechanisms of T. chilonis in response to temperature stresses and will provide new insight into the mass rearing and utilization of T. chilonis.
Collapse
Affiliation(s)
- Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Jianbai Liu
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Donglei Sun
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Jihu Li
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Yuxing An
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| |
Collapse
|
10
|
Schneider D, Ramos AG, Córdoba‐Aguilar A. Multigenerational experimental simulation of climate change on an economically important insect pest. Ecol Evol 2020; 10:12893-12909. [PMID: 33304502 PMCID: PMC7713942 DOI: 10.1002/ece3.6847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Long-term multigenerational experimental simulations of climate change on insect pests of economically and socially important crops are crucial to anticipate challenges for feeding humanity in the not-so-far future. Mexican bean weevil Zabrotes subfasciatus, is a worldwide pest that attacks the common bean Phaseolus vulgaris seeds, in crops and storage. We designed a long term (i.e., over 10 generations), experimental simulation of climate change by increasing temperature and CO2 air concentration in controlled conditions according to model predictions for 2100. Higher temperature and CO2 concentrations favored pest's egg-to-adult development survival, even at high female fecundity. It also induced a reduction of fat storage and increase of protein content but did not alter body size. After 10 generations of simulation, genetic adaptation was detected for total lipid content only, however, other traits showed signs of such process. Future experimental designs and methods similar to ours, are key for studying long-term effects of climate change through multigenerational experimental designs.
Collapse
Affiliation(s)
- David Schneider
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Alejandra G. Ramos
- Facultad de CienciasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
| | - Alex Córdoba‐Aguilar
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| |
Collapse
|
11
|
Quan PQ, Li MZ, Wang GR, Gu LL, Liu XD. Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation. BMC Genomics 2020; 21:450. [PMID: 32605538 PMCID: PMC7325166 DOI: 10.1186/s12864-020-06867-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The rice leaf folder Cnaphalocrocis medinalis Güenée is a serious insect pest of rice in Asia. This pest occurs in summer, and it is sensitive to high temperature. However, the larvae exhibit heat acclimation/adaptation. To understand the underlying mechanisms, we established a heat-acclimated strain via multigenerational selection at 39 °C. After heat shock at 41 °C for 1 h, the transcriptomes of the heat-acclimated (S-39) and unacclimated (S-27) larvae were sequenced, using the unacclimated larvae without exposure to 41 °C as the control. Results Five generations of selection at 39 °C led larvae to acclimate to this heat stress. Exposure to 41 °C induced 1160 differentially expressed genes (DEGs) between the heat-acclimated and unacclimated larvae. Both the heat-acclimated and unacclimated larvae responded to heat stress via upregulating genes related to sensory organ development and structural constituent of eye lens, whereas the unacclimated larvae also upregulated genes related to structural constituent of cuticle. Compared to unacclimated larvae, heat-acclimated larvae downregulated oxidoreductase activity-related genes when encountering heat shock. Both the acclimated and unacclimated larvae adjusted the longevity regulating, protein processing in endoplasmic reticulum, antigen processing and presentation, MAPK and estrogen signaling pathway to responsed to heat stress. Additionally, the unacclimated larvae also adjusted the spliceosome pathway, whereas the heat-acclimated larvae adjusted the biosynthesis of unsaturated fatty acids pathway when encountering heat stress. Although the heat-acclimated and unacclimated larvae upregulated expression of heat shock protein genes under heat stress including HSP70, HSP27 and CRYAB, their biosynthesis, metabolism and detoxification-related genes expressed differentially. Conclusions The rice leaf folder larvae could acclimate to a high temperature via multigenerational heat selection. The heat-acclimated larvae induced more DEGs to response to heat shock than the unacclimated larvae. The changes in transcript level of genes were related to heat acclimation of larvae, especially these genes in sensory organ development, structural constituent of eye lens, and oxidoreductase activity. The DEGs between heat-acclimated and unacclimated larvae after heat shock were enriched in the biosynthesis and metabolism pathways. These results are helpful to understand the molecular mechanism underlying heat acclimation of insects.
