1
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Wang M, Wang X, Zhang Y, Gu J, Zhang J, Wen X. Transcription Factor FOSL1 Promotes Angiogenesis of Colon Carcinoma by Regulating the VEGF Pathway Through Activating TIMP1. Biochem Genet 2024; 62:3389-3402. [PMID: 38103125 DOI: 10.1007/s10528-023-10547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/07/2023] [Indexed: 12/17/2023]
Abstract
Angiogenesis is the critical media for tumor growth and migration. Tissue Inhibitor Matrix Metalloproteinase-1 (TIMP1) acts as an oncogene in colon carcinoma (CC), but the biological effects of TIMP1 on angiogenesis remain an open issue. This study sought to explore the exact function and mechanism of TIMP1 in the angiogenesis of CC. Bioinformatics methods were utilized to analyze the expression of TIMP1 and its upstream transcription factor FOS-like antigen 1 (FOSL1) in the tumor tissue of CC. Meanwhile, in CC cell lines, real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot were utilized to verify the expression of TIMP1 and FOSL1. Cell counting kit-8 and tube formation assays were utilized to analyze the proliferation and angiogenesis abilities of human umbilical vein endothelial cells (HUVECs). Western blot was used to detect the protein expression of VEGFA, VEGFR-2, and VEGFR-3. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out to explore the specific interaction between FOSL1 and TIMP1. The present study discovered that TIMP1 and FOSL1 were evidently up-regulated in CC tissue and cells. Meanwhile, TIMP1 was found to participate in regulating the signaling pathway of vascular endothelial growth factor (VEGF). Silenced TIMP1 conspicuously suppressed the proliferation and angiogenesis of HUVECs and reduced the protein expression of VEGFA, VEGFR-2, and VEGFR-3. Moreover, FOSL1 could promote TIMP1 transcription by binding with its promoter and the inhibition of TIMP1 expression obviously reversed the promotion effects of FOSL1 overexpression on the proliferation and angiogenesis of HUVECs. FOSL1 activated VEGF pathway by up-regulating TIMP1 expression, thereby advancing CC angiogenesis. We provided theoretical basis that the FOSL1/TIMP1/VEGF pathway might be a novel option for anti-angiogenesis therapy of CC.
Collapse
Affiliation(s)
- Meng Wang
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China
| | - Xian Wang
- Department of Anorectal, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, Sichuan, China
| | - Yuanchuan Zhang
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China
| | - Jianhui Gu
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China
| | - Jie Zhang
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China
| | - Xing Wen
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
3
|
Kang W, Ye C, Yang Y, Lou YR, Zhao M, Wang Z, Gao Y. Identification of anoikis-related gene signatures and construction of the prognosis model in prostate cancer. Front Pharmacol 2024; 15:1383304. [PMID: 38957390 PMCID: PMC11217483 DOI: 10.3389/fphar.2024.1383304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Background One of the primary reasons for tumor invasion and metastasis is anoikis resistance. Biochemical recurrence (BCR) of prostate cancer (PCa) serves as a harbinger of its distant metastasis. However, the role of anoikis in PCa biochemical recurrence has not been fully elucidated. Methods Differential expression analysis was used to identify anoikis-related genes based on the TCGA and GeneCards databases. Prognostic models were constructed utilizing LASSO regression, univariate and multivariate Cox regression analyses. Moreover, Gene Expression Omnibus datasets (GSE70770 and GSE46602) were applied as validation cohorts. Gene Ontology, KEGG and GSVA were utilized to explore biological pathways and molecular mechanisms. Further, immune profiles were assessed using CIBERSORT, ssGSEA, and TIDE, while anti-cancer drugs sensitivity was analyzed by GDSC database. In addition, gene expressions in the model were examined using online databases (Human Protein Atlas and Tumor Immune Single-Cell Hub). Results 113 differentially expressed anoikis-related genes were found. Four genes (EEF1A2, RET, FOSL1, PCA3) were selected for constructing a prognostic model. Using the findings from the Cox regression analysis, we grouped patients into groups of high and low risk. The high-risk group exhibited a poorer prognosis, with a maximum AUC of 0.897. Moreover, larger percentage of immune infiltration of memory B cells, CD8 Tcells, neutrophils, and M1 macrophages were observed in the high-risk group than those in the low-risk group, whereas the percentage of activated mast cells and dendritic cells in the high-risk group were lower. An increased TIDE score was founded in the high-risk group, suggesting reduced effectiveness of ICI therapy. Additionally, the IC50 results for chemotherapy drugs indicated that the low-risk group was more sensitive to most of the drugs. Finally, the genes EEF1A2, RET, and FOSL1 were expressed in PCa cases based on HPA website. The TISCH database suggested that these four ARGs might contribute to the tumor microenvironment of PCa. Conclusion We created a risk model utilizing four ARGs that effectively predicts the risk of BCR in PCa patients. This study lays the groundwork for risk stratification and predicting survival outcomes in PCa patients with BCR.
Collapse
Affiliation(s)
- Wanying Kang
- School of Pharmacy, Fudan University, Shanghai, China
- Life Science and Biopharmaceutical College, Shenyang Pharmaceutical University, Shenyang, China
| | - Chen Ye
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yunyun Yang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Ru Lou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Mingyi Zhao
- Life Science and Biopharmaceutical College, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Wang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Wang H, Shi Y, Zhou X, Zhang L, Yang A, Zhou D, Ma T. HNRNPA2B1 stabilizes NFATC3 levels to potentiate its combined actions with FOSL1 to mediate vasculogenic mimicry in GBM cells. Cell Biol Toxicol 2024; 40:44. [PMID: 38862832 PMCID: PMC11166796 DOI: 10.1007/s10565-024-09890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Vasculogenic mimicry (VM) is an enigmatic physiological feature that influences blood supply within glioblastoma (GBM) tumors for their sustained growth. Previous studies identify NFATC3, FOSL1 and HNRNPA2B1 as significant mediators of VEGFR2, a key player in vasculogenesis, and their molecular relationships may be crucial for VM in GBM. AIMS The aim of this study was to understand how NFATC3, FOSL1 and HNRNPA2B1 collectively influence VM in GBM. METHODS We have investigated the underlying gene regulatory mechanisms for VM in GBM cell lines U251 and U373 in vitro and in vivo. In vitro cell-based assays were performed to explore the role of NFATC3, FOSL1 and HNRNPA2B1 in GBM cell proliferation, VM and migration, in the context of RNA interference (RNAi)-mediated knockdown alongside corresponding controls. Western blotting and qRT-PCR assays were used to examine VEGFR2 expression levels. CO-IP was employed to detect protein-protein interactions, ChIP was used to detect DNA-protein complexes, and RIP was used to detect RNA-protein complexes. Histochemical staining was used to detect VM tube formation in vivo. RESULTS Focusing on NFATC3, FOSL1 and HNRNPA2B1, we found each was significantly upregulated in GBM and positively correlated with VM-like cellular behaviors in U251 and U373 cell lines. Knockdown of NFATC3, FOSL1 or HNRNPA2B1 each resulted in decreased levels of VEGFR2, a key growth factor gene that drives VM, as well as the inhibition of proliferation, cell migration and extracorporeal VM activity. Chromatin immunoprecipitation (ChIP) studies and luciferase reporter gene assays revealed that NFATC3 binds to the promoter region of VEGFR2 to enhance VEGFR2 gene expression. Notably, FOSL1 interacts with NFATC3 as a co-factor to potentiate the DNA-binding capacity of NFATC3, resulting in enhanced VM-like cellular behaviors. Also, level of NFATC3 protein in cells was enhanced through HNRNPA2B1 binding of NFATC3 mRNA. Furthermore, RNAi-mediated silencing of NFATC3, FOSL1 and HNRNPA2B1 in GBM cells reduced their capacity for tumor formation and VM-like behaviors in vivo. CONCLUSION Taken together, our findings identify NFATC3 as an important mediator of GBM tumor growth through its molecular and epistatic interactions with HNRNPA2B1 and FOSL1 to influence VEGFR2 expression and VM-like cellular behaviors.
Collapse
Affiliation(s)
- Hanting Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Yiwen Shi
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Lu Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Aodan Yang
- The First Clinical College of China Medical University, Shenyang, 110002, China
| | - Dabo Zhou
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China.
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
5
|
Ramar V, Guo S, Hudson B, Khedri A, Guo AA, Li J, Liu M. Interaction of NF-κB and FOSL1 drives glioma stemness. Cell Mol Life Sci 2024; 81:255. [PMID: 38856747 PMCID: PMC11335291 DOI: 10.1007/s00018-024-05293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor; GBM's inevitable recurrence suggests that glioblastoma stem cells (GSC) allow these tumors to persist. Our previous work showed that FOSL1, transactivated by the STAT3 gene, functions as a tumorigenic gene in glioma pathogenesis and acts as a diagnostic marker and potential drug target in glioma patients. Accumulating evidence shows that STAT3 and NF-κB cooperate to promote the development and progression of various cancers. The link between STAT3 and NF-κB suggests that NF-κB can also transcriptionally regulate FOSL1 and contribute to gliomagenesis. To investigate downstream molecules of FOSL1, we analyzed the transcriptome after overexpressing FOSL1 in a PDX-L14 line characterized by deficient FOSL1 expression. We then conducted immunohistochemical staining for FOSL1 and NF-κB p65 using rabbit polyclonal anti-FOSL1 and NF-κB p65 in glioma tissue microarrays (TMA) derived from 141 glioma patients and 15 healthy individuals. Next, mutants of the human FOSL1 promoter, featuring mutations in essential binding sites for NF-κB were generated using a Q5 site-directed mutagenesis kit. Subsequently, we examined luciferase activity in glioma cells and compared it to the wild-type FOSL1 promoter. Then, we explored the mutual regulation between NF-κB signaling and FOSL1 by modulating the expression of NF-κB or FOSL1. Subsequently, we assessed the activity of FOSL1 and NF-κB. To understand the role of FOSL1 in cell growth and stemness, we conducted a CCK-8 assay and cell cycle analysis, assessing apoptosis and GSC markers, ALDH1, and CD133 under varying FOSL1 expression conditions. Transcriptome analyses of downstream molecules of FOSL1 show that NF-κB signaling pathway is regulated by FOSL1. NF-κB p65 protein expression correlates to the expression of FOSL1 in glioma patients, and both are associated with glioma grades. NF-κB is a crucial transcription factor activating the FOSL1 promoter in glioma cells. Mutual regulation between NF-κB and FOSL1 contributes to glioma tumorigenesis and stemness through promoting G1/S transition and inhibiting apoptosis. Therefore, the FOSL1 molecular pathway is functionally connected to NF-κB activation, enhances stemness, and is indicative that FOSL1 may potentially be a novel GBM drug target.
