1
|
Davis LN, Walker ZJ, Reiman LT, Parzych SE, Stevens BM, Jordan CT, Forsberg PA, Sherbenou DW. MYC Inhibition Potentiates CD8+ T Cells Against Multiple Myeloma and Overcomes Immunomodulatory Drug Resistance. Clin Cancer Res 2024; 30:3023-3035. [PMID: 38723281 PMCID: PMC11250500 DOI: 10.1158/1078-0432.ccr-24-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, are a cornerstone of multiple myeloma (MM) therapies, yet the disease inevitably becomes refractory. IMiDs exert cytotoxicity by inducing cereblon-dependent proteasomal degradation of IKZF1 and IKZF3, resulting in downregulation of the oncogenic transcription factors IRF4 and MYC. To date, clinical IMiD resistance independent of cereblon or IKZF1/3 has not been well explored. Here, we investigated the roles of IRF4 and MYC in this context. EXPERIMENTAL DESIGN Using bone marrow aspirates from patients with IMiD-naïve or refractory MM, we examined IKZF1/3 protein levels and IRF4/MYC gene expression following ex vivo pomalidomide treatment via flow cytometry and qPCR. We also assessed exvivo sensitivity to the MYC inhibitor MYCi975 using flow cytometry. RESULTS We discovered that although pomalidomide frequently led to IKZF1/3 degradation in MM cells, it did not affect MYC gene expression in most IMiD-refractory samples. We subsequently demonstrated that MYCi975 exerted strong anti-MM effects in both IMiD-naïve and -refractory samples. Unexpectedly, we identified a cluster of differentiation 8+ (CD8+ T) cells from patients with MM as crucial effectors of MYCi975-induced cytotoxicity in primary MM samples, and we discovered that MYCi975 enhanced the cytotoxic functions of memory CD8+ T cells. We lastly observed synergy between MYCi975 and pomalidomide in IMiD-refractory samples, suggesting that restoring MYC downregulation can re-sensitize refractory MM to IMiDs. CONCLUSIONS Our study supports the concept that MYC represents an Achilles' heel in MM across disease states and that MYCi975 may be a promising therapeutic for patients with MM, particularly in combination with IMiDs.
Collapse
Affiliation(s)
- Lorraine N. Davis
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary J. Walker
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren T. Reiman
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E. Parzych
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter A. Forsberg
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel W. Sherbenou
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Li J, Wang Z, Zhang Y, Li Y, Feng L, Wang J, Zhang J, Zhou Z, Zhang Y, Chang X. Effects of environmentally relevant concentration of short-chain chlorinated paraffins on BV2 microglia activation and lipid metabolism, implicating altered neurogenesis. ENVIRONMENTAL RESEARCH 2024; 251:118602. [PMID: 38431072 DOI: 10.1016/j.envres.2024.118602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Short-chain chlorinated paraffins (SCCPs), a class of persistent organic pollutants, have been found to cause diverse organ and systemic toxicity. However, little is known about their neurotoxic effects. In this study, we exposed BV2, a mouse microglia cell line, to environmentally relevant concentration of SCCPs (1 μg/L, 10 μg/L, 100 μg/L) for 24 h to investigate their impacts on the nervous system. Our observations revealed that SCCPs induced the activation of BV2 microglia, as indicated by altered morphology, stimulated cell proliferation, enhanced phagocytic and migratory capabilities. Analysis at the mRNA level confirmed the activation status, with the downregulation of TMEM119 and Tgfbr1, and upregulation of Iba1 and CD11b. The upregulated expression of genes such as cenpe, mki67, Axl, APOE and LPL also validated alterations in cell functions. Moreover, BV2 microglia presented an M2 alternative phenotype upon SCCPs exposure, substantiated by the reduction of NF-κB, TNF-α, IL-1β, and the elevation of TGF-β. Additionally, SCCPs caused lipid metabolic changes in BV2 microglia, characterized by the upregulations of long-chain fatty acids and acylcarnitines, reflecting an enhancement of β-oxidation. This aligns with our findings of increased ATP production upon SCCPs exposure. Intriguingly, cell activation coincided with elevated levels of omega-3 polyunsaturated fatty acids. Furthermore, activated microglial medium remarkably altered the proliferation and differentiation of mouse neural stem cells. Collectively, exposure to environmentally relevant concentrations of SCCPs resulted in activation and lipid metabolic alterations in BV2 microglia, potentially impacting neurogenesis. These findings provide valuable insights for further research on the neurotoxic effect of SCCPs.
Collapse
Affiliation(s)
- Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Longfei Feng
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jinglin Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yunhui Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Al-Thamarani S, Gad S, Abdel Fattah IO, Hammadi SH, Hammady TM. Comparative analysis of oral and local intraovarian administration of metformin and nanoparticles (NPs11) in alleviating testosterone-induced polycystic ovary syndrome in rats. Tissue Cell 2024; 88:102394. [PMID: 38663112 DOI: 10.1016/j.tice.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/17/2024]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic dysfunction. This study aims to compare the oral and local treatments of metformin or its nanoparticles (NPs11) for ameliorating PCOS in rats. Rats were divided into 4 groups: the control group with no drug treatment; the PCOS group, where subcutaneous testosterone was given (10 mg/kg/day) for 28 days; the MET group, where metformin was administered orally or locally; and the NP group, where metformin NPs11 were also administered orally or locally. Oral administrations were for 21 days, while local injection was performed once surgically. After 7 weeks, all rats were sacrificed; blood glucose and serum hormonal levels and lipid profile were estimated, and the ovaries were assessed by histopathological, Ki-67 immunohistochemical, and histomorphometric evaluations. Blood glucose levels were significantly decreased in groups of orally administered metformin or NPs11 only, while the most efficient option for modulating PCOS-induced hormonal and lipid profile changes was intraovarian injection of NPs11. The ovaries of PCOS rats demonstrated large follicular cysts, massive collagen depositions, and attenuated Ki-67 immunoexpression. Also, the PCOS group revealed a significant decrease in the count of all stages of growing follicles, corpora lutea, granulosa cell layer thickness, and surface area of corpora lutea, in addition to an increase in the number of atretic follicles and follicular cysts, theca cell layer thickness, and surface area of the follicular cysts. All these parameters were recovered with metformin or their NPs11 treatments in different degrees, while local injection of NPs11 was the best option.