Collapse
Affiliation(s)
- Peng-Qi Quan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming-Zhu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gao-Rong Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling-Ling Gu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Transcriptome analysis of Liriomyza trifolii (Diptera: Agromyzidae) in response to temperature stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100677. [DOI: 10.1016/j.cbd.2020.100677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 01/30/2023]
|
13
|
Wang Y, Xie E, Guo H, Sun Q, Xia Q, Jiang L. Overexpression of Bmhsp19.9 protects BmE cells and transgenic silkworm against extreme temperatures. Int J Biol Macromol 2020; 150:1141-1146. [DOI: 10.1016/j.ijbiomac.2019.10.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/23/2023]
|
14
|
González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev Camb Philos Soc 2020; 95:802-821. [PMID: 32035015 DOI: 10.1111/brv.12588] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life-history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT, CDMX, 03940, Mexico.,Red de Ecoetología, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | - Alex Córdoba-Aguilar
- Instituto de Ecología, Universidad Nacional Autónoma de México. Circuito exterior s/n Ciudad Universitaria, CDMX, 04510, Mexico
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | - Andrés Lira-Noriega
- CONACYT, CDMX, 03940, Mexico.,Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | | | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| |
Collapse
|
15
|
Li H, Zhao X, Qiao H, He X, Tan J, Hao D. Comparative Transcriptome Analysis of the Heat Stress Response in Monochamus alternatus Hope (Coleoptera: Cerambycidae). Front Physiol 2020; 10:1568. [PMID: 32038275 PMCID: PMC6985590 DOI: 10.3389/fphys.2019.01568] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Temperature is a critical factor of insect population abundance and distribution. Monochamus alternatus Hope (Coleoptera: Cerambycidae) is a significant concern since it is transmitted vector of the pinewood nematode posing enormous economic and environmental losses. This pest shows tolerance to heat stress, especially extremely high temperatures. Exposing for 6, 12, 24, 48, or 96 h, the 50% median lethal temperatures (Ltem50) for fourth-instar larvae were 47.5, 45.5, 43.9, 43.4, and 42.3°C, respectively. A total of 63,360 unigenes were obtained from complementary DNA libraries of M. alternatus fourth-instar larvae (kept at 25°C and exposed to 40°C for 3 h) and annotated with six databases. Five hundred sixty-one genes were significantly upregulated, and 245 genes were downregulated after heat stress. The Gene Ontology enrichment analysis showed that most different expression genes are categorized into “protein folding” and “unfold protein binding” terms. In addition, “Longevity regulating pathway-multiple species,” “Antigen processing and presentation” as well as “MAPK signaling pathway” were significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways. Further analysis of different expression genes showed that metabolism processes were suppressed, while ubiquitin proteolytic system, heat shock proteins, immune response, superoxide dismutase, cytochrome P450s, and aldehyde dehydrogenase were induced after heat shock. The stress signaling transduction pathways such as MAPK, Hippo, and JAK-STAT might be central convergence points in M. alternatus heat tolerance mechanism. The expression levels from quantitative real-time PCR of 13 randomly selected genes were consistent with the transcriptome results. These results showed that M. alternatus possessed strong heat tolerance and genes related to protein activity, immune response, and signal transduction composed of a complicated heat tolerance mechanism of M. alternatus. This research provided new insights into the mechanisms of thermal tolerance in other insects and aided in exploring the function of heat resistance-related genes.
Collapse
Affiliation(s)
- Hui Li
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhao
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Heng Qiao
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Xuanyu He
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Jiajin Tan
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Forestry College, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Forest Protection, Forestry College, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Ali S, Li P, Ali A, Hou M. Comparison of upper sublethal and lethal temperatures in three species of rice planthoppers. Sci Rep 2019; 9:16191. [PMID: 31700122 PMCID: PMC6838088 DOI: 10.1038/s41598-019-52034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/12/2019] [Indexed: 11/09/2022] Open
Abstract
Temperature is an important environmental factor for ectotherms' fitness and survival. The upper sublethal and lethal temperatures were compared between adults of three closely related destructive planthopper species, the small brown planthopper (Laodelphax striatellus, SBPH), the brown planthopper (Nilaparvata lugens, BPH), and the white-backed planthopper (Sogatella furcifera, WBPH) in the absence and presence of the host plant (Oryza sativa, var. Taichong1). Values of the critical thermal maxima (CTmax) were higher in SBPH than in both BPH and WBPH and higher in BPH than in WBPH, and values of the heat coma temperatures (HCT) were higher in both BPH and SBPH than in WBPH. CTmax and HCT values were higher in the presence than in the absence of plant material. Between sexes, females generally showed higher CTmax and HCT than males. The upper lethal temperatures (ULT50) measured in the absence of plant material were not significantly different among the planthopper species. The planthoppers also exhibited different behaviors in an increasing temperature regime, with fewer insects dropping-off from the plant in SBPH than in BPH and WBPH. These results indicate that SBPH and BPH are more heat tolerant than WBPH. The findings highlight the biological divergence in closely related planthopper species and the importance of performing the heat tolerance measurement in an ecologically relevant setting, which serves to predict seasonal and spatial occurrence patterns of the destructive planthopper species.