Collapse
Affiliation(s)
- Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr, New Orleans, LA, USA
| | - Breanna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Alyssa A Guo
- Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, USA
| | - Jason Li
- Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, USA.
| |
Collapse
|
6
|
Morii M, Kubota S, Iimori M, Yokomizo-Nakano T, Hamashima A, Bai J, Nishimura A, Tasaki M, Ando Y, Araki K, Sashida G. TIF1β activates leukemic transcriptional program in HSCs and promotes BCR::ABL1-induced myeloid leukemia. Leukemia 2024; 38:1275-1286. [PMID: 38734786 DOI: 10.1038/s41375-024-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
TIF1β/KAP1/TRIM28, a chromatin modulator, both represses and activates the transcription of genes in normal and malignant cells. Analyses of datasets on leukemia patients revealed that the expression level of TIF1β was increased in patients with chronic myeloid leukemia at the blast crisis and acute myeloid leukemia. We generated a BCR::ABL1 conditional knock-in (KI) mouse model, which developed aggressive myeloid leukemia, and demonstrated that the deletion of the Tif1β gene inhibited the progression of myeloid leukemia and showed longer survival than that in BCR::ABL1 KI mice, suggesting that Tif1β drove the progression of BCR::ABL1-induced leukemia. In addition, the deletion of Tif1β sensitized BCR::ABL1 KI leukemic cells to dasatinib. The deletion of Tif1β decreased the expression levels of TIF1β-target genes and chromatin accessibility peaks enriched with the Fosl1-binding motif in BCR::ABL1 KI stem cells. TIF1β directly bound to the promoters of proliferation genes, such as FOSL1, in human BCR::ABL1 cells, in which TIF1β and FOSL1 bound to adjacent regions of chromatin. Since the expression of Fosl1 was critical for the enhanced growth of BCR::ABL1 KI cells, Tif1β and Fosl1 interacted to activate the leukemic transcriptional program in and cellular function of BCR::ABL1 KI stem cells and drove the progression of myeloid leukemia.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Transcription, Genetic
- Tripartite Motif-Containing Protein 28/metabolism
- Tripartite Motif-Containing Protein 28/genetics
Collapse
Affiliation(s)
- Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiho Nishimura
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Masayoshi Tasaki
- Department of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Khedri A, Guo S, Ramar V, Hudson B, Liu M. FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review. Int J Mol Sci 2024; 25:5362. [PMID: 38791400 PMCID: PMC11121637 DOI: 10.3390/ijms25105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.
Collapse
Affiliation(s)
- Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, New Orleans, LA 70125, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
8
|
Huang L, Ding W, Wu H, Zheng J. miR-497/195 Cluster Affects the Development of Colorectal Cancer by Targeting FRA1. Mol Biotechnol 2024; 66:1019-1030. [PMID: 38147235 DOI: 10.1007/s12033-023-01000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 12/27/2023]
Abstract
The miR-497-195 cluster facilitates the occurrence and development of cancer. This study aims to investigate whether the miR-195-497 cluster could regulate the progression of colorectal cancer by regulating the common target gene, FOS-related antigen 1 (FRA1). Overexpression of the miR-195/497 vector was used to evaluate the effect of overexpression of miR-195-497 clusters on the biological behavior of colon cancer cells. In animal experiments, tumor growth and metastasis were recorded by constructing a nude mouse model of a subcutaneously implanted tumor. miR-195 and miR-497 were expressed to varying degrees in Caco-2, LoVo, and HT-29 cells. Overexpression of miR-195/497 and inhibition of FRA1 decreased HT-29 cell proliferation, inhibited cell invasion and migration, and promoted Epithelial-mesenchymal transition (EMT). In vivo experiments showed that the overexpression of miR-195/497 or inhibition of FRA1 inhibited tumor growth, affected EMT in tumor cells, and inhibited the expression of FRA1. Additionally, the aforementioned conditions had the best effect when used together. The miR-195-497 cluster can regulate the proliferation, EMT, invasion, and migration of colorectal cancer cells by regulating the common target gene FRA1, thereby affecting the development of colorectal cancer.
Collapse
Affiliation(s)
- Li Huang
- Hospital of Guizhou Panjiang Coal Power Group Co. Ltd, Panzhou, China
| | - Wanjun Ding
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hongxue Wu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jia Zheng
- Hospital of Guizhou Panjiang Coal Power Group Co. Ltd, Panzhou, China.
| |
Collapse
|
9
|
Aleksandrova EP, Ivlev AP, Kulikov AA, Naumova AA, Glazova MV, Chernigovskaya EV. Audiogenic kindling activates glutamatergic system in the hippocampus of rats with genetic predisposition to audiogenic seizures. Brain Res 2024; 1829:148792. [PMID: 38325559 DOI: 10.1016/j.brainres.2024.148792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Temporal lobe epilepsy (TLE) development is associated with dysregulation of glutamatergic transmission in the hippocampus; however, detailed molecular mechanisms of pathological changes are still poorly understood. In the present study, we performed the complex analysis of glutamatergic system in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). Daily AGS stimulations (audiogenic kindling) were used to reproduce the dynamics of TLE development. Naïve KM rats were used as a control. After 14 AGS, at the stage of developing TLE, KM rats demonstrated significant upregulation of extracellular signal-regulated kinases (ERK) 1 and 2, cAMP response element-binding protein (CREB), and c-Fos in the hippocampus indicating activation of the hippocampal cells. These changes were accompanied with an increase in glutaminase and vesicular glutamate transporter (VGLUT) 2 suggesting the activation of glutamate production and loading into the synaptic vesicles. After 21 AGS, when TLE was fully-established, alterations were similar but more pronounced, with higher activation of glutaminase, increase in glutamate production, upregulation of VGLUT1 and 2, and Fos-related antigen 1 (Fra-1) along with c-Fos. Analysis of glutamate receptors showed variable changes. Thus, after 14 AGS, simultaneous increase in metabotropic glutamate receptor mGluR1 and decrease in ionotropic N-methyl-D-aspartate (NMDA) receptors could reflect compensatory anti-epileptic mechanism, while further kindling progression induced upregulation of ionotropic receptors, probably, contributing to the hippocampal epileptization. However, we revealed practically no alterations in the expression of synaptic proteins. Altogether, obtained results suggested that overactivation of glutamate production in the hippocampus strongly contributed to TLE development in KM rats.
Collapse
Affiliation(s)
- Ekaterina P Aleksandrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey P Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
10
|
Manetsch P, Böhi F, Nowak K, Leslie Pedrioli DM, Hottiger MO. PARP7-mediated ADP-ribosylation of FRA1 promotes cancer cell growth by repressing IRF1- and IRF3-dependent apoptosis. Proc Natl Acad Sci U S A 2023; 120:e2309047120. [PMID: 38011562 DOI: 10.1073/pnas.2309047120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023] Open
Abstract
PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1. Loss of FRA1 ADP-ribosylation via PARP7 inhibition by RBN-2397 or mutation of the ADP-ribosylation site C97 increased FRA1 degradation by the proteasome via PSMC3. The reduction in FRA1 protein levels promoted IRF1- and IRF3-dependent cytokine as well as proapoptotic gene expression, culminating in CASP8-mediated apoptosis. Furthermore, high PARP7 expression was indicative of the PARP7 inhibitor response in FRA1-positive lung and breast cancer cells. Collectively, our findings highlight the connected roles of PARP7 and FRA1 and emphasize the clinical potential of PARP7 inhibitors for FRA1-driven cancers.
Collapse
Affiliation(s)
- Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Cancer Biology Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Deena M Leslie Pedrioli
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Piroeva KV, McDonald C, Xanthopoulos C, Fox C, Clarkson CT, Mallm JP, Vainshtein Y, Ruje L, Klett LC, Stilgenbauer S, Mertens D, Kostareli E, Rippe K, Teif VB. Nucleosome repositioning in chronic lymphocytic leukemia. Genome Res 2023; 33:1649-1661. [PMID: 37699659 PMCID: PMC10691546 DOI: 10.1101/gr.277298.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes-the nucleosome repeat length (NRL)-is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.
Collapse
Affiliation(s)
- Kristan V Piroeva
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Charlotte McDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Charalampos Xanthopoulos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Chelsea Fox
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Christopher T Clarkson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Jan-Philipp Mallm
- German Cancer Research Center (DKFZ) Heidelberg, Single Cell Open Lab, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Yevhen Vainshtein
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Luminita Ruje
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Lara C Klett
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Stephan Stilgenbauer
- Division of CLL, University Hospital Ulm, Department of Internal Medicine III, 89081 Ulm, Germany
| | - Daniel Mertens
- Division of CLL, University Hospital Ulm, Department of Internal Medicine III, 89081 Ulm, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Cooperation Unit Mechanisms of Leukemogenesis, 69120 Heidelberg, Germany
| | - Efterpi Kostareli
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom;
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, 69120 Heidelberg, Germany;
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, 69120 Heidelberg, Germany
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom;
| |
Collapse
|
12
|
Al-khayyat W, Pirkkanen J, Dougherty J, Laframboise T, Dickinson N, Khaper N, Lees SJ, Mendonca MS, Boreham DR, Tai TC, Thome C, Tharmalingam S. Overexpression of FRA1 ( FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression. Cells 2023; 12:2344. [PMID: 37830558 PMCID: PMC10571788 DOI: 10.3390/cells12192344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.