Collapse
Affiliation(s)
- Sadeq Al-Thamarani
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Thamar University, Dhamar 87246, Yemen
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Islam Omar Abdel Fattah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Sami H Hammadi
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Taha M Hammady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Luís JM, Files R, Cardoso C, Pimenta J, Maia G, Silva F, Queiroga FL, Prada J, Pires I. Immunohistochemical Expression Levels of Epidermal Growth Factor Receptor, Cyclooxygenase-2, and Ki-67 in Canine Cutaneous Squamous Cell Carcinomas. Curr Issues Mol Biol 2024; 46:4951-4967. [PMID: 38785565 PMCID: PMC11119584 DOI: 10.3390/cimb46050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Squamous cell carcinoma (SCC) stands as the second most prevalent skin cancer in dogs, primarily attributed to UV radiation exposure. Affected areas typically include regions with sparse hair and pale or depigmented skin. The significance of spontaneous canine cutaneous SCC as a model for its human counterpart is underscored by its resemblance. This study assesses the expression of key markers-Epidermal Growth Factor Receptor (EGFR), Cyclooxygenase-2 (Cox-2), and Ki-67-in canine cutaneous SCC. Our objective is to investigate the association between their expression levels and classical clinicopathological parameters, unraveling the intricate relationships among these molecular markers. In our retrospective analysis of 37 cases, EGFR overexpression manifested in 43.2% of cases, while Cox-2 exhibited overexpression in 97.3%. The EGFR, Cox-2 overexpression, and Ki-67 proliferation indices, estimated through immunohistochemistry, displayed a significant association with the histological grade, but only EGFR labeling is associated with the presence of lymphovascular emboli. The Ki-67 labeling index expression exhibited an association with EGFR and Cox-2. These findings propose that EGFR, Cox-2, and Ki-67 hold promise as valuable markers in canine SCC. EGFR, Cox-2, and Ki-67 may serve as indicators of disease progression, offering insights into the malignancy of a lesion. The implications extend to the potential therapeutic targeting of EGFR and Cox-2 in managing canine SCC. Further exploration of these insights is warranted due to their translational relevance and the development of targeted interventions in the context of canine SCC.
Collapse
Affiliation(s)
- João Miguel Luís
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Cláudia Cardoso
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - José Pimenta
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- CIVG—Vasco da Gama Research Center/EUVG, Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Gabriela Maia
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Felisbina L. Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, 4099-002 Porto, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (J.M.L.); (R.F.); (G.M.); (J.P.)
- Animal and Veterinary Research Centre (CECAV) and Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
5
|
Pangjantuk A, Kaokaen P, Kunhorm P, Chaicharoenaudomrung N, Noisa P. 3D culture of alginate-hyaluronic acid hydrogel supports the stemness of human mesenchymal stem cells. Sci Rep 2024; 14:4436. [PMID: 38396088 PMCID: PMC10891100 DOI: 10.1038/s41598-024-54912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
The three-dimensional (3D) cell culture system is being employed more frequently to investigate cell engineering and tissue repair due to its close mimicry of in vivo microenvironments. In this study, we developed natural biomaterials, including hyaluronic acid, alginate, and gelatin, to mimic the creation of a 3D human mesenchymal stem cell (hMSC) extracellular environment and selected hydrogels with high proliferation capacity for 3D MSC culture. Human mesenchymal stem cells were encapsulated within hydrogels, and an investigation was conducted into the effects on cell viability and proliferation, stemness properties, and telomere activity compared to the 2D monolayer culture. Hydrogel characterization, cell proliferation, Live/Dead cell viability assay, gene expression, telomere relative length, and MSC stemness-related proteins by immunofluorescence staining were examined. The results showed that 3D alginate-hyaluronic acid (AL-HA) hydrogels increased cell proliferation, and the cells were grown as cellular spheroids within hydrogels and presented a high survival rate of 77.36% during the culture period of 14 days. Furthermore, the 3D alginate-hyaluronic acid (AL-HA) hydrogels increased the expression of stemness-related genes (OCT-4, NANOG, SOX2, and SIRT1), tissue growth and development genes (YAP and TAZ), and cell proliferation gene (Ki67) after culture for 14 days. Moreover, the telomere activity of the 3D MSCs was enhanced, as indicated by the upregulation of the human telomerase reverse transcriptase gene (hTERT) and the relative telomere length (T/S ratio) compared to the 2D monolayer culture. Altogether, these data suggest that the 3D alginate-hyaluronic acid (AL-HA) hydrogels could serve as a promising material for maintaining stem cell properties and might be a suitable carrier for tissue engineering proposals.
Collapse
Affiliation(s)
- Amorn Pangjantuk
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
6
|
Mazin ME, Perevalova AM, Yarushkin AA, Pustylnyak YA, Rogachev AD, Prokopyeva EA, Gulyaeva LF, Pustylnyak VO. Constitutive Androstane Receptor Agonist Initiates Metabolic Activity Required for Hepatocyte Proliferation. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1061-1069. [PMID: 37758307 DOI: 10.1134/s0006297923080023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023]
Abstract
Activation of the constitutive androstane receptor (CAR, NR1I3) by chemical compounds induces liver hyperplasia in rodents. 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a mouse CAR agonist, is most often used to study chemically induced liver hyperplasia and hepatocyte proliferation in vivo. TCPOBOP is a potent murine liver chemical mitogen, which induces rapid liver hyperplasia in mice independently of liver injury. In recent years, great amount of data has been accumulated on the transcription program that characterizes the TCPOBOP-induced hepatocyte proliferation. However, there are only few data about the metabolic requirements of hepatocytes that divide upon exposure to xenobiotics. In the present study, we have employed liquid chromatography - mass spectrometry technology combined with statistical analysis to investigate metabolite profile of small biomolecules, in order to identify key metabolic changes in the male mouse liver tissue after TCPOBOP administration. Analysis of biochemical pathways of the differentially affected metabolites in the mouse liver demonstrated significant TCPOBOP-mediated enrichment of several processes including those associated with nucleotide metabolism, amino acid metabolism, and energy substrate metabolism. Our findings provide evidence to support the conclusion that the CAR agonist, TCPOBOP, initiates an intracellular program that promotes global coordinated metabolic activities required for hepatocyte proliferation. Our metabolic data might provide novel insight into the biological mechanisms that occur during the TCPOBOP-induced hepatocyte proliferation in mice.
Collapse
Affiliation(s)
- Mark E Mazin
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
| | | | - Andrei A Yarushkin
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
| | | | | | - Elena A Prokopyeva
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
| | - Lyudmila F Gulyaeva
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
| | - Vladimir O Pustylnyak
- Novosibirsk State University, Novosibirsk, 630090, Russia.