Collapse
Affiliation(s)
- Shahbaz Ali
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Asad Ali
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China. .,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| |
Collapse
|
17
|
Hu H, Ye X, Wang H, Ji R. Selection of Reference Genes for Normalization of Real-Time PCR Data in Calliptamus italicus (Orthoptera: Acrididae) Under Different Temperature Conditions. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5637495. [PMID: 31752021 PMCID: PMC6871914 DOI: 10.1093/jisesa/iez104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 06/10/2023]
Abstract
Global warming has dominated worldwide climate change trends, and adaptability to high temperatures is the main factor underlying the spread of the pest Calliptamus italicus in Xinjiang Province, China. However, knowledge about the molecular mechanisms responsible for this adaptability and other related biological properties of C. italicus remain relatively unclear. Real-time quantitative polymerase chain reaction (RT-qPCR) is a key tool for gene expression analysis associated with various biological processes. Reference genes are necessary for normalizing gene expression levels across samples taken from specific experimental conditions. In this study, transcript level of five genes (GAPDH, 18S, TUB, ACT, and EF1α), commonly used as reference genes, were evaluated under nine different temperatures (27, 30, 33, 36, 39, 42, 45, 48, and 51°C) to assess their expression stability and further select the most suitable to be used on normalization of target gene expression data. Gene expression profiles were analyzed using geNorm, NormFinder, and BestKeeper software packages. The combined results demonstrated that the best-ranked reference genes for C. italicus are EF1α, GAPDH, and ACT under different thermal stress conditions. This is the first study that assesses gene expression analysis across a range of temperatures to select the most appropriate reference genes for RT-qPCR data normalization in C. italicus. These results should assist target gene expression analysis associated with heat stress in C. italicus.
Collapse
Affiliation(s)
- Hongxia Hu
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Species Diversity Application and Regulation, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang Province, P.R. China
| | - Xiaofang Ye
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Species Diversity Application and Regulation, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang Province, P.R. China
| | - Han Wang
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Species Diversity Application and Regulation, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang Province, P.R. China
| | - Rong Ji
- International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Species Diversity Application and Regulation, College of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang Province, P.R. China
| |
Collapse
|
18
|
Li B, Li M, Wu J, Xu X. Transcriptomic analysis of differentially expressed genes in the oriental armyworm Mythimna separata Walker at different temperatures. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:186-195. [PMID: 30889494 DOI: 10.1016/j.cbd.2019.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
Abstract
The oriental armyworm Mythimna separata Walker is a serious migratory and polyphagous pest that damages major crops and some pastures from the family Gramineae. Temperature is a crucial abiotic factor that affects its survival, development and reproduction, but the thermal responses of this moth at the molecular level are largely unknown. In this research, we sequenced the transcriptomes of oriental armyworms that were reared at three temperatures (20 °C, 25 °C and 30 °C) using an Illumina high-throughput RNA-sequencing (RNA-seq) method. We obtained 54.0 Gb of clean reads and 113,396 transcripts. From a total of 46,681 unigenes identified, 22,911 were annotated to the non-redundant (NR) database. We identified 333 downregulated and 1588 upregulated genes in 20 °C versus 25 °C, and 1096 downregulated and 875 upregulated genes at 30 °C versus 25 °C by differential expression of genes (DEGs). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses revealed several functional terms related to carbohydrate metabolism, energy metabolism, and xenobiotics metabolism. DEGs involved in glycolysis, the citrate cycle, oxidative phosphorylation, and the composition of myofilaments were significantly downregulated, while most heat shock protein genes (HSPs) and genes in the ubiquitin-mediated proteasome pathway were upregulated at 30 °C. Many cytochrome P450 monooxygenase genes (CYPs) in clan 3 were upregulated at 20 °C, while two genes involved in ecdysteroid biosynthesis, CYP302A1 and CYP315A1, were upregulated at 30 °C. These data may improve the understanding of the complex molecular mechanisms involved in the thermal responses of M. separata.