Collapse
Affiliation(s)
- Wuroud Al-khayyat
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jake Pirkkanen
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jessica Dougherty
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Taylor Laframboise
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Noah Dickinson
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
| | - Neelam Khaper
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Simon J. Lees
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas R. Boreham
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Tze Chun Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Christopher Thome
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
13
|
Zhou M, Li K, Luo KQ. Shear Stress Drives the Cleavage Activation of Protease-Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301059. [PMID: 37395651 PMCID: PMC10477893 DOI: 10.1002/advs.202301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/04/2023] [Indexed: 07/04/2023]
Abstract
When circulating tumor cells (CTCs) travel in circulation, they can be killed by detachment-induced anoikis and fluidic shear stress (SS)-mediated apoptosis. Circulatory treatment, which can make CTCs detached but also generate SS, can increase metastasis of cancer cells. To identify SS-specific mechanosensors without detachment impacts, a microfluidic circulatory system is used to generate arteriosus SS and compare transcriptome profiles of circulating lung cancer cells with suspended cells. Half of the cancer cells can survive SS damage and show higher invasion ability. Mesotrypsin (PRSS3), protease-activated receptor 2 (PAR2), and the subunit of activating protein 1, Fos-related antigen 1 (FOSL1), are upregulated by SS, and their high expression is responsible for promoting invasion and metastasis. SS triggers PRSS3 to cleave the N-terminal inhibitory domain of PAR2 within 2 h. As a G protein-coupled receptor, PAR2 further activates the Gαi protein to turn on the Src-ERK/p38/JNK-FRA1/cJUN axis to promote the expression of epithelial-mesenchymal transition markers, and also PRSS3, which facilitates metastasis. Enriched PRSS3, PAR2, and FOSL1 in human tumor samples and their correlations with worse outcomes reveal their clinical significance. PAR2 may serve as an SS-specific mechanosensor cleavable by PRSS3 in circulation, which provides new insights for targeting metastasis-initiating CTCs.
Collapse
Affiliation(s)
- Muya Zhou
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
| | - Koukou Li
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
| | - Kathy Qian Luo
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
- Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacao SAR999078China
| |
Collapse
|
14
|
Guo S, Ramar V, Guo AA, Saafir T, Akpobiyeri H, Hudson B, Li J, Liu M. TRPM7 transactivates the FOSL1 gene through STAT3 and enhances glioma stemness. Cell Mol Life Sci 2023; 80:270. [PMID: 37642779 PMCID: PMC10465393 DOI: 10.1007/s00018-023-04921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION We previously reported that TRPM7 regulates glioma cells' stemness through STAT3. In addition, we demonstrated that FOSL1 is a response gene for TRPM7, and the FOSL1 gene serves as an oncogene to promote glioma proliferation and invasion. METHODS In the present study, we determined the effects of FOSL1 on glioma stem cell (GSC) markers CD133 and ALDH1 by flow cytometry, and the maintenance of stem cell activity by extreme limiting dilution assays (ELDA). To further gain insight into the mechanism by which TRPM7 activates transcription of the FOSL1 gene to contribute to glioma stemness, we constructed a FOSL1 promoter and its GAS mutants followed by luciferase reporter assays and ChIP-qPCR in a glioma cell line and glioma patient-derived xenoline. We further examined GSC markers ALDH1 and TRPM7 as well as FOSL1 by immunohistochemistry staining (IHC) in brain tissue microarray (TMA) of glioma patients. RESULTS We revealed that FOSL1 knockdown reduces the expression of GSC markers CD133 and ALDH1, and FOSL1 is required to maintain stem cell activity in glioma cells. The experiments also showed that mutations of - 328 to - 336 and - 378 to - 386 GAS elements markedly reduced FOSL1 promoter activity. Constitutively active STAT3 increased while dominant-negative STAT3 decreased FOSL1 promoter activity. Furthermore, overexpression of TRPM7 enhanced while silencing of TRPM7 reduced FOSL1 promoter activity. ChIP-qPCR assays revealed that STAT3, present in nuclear lysates of glioma cells stimulated by constitutively activated STAT3, can bind to two GAS elements, respectively. We demonstrated that deacetylation of FOSL1 at the Lys-116 residue located within its DNA binding domain led to an increase in FOSL1 transcriptional activity. We found that the expression of TRPM7, ALDH1, and FOSL1 protein is associated with grades of malignant glioma, and TRPM7 protein expression correlates to the expression of ALDH1 and FOSL1 in glioma patients. CONCLUSIONS These combined results demonstrated that TRPM7 induced FOSL1 transcriptional activation, which is mediated by the action of STAT3, a mechanism shown to be important in glioma stemness. These results indicated that FOSL1, similar to GSC markers ALDH1 and TRPM7, is a diagnostic marker and potential drug target for glioma patients.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr, New Orleans, LA, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Alyssa A Guo
- University of South Carolina SOM Greenville, Greenville, SC, USA
| | - Talib Saafir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Hannah Akpobiyeri
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Breanna Hudson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Jason Li
- Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA.
| |
Collapse
|
15
|
Bejjani F, Evanno E, Mahfoud S, Tolza C, Zibara K, Piechaczyk M, Jariel-Encontre I. Multiple Fra-1-bound enhancers showing different molecular and functional features can cooperate to repress gene transcription. Cell Biosci 2023; 13:129. [PMID: 37464380 DOI: 10.1186/s13578-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND How transcription factors (TFs) down-regulate gene expression remains ill-understood, especially when they bind to multiple enhancers contacting the same gene promoter. In particular, it is not known whether they exert similar or significantly different molecular effects at these enhancers. RESULTS To address this issue, we used a particularly well-suited study model consisting of the down-regulation of the TGFB2 gene by the TF Fra-1 in Fra-1-overexpressing cancer cells, as Fra-1 binds to multiple enhancers interacting with the TGFB2 promoter. We show that Fra-1 does not repress TGFB2 transcription via reducing RNA Pol II recruitment at the gene promoter but by decreasing the formation of its transcription-initiating form. This is associated with complex long-range chromatin interactions implicating multiple molecularly and functionally heterogeneous Fra-1-bound transcriptional enhancers distal to the TGFB2 transcriptional start site. In particular, the latter display differential requirements upon the presence and the activity of the lysine acetyltransferase p300/CBP. Furthermore, the final transcriptional output of the TGFB2 gene seems to depend on a balance between the positive and negative effects of Fra-1 at these enhancers. CONCLUSION Our work unveils complex molecular mechanisms underlying the repressive actions of Fra-1 on TGFB2 gene expression. This has consequences for our general understanding of the functioning of the ubiquitous transcriptional complex AP-1, of which Fra-1 is the most documented component for prooncogenic activities. In addition, it raises the general question of the heterogeneity of the molecular functions of TFs binding to different enhancers regulating the same gene.
Collapse
Affiliation(s)
- Fabienne Bejjani
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
| | | | - Samantha Mahfoud
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
| | - Claire Tolza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Kazem Zibara
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | | | - Isabelle Jariel-Encontre
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, ICM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
16
|
Casalino L, Talotta F, Matino I, Verde P. FRA-1 as a Regulator of EMT and Metastasis in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098307. [PMID: 37176013 PMCID: PMC10179602 DOI: 10.3390/ijms24098307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Among FOS-related components of the dimeric AP-1 transcription factor, the oncoprotein FRA-1 (encoded by FOSL1) is a key regulator of invasion and metastasis. The well-established FRA-1 pro-invasive activity in breast cancer, in which FOSL1 is overexpressed in the TNBC (Triple Negative Breast Cancer)/basal subtypes, correlates with the FRA-1-dependent transcriptional regulation of EMT (Epithelial-to-Mesenchymal Transition). After summarizing the major findings on FRA-1 in breast cancer invasiveness, we discuss the FRA-1 mechanistic links with EMT and cancer cell stemness, mediated by transcriptional and posttranscriptional interactions between FOSL1/FRA-1 and EMT-regulating transcription factors, miRNAs, RNA binding proteins and cytokines, along with other target genes involved in EMT. In addition to the FRA-1/AP-1 effects on the architecture of target promoters, we discuss the diagnostic and prognostic significance of the EMT-related FRA-1 transcriptome, along with therapeutic implications. Finally, we consider several novel perspectives regarding the less explored roles of FRA-1 in the tumor microenvironment and in control of the recently characterized hybrid EMT correlated with cancer cell plasticity, stemness, and metastatic potential. We will also examine the application of emerging technologies, such as single-cell analyses, along with animal models of TNBC and tumor-derived CTCs and PDXs (Circulating Tumor Cells and Patient-Derived Xenografts) for studying the FRA-1-mediated mechanisms in in vivo systems of EMT and metastasis.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ilenia Matino
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Consiglio Nazionale delle Ricerche (CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
17
|
Cuarental L, Ribagorda M, Ceballos MI, Pintor-Chocano A, Carriazo SM, Dopazo A, Vazquez E, Suarez-Alvarez B, Cannata-Ortiz P, Sanz AB, Ortiz A, Sanchez-Niño MD. The transcription factor Fosl1 preserves Klotho expression and protects from acute kidney injury. Kidney Int 2023; 103:686-701. [PMID: 36565807 DOI: 10.1016/j.kint.2022.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Increased expression of AP-1 transcription factor components has been reported in acute kidney injury (AKI). However, the role of specific components, such as Fosl1, in tubular cells or AKI is unknown. Upstream regulator analysis of murine nephrotoxic AKI transcriptomics identified AP-1 as highly upregulated. Among AP-1 canonical components, Fosl1 was found to be upregulated in two transcriptomics datasets from nephrotoxic murine AKI induced by folic acid or cisplatin and from proximal tubular cells exposed to TWEAK, a cytokine mediator of AKI. Fosl1 was minimally expressed in the kidneys of control uninjured mice. Increased Fosl1 protein was localized to proximal tubular cell nuclei in AKI. In human AKI, FOSL1 was found present in proximal tubular cells in kidney sections and in urine along with increased urinary FOSL1 mRNA. Selective Fosl1 deficiency in proximal tubular cells (Fosl1Δtub) increased the severity of murine cisplatin- or folate-induced AKI as characterized by lower kidney function, more severe kidney inflammation and Klotho downregulation. Indeed, elevated AP-1 activity was observed after cisplatin-induced AKI in Fosl1Δtub mice compared to wild-type mice. More severe Klotho downregulation preceded more severe kidney dysfunction. The Klotho promoter was enriched in Fosl1 binding sites and Fosl1 bound to the Klotho promoter in cisplatin-AKI. In cultured proximal tubular cells, Fosl1 targeting increased the proinflammatory response and downregulated Klotho. In vivo, recombinant Klotho administration protected Fosl1Δtub mice from cisplatin-AKI. Thus, increased proximal tubular Fosl1 expression during AKI is an adaptive response, preserves Klotho, and limits the severity of tubular cell injury and AKI.