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
7
|
INOUE M, TANIDA T, KONDO T, TAKENAKA S, NAKAJIMA T. Oxygen-glucose deprivation-induced glial cell reactivity in the rat primary neuron-glia co-culture. J Vet Med Sci 2023; 85:799-808. [PMID: 37407448 PMCID: PMC10466061 DOI: 10.1292/jvms.23-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
It has been demonstrated that in vivo brain ischemia induces activation and proliferation of astrocytes and microglia. However, the mechanism underlying the ischemia-induced activation and proliferation of these cells remains to be unclear. Oxygen-glucose deprivation (OGD), an in vitro ischemia mimic, has been extensively used to analyze the hypoxia response of various cell types. This study examined the OGD-induced changes in the expression level of astrocytes and microglia marker proteins and immunoreactivity for Ki-67, a marker protein for cell proliferation, using rat primary hippocampal neuron-glia co-culture (NGC) cells. Furthermore, OGD-induced changes in the expression of M1/M2 microglia phenotype-related genes were also examined. MTT assay indicated that 120 min of OGD decreased cell viability, and immunocytochemistry indicated that 120 min of OGD abolished most microtubule-associated protein 2 (MAP2)-immunopositive neurons. In contrast, glial fibrillary acidic protein (GFAP)-immunopositive astrocytes and ionized calcium-binding adapter protein-1 (Iba-1)-immunopositive microglia, and 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase)-immunopositive oligodendrocytes survived OGD. Western blot assays and double-immunofluorescent staining indicated that OGD increased the GFAP expression level and the Ki-67-immunopositive/GFAP-immunopositive cells' ratio. Real-time PCR analysis showed that OGD altered M1 microglia phenotype-related genes. Specifically, OGD decreased the expression level of CD32 and interleukin-1β (IL-1β) genes and increased that of the inducible nitric oxide synthase (iNOS) gene. Therefore, applying OGD to NGC cells could serve as a useful in vitro tool to elucidate the molecular mechanisms underlying brain ischemia-induced changes in GFAP expression, astrocyte proliferation, and M1 microglia phenotype-related gene expression.
Collapse
Affiliation(s)
- Maiko INOUE
- Laboratory of Veterinary Anatomy, Graduate School of
Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Takashi TANIDA
- Laboratory of Veterinary Anatomy, Graduate School of
Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| | - Tomohiro KONDO
- Laboratory of Animal Science, Graduate School of Veterinary
Science, Osaka Metropolitan University, Osaka, Japan
| | - Shigeo TAKENAKA
- Department of Nutrition, Graduate School of Human Life and
Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Takayuki NAKAJIMA
- Laboratory of Veterinary Anatomy, Graduate School of
Veterinary Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
8
|
Rose DC, Rolig AS, Redmond WL. Characterization of murine lymphocyte activation and exhaustion markers by a 14-color flow cytometry panel. Bioanalysis 2023. [PMID: 37125902 DOI: 10.4155/bio-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Previously designed flow cytometry panels have provided a framework to analyze T-cell activation; however, few provide an extensive view of lymphocyte populations, and none are optimized for murine models. This article describes a panel designed specifically to assess the expression of activation and exhaustion markers in expanding lymphocyte populations in tumor-bearing mice across two distinct genetic backgrounds: BALB/c and C57BL/6. This comprehensive panel enables the assessment of multiple functional states and immune checkpoint markers across cytotoxic CD8+ T cells, helper and regulatory CD4+ T cells and NK cells in murine whole blood, lymph nodes and tumor.
Collapse
Affiliation(s)
- Daniel C Rose
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
- ThermoFisher Scientific, Waltham, MA 02451, USA
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| |
Collapse
|
9
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
10
|
Liu C, Wang Y, Wang P, Gong Y, Yi B, Ruan J, Wang X. In situ electrospun aloe-nanofiber membrane for chronic wound healing. SMART MATERIALS IN MEDICINE 2023; 4:514-521. [PMID: 37038409 PMCID: PMC10072951 DOI: 10.1016/j.smaim.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Alleviating excessive inflammation while accelerating chronic wound healing to prevent wound infection has remained challenging, especially during the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 when patients experienced difficulties with receive appropriate healthcare. We addressed this issue by developing handheld electrospun aloe-nanofiber membranes (ANFMs) with convenient, environmentally friendly properties and a therapeutic capacity for wound closure. Our results showed that ANFMs fabricated with high molecular weight polyvinyl alcohol (PVA) to form fibers during electrospinning had uniform fibrous architecture and a porous structure. Given the value of aloe gel in accelerating wound healing, liquid extracts from ANFMs significantly downregulated the expression of the pro-inflammatory genes, interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), and markedly suppress the generation of reactive oxygen species (ROS) induced by lipopolysaccharide in RAW264.7 macrophages. These results indicated the excellent antioxidant and anti-inflammatory effects of ANFMs. After implantation into a mouse diabetic wound model for 12 days in situ, ANFMs notably expedited chronic wound healing via promoting angiogenesis and enhancing cell viability. Our ANFMs generated by handheld electrospinning in situ healed chronic wounds offer a convenient and promising alternative for patients to heal their own wounds under variable conditions.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Gong
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
11
|
Zhu Y, Dou Y, Qin L, Wang H, Wen Z. Prediction of Ki-67 of Invasive Ductal Breast Cancer Based on Ultrasound Radiomics Nomogram. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:649-664. [PMID: 35851691 DOI: 10.1002/jum.16061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE The objective of this research was to develop and validate an ultrasound-based radiomics nomogram for the pre-operative assessment of Ki-67 in breast cancer (BC). MATERIALS AND METHODS From December 2016 to December 2018, 515 patients with invasive ductal breast cancer who received two-dimensional (2D) ultrasound and Ki-67 examination were studied and analyzed retrospectively. The dataset was distributed at random into a training cohort (n = 360) and a test cohort (n = 155) in the ratio of 7:3. Each tumor region of interest was defined based on 2D ultrasound images and radiomics features were extracted. ANOVA, maximum correlation minimum redundancy (mRMR) algorithm, and minimum absolute shrinkage and selection operator (LASSO) were performed to pick features, and independent clinical predictors were integrated with radscore to construct the nomogram for predicting Ki-67 index by univariate and multivariate logistic regression analysis. The performance and utility of the models were evaluated by plotting receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves. RESULTS In the testing cohort, the area under the receiver characteristic curve (AUC) of the nomogram was 0.770 (95% confidence interval, 0.690-0.860). In both cohorts, the nomogram outperformed both the clinical model and the radiomics model (P < .05 according to the DeLong test). The analysis of DCA proved that the model has clinical utility. CONCLUSIONS The nomogram based on 2D ultrasound images offered an approach for predicting Ki-67 in BC.