Collapse
Affiliation(s)
- Boliao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, 712100 Yangling, Shaanxi, China
| | - Meimei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, 712100 Yangling, Shaanxi, China
| | - Junxiang Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, 712100 Yangling, Shaanxi, China.
| | - Xiangli Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
19
|
Guo H, Huang C, Jiang L, Cheng T, Feng T, Xia Q. Transcriptome analysis of the response of silkworm to drastic changes in ambient temperature. Appl Microbiol Biotechnol 2018; 102:10161-10170. [DOI: 10.1007/s00253-018-9387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
|
20
|
Yi J, Wu H, Liu J, Lai X, Guo J, Li D, Zhang G. Molecular characterization and expression of six heat shock protein genes in relation to development and temperature in Trichogramma chilonis. PLoS One 2018; 13:e0203904. [PMID: 30226893 PMCID: PMC6143235 DOI: 10.1371/journal.pone.0203904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 11/26/2022] Open
Abstract
Trichogramma is a kind of egg parasitoid wasp that is widely used to control lepidopterous pests. Temperature is one of the main factors that determines the various life activities of this species, including development, reproduction and parasitism efficiency. Heat shock proteins (HSPs) are highly conserved and ubiquitous proteins that are best known for their responsiveness to temperature and other stresses. To explore the potential role of HSPs in Trichogramma species, we obtained the full-length cDNAs of six HSP genes (Tchsp10, Tchsp21.6, Tchsp60, Tchsp70, Tchsc70-3, and Tchsp90) from T. chilonis and analyzed their expression patterns during development and exposure to temperature stress. The deduced amino acid sequences of these HSP genes contained the typical signatures of their corresponding protein family and showed high homology to their counterparts in other species. The expression levels of Tchsp10, Tchsp21.6 and Tchsp60 decreased during development. However, the expression of Tchsc70-3 increased from the pupal stage to the adult stage. Tchsp70 and Tchsp90 exhibited the highest expression levels in the adult stage. The expression of six Tchsps was dramatically upregulated after 1 h of exposure to 32 and 40°C but did not significantly change after 1 h of exposure to 10 and 17°C. This result indicated that heat stress, rather than cold stress, induced the expression of HSP genes. Furthermore, the expression of these genes was time dependent, and the expression of each gene reached its peak after 1 h of heat exposure (40°C). Tchsp10 and Tchsp70 exhibited a low-intensity cold response after 4 and 8 h of exposure to 10°C, respectively, but the other genes did not respond to cold at any time points. These results suggested that HSPs may play different roles in the development of this organism and in its response to temperature stress.
Collapse
Affiliation(s)
- Jiequn Yi
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Han Wu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianbai Liu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xueshuang Lai
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jixing Guo
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- * E-mail: (DL); (GZ)
| | - Guren Zhang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (DL); (GZ)
| |
Collapse
|
21
|
Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori. Sci Rep 2017; 7:3349. [PMID: 28611386 PMCID: PMC5469737 DOI: 10.1038/s41598-017-03565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/26/2017] [Indexed: 02/02/2023] Open
Abstract
The silkworm Bombyx mori is a poikilotherm and is therefore sensitive to various climatic conditions. The influence of temperature on the intestinal flora and the relationship between the intestinal flora and gene expression in the silkworm remain unknown. In the present study, changes of the intestinal flora at 48, 96 and 144 h following transient high temperature treatment (THTT) of 37 °C for 8 h were investigated. According to principal component analysis, the abundances of Enterococcus and Staphylococcus showed a negative correlation with other dominant genera. After THTT, the gene expression levels of spatzle-1 and dicer-2 were increased and decreased, respectively, which suggested that the Toll and RNAi pathways were activated and suppressed, respectively. The species-gene expression matrix confirmed that the spatzle-1 and dicer-2 gene expression levels were negatively and positively correlated, respectively, with the abundance of Enterococcus and Staphylococcus in the control. The abundance of Variovorax post-THTT was positively correlated with the spatzle-1 gene expression level, whereas the community richness of Enterococcus was negatively correlated with the spatzle-1 gene expression level and positively correlated with the dicer-2. The results of the present investigation provide new evidence for understanding the relationships among THTT, intestinal flora and host gene expression.
Collapse
|
22
|
Xiao W, Chen P, Xiao J, Wang L, Liu T, Wu Y, Dong F, Jiang Y, Pan M, Zhang Y, Lu C. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition. PLoS One 2017; 12:e0177641. [PMID: 28542312 PMCID: PMC5436693 DOI: 10.1371/journal.pone.0177641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022] Open
Abstract
Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs) using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO) analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours) and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours) showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.