Collapse
Affiliation(s)
- Leticia Cuarental
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Maria I Ceballos
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Sol M Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Vazquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Maria D Sanchez-Niño
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Farmacología, Universidad Autonoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
18
|
Leonov S, Inyang O, Achkasov K, Bogdan E, Kontareva E, Chen Y, Fu Y, Osipov AN, Pustovalova M, Merkher Y. Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24054773. [PMID: 36902201 PMCID: PMC10003476 DOI: 10.3390/ijms24054773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The major cause (more than 90%) of all cancer-related deaths is metastasis, thus its prediction can critically affect the survival rate. Metastases are currently predicted by lymph-node status, tumor size, histopathology and genetic testing; however, all these are not infallible, and obtaining results may require weeks. The identification of new potential prognostic factors will be an important source of risk information for the practicing oncologist, potentially leading to enhanced patient care through the proactive optimization of treatment strategies. Recently, the new mechanobiology-related techniques, independent of genetics, based on the mechanical invasiveness of cancer cells (microfluidic, gel indentation assays, migration assays etc.), demonstrated a high success rate for the detection of tumor cell metastasis propensity. However, they are still far away from clinical implementation due to complexity. Hence, the exploration of novel markers related to the mechanobiological properties of tumor cells may have a direct impact on the prognosis of metastasis. Our concise review deepens our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incites further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit. It may open a new clinical dimension that will improve cancer prognosis and increase the effectiveness of tumor therapies.
Collapse
Affiliation(s)
- Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olumide Inyang
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Andreyan N. Osipov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
19
|
Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int J Mol Sci 2023; 24:ijms24043410. [PMID: 36834821 PMCID: PMC9963995 DOI: 10.3390/ijms24043410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Heavy metals are defined as metals with relatively high density and atomic weight, and their various applications have raised serious concerns about the environmental impacts and potential human health effects. Chromium is an important heavy metal that is involved in biological metabolism, but Cr exposure can induce a severe impact on occupational workers or public health. In this study, we explore the toxic effects of Cr exposure through three exposure routes: dermal contact, inhalation, and ingestion. We propose the underlying toxicity mechanisms of Cr exposure based on transcriptomic data and various bioinformatic tools. Our study provides a comprehensive understanding of the toxicity mechanisms of different Cr exposure routes by diverse bioinformatics analyses.
Collapse
|
20
|
He YY, Zhou HF, Chen L, Wang YT, Xie WL, Xu ZZ, Xiong Y, Feng YQ, Liu GY, Li X, Liu J, Wu QP. The Fra-1: Novel role in regulating extensive immune cell states and affecting inflammatory diseases. Front Immunol 2022; 13:954744. [PMID: 36032067 PMCID: PMC9404335 DOI: 10.3389/fimmu.2022.954744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fra-1(Fos-related antigen1), a member of transcription factor activator protein (AP-1), plays an important role in cell proliferation, apoptosis, differentiation, inflammation, oncogenesis and tumor metastasis. Accumulating evidence suggest that the malignancy and invasive ability of tumors can be significantly changed by directly targeting Fra-1. Besides, the effects of Fra-1 are gradually revealed in immune and inflammatory settings, such as arthritis, pneumonia, psoriasis and cardiovascular disease. These regulatory mechanisms that orchestrate immune and non-immune cells underlie Fra-1 as a potential therapeutic target for a variety of human diseases. In this review, we focus on the current knowledge of Fra-1 in immune system, highlighting its unique importance in regulating tissue homeostasis. In addition, we also discuss the possible critical intervention strategy in diseases, which also outline future research and development avenues.
Collapse
|
21
|
Zhou Z, Liu Q, Zhang G, Mohammed D, Amadou S, Tan G, Zhang X. HOXA11-AS1 Promotes PD-L1-Mediated Immune Escape and Metastasis of Hypopharyngeal Carcinoma by Facilitating PTBP1 and FOSL1 Association. Cancers (Basel) 2022; 14:cancers14153694. [PMID: 35954358 PMCID: PMC9367556 DOI: 10.3390/cancers14153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The metastasis of hypopharyngeal squamous cell carcinoma (HSCC) is the main reason for the poor prognosis of patients. Increasing studies have shown that abnormally expressed lncRNAs play crucial roles in HSCC, providing new perspectives for exploring cancer pathogenesis and matastasis. The expressions of HOXA11-AS1 and PD-L1 were found to be closely related to the overall survival of HSCC patients. Subsequently, the potential target genes, namely PBTP1 and FOSL1, were identified by expression correlation analysis. Finally, HOXA11-AS1/FOSL1/PTBP1/PD-L1 axis was identified to be a novel pathway provided a feasible preliminary basis for the future application of immunotherapy or targeted therapies in HSCC. Abstract Background: The metastatic characteristics of hypopharyngeal squamous cell carcinoma (HSCC) lead to many diagnostic and therapeutic challenges, while functional long non-coding RNAs (lncRNAs) can provide effective strategies for its diagnosis and treatment. Methods: RT-qPCR, Western blot, immunohistochemistry, and an immunofluorescence assay were used to detect the related gene expression. Flow cytometry was used to measure the percentage of CD8+ and CD4+ T cells. CCK-8 and transwell assays were performed to analyze the role of HOXA11-AS1. The targeted relationship of the FOSL1/PD-L1 promoter was measured by ChIP and dual-luciferase reporter assays. RNA pulldown and RIP assays were used to measure the interaction between HOXA11-AS1, FOSL1, and PTBP1. A tumor xenograft study was used to analyze HOXA11-AS1 function in vivo. Results: HOXA11-AS1, PD-L1, and FOSL1 were upregulated in HSCC, and HOXA11-AS1 positively correlated with PD-L1. HOXA11-AS1 knockdown upregulated CD8+ T cells through an increase in IFN-γ concentration while decreasing the proliferation, migration, and invasion of HSCC cells. FOSL1 bound the PD-L1 promoter, increasing gene expression. HOXA11-AS1 enhanced the stability of FOSL1 mRNA by binding to PTBP1. HOXA11-AS1 or PTBP1 overexpression increased FOSL1 and PD-L1 expression. PD-L1 knockdown arrested the inhibiting function of HOXA11-AS1 overexpression on CD8+ T cell content. HOXA11-AS1 knockdown inhibited immune escape and metastasis through PD-L1 regulation by downregulating FOSL1 in vivo. Conclusion: HOXA11-AS1 promoted PD-L1 expression by upregulating FOSL1 levels through PTBP1, thereby facilitating immune escape, proliferation, and metastasis of HSCC cells.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
| | - Qian Liu
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
| | - Gehou Zhang
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
| | - Diab Mohammed
- Department of Otolaryngology Head & Neck, Xiangya Hospital, Changsha 410008, China;
| | - Sani Amadou
- Department of ENT, Reference Hospital, Maradi 12481, Niger;
| | - Guolin Tan
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
| | - Xiaowei Zhang
- Department of Otolaryngology Head & Neck, Third Xiangya Hospital, Changsha 410013, China; (Z.Z.); (Q.L.); (G.Z.); (G.T.)
- Correspondence:
| |
Collapse
|
22
|
Diego-González L, Fernández-Carrera A, Igea A, Martínez-Pérez A, Real Oliveira MECD, Gomes AC, Guerra C, Barbacid M, González-Fernández Á, Simón-Vázquez R. Combined Inhibition of FOSL-1 and YAP Using siRNA-Lipoplexes Reduces the Growth of Pancreatic Tumor. Cancers (Basel) 2022; 14:3102. [PMID: 35804874 PMCID: PMC9265026 DOI: 10.3390/cancers14133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer evades most of the current therapies and there is an urgent need for new treatments that could efficiently eliminate this aggressive tumor, such as the blocking of routes driving cell proliferation. In this work, we propose the use of small interfering RNA (siRNA) to inhibit the combined expression of FOSL-1 and YAP, two signaling proteins related with tumor cell proliferation and survival. To improve the efficacy of cell transfection, DODAB:MO (1:2) liposomes were used as siRNA nanocarriers, forming a complex denominated siRNA-lipoplexes. Liposomes and lipoplexes (carrying two siRNA for each targeted protein, or the combination of four siRNAs) were physico-chemically and biologically characterized. They showed very good biocompatibility and stability. The efficient targeting of FOSL-1 and YAP expression at both mRNA and protein levels was first proved in vitro using mouse pancreatic tumoral cell lines (KRASG12V and p53 knockout), followed by in vivo studies using subcutaneous allografts on mice. The peri-tumoral injection of lipoplexes lead to a significant decrease in the tumor growth in both Athymic Nude-Foxn1nu and C57BL/6 mice, mainly in those receiving the combination of four siRNAs, targeting both YAP and FOSL-1. These results open a new perspective to overcome the fast tumor progression in pancreatic cancer.