Collapse
Affiliation(s)
- Yunpei Zhu
- Ultrasound Department, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Yanping Dou
- Ultrasound Department, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Ling Qin
- Ultrasound Department, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Hui Wang
- Ultrasound Department, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Zhihong Wen
- Radiology Department, Dalian Fifth People's Hospital, Dalian City, Liaoning Province, China
| |
Collapse
|
12
|
Liu ZM, Bao Y, Li TK, Di YB, Song WJ. MKI67 an potential oncogene of oral squamous cell carcinoma via the high throughput technology. Medicine (Baltimore) 2022; 101:e32595. [PMID: 36596059 PMCID: PMC9803484 DOI: 10.1097/md.0000000000032595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oral squamous cell carcinoma is a malignant tumor that occurs in the oral cavity, with poor prognosis and easy recurrence. However, the relationship between MKI67 and oral squamous cell carcinoma remains unclear. The oral squamous cell carcinoma datasets GSE138206, GSE146483 and GSE184616 were downloaded from the gene expression omnibus database, and the differentially expressed genes (DEGs) were screened. The protein-protein interaction network was constructed and analyzed by search tool for the retrieval of interacting genes database and Cytoscape software. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) were used for functional enrichment analysis. GO and KEGG analyses were performed on the whole genome, as formulated by gene set enrichment analysis. comparative toxicogenomics database was used to identify the diseases most associated with the core genes. TargetScan was used to screen miRNA regulating central DEGs. A total of 1472 DEGs were identified. GO analysis showed that the differentially expressed genes were mainly enriched in the tissues of extracellular matrix, type i interferon signaling pathway, human papillomavirus infection, adhesion spot, hepatitis C and ECM-receptor interaction. Enrichment items were similar to GO and KEGG enrichment items of differentially expressed genes. 10 core genes were obtained, and their expression was different between oral squamous cell carcinoma and normal tissue samples. MKI67 is highly expressed in oral squamous cell carcinoma and may be an oncogene in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Zhe-Min Liu
- Department of Stomatology, Shijiazhuang Xingye Shengrui Stomatological Hospital, Shijlazhuang, Hebei Province, PR China
| | - Yang Bao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijlazhuang,Hebei Province, PR China
- * Correspondence: Yang Bao, Department of Stomatology, The Fourth Hospital of Hebei Medical University, Changan District Health Road 12, Shijlazhuang, Hebei Province 050011, PR China (e-mail: )
| | - Tian-Ke Li
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijlazhuang,Hebei Province, PR China
| | - Yong-Bin Di
- Department of Stomatology, The First Hospital of Hebei Medical University, Shijlazhuang,Hebei Province, PR China
| | - Wei-Jing Song
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijlazhuang,Hebei Province, PR China
| |
Collapse
|
13
|
Morroniside Regulates Endothelial Cell Function via the EphrinB Signaling Pathway after Oxygen-Glucose Deprivation In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6875053. [PMID: 36573084 PMCID: PMC9789905 DOI: 10.1155/2022/6875053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proangiogenic treatment is a potential treatment for acute myocardial infarction (AMI). Morroniside was previously discovered to increase post-AMI angiogenesis in rats as well as the proliferation of rat coronary artery endothelial cells (RCAECs). However, the effects of morroniside on other endothelial cell (EC) functions and underlying mechanisms are unknown. To further clarify the vascular biological activity of morroniside, this work focused on investigating how morroniside influenced endothelial cell functions, such as cell viability, tube formation capacity, migration, and adhesion, and to explore the signaling pathway. Oxygen-glucose deprivation causes ischemic damage in RCAECs (OGD). In vitro investigations were carried out to explore the involvement of morroniside in EC function and pathways mediated by ephrinB. The results revealed that the number of BrdU+ cells and cell viability in the high-dose group were considerably greater than in the OGD group (P < 0.05). The ability of tube formation evaluated by total tube length, tube-like structural junction, and tube area was significantly higher in the morroniside group than in the OGD group (P < 0.001). Morroniside considerably improved migration and adhesion abilities compared to OGD group (P < 0.05, P < 0.01, P < 0.001). The protein expression levels of the ephrinB reverse signaling pathway were substantially greater in the morroniside group than in the OGD group (P < 0.05, P < 0.01). In conclusion, the current study demonstrated that morroniside modulates endothelial cell function via ephrinB reverse signaling pathways and provided a novel insight and therapeutic strategy into vascular biology.
Collapse
|
14
|
Hou G, Li Y, Wang Q, Zhang H, Liang S, Liu B, Shi W. iRGD-grafted N-trimethyl chitosan-coated protein nanotubes enhanced the anticancer efficacy of curcumin and melittin. Int J Biol Macromol 2022; 222:348-359. [PMID: 36150572 DOI: 10.1016/j.ijbiomac.2022.09.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
Curcumin (Cur) and Melittin (Mel) are two natural extracts that have been shown anti-tumor effects. However, their applications are limited due to poor oral bioavailability and the lack of tumor-targeting property. Here, we developed a novel nanocomposite that enabled the co-delivery of Cur and Mel, which consists of α-lactalbumin protein nanotubes (NTs), positively charged N,N,N-trimethyl chitosan (TMC), and a tumor-targeting cyclic peptide iRGD. The results showed that NTs/Cur-TMC-Mel-iRGD incorporated the advantages of each component, for instance, effective compounds loading by NTs, improved cellular uptake by TMC, prolonged accumulation in tumors by iRGD as well as synergistic anti-tumor effects of Cur and Mel. In the tumor-bearing mice, NTs/Cur-TMC-Mel-iRGD treatment remarkably induced cancer cell apoptosis while inhibiting cell proliferation, leading to suppressed tumor growth. Besides, no obvious adverse effects were observed in the blood physiology and tissue histology. Overall, our study provided an effective strategy for co-delivering Cur and Mel, which has a potential for translational clinical research aiming to treat solid tumors.
Collapse
Affiliation(s)
- Guohua Hou
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Qimeng Wang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Huijuan Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China.
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China.
| |
Collapse
|
15
|
Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. Polycationic peptide R7-G-Aβ25-35 selectively induces cell death in leukemia Jurkat T cells through speedy mitochondrial depolarization, and CASPASE-3 -independent mechanism. Biochem Biophys Rep 2022; 31:101300. [PMID: 35755270 PMCID: PMC9214795 DOI: 10.1016/j.bbrep.2022.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Background Methods Results Conclusion Polycationic arginine (R) residue bound Aβ25-35 peptide is cytotoxic to Jurkat cells. R7-G-Aβ25-35 is more effective killing leukemia cells than Aβ25-35-G-R7. R7-G-Aβ25-35 induces alteration of cell metabolism, and reduces cell proliferation. R7-G-Aβ25-35 provokes loss of ΔΨm and produces high amount of ROS. R7-G-Aβ25-35 is harmless to normal proliferative mesenchymal stromal cells.
Collapse
|
16
|
Blando S, Raffaele I, Chiricosta L, Valeri A, Gugliandolo A, Silvestro S, Pollastro F, Mazzon E. Cannabidiol Promotes Neuronal Differentiation Using Akt and Erk Pathways Triggered by Cb1 Signaling. Molecules 2022; 27:molecules27175644. [PMID: 36080415 PMCID: PMC9457834 DOI: 10.3390/molecules27175644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, the scientific community has started to focus on the neurogenic potential of cannabinoids. The phytocompound cannabidiol (CBD) shows different mechanism of signaling on cannabinoid receptor 1 (CB1), depending on its concentration. In this study, we investigated if CBD may induce in vitro neuronal differentiation after treatment at 5 µM and 10 µM. For this purpose, we decided to use the spinal cord × neuroblastoma hybrid cell line (NSC-34) because of its proliferative and undifferentiated state. The messenger RNAs (mRNAs) expression profiles were tested using high-throughput sequencing technology and Western blot assay was used to determine the number of main proteins in different pathways. Interestingly, the treatment shows different genes associated with neurodifferentiation statistically significant, such as Rbfox3, Tubb3, Pax6 and Eno2. The CB1 signaling pathway is responsible for neuronal differentiation at 10 µM, as suggested by the presence of p-ERK and p-AKT, but not at 5 µM. A new correlation between CBD, neurodifferentiation and retinoic acid receptor-related orphan receptors (RORs) has been observed.