Collapse
Affiliation(s)
- Wenfu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Jinshu Xiao
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
| | - La Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Taihang Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yunfei Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yaming Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Youhong Zhang
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
- * E-mail: (CL); (YZ)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- * E-mail: (CL); (YZ)
| |
Collapse
|
23
|
Huang HJ, Xue J, Zhuo JC, Cheng RL, Xu HJ, Zhang CX. Comparative analysis of the transcriptional responses to low and high temperatures in three rice planthopper species. Mol Ecol 2017; 26:2726-2737. [PMID: 28214356 DOI: 10.1111/mec.14067] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
The brown planthopper (Nilaparvata lugens, BPH), white-backed planthopper (Sogatella furcifera, WBPH) and small brown planthopper (Laodelphax striatellus, SBPH) are important rice pests in Asia. These three species differ in thermal tolerance and exhibit quite different migration and overwintering strategies. To understand the underlying mechanisms, we sequenced and compared the transcriptome of the three species under different temperature treatments. We found that metabolism-, exoskeleton- and chemosensory-related genes were modulated. In high temperature (37 °C), heat shock protein (HSP) genes were the most co-regulated; other genes related with fatty acid metabolism, amino acid metabolism and transportation were also differentially expressed. In low temperature (5 °C), the differences in gene expression of the genes for fatty acid synthesis, transport proteins and cytochrome P450 might explain why SBPH can overwinter in high latitudes, while BPH and WBPH cannot. In addition, other genes related with moulting, and membrane lipid composition might also play roles in resistance to low and high temperatures. Our study illustrates the common responses and different tolerance mechanisms of three rice planthoppers in coping with temperature change, and provides a potential strategy for pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Xue
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Lin Cheng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
24
|
Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics. Anal Chim Acta 2016; 942:1-11. [DOI: 10.1016/j.aca.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/15/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
|
25
|
RNA sequencing reveals differential thermal regulation mechanisms between sexes of Glanville fritillary butterfly in the Tianshan Mountains, China. Mol Biol Rep 2016; 43:1423-1433. [PMID: 27649991 DOI: 10.1007/s11033-016-4076-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae) has been extensively studied as a model species in metapopulation ecology. We investigated in the earlier studies that female butterflies exhibit higher thermal tolerance than males in the Tianshan Mountains of China. We aim to understand the molecular mechanism of differences of thermal responses between sexes. We used RNA-seq approach and performed de novo assembly of transcriptome to compare the gene expression patterns between two sexes after heat stress. All the reads were assembled into 84,376 transcripts and 72,701 unigenes. The number of differential expressed genes (DEGs) between control and heat shock samples was 175 and 268 for males and females, respectively. Heat shock proteins genes (hsps) were up-regulated in response to heat stress in both males and females. Most of the up-regulated hsps showed higher fold changes in males than in females. Females expressed more ribosomal subunit protein genes, transcriptional elongation factor genes, and methionine-rich storage protein genes, participating in protein synthesis. It indicated that protein synthesis is needed for females to replace the damaged proteins due to heat shock. In addition, aspartate decarboxylase might contribute to thermal tolerance in females. These differences in gene expression may at least partly explain the response to high temperature stress, and the fact that females exhibit higher thermal tolerance.
Collapse
|
26
|
KPNA3-knockdown eliminates the second heat shock protein peak associated with the heat shock response of male silkworm pupae (Bombyx mori) by reducing heat shock factor transport into the nucleus. Gene 2016; 575:452-457. [PMID: 26367326 DOI: 10.1016/j.gene.2015.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/09/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the role of karyopherin alpha 3 in the heat shock response in male silkworm pupae. Karyopherin alpha recognizes the classical nuclear location sequence on proteins and transports them into the nucleus by forming a trimetric complex with karyopherin beta. Three predicted karyopherin alphas (KPNA1, KPNA2 and KPNA3) have been identified from the silkworm Bombyx mori. Pull-down assay result showed that KPNA3 can pull down heat shock transcription factor (HSF) from proteins extracted from tissues using non-denature lysis buffer. After 45 °C heat shock on male B. mori pupae for 30 min, we identified two heat shock protein (HSP) mRNA expression peaks correlating with HSP19.9, HSP20.4 and HSP25.4 at 4 h (peak 1) and 24 h (peak 2). The second peak was eliminated after knockdown of KPNA3. Similar results were obtained following knockdown of HSF, which is the trans-activating factor of heat shock. However, KPNA3 knockdown was not accompanied by the decreased HSF protein levels at 24 h after heat shock which were observed following HSF knockdown. We also expressed recombinant protein GST-KPNA3 and His-HSF in Escherichia coli to perform GST pull-down assay and the result confirmed the interaction between KPNA3 and HSF. We concluded that KPNA3 knockdown eliminates the second heat shock protein peak in the heat shock response of male silkworm pupae by reducing HSF transport into the nucleus.
Collapse
|
27
|
Selection of reference genes for analysis of stress-responsive genes after challenge with viruses and temperature changes in the silkworm Bombyx mori. Mol Genet Genomics 2015; 291:999-1004. [DOI: 10.1007/s00438-015-1125-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022]
|
28
|
Abstract
The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.
Collapse
|