Collapse
Affiliation(s)
- Lara Diego-González
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Andrea Fernández-Carrera
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Ana Igea
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Amparo Martínez-Pérez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | | | - Andreia C. Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Carmen Guerra
- CNIO (Centro Nacional de Investigaciones Oncológicas), Experimental Oncology Group, 28029 Madrid, Spain; (C.G.); (M.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mariano Barbacid
- CNIO (Centro Nacional de Investigaciones Oncológicas), Experimental Oncology Group, 28029 Madrid, Spain; (C.G.); (M.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
23
|
Cui HY, Wei W, Qian MR, Tian RF, Fu X, Li HW, Nan G, Yang T, Lin P, Chen X, Zhu YM, Wang B, Sun XX, Dou JH, Jiang JL, Li L, Wang SJ, Chen ZN. PDGFA-associated protein 1 is a novel target of c-Myc and contributes to colorectal cancer initiation and progression. Cancer Commun (Lond) 2022; 42:750-767. [PMID: 35716012 PMCID: PMC9395323 DOI: 10.1002/cac2.12322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mechanism underlying colorectal cancer (CRC) initiation and progression remains elusive, and overall survival is far from satisfactory. Previous studies have shown that PDGFA-associated protein 1 (PDAP1) is upregulated in several cancers including CRC. Here, we aimed to identify the cause and consequence of PDAP1 dysregulation in CRC and evaluate its role as a potential therapeutic target. METHODS Multi-omics data analysis was performed to identify potential key players in CRC initiation and progression. Immunohistochemistry (IHC) staining was applied to determine the expression pattern of PDAP1 in CRC tissues. Pdap1 conditional knockout mice were used to establish colitis and CRC mouse models. RNA sequencing, a phosphoprotein antibody array, western blotting, histological analysis, 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, and interactome analysis were applied to identify the underlying mechanisms of PDAP1. A human patient-derived xenograft (PDX) model was used to assess the potential of PDAP1 as a therapeutic target. RESULTS PDAP1 was identified as a potential key player in CRC development using multi-omics data analysis. PDAP1 was overexpressed in CRC cells and correlated with reduced overall survival. Further investigation showed that PDAP1 was critical for the regulation of cell proliferation, migration, invasion, and metastasis. Significantly, depletion of Pdap1 in intestinal epithelial cells impaired mucosal restitution in dextran sulfate sodium salt-induced colitis and inhibited tumor initiation and growth in colitis-associated cancers. Mechanistic studies showed that c-Myc directly transactivated PDAP1, which contributed to the high PDAP1 expression in CRC cells. PDAP1 interacted with the juxtamembrane domain of epidermal growth factor receptor (EGFR) and facilitated EGFR-mitogen-activated protein kinase (MAPK) signaling activation, which resulted in FOS-related antigen 1 (FRA-1) expression, thereby facilitating CRC progression. Notably, silencing of PDAP1 could hinder the growth of patient-derived xenografts that sustain high PDAP1 levels. CONCLUSIONS PDAP1 facilitates mucosal restitution and carcinogenesis in colitis-associated cancer. c-Myc-driven upregulation of PDAP1 promotes proliferation, migration, invasion, and metastasis of CRC cells via the EGFR-MAPK-FRA-1 signaling axis. These findings indicated that PDAP1 inhibition is warranted for CRC patients with PDAP1 overexpression.
Collapse
Affiliation(s)
- Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Wei Wei
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Mei-Rui Qian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Ruo-Fei Tian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xin Fu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Hong-Wei Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Ting Yang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China.,Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Jian-Hua Dou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Shi-Jie Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| |
Collapse
|
24
|
Yuan RH, Hsu CL, Jhuang YL, Liu YR, Hsieh TH, Jeng YM. Tumor-matrix interaction induces phenotypic switching in liver cancer cells. Hepatol Int 2022; 16:562-576. [PMID: 35525880 DOI: 10.1007/s12072-022-10315-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/13/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is characterized by fibrous stroma and clinical behavior more aggressive than that of hepatocellular carcinoma (HCC). Scirrhous HCC is a subtype of HCC with fibrous stroma, frequently has partial cholangiocytic differentiation, and is more likely to have an aggressive behavior. This study explored the interaction of liver cancer cells with the extracellular matrix. METHODS AND RESULTS Liver cancer cells grown on collagen 1-coated plates showed upregulation of cholangiocytic marker expression but downregulation of hepatocytic marker expression. Three-dimensional sphere culture and Boyden chamber assay showed enhanced invasion and migration ability in collagen 1-conditioned liver cancer cells. Interaction with collagen 1 reduced liver cancer cell proliferation. RNA sequencing showed that in the liver cancer cells, collagen 1 upregulated cell cycle inhibitor expression and cell-matrix interaction, tumor migration, and angiogenesis pathways, but downregulated liver metabolic function pathways. Cholangiocytic differentiation and invasiveness induced by collagen 1 was mediated by the mitogen-activated protein kinase (MAPK) pathway, which was regulated by cell-matrix interaction-induced Src activation. Analysis of the Cancer Genome Atlas cohort showed that collagen 1 induced and suppressed genes were highly enriched in ICC and HCC, respectively. In HCC samples, collagen 1-regulated genes were strongly coexpressed and correlated with COL1A1 expression. CONCLUSIONS Liver cancer cell-matrix interaction induces cholangiocytic differentiation and switches liver cancer cells from a proliferative to an invasive phenotype through the Src/MAPK pathway, which may partly explain the differences in the behaviors of HCC and ICC.
Collapse
Affiliation(s)
- Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, Hsinchu Branch, National Taiwan University Hospital, Hsinchu, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Lin Jhuang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
25
|
Zeng F, He J, Jin X, Liao Q, Chen Z, Peng H, Zhou Y. FRA-1: A key factor regulating signal transduction of tumor cells and a potential target molecule for tumor therapy. Biomed Pharmacother 2022; 150:113037. [PMID: 35658206 DOI: 10.1016/j.biopha.2022.113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Fos-related antigen-1 (FRA-1) is a member of activator protein-1 (AP-1) transcription factor superfamily, and FRA-1 is highly expressed in colon cancer, breast cancer, gastric cancer, lung cancer, bladder cancer, and other tumors. The expression level of FRA-1 is closely related to the processes of tumor cell proliferation, apoptosis, transformation, migration, and invasion, which is a potential therapeutic target and prognostic factor for many tumors. Clarifying the detailed mechanism of action of FRA-1 could provide the theoretical basis for tumor diagnosis, treatment, and prognosis, and is of great significance for the study of tumor etiology and pathogenesis. In this paper, the expression levels and influencing factors of FRA-1 in various tumor tissues and cells are summarized, as well as the effect of FRA-1 expression level on the biological behavior of tumor cells and the signal transduction mechanism. At the same time, the signal transduction mechanism of FRA-1 in inflammation was expounded. In addition, the related metabolites, drugs and non-coding RNA that affect the expression and function of FRA-1 were summarized. Finally, it illustrates that FRA-1 may be taken as a key factor for tumor prognosis and a potential therapeutic target. This review provides a theoretical basis for the systematic understanding of the relationship between FRA-1 and tumors, its function, and possible mechanism.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Junyu He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Honghua Peng
- Department of The Oncology, Third Xianya Hospital, Xiangya School of Medicine, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
26
|
Salerno S, Ståhlberg A, Holdfeldt A, Bexe Lindskog E, Landberg G. 5-fluorouracil treatment of patient-derived scaffolds from colorectal cancer reveal clinically critical information. J Transl Med 2022; 20:209. [PMID: 35562738 PMCID: PMC9102939 DOI: 10.1186/s12967-022-03423-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer is a commonly diagnosed cancer worldwide. Unfortunately, many patients do not respond to standard chemotherapy treatments and develop disease relapse and metastases. Besides cancer cell specific genetic changes, heterogeneity in the tumor microenvironment contribute to the clinical presentation of the disease and can potentially also influence drug resistance. By using a recently developed patient-derived scaffold method monitoring how a standardized reporter cancer cell line adapts to various microenvironments treated with chemotherapy, we wanted to clarify how individual patient specific microenvironments influence the chemotherapy response in colorectal cancer. METHODS Surgically resected colorectal cancer specimens from 89 patients were decellularized to produce patient-derived scaffold, which were seeded with HT29 cells, cultured for 3 weeks, and treated with 5-fluorouracil. Gene expression changes of adapted and treated HT29 cells were monitored by qPCR and compared with clinical parameters including disease-free survival. RESULTS The effects of 5-fluorouracil treatment varied between different patient-derived scaffold, but generally induced a reduced expression of proliferation genes and increased expression of pluripotency and epithelial-to-mesenchymal transition genes. Interestingly, patient-derived scaffold cultures obtained from patients with disease recurrences showed a significantly less pronounced anti-proliferative effect of 5-fluorouracil and more pronounced increase of pluripotency, with MKI67 and POU5F1 being among the most significant genes linked to disease relapse in colorectal cancer. CONCLUSIONS Colorectal patient-derived scaffold can decode clinically relevant tumor microenvironmental influence of 5-fluorouracil treatment effects opening up for optimized precision medicine in colorectal cancer treatment.