Collapse
Affiliation(s)
- Santino Blando
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Ivana Raffaele
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy,
- Correspondence:
| |
Collapse
|
17
|
Peng C, Li J, Miao Z, Wang Y, Wu S, Wang Y, Wang S, Cheng R, He F, Shen X. Early life administration of Bifidobacterium bifidum BD-1 alleviates long-term colitis by remodeling the gut microbiota and promoting intestinal barrier development. Front Microbiol 2022; 13:916824. [PMID: 35935215 PMCID: PMC9355606 DOI: 10.3389/fmicb.2022.916824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/07/2022] [Indexed: 12/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease characterized by microbiota disturbance and intestinal mucosal damage. The current study aimed to investigate the preventive effects of Bifidobacterium bifidum BD-1 (BD-1) against long-term IBD and possible mechanism by which it alters the gut microbiota, immune response, and mucosal barrier. Our study found that early treatment of BD-1 + Ceftri (ceftriaxone followed by BD-1) and BD-1 confers a certain protective effect against the occurrence of long-term Dextran sulfate sodium-induced colitis, which manifests as a decrease in inflammation scores and MPO activity levels, as well as a relatively intact intestinal epithelial structure. Moreover, compared to BD-1, Ceftri, and NS, early treatment with BD-1 + Ceftri promoted greater expression levels of mucosal barrier-related proteins [KI67, MUC2, ZO-1, secretory immunoglobulin A (slgA), Clauding-1, and Occludin], better local immune responses activation, and moderately better modulation of systemic immune responses during long-term colitis. This may be due to the fact that BD-1 + Ceftri can deliberately prolong the colonization time of some beneficial microbiota (e.g., Bifidobacterium) and reduce the relative abundance of inflammation-related microbiota (e.g., Escherichia/Shigella and Ruminococcus). Interestingly, we found that the changes in the gut barrier and immunity were already present immediately after early intervention with BD-1 + Ceftri, implying that early effects can persist with appropriate intervention. Furthermore, intervention with BD-1 alone in early life confers an anti-inflammatory effect to a certain degree in the long-term, which may be due to the interaction between BD-1 and the host’s native gut microbiota affecting intestinal metabolites. In conclusion, BD-1 was not as effective as BD-1 + Ceftri in early life, perhaps due to its failure to fully play the role of the strain itself under the influence of the host’s complex microbiota. Therefore, further research is needed to explore specific mechanisms for single strain and native microbiota or the combination between probiotics and antibiotics.
Collapse
|
18
|
Qi H, Dong L, Fang D, Chen L, Wang Y, Fan N, Mao X, Wu W, Yan X, Zhang G, Zhang S, Lei H. A Novel Role of IL13Rα2 in the Pathogenesis of Proliferative Vitreoretinopathy. Front Med (Lausanne) 2022; 9:831436. [PMID: 35770008 PMCID: PMC9234175 DOI: 10.3389/fmed.2022.831436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR), an inflammatory and fibrotic blinding disease, is still a therapeutic challenge. Retinal pigment epithelial (RPE) cells dislodged in the vitreous play a central role in the PVR pathogenesis. To identify potential novel contributors to the pathogenesis of PVR, we investigated a profile of vitreous-induced changes in ARPE-19 cells by RNA sequencing. Bioinformatics analysis of the sequencing data showed that there were 258 genes up-regulated and 835 genes down-regulated in the ARPE-19 cells treated with human vitreous. Among these genes, there were three genes related to eye disease with more than threefold changes. In particular, quantitative PCR and western blot results showed that interleukin 13 receptor (IL13R)α2 that is over-expressed in a variety of cancers was up-regulated more than three times in the vitreous-treated ARPE-19 cells. Immunofluorescence analysis indicated that interleukin-13 receptor subunit α2 (IL13Rα2) was highly expressed in ARPE-19 cells within epiretinal membranes from patients with PVR. Importantly, blocking IL13Rα2 with its neutralizing antibody significantly inhibited vitreous-induced contraction of ARPE-19 cells, suggesting a novel role of IL13Rα2 in the PVR pathogenesis. These findings will improve our understanding of the molecular mechanisms by which PVR develops and provides potential targets for PVR therapeutics.
Collapse
Affiliation(s)
- Hui Qi
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Dong Fang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Lu Chen
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Xingxing Mao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
- *Correspondence: Shaochong Zhang,
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
- Hetian Lei,
| |
Collapse
|
19
|
Qian W, Zhang Y, Long Y, Yang W, Hu R, Li J, Leng Y, Liu X, Li QX, Wan X, Wei X. Probiotic Lactobacillus brevis CLB3 prevents azoxymethane/dextran sulfate sodium induced colon carcinogenesis in mice by reducing amino acid transport and IL-17A levels and repressing the IL-6/AKT/p-STAT3 signaling pathway. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Amino acid intake plays a crucial role in the Warburg effect of cancer. The gut microbes could regulate intestinal amino acid metabolism. However, it is still unknown whether a probiotic therapy can protect the host from intestinal tumor invasion by reducing amino acid intake. With in vitro methods, three acid tolerant strains from fermented pickles were screened out. Using AOM/DSS induced colon cancer models, we evaluated the therapeutic effects of Lactobacillus brevis CLB3, Lactobacillus plantarum XLP and Lactobacillus johnsonii CM on model mice. Their functional mechanism were further explained through anatomy section, qRT-PCR, Western blot, and immunohistochemical staining analyses as well as database mining and gut culturomics. The L. brevis CLB3 treatment significantly improved clinical signs and symptoms of colon cancer, alleviated colon damage, and inhibited colon carcinogenesis in mice. In addition, this treatment significantly increased gut cultivable Lactobacillus abundance, inhibited the expression and translation levels of the tumor metabolism-related solute carrier (SLC) amino acid transporter including SLC7A5 and SLC7A11, lowered circulating IL-6 and IL-17A levels, and improved the accumulation of tumor-infiltrating lymphocytes and cancer proliferation factors. These findings suggest that L. brevis CLB3 can reduce amino acid transport, inhibit mTOR signaling and enhance intestinal anti-tumor immune responses, which provides a potential targeting amino acid transporters strategy for preventing colorectal cancer.
Collapse
|
20
|
Komuro M, Nagane M, Fukuyama T, Luo X, Hiraki S, Miyanabe M, Ishikawa M, Niwa C, Murakami H, Okamoto M, Yamashita T. Sphingomyelin maintains the cutaneous barrier via regulation of the STAT3 pathway. FASEB J 2022; 36:e22111. [DOI: 10.1096/fj.202100721rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Mariko Komuro
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
- Center for Human and Animal Symbiosis Science Azabu University Sagamihara Japan
| | - Tomoki Fukuyama
- Laboratory of Pharmacology, School of Veterinary Medicine Azabu University Sagamihara Japan
| | | | | | | | - Miyuki Ishikawa
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Chiaki Niwa
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Hironobu Murakami
- Laboratory of Animal Health 2, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Mariko Okamoto
- Laboratory of Veterinary Immunology, School of Veterinary Medicine Azabu University Sagamihara Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine Azabu University Sagamihara Japan
| |
Collapse
|
21
|
Savid-Frontera C, Viano ME, Baez NS, Reynolds D, Matellon M, Young HA, Rodriguez-Galan MC. Safety levels of systemic IL-12 induced by cDNA expression as a cancer therapeutic. Immunotherapy 2022; 14:115-133. [PMID: 34783257 PMCID: PMC8739399 DOI: 10.2217/imt-2021-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/14/2021] [Indexed: 02/03/2023] Open
Abstract
Aim: The aim of this work is to utilize a gene expression procedure to safely express systemic IL-12 and evaluate its effects in mouse tumor models. Materials & methods: Secondary lymphoid organs and tumors from EL4 and B16 tumor-bearing mice were analyzed by supervised and unsupervised methods. Results: IL-12 cDNA induced systemic IL-12 protein levels lower than the tolerated dose in patients. Control of tumor growth was observed in subcutaneous B16 and EL4 tumors. Systemic IL-12 expression induced a higher frequency of both total tumor-infiltrated CD45+ cells and proliferative IFN-γ+CD8+ T cells along with a lower frequency of CD4+FOXP3+ and CD11b+Gr-1+ cells. Conclusion: This approach characterizes the systemic effects of IL-12, helping to improve treatment of metastases or solid tumors.
Collapse
Affiliation(s)
- Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Maria E Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Natalia S Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Della Reynolds
- Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201 USA
| | - Mariana Matellon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Howard A Young
- Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201 USA
| | - Maria C Rodriguez-Galan
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| |
Collapse
|
22
|
Xu L, Chen X, Jiang H, Xu J, Wang L, Sun Y. NDUFC1 Is Upregulated in Gastric Cancer and Regulates Cell Proliferation, Apoptosis, Cycle and Migration. Front Oncol 2021; 11:709044. [PMID: 34966665 PMCID: PMC8710466 DOI: 10.3389/fonc.2021.709044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/04/2021] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer is one of the most common primary tumors of the digestive system. NADH: ubiquinone oxidoreductase subunit C1 (NDUFC1), which is an accessory subunit of the NADH dehydrogenase (complex I), is responsible for the transportation of electrons from NADH to the respiratory chain essential for the oxidative phosphorylation. However, little is known about the roles of NDUFC1 in carcinogenesis. In this study, NDUFC1 protein level in NSCLC tissues was tested by immunohistochemistry (IHC) staining. NDUFC1 mRNA level in gastric cancer cell lines was determined by qRT-PCR. MGC-803 and SGC-7901 cells were transfected with shNDUFC1 lentivirus designed to silence NDUFC1. MTT assay, CCK8 assay, wound healing assay and transwell migration assay were conducted. Cell cycle and apoptosis were detected by flow cytometry. In vivo experiments were performed using nude mice. The results indicated that overexpressed NDUFC1 in gastric cancer was related to more serious tumor infiltrates, a higher risk of lymphatic metastasis, a higher proportion of positive lymph nodes, and a more advanced tumor stage. Compared with shCtrl groups, MGC-803 and SGC-7901 of shNDUFC1 groups had lower abilities of proliferation and migration, higher levels of apoptosis. NDUFC1 knockdown also inhibited SGC-7901 cell growth in vivo and suppressed Ki67 expression in xenograft tumors. More importantly, we found that NDUFC1 downregulation made the levels of P-Akt, P-mTOR, CCND1, CDK6, PIK3CA, Bcl-2, Survivin, and XIAP decreased, and that PI3K/AKT signaling pathway agonist SC79 rescued the inhibitory effects on cell proliferation and migration, reversed the promoted effects on cell apoptosis caused by NDUFC1 knockdown. More importantly, compared with NDUFC1 knockdown group, the expression of P-Akt, Bcl-2, Survivin, and XIAP was raised in shNDUFC1 + SC79 group. Thus, our suspicion was that NDUFC1 exacerbates NSCLC progression via PI3K/Akt pathway. Taken together, our study indicated that targeting NDUFC1 could open innovative perspectives for new multi-targeting approaches in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Liang Xu
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Xiuxiu Chen
- Surgery of Breast Nail, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Hongtao Jiang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jian Xu
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Lixia Wang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Yuemin Sun
- Department of Pancreatic & Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Culture and establishment of self-renewing human liver 3D organoids with high uric acid for screening antihyperuricemic functional compounds. Food Chem 2021; 374:131634. [PMID: 34838408 DOI: 10.1016/j.foodchem.2021.131634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Hyperuricemia (HUA) is a metabolic disease caused by disorders of purine metabolism, the prevalence of which has increased worldwide. At present, most drugs aimed at lowering uric acid have toxic side effects, and in vitro screening of uric acid-lowering active substances are inefficient. Here, a long-term 3D human liver organoid culture system with high uric acid for screening and evaluating the efficacy of uric acid-lowering functional compounds. This liver organoids can be established from single hepatocytes and grown for multiple months, while retaining key morphological and functional features. Furthermore, establishment of HUA organoids model was verified by antihyperuricemic drugs allopurinol, as well as reported bioactive peptides, which significantly reduced uric acid production in the liver organoids (p < 0.05). The results demonstrated that it has the potential to be used as a rapid and valid in vitro model to screen antihyperuricemic compounds that mimics in vivo cell growth patterns.