Collapse
Affiliation(s)
- Simona Salerno
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - André Holdfeldt
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elinor Bexe Lindskog
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Surgical Oncology Laboratory, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. .,Department of Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
27
|
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022; 14:cancers14061480. [PMID: 35326630 PMCID: PMC8946526 DOI: 10.3390/cancers14061480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| | | | - Amelia Cimmino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| |
Collapse
|
28
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
29
|
ERK inhibitor ASN007 effectively overcomes acquired resistance to EGFR inhibitor in non-small cell lung cancer. Invest New Drugs 2022; 40:265-273. [PMID: 34973117 PMCID: PMC8993753 DOI: 10.1007/s10637-021-01121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
The emergence of acquired resistance limits the long-term efficacy of EGFR tyrosine kinase inhibitors (EGFR TKIs). Thus, development of effective strategies to overcome resistance to EGFR TKI is urgently needed. Multiple mechanisms to reactivate ERK signaling have been successfully demonstrated in acquired resistance models. We found that in EGFR mutant non-small cell lung cancer (NSCLC) patients, acquired resistance to EGFR TKIs was accompanied by increased activation of ERK. Increased ERK activation was also found in in vitro models of acquired EGFR TKI resistance. ASN007 is a potent selective ERK1/2 inhibitor with promising antitumor activity in cancers with BRAF and RAS mutations. ASN007 treatment impeded tumor cell growth and the cell cycle in EGFR TKI-resistant cells. In addition, combination treatment with ASN007 and EGFR TKIs significantly decreased the survival of resistant cells, enhanced induction of apoptosis, and effectively inhibited the growth of erlotinib-resistant xenografts, providing the preclinical rationale for testing combinations of ASN007 and EGFR TKIs in EGFR-mutated NSCLC patients. This study emphasizes the importance of targeting ERK signaling in maintaining the long-term benefits of EGFR TKIs by overcoming acquired resistance.
Collapse
|
30
|
Ou L, Wang X, Cheng S, Zhang M, Cui R, Hu C, Liu S, Tang Q, Peng Y, Chai R, Xie S, Wang S, Huang W, Wang X. Verdinexor, a Selective Inhibitor of Nuclear Exportin 1, Inhibits the Proliferation and Migration of Esophageal Cancer via XPO1/c-Myc/FOSL1 Axis. Int J Biol Sci 2022; 18:276-291. [PMID: 34975332 PMCID: PMC8692140 DOI: 10.7150/ijbs.66612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Esophageal carcinoma (EC) ranks sixth among cancers in mortality worldwide and effective drugs to reduce EC incidence and mortality are lacking. To explore potential anti-esophageal cancer drugs, we conducted drug screening and discovered that verdinexor, a selective inhibitor of nuclear exportin 1 (XPO1/CRM1), has anti-esophageal cancer effects both in vivo and in vitro. However, the mechanism and role of verdinexor in esophageal cancer remain unknown. In the present study, we observed that verdinexor inhibited the proliferation and migration of EC cells in vitro and suppressed tumor growth in vivo. Additionally, we found that verdinexor induced cleavage of PARP and downregulated XPO1, c-Myc, and FOSL1 expression. RNA-sequence analysis and protein-protein interaction (PPI) analysis revealed that verdinexor regulated the XPO1/c-Myc/FOSL1 axis. The results of immunoprecipitation and proximity ligation assays confirmed that verdinexor disrupted the interaction between XPO1 and c-Myc. Overexpression of c-Myc rescued the inhibition of cell proliferation and cell migration caused by verdinexor. Overexpressed FOSL1 restored the inhibited migration by verdinexor. Taken together, verdinexor inhibited cell proliferation and migration of esophageal cancer via XPO1/c-Myc/FOSL1 axis. Our findings provide a new option for the development of anti-esophageal cancer drugs.
Collapse
Affiliation(s)
- Ling Ou
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xinyou Wang
- The First District of Gastrointestinal Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shumin Cheng
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Min Zhang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ruiqin Cui
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Chunxia Hu
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Shiyi Liu
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qian Tang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| | - Yuying Peng
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| | - Ruihuan Chai
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Wei Huang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- School of Pharmacy, Jinan University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
31
|
Hariprabu KNG, Sathya M, Vimalraj S. CRISPR/Cas9 in cancer therapy: A review with a special focus on tumor angiogenesis. Int J Biol Macromol 2021; 192:913-930. [PMID: 34655593 DOI: 10.1016/j.ijbiomac.2021.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Tumor angiogenesis is a critical target for cancer treatment and its inhibition has become a common anticancer approach following chemotherapy. However, due to the simultaneous activation of different compensatory molecular mechanisms that enhance tumor angiogenesis, clinically authorized anti-angiogenic medicines are ineffective. Additionally, medications used to treat cancer have an effect on normal body cells; nonetheless, more research is needed to create new cancer therapeutic techniques. With advances in molecular biology, it is now possible to use gene-editing technology to alter the genome and study the functional changes resulting from genetic manipulation. With the development of CRISPR/Cas9 technology, it has become a very powerful tool for altering the genomes of many organisms. It was determined that CRISPR/Cas9, which first appeared in bacteria as a part of an adaptive immune system, could be used, in modified forms, to alter genomes and function. In conclusion, CRISPR/Cas9 could be a major step forward to cancer management by providing patients with an effective method for dealing with cancers by dissecting the carcinogenesis pathways, identifying new biologic targets, and perhaps arming cancer cells with drugs. Hence, this review will discuss the current applications of CRISPR/Cas9 technology in tumor angiogenesis research for the purpose of cancer treatment.
Collapse
Affiliation(s)
| | - Muthusamy Sathya
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
32
|
Meng L, Xu KX, Zhao MX, Li K, Zhu K, Yuan DW, Wang HN, Dai PG, Yan R. Nucleolar protein 6 promotes cell proliferation and acts as a potential novel prognostic marker for hepatocellular carcinoma. Chin Med J (Engl) 2021; 134:2611-2618. [PMID: 34561331 PMCID: PMC8577660 DOI: 10.1097/cm9.0000000000001655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Nucleolar protein 6 (NOL6) is a nucleolar RNA-associated protein that is highly conserved between species. It has been proved to be associated with the prognosis of liver cancer. However, the underlying mechanism has not been fully established. This study aimed to assess the relationship between NOL6 and liver cancer prognosis. Methods: We constructed an NOL6-short hairpin RNA (shRNA)-expressing lentivirus. Through viral transfection, cell growth assay and fluorescence-activated cell sorting, we evaluated the effect of shRNA-mediated NOL6 knockdown on the proliferation, colony formation, and apoptosis of hepatocellular carcinoma (HCC) cells. The relationship between NOL6 expression and HCC patient survival has been established through bioinformatics analysis. We also explored the downstream molecular regulatory network of NOL6 in HCC by performing an Ingenuity Pathway Analysis in the database. Results: Increased NOL6 expression was detected in HCC cells compared to normal controls; HCC patients with high NOL6 expression had poorer prognoses than those with low expression. NOL6 knockdown inhibited HCC cell proliferation, apoptosis, and colony formation. Also, MAPK8, CEBPA, and FOSL1 were selected as potential downstream genes of NOL6. Conclusions: NOL6 up-regulates HCC cell proliferation and affects downstream expression of related genes. Moreover, NOL6 is considered to be associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Lei Meng
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kai-Xuan Xu
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Ming-Xi Zhao
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Da-Wei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hao-Nan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peng-Gao Dai
- National Engineering Research Center for Miniaturized Detection Systems, The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
33
|
Li R, Che W, Liang N, Deng S, Song Z, Yang L. Silent FOSL1 Enhances the Radiosensitivity of Glioma Stem Cells by Down-Regulating miR-27a-5p. Neurochem Res 2021; 46:3222-3246. [PMID: 34420141 DOI: 10.1007/s11064-021-03427-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Since few reports have mentioned the role of FOSL1 in the radiotherapy sensitivity of glioma, this study would dig deep into this aspect. Cancer stem cells (CSCs) isolated by magnetic bead assay were identified by microscopy, qRT-PCR and western blot. The number of apoptotic cells was counted 72 h after X-ray irradiation to evaluate the sensitivity of cancer cells to radiotherapy. The effects of radiotherapy, FOSL1 and miR-27a-5p on basic cell functions were detected by functional experiments. The expressions of FOSL1, apoptosis-related genes and miR-27a-5p were detected by qRT-PCR and western blot as needed. The differential expression of FOSL1 and the effect of miR-27a-5p on survival rate were analyzed using GEPIA and UALCAN, respectively. FOSL1 was found highly expressed in glioma cells and patients. The appearance of spherical cells and high expressions of CSC-related markers indicated the successful isolation of CSC-like cells. The increment of X-ray dose enhanced the sensitivity of cancer cells to radiotherapy. Radiotherapy down-regulated cell viability and the expressions of FOSL1 and Bcl-2, but up-regulated cell apoptosis and the expressions of cleaved caspase-3 and Bax, which could be partially reversed by overexpressed FOSL1 or further enhanced by shFOSL1. MiR-27a-5p was highly expressed in in patients with glioma, which was associated with poor prognosis, while shFOSL1-inhibited miR-27a-5p expression enhanced the sensitivity of glioma stem cells to radiotherapy. In vivo experiments further verified the results obtained from in vitro experiments. Silent FOSL1 strengthened the radiosensitivity of glioma by down-regulating miR-27a-5p.