Collapse
|
24
|
Fu Q, Liu SL, Hao DP, Hu YB, Liu XJ, Zhang Z, Wang WH, Tang XY, Zhang CY, Liu SH. CT Radiomics Model for Predicting the Ki-67 Index of Lung Cancer: An Exploratory Study. Front Oncol 2021; 11:743490. [PMID: 34707991 PMCID: PMC8542688 DOI: 10.3389/fonc.2021.743490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To establish a radiomics signature and a nomogram model based on enhanced CT images to predict the Ki-67 index of lung cancer. Methods From January 2014 to December 2018, 282 patients with lung cancer who had undergone enhanced CT scans and Ki-67 examination within 2 weeks were retrospectively enrolled and analyzed. The clinical data of the patients were collected, such as age, sex, smoking history, maximum tumor diameter and serum tumor markers. Our primary cohort was randomly divided into a training group (n=197) and a validation group (n=85) at a 7:3 ratio. A Ki-67 index ≤ 40% indicated low expression, and a Ki-67 index > 40% indicated high expression. In total, 396 radiomics features were extracted using AK software. Feature reduction and selection were performed using the lasso regression model. Logistic regression analysis was used to establish a multivariate predictive model to identify high and low Ki-67 expression in lung cancer. A nomogram integrating the radiomics score was established based on multiple logistic regression analysis. Area under the curve (AUC) was used to evaluate the prediction efficiency of the radiomics signature and nomogram. Results The AUC,sensitivity, specificity and accuracy of the radiomics signature in the training and validation groups were 0.88 (95% CI: 0.82~0.93),79.2%,84.3%,81.2% and 0.86 (95% CI: 0.78~0.94),74.6%,88.1%,79.8%, respectively. A nomogram combining radiomics features and clinical risk factors (smoking history and NSE) was developed. The AUC, sensitivity, specificity and accuracy were 0.87 (95% CI: 0.80~0.95), 75.0%, 90.2% and 83.5% in the validation group, respectively. Conclusion The radiomics signature and nomogram based on enhanced CT images provide a way to predict the Ki-67 expression level in lung cancer.
Collapse
Affiliation(s)
- Qing Fu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shun Li Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Da Peng Hao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ya Bin Hu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Jun Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zaixian Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen Hong Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yan Tang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan Yu Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shi He Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Zhao X, Li S, Ding J, Wei J, Tian P, Wei H, Chen T. Combination of an engineered Lactococcus lactis expressing CXCL12 with light-emitting diode yellow light as a treatment for scalded skin in mice. Microb Biotechnol 2021; 14:2090-2100. [PMID: 34310856 PMCID: PMC8449663 DOI: 10.1111/1751-7915.13885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Impaired wound closure is an increasingly crucial clinical challenge. Recently, wound healing has shifted towards innovative treatments that exploit nanotechnology, biomaterials, biologics and phototherapy. Here, we constructed an engineered MG1363-pMG36e-mCXCL12 strain with pMG36e plasmid encoding stromal cell-derived factor 1α (named CXCL12) and evaluated the synergistic effects of light-emitting diode (LED) yellow light and MG1363-pMG36e-mCXCL12 on scald wounds in mice. The results indicated that the combined treatment with LED yellow light with mCXCL12 delivering strain accelerated wound closure, tissue remodelling, re-epithelialization and hair follicle regeneration and inhibited over-inflammation oppositely in the central and surrounding wounds by macroscopic, histopathologic and immunohistochemistry parameters. Furthermore, combination therapy increased the epidermal growth factor and Ki67-positive cells and upregulated beta-catenin (β-catenin), cellular-myelocytomatosis (c-Myc), wingless-type MMTV integration site family member 1 (Wnt1), Jagged 1, neurogenic locus notch homolog protein 1 (Notch 1) and hairy and enhancer of split 1 (Hes 1) protein levels of the Wnt and Notch signalling pathways. It also facilitated collagen fibrogenesis and deposition and improved the activities of hydroxyproline, superoxide dismutase and glutathione peroxidase in scalded granulation tissue, in addition to reducing the inflammatory factors interleukin 1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). The combined treatment effectively reduced skin pathogens Ralstonia and Acinetobacter to further reduce the risk of infection. Overall, combination of LED yellow light and MG1363-pMG36e-mCXCL12 represents a potential strategy for the treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shengjie Li
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jianing Ding
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jing Wei
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Puyuan Tian
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
26
|
Albendazole suppresses cell proliferation and migration and induces apoptosis in human pancreatic cancer cells. Anticancer Drugs 2021; 31:431-439. [PMID: 32044795 DOI: 10.1097/cad.0000000000000914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aims to investigate the effects of albendazole on pancreatic cancer cells and to explore the possible mechanisms involved. MTT, colony formation, wound healing and Transwell assays and immunocytochemistry analyses of proliferation antigen Ki-67 were employed to evaluate the role of albendazole in pancreatic cancer cell line proliferation and migration. Moreover, flow cytometry cell apoptosis evaluation was used for mechanism analysis. Finally, the in-vivo effects of albendazole were examined in an in-vivo nude mouse xenograft model. Compared to the control treatment, albendazole significantly decreased the growth of the pancreatic cancer cell lines SW1990 and PANC-1 in a time- and dose-dependent manner, as evidenced by decreased MTT absorbance, colony number and Ki-67 levels. Furthermore, albendazole decreased cell migration in 2- and 3-dimensional models in a dose-dependent manner. In addition, albendazole increased the apoptotic cell ratio in a dose-dependent manner. Finally, the in-vivo results confirmed that albendazole could decrease tumor growth. We demonstrated the inhibitory effects of albendazole on pancreatic cell proliferation and migration in vitro and in vivo, which indicate that albendazole might serve as a novel treatment modality for pancreatic cancer.
Collapse
|
27
|
Anti-Tumor Efficiency of Perillylalcohol/β-Cyclodextrin Inclusion Complexes in a Sarcoma S180-Induced Mice Model. Pharmaceutics 2021; 13:pharmaceutics13020245. [PMID: 33578857 PMCID: PMC7916601 DOI: 10.3390/pharmaceutics13020245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The low solubility and high volatility of perillyl alcohol (POH) compromise its bioavailability and potential use as chemotherapeutic drug. In this work, we have evaluated the anticancer activity of POH complexed with β-cyclodextrin (β-CD) using three complexation approaches. Molecular docking suggests the hydrogen-bond between POH and β-cyclodextrin in molar proportion was 1:1. Thermal analysis and Fourier-transform infrared spectroscopy (FTIR) confirmed that the POH was enclosed in the β-CD cavity. Also, there was a significant reduction of particle size thereof, indicating a modification of the β-cyclodextrin crystals. The complexes were tested against human L929 fibroblasts after 24 h of incubation showing no signs of cytotoxicity. Concerning the histopathological results, the treatment with POH/β-CD at a dose of 50 mg/kg promoted approximately 60% inhibition of tumor growth in a sarcoma S180-induced mice model and the reduction of nuclear immunoexpression of the Ki67 antigen compared to the control group. Obtained data suggest a significant reduction of cycling cells and tumor proliferation. Our results confirm that complexation of POH/β-CD not only solves the problem related to the volatility of the monoterpene but also increases its efficiency as an antitumor agent.
Collapse
|
28
|
Ling KC, Hagan DW, Santini-González J, Phelps EA. Effects of sustained GABA releasing implants on pancreatic islets in mice. Drug Deliv Transl Res 2021; 11:2198-2208. [PMID: 33454926 DOI: 10.1007/s13346-020-00886-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that is strongly and selectively synthesized in and secreted from pancreatic beta cells. Exogenously delivered GABA has been proposed to induce beta cell regeneration in type 1 diabetes, but these results have been difficult to replicate and may depend on the specifics of the animal model and drug delivery method used. Here, we developed a GABA-releasing ethylene-vinyl acetate polymer implant for sustained GABA delivery to the intraperitoneal space as an alternative to injected or oral GABA. We explored the effect of the GABA-releasing polymer implants compared to implanted osmotic pumps loaded with GABA on islet size in non-diabetic, outbred mice. We also attempted to monitor in vivo GABA release using HPLC on blood samples, but these measurements were confounded by high variability within treatment groups and unexpectedly high serum GABA levels in mice receiving GABA-negative implants. The ethylene-vinyl acetate polymer implants became heavily fibrosed with abdominal adhesion tissue, while the osmotic pumps had no macroscopic fibrosis. Histological analysis showed no significant effect of the sustained GABA delivery polymer or osmotic pumps on islet size, alpha cell to beta cell ratio, or the number of Ki67-positive islet cells. The GABA treatment time course was limited to two weeks due to the drug-release window of the polymer, while others reported islet-trophic effects of GABA after 10 to 12 weeks of treatment. In summary, our study is consistent with the concept that exogenous GABA administration does not significantly alter islet cell mass in non-diabetic CD-1 mice in the short-term. However, more data are needed including higher GABA doses and more prolonged treatment regimens for a better comparison with contrasting reports.
Collapse
Affiliation(s)
- Kevin C Ling
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jorge Santini-González
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
29
|
Low-Field Magnetic Stimulation Accelerates the Differentiation of Oligodendrocyte Precursor Cells via Non-canonical TGF-β Signaling Pathways. Mol Neurobiol 2020; 58:855-866. [PMID: 33037982 DOI: 10.1007/s12035-020-02157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/30/2020] [Indexed: 01/17/2023]
Abstract
Demyelination and oligodendrocyte loss are characteristic changes in demyelinating disorders. Low-field magnetic stimulation (LFMS) is a novel transcranial neuromodulation technology that has shown promising therapeutic potential for a variety of neuropsychiatric conditions. The cellular and molecular mechanisms of magnetic stimulation remain unclear. Previous studies mainly focused on the effects of magnetic stimulation on neuronal cells. Here we aimed to examine the effects of a gamma frequency LFMS on the glial progenitor cells. We used rat central glia-4 (CG4) cell line as an in vitro model. CG4 is a bipotential glial progenitor cell line that can differentiate into either oligodendrocyte or type 2-astrocyte. The cells cultured in a defined differentiation media were exposed to a 40-Hz LFMS 20 min daily for five consecutive days. We found that LFMS transiently elevated the level of TGF-β1 in the culture media in the first 24 h after the treatment. In correlation with the TGF-β1 levels, the percentage of cells possessing complex branches and expressing the late oligodendrocyte progenitor marker O4 was increased, indicating the accelerated differentiation of CG4 cells towards oligodendrocyte in LFMS-treated cultures. LFMS increased phosphorylation of Akt and Erk1/2 proteins, but not SMAD2/3. TGF-β1 receptor I specific inhibitor LY 364947 partially suppressed the effects of LFMS on differentiation and on levels of pAkt and pErk1/2, indicating that LFMS enhances the differentiation of oligodendrocyte progenitor cells via activation of non-canonical TGF-β-Akt and TGF-β-Erk1/2 pathways but not the canonical SMAD pathway. The data from this study reveal a novel mechanism of magnetic stimulation as a potential therapy for demyelination disorders.
Collapse
|
30
|
Dihydroartemisinin prevents dextran sodium sulphate-induced colitisthrough inhibition of the activation of NLRP3 inflammasome and p38 MAPK signaling. Int Immunopharmacol 2020; 88:106949. [PMID: 32892075 DOI: 10.1016/j.intimp.2020.106949] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
Dihydroartemisinin (DHA), a sesquiterpene lactone derived from artemisinin, has been reported to possess anti-inflammation and anti-cancer activities. But its underlying protective mechanisms on dextran sodium sulphate (DSS)-induced colitis remain rarely reported. We applied a network pharmacology approach to predict the collective targets of DHA and acute colitis. GO and KEGG analyses were performed to investigate the enriched biological functions and signaling pathways of the collective targets. Furthermore, a DSS-induced colitis model was established to observe the protective effects of DHA. 83 common targets of DHA and acute colitis were identified and predominantly involved in several inflammation-related signaling pathways in colitis such as NOD-like receptor and MAPK signaling pathways. Additionally, DHA in vivo improved the clinical symptoms, reduced the production of pro-inflammatory factors IL-1β, IL-6 and TNF-α, and suppressed the formation of NLRP3 inflammasome. Moreover, DHA inhibited the phosphorylation of NF-κB p65 and p38 MAPK, but upregulated PPARγ and Ki-67 levels compared to the DSS group. Additionally, we found that DHA suppressed p38 activator-induced pro-inflammatory response, and p38 inhibitor attenuated the clinical symptoms and reduced the expression levels of pro-inflammatory mediators and NLRP3 while up-regulated the expression levels of PPARγ and Ki-67. Molecular docking analysis further verified the binding mode towards the DHA and p38 MAPK. In conclusion, DHA could protect DSS-induced colitis via suppressing the activation of NLRP3 inflammasome and p38 MAPK signaling.
Collapse
|
31
|
Du P, Zhu J, Zhang ZD, He C, Ye MY, Liu YX, Tian QH, Zeng JS. Recurrent epithelioid malignant peripheral nerve sheath tumor with neurofibromatosis type 1: A case report and literature review. Oncol Lett 2019; 18:3072-3080. [PMID: 31452784 PMCID: PMC6704279 DOI: 10.3892/ol.2019.10676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/26/2019] [Indexed: 01/09/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are unusual and aggressive malignant soft-tissue tumors that comprise 5-10% of all soft-tissue sarcomas. Approximately 50% of MPNST cases are associated with neurofibromatosis type-1 (NF-1). As a rare MPNST subset, the epithelioid variant of MPNST (eMPNST) is histologically characterized by the predominant presence of epithelioid tumor cells, and accounts for <5% of all MPNSTs. In addition, eMPNST is rarely associated with NF-1 when compared with conventional MPNST. Although extensive clinicopathological studies have been conducted on eMPNST, clinicians face difficulty when attempting to make an accurate diagnosis. Subsequently, the biological consequences, including recurrence, metastasis and mortality rate in patients with eMPNST remain unclear. The current study presents the case of a 71-year-old woman with eMPNST and a family history of NF-1 in whom tumors had recurred twice on the lower back. A literature search for eMPNSTs was conducted by browsing PubMed and MEDLINE for English-language articles, as well as references from review articles, and revealed 129 published cases. Only 5 cases of eMPNST were associated with NF-1. The studies were retrospectively reviewed and the clinicopathological data of the patients, including tumor site, treatment, follow-up, prognosis, and immunohistochemical positivity were collected.
Collapse
Affiliation(s)
- Peng Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jia Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen-Dong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong He
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei-Yu Ye
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ya-Xiong Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu-Hong Tian
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jin-Sheng Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|