Collapse
Affiliation(s)
- Rong Li
- Department of Radiation Oncology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wuqiang Che
- Department of Neurosurgery, Kunming Children's Hospital, No. 288, Qianxing Road, Kunming, 650030, China
| | - Naizheng Liang
- Department of Neurosurgery, Kunming Children's Hospital, No. 288, Qianxing Road, Kunming, 650030, China
| | - Shu Deng
- Department of Neurosurgery, Kunming Children's Hospital, No. 288, Qianxing Road, Kunming, 650030, China
| | - Zhijie Song
- Department of Neurosurgery, Kunming Children's Hospital, No. 288, Qianxing Road, Kunming, 650030, China
| | - Lei Yang
- Department of Neurosurgery, Kunming Children's Hospital, No. 288, Qianxing Road, Kunming, 650030, China.
| |
Collapse
|
34
|
The role of FOSL1 in stem-like cell reprogramming processes. Sci Rep 2021; 11:14677. [PMID: 34282187 PMCID: PMC8290037 DOI: 10.1038/s41598-021-94072-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer stem-like cells (CSCs) have self-renewal abilities responsible for cancer progression, therapy resistance, and metastatic growth. The glioblastoma stem-like cells are the most studied among CSC populations. A recent study identified four transcription factors (SOX2, SALL2, OLIG2, and POU3F2) as the minimal core sufficient to reprogram differentiated glioblastoma (GBM) cells into stem-like cells. Transcriptomic data of GBM tissues and cell lines from two different datasets were then analyzed by the SWItch Miner (SWIM), a network-based software, and FOSL1 was identified as a putative regulator of the previously identified minimal core. Herein, we selected NTERA-2 and HEK293T cells to perform an in vitro study to investigate the role of FOSL1 in the reprogramming mechanisms. We transfected the two cell lines with a constitutive FOSL1 cDNA plasmid. We demonstrated that FOSL1 directly regulates the four transcription factors binding their promoter regions, is involved in the deregulation of several stemness markers, and reduces the cells' ability to generate aggregates increasing the extracellular matrix component FN1. Although further experiments are necessary, our data suggest that FOSL1 reprograms the stemness by regulating the core of the four transcription factors.
Collapse
|
35
|
Ahmed M, Daoud GH, Mohamed A, Harati R. New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Breast Cancer. Genes (Basel) 2021; 12:genes12050723. [PMID: 34066014 PMCID: PMC8150278 DOI: 10.3390/genes12050723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most prevalent forms of cancer globally and is among the leading causes of death in women. Its heterogenic nature is a result of the involvement of numerous aberrant genes that contribute to the multi-step pathway of tumorigenesis. Despite the fact that several disease-causing mutations have been identified, therapy is often aimed at alleviating symptoms rather than rectifying the mutation in the DNA sequence. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 is a groundbreaking tool that is being utilized for the identification and validation of genomic targets bearing tumorigenic potential. CRISPR/Cas9 supersedes its gene-editing predecessors through its unparalleled simplicity, efficiency and affordability. In this review, we provide an overview of the CRISPR/Cas9 mechanism and discuss genes that were edited using this system for the treatment of breast cancer. In addition, we shed light on the delivery methods—both viral and non-viral—that may be used to deliver the system and the barriers associated with each. Overall, the present review provides new insights into the potential therapeutic applications of CRISPR/Cas9 for the advancement of breast cancer treatment.
Collapse
|
36
|
Catalano A, Adlesic M, Kaltenbacher T, Klar RFU, Albers J, Seidel P, Brandt LP, Hejhal T, Busenhart P, Röhner N, Zodel K, Fritsch K, Wild PJ, Duyster J, Fritsch R, Brummer T, Frew IJ. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel) 2021; 13:cancers13081852. [PMID: 33924486 PMCID: PMC8069437 DOI: 10.3390/cancers13081852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Mutations in RAS-family genes frequently cause different types of human cancers. Inhibitors of the MEK (mitogen-activated protein kinase) and ERK (extracellular signal-regulated kinase) protein kinases that function downstream of RAS proteins have shown some clinical benefits when used for the treatment of these cancers, but drug resistance frequently emerges. Here we show that combined treatment with MEK and ERK inhibitors blocks the emergence of resistance to either drug alone. However, if cancer cells have already developed resistance to MEK inhibitors or to ERK inhibitors, the combined therapy is frequently ineffective. These findings imply that these inhibitors should be used together for cancer therapy. We also show that drug resistance involves complex patterns of rewiring of cellular kinase signaling networks that do not overlap between each different cancer cell line. Nonetheless, we show that MAP4K4 is required for efficient cell proliferation in several different MEK/ERK inhibitor resistant cancer cell lines, uncovering a potential new therapeutic target. Abstract Oncogenic mutations in RAS family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic HrasG12V-driven undifferentiated pleomorphic sarcoma metastasis and of KrasG12D-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells and of human oncogenic KRAS-, NRAS- and BRAF-driven cancer cell lines we identified that resistance to single MEK inhibitor and ERK inhibitor treatments arise rapidly but combination therapy completely blocks the emergence of resistance. The prior evolution of resistance to either single agent frequently leads to resistance to dual treatment. Dual MEK inhibitor plus ERK inhibitor therapy shows anti-tumor efficacy in an HrasG12V-driven autochthonous sarcoma model but features of drug resistance in vivo were also evident. Array-based kinome activity profiling revealed an absence of common patterns of signaling rewiring in single or double MEK and ERK inhibitor resistant cells, showing that the development of resistance to downstream signaling inhibition in oncogenic RAS-driven tumors represents a heterogeneous process. Nonetheless, in some single and double MEK and ERK inhibitor resistant cell lines we identified newly acquired drug sensitivities. These may represent additional therapeutic targets in oncogenic RAS-driven tumors and provide general proof-of-principle that therapeutic vulnerabilities of drug resistant cells can be identified.
Collapse
Affiliation(s)
- Antonella Catalano
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Mojca Adlesic
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Thorsten Kaltenbacher
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Rhena F. U. Klar
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Joachim Albers
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Philipp Seidel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Laura P. Brandt
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Tomas Hejhal
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Philipp Busenhart
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Niklas Röhner
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
| | - Kyra Zodel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Kornelia Fritsch
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
| | - Peter J. Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Justus Duyster
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ralph Fritsch
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Hematology and Medical Oncology, University Hospital of Zurich, 8006 Zurich, Switzerland
| | - Tilman Brummer
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ian J. Frew
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-71831
| |
Collapse
|
37
|
Bejjani F, Tolza C, Boulanger M, Downes D, Romero R, Maqbool M, Zine El Aabidine A, Andrau JC, Lebre S, Brehelin L, Parrinello H, Rohmer M, Kaoma T, Vallar L, Hughes J, Zibara K, Lecellier CH, Piechaczyk M, Jariel-Encontre I. Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers. Nucleic Acids Res 2021; 49:2488-2508. [PMID: 33533919 PMCID: PMC7968996 DOI: 10.1093/nar/gkab053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitous family of dimeric transcription factors AP-1 is made up of Fos and Jun family proteins. It has long been thought to operate principally at gene promoters and how it controls transcription is still ill-understood. The Fos family protein Fra-1 is overexpressed in triple negative breast cancers (TNBCs) where it contributes to tumor aggressiveness. To address its transcriptional actions in TNBCs, we combined transcriptomics, ChIP-seqs, machine learning and NG Capture-C. Additionally, we studied its Fos family kin Fra-2 also expressed in TNBCs, albeit much less. Consistently with their pleiotropic effects, Fra-1 and Fra-2 up- and downregulate individually, together or redundantly many genes associated with a wide range of biological processes. Target gene regulation is principally due to binding of Fra-1 and Fra-2 at regulatory elements located distantly from cognate promoters where Fra-1 modulates the recruitment of the transcriptional co-regulator p300/CBP and where differences in AP-1 variant motif recognition can underlie preferential Fra-1- or Fra-2 bindings. Our work also shows no major role for Fra-1 in chromatin architecture control at target gene loci, but suggests collaboration between Fra-1-bound and -unbound enhancers within chromatin hubs sometimes including promoters for other Fra-1-regulated genes. Our work impacts our view of AP-1.
Collapse
Affiliation(s)
- Fabienne Bejjani
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- PRASE, DSST, ER045, Lebanese University, Beirut, Lebanon
| | - Claire Tolza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | | | - Damien Downes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Raphaël Romero
- IMAG, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | | | | | | | - Sophie Lebre
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | | | - Hughes Parrinello
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Marine Rohmer
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Tony Kaoma
- Computational Biomedecine, Quantitative Biology Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Laurent Vallar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jim R Hughes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Kazem Zibara
- PRASE, DSST, ER045, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Charles-Henri Lecellier
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | | | | |
Collapse
|
38
|
Morral N, Liu S, Conteh AM, Chu X, Wang Y, Dong XC, Liu Y, Linnemann AK, Wan J. Aberrant gene expression induced by a high fat diet is linked to H3K9 acetylation in the promoter-proximal region. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194691. [PMID: 33556624 DOI: 10.1016/j.bbagrm.2021.194691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with an estimated global prevalence of 1 in 4 individuals. Aberrant transcriptional control of gene expression is central to the pathophysiology of metabolic diseases. However, the molecular mechanisms leading to gene dysregulation are not well understood. Histone modifications play important roles in the control of transcription. Acetylation of histone 3 at lysine 9 (H3K9ac) is associated with transcriptional activity and is implicated in transcript elongation by controlling RNA polymerase II (RNAPII) pause-release. Hence, changes in this histone modification may shed information on novel pathways linking transcription control and metabolic dysfunction. Here, we carried out genome-wide analysis of H3K9ac in the liver of mice fed a control or a high-fat diet (an animal model of NAFLD), and asked whether this histone mark associates with changes in gene expression. We found that over 70% of RNAPII peaks in promoter-proximal regions overlapped with H3K9ac, consistent with a role of H3K9ac in the regulation of transcription. When comparing high-fat with control diet, approximately 17% of the differentially expressed genes were associated with changes in H3K9ac in their promoters, showing a strong correlation between changes in H3K9ac signal and gene expression. Overall, our data indicate that in response to a high-fat diet, dysregulated gene expression of a subset of genes may be attributable to changes in transcription elongation driven by H3K9ac. Our results point at an added mechanism of gene regulation that may be important in the development of metabolic diseases.
Collapse
Affiliation(s)
- Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Abass M Conteh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Xiaona Chu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Amelia K Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
39
|
Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A, Lau AN, Gabitova L, Pazina T, Gupta S, Luong T, Rollins D, Malik R, Thapa RJ, Restifo D, Zhou Y, Cai KQ, Hensley HH, Tan Y, Kruger WD, Devarajan K, Balachandran S, Klein-Szanto AJ, Wang H, El-Deiry WS, Vander Heiden MG, Peri S, Campbell KS, Astsaturov I, Cukierman E. Netrin G1 Promotes Pancreatic Tumorigenesis through Cancer-Associated Fibroblast-Driven Nutritional Support and Immunosuppression. Cancer Discov 2021; 11:446-479. [PMID: 33127842 PMCID: PMC7858242 DOI: 10.1158/2159-8290.cd-20-0775] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. We found that NetG1+ cancer-associated fibroblasts (CAF) support PDAC survival, through a NetG1-mediated effect on glutamate/glutamine metabolism. Also, NetG1+ CAFs are intrinsically immunosuppressive and inhibit natural killer cell-mediated killing of tumor cells. These protumor functions are controlled by a signaling circuit downstream of NetG1, which is comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally, blocking NetG1 with a neutralizing antibody stunts in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC. SIGNIFICANCE: This study demonstrates the feasibility of targeting a fibroblastic protein, NetG1, which can limit PDAC tumorigenesis in vivo by reverting the protumorigenic properties of CAFs. Moreover, inhibition of metabolic proteins in CAFs altered their immunosuppressive capacity, linking metabolism with immunomodulatory function.See related commentary by Sherman, p. 230.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Ralph Francescone
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Débora Barbosa Vendramini-Costa
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Janusz Franco-Barraza
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jessica Wagner
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Allison N Lau
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Linara Gabitova
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tatiana Pazina
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sapna Gupta
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tiffany Luong
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dustin Rollins
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ruchi Malik
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Roshan J Thapa
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Diana Restifo
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harvey H Hensley
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Small Animal Imaging Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Genomics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Warren D Kruger
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andres J Klein-Szanto
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Huamin Wang
- Division of Pathology/Lab Medicine, Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wafik S El-Deiry
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Suraj Peri
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kerry S Campbell
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Edna Cukierman
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Wu Z, Nicoll M, Ingham RJ. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical hodgkin lymphoma and ALK+ ALCL. Exp Hematol Oncol 2021; 10:4. [PMID: 33413671 PMCID: PMC7792353 DOI: 10.1186/s40164-020-00197-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) and anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) are B and T cell lymphomas respectively, which express the tumour necrosis factor receptor superfamily member, CD30. Another feature shared by cHL and ALK+ ALCL is the aberrant expression of multiple members of the activator protein-1 (AP-1) family of transcription factors which includes proteins of the Jun, Fos, ATF, and Maf subfamilies. In this review, we highlight the varied roles these proteins play in the pathobiology of these lymphomas including promoting proliferation, suppressing apoptosis, and evading the host immune response. In addition, we discuss factors contributing to the elevated expression of these transcription factors in cHL and ALK+ ALCL. Finally, we examine therapeutic strategies for these lymphomas that exploit AP-1 transcriptional targets or the signalling pathways they regulate.
Collapse
Affiliation(s)
- Zuoqiao Wu
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.17063.330000 0001 2157 2938Present Address: Department of Medicine, University of Toronto, Toronto, Canada
| | - Mary Nicoll
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.14709.3b0000 0004 1936 8649Present Address: Department of Biology, McGill University, Montreal, Canada
| | - Robert J. Ingham
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| |
Collapse
|
41
|
FRA-1 suppresses apoptosis of Helicobacter pylori infected MGC-803 cells. Mol Biol Rep 2021; 48:611-621. [PMID: 33389529 DOI: 10.1007/s11033-020-06105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022]
Abstract
Previous research has demonstrated a correlation between elevated expression of Fos-related antigen 1 (FRA-1) and malignancies. Nevertheless, the role of FRA-1 in Helicobacter pylori infected gastric cancer cells remains vague. Our study aims to investigate whether FRA-1 plays a role in the apoptosis of MGC-803 induced by H. pylori and possible mechanisms. MGC-803 cells were used in vitro to establish a cell model of H. pylori infection. After stimulation with H. pylori, the expression of FRA-1 was increased in MGC-803 cells. H. pylori infection promoted the apoptosis of MGC-803 cells, and led to cell cycle arrest and increased oxidative stress levels. Furthermore, the knockdown of FRA-1 reinforced these changes. H. pylori decreased the expression of Bcl2, Caspase3 and Caspase9, while increased the level of BAX, Cleaved-Caspase3 and Cleaved-Caspase9; in addition, it led to the decrease of major proteins in Ras/Erk and PI3K/AKT signaling pathway. As expected, these changes were augmented by FRA-1 knockdown. Our results demonstrated that high expression of FRA-1 induced by H. pylori suppresses apoptosis in MGC-803 cells which may be regulated by oxidative stress and cycle arrest through caspase family, Ras/Erk and PI3K/AKT signaling pathway.
Collapse
|
42
|
Barguilla I, Bach J, Peremartí J, Marcos R, Hernández A. FRA1 is essential for the maintenance of the oncogenic phenotype induced by in vitro long-term arsenic exposure. Metallomics 2020; 12:2161-2173. [PMID: 33313624 DOI: 10.1039/d0mt00209g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsenic induces oncogenic effects activating stress-related signalling pathways. This can result in the over-activation of the AP-1 protein, specifically its FRA1 component. FRA1 is a transcription factor frequently overexpressed in epithelial tumors, where it can regulate the expression of different target genes. Accordingly, FRA1 could play an essential role in the in vitro cell transformation induced by arsenic. FRA1 levels were monitored in MEF cells throughout their transformation stages during 40 weeks of long-term 2 μM arsenic exposure. Interestingly, the results show a progressive FRA1 overexpression with time (60-fold and 11-fold for mRNA and pFRA/non-pFRA1, respectively, at week 40), which may be responsible for the observed altered expression in the FRA1 downstream target genes Pten, Pdcd4, Tpm1, Tgfb1, Tgfb2, Zeb1, Zeb2, and Twist. The levels of MAPKs (ERK, p38, and JNK) and other known players upstream from FRA1 were assessed at equivalent time-points, and ERK, p38 and RAS were pinpointed as potential candidates involved in arsenic-induced FRA1 activation. Furthermore, FRA1 stable knockdown under chronic arsenic exposure settings elicits a remarkable impact on the features relative to the cells' oncogenic phenotype. Notably, FRA1 knockdown cells present a 30% diminished proliferation rate, a 50% lowered migration and invasion potential, a 50% reduction in senescence, and a 30-60% reduced tumorsphere-forming ability. This work is the first to demonstrate the important role of FRA1 in the development and aggressiveness of the in vitro transformed phenotype induced by long-term arsenic exposure.
Collapse
Affiliation(s)
- Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Edifici Cn, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | | | | | | | | |
Collapse
|
43
|
Gao F, Li M, Zhou L, Liu W, Zuo H, Li W. Xanthohumol targets the ERK1/2‑Fra1 signaling axis to reduce cyclin D1 expression and inhibit non‑small cell lung cancer. Oncol Rep 2020; 44:1365-1374. [PMID: 32945473 PMCID: PMC7448415 DOI: 10.3892/or.2020.7697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
High expression of cyclin D1 has a crucial role in the maintenance of unlimited cell growth in human cancer cells. The present study indicated that cyclin D1 was overexpressed in human non-small cell lung cancer (NSCLC) tumor tissues and cell lines. Knockout of cyclin D1 suppressed NSCLC cell growth, colony formation and in vivo tumor growth. Of note, the natural product xanthohumol (Xanth) inhibited NSCLC cells via the downregulation of cyclin D1. A further mechanistic study revealed that Xanth suppressed ERK1/2 signaling and reduced the protein levels of FOS-related antigen 1 (Fra1), which eventually inhibited the transcriptional activity of activator protein-1 and decreased the mRNA level of cyclin D1. Furthermore, suppression of ERK1/2 impaired Fra1 phosphorylation and enhanced Xanth-induced Fra1 ubiquitination and degradation. In addition, the S265D mutation compromised Xanth-induced Fra1 degradation. Finally, the in vivo anti-tumor effect of Xanth was validated in a xenograft mouse model. In summary, the present results indicated that targeting ERK1/2-Fra1-cyclin D1 signaling is a promising anti-tumor strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Feng Gao
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Huilan Zuo
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
44
|
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020; 39:4491-4506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors. We also present a model on the regulatory interactions between Fra-1, p53, and miRNAs. Then, we outline the multiple roles of Fra-1 posttranslational modifications and transactivation mechanisms of select Fra-1 target genes. In addition to summarizing the Fra-1-dependent gene networks controlling proliferation, survival, and epithelial-mesenchymal transitions (EMT) in multiple cancer cell types, we highlight the roles played by Fra-1 in nonneoplastic cell populations recruited to the tumor microenvironment, and in mouse models of tumorigenesis. Next, we review the prognostic power of the Fra-1-associated gene signatures, and envisage potential strategies aimed at Fra-1 therapeutic inhibition. Finally, we discuss several recent reports showing the emerging roles of Fra-1 in the mechanisms of both resistance and addiction to targeted therapies.
Collapse
Affiliation(s)
- Francesco Talotta
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.,ReiThera Srl, Castel Romano, Rome, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.
| |
Collapse